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Abstract—The testbed presented in this study supplies 

various devices to emulate a smart home.  The paper highlights 

how devices can be connected and programmed to perform 

functions using an application programming interface. 

Remote-controlled robots in the testbed enable a user to 

manipulate, monitor, and configure home-based Internet-of-

Things (IoT) technologies.  The paper describes the equipment 

used in the testbed, including a wireless security camera, a 

smart lock, a climate sensor, and two types of robots. Security 

measures implemented in the testbed are also discussed. 

Several application scenarios are presented and analyzed on 

how they were accomplished to demonstrate the functionalities. 

The smart home testbed is a useful resource for education and 

development, as it allows for sufficient performance using a 

single control point. 
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I. INTRODUCTION

HE Internet of Things (IoT) is a network of objects with
sensors and the capability to connect to the Internet [1]. 

This network of connected devices communicates either to 
each other or to a centralized server. When connected the 
devices will share information gathered by sensors as well as 
take commands from a server [2][3]. This technology has 
been quickly making its way into our homes and places of 
work. With the drastic growth in the number of these devices 
for a variety of different commercial premises, there is a 
push for a more interchangeable and reliable control system 
[4]. An application programming interface (API) enables 
these devices to be connected and programmed to perform 
various functions. If two devices do not share the same 
interface, they cannot communicate directly. Currently, most 
devices meant for households have their proprietary interface 
and are controlled separately [5][6]. Only devices 
specifically designed around a base control system have the 
benefits of direct communication. 

Industry also uses IoT devices to control their systems 
inside manufacturing plants. Recently, there have been 
advances in edge computing on IoT devices used in business 
settings [7-10]. Edge computing devices are more like a 
network of computers rather than a single computer with 
many sensors [11]. They can process information on their 

own and send fewer data signals to the main control point, 
freeing up the bandwidth for more devices on the same 
network. This form of control network is seen as ideal for 
performance. However, this type of system is unreasonable 
for a household where the number of devices being used at 
the same time is much less as compared to an enterprise 
setting. The best control scheme for home use is usually from 
a single access point so that all devices are connected to the 
main API and can be seen and accessed remotely during their 
use [12]. This scheme is more affordable and simpler to 
install in homes. As edge computing is getting into 
households, the testbed presented in this paper is a valuable 
tool for educational and development purposes where a 
single control point will better fulfill their requirements[13-
15]. 

Most current IoT devices are controlled via an app that is 
made specifically for that device. This would lead to smart 
homes that require the user to have a different app for each 
device they own. Besides being inconvenient, the devices 
will not work effectively together as a smart home due to the 
disconnected nature of individual application programming 
interfaces [16]. 

In this paper, a smart home testbed system is introduced, 
which is capable of manipulating, monitoring, and 
configuring home-based IoT devices and systems. Section II 
describes the structure of the smart home testbed based on 
technologies like microcontrollers, TCP sockets, network 
broadcasts all centered around a single controlling server. 
Section III details the security and accessibility of the testbed 
network. Section IV analyzes several scenarios and breaks 
down how they were accomplished to demonstrate 
functionality. Finally, Section V contains a synopsis of the 
smart home testbed system and is concluded by considering 
future work. 

II. TESTBED OVERVIEW – EQUIPMENT

The testbed is centered around a single access point 
server, which establishes a network topology where all 
devices and components are managed through a centralized 
server. This access point server serves as the primary point of 
control, enabling users to monitor and configure all aspects  
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Fig. 1.  Remote users can access the testbed through a wireless connection. 

of the testbed, including device configuration, data 
collection, and analysis. By centralizing control in a single 
server, users can simplify the management of the testbed and 
ensure that all devices are working together in a coordinated 
manner, reducing the potential for errors or inconsistencies.  
In addition, having a single access point server provides 
users with more granular control over the testbed, enabling 
users to configure the testbed to meet specific research 
objectives and evaluate the performance of different devices 
and components under various conditions. The topology of 
the network including the server and other devices can be 
seen in Fig. 1, which supplies a visual representation of how 
the testbed is configured and how the devices are connected 
to the access point server.  

The network connecting all testbed smart devices to the 
main server takes advantage of Static IP addresses and MAC 
address binding. By default, each device has a dynamic IP 
address so it would change approximately every week. This  

 

Fig. 2.  The climate sensor, implemented on a Raspberry Pi Zero, transmits 
data to the server and displays it on the onboard screen.  

would prevent the server from accessing other devices in the 
testbed. Static IP addresses and MAC binding resolve this by 
supplying a fixed and unchanging address for each device on 
the network. This is vital for the testbed because devices 
must communicate with each other and the server in real 
time. The code written to accomplish this task contains a 
string with the IP address of the other device. Since each 
device is always found at the address specified in the testbed 
documentation, user code will connect to the correct devices 
every time. 

The testbed functionality tests were performed using a 
Wansview W6 wireless security camera mounted in the 
ceiling. It is integrated into the testbed by the Wi-Fi network 
to allow communication with all other devices on the 
network. It is used to collect data and supply insights into the 
behavior and activities of robots and other devices within the 
testbed. This data can be analyzed to detect anomalies or 
patterns that could be useful in improving the efficiency and 
effectiveness of the testbed. The way this data was analyzed 
is by broadcasting a livestream that was digitally processed 
by a Python script using Open-Source Computer Vision 
Library (OpenCV) [17]. Processed video frames were then 
utilized to control other devices in the testbed. 

The testbed comprises a variety of devices, each 
interacting with the testbed in unique ways and collecting 
diverse types of data. One of these devices is an August 
smart lock connected via Wi-Fi to the main server. This 
allowed users to grant or revoke access to the lock based on 
specific conditions set by the controlling API. Additionally, 
the lock can be configured to alert the server when interacted 
with, providing users with valuable data on access patterns 
and usage. Another device controlled by the server is a 
Raspberry Pi climate sensor as seen in Fig. 2. The Raspberry 
Pi is a low-cost, compact computer that is used as a platform 
for IoT devices. Attached to the Raspberry Pi via Inter-
Integrated Circuit are sensors to allow users to read the 
climate data using Python or other programming languages. 
For example, climate sensor data can be used to evaluate the 
effectiveness of different cooling strategies on device 
performance or to identify the impact of temperature and 
humidity on wireless communication and energy 
consumption. Due to the implementation of the climate 
sensor as a Raspberry Pi, its functionality can be expanded to 
meet future testing protocols and user needs. The two types  

 

Fig. 3.  Cameras were placed around the testbed for motion detection 
protocols, and remote users to view the testbed. 



of robots used in the testbed are the LoCobot produced by 
Interbotix and NAO developed by the Aldebaran robot 
company. LoCobot moves using two wheels while NAO 
used servo-controlled legs to move. Both types of robots 
were evaluated for how accurately they could travel to a 
location within the testbed.  All testing was performed on a 
3×3m grid divided into 36 squares of  0.5×0.5m as shown in 
Fig. 3. Corrections to the movement protocol were made by 
measuring the error between the actual position and target 
position using a metric tape measure. With this data, 
adjustments were made to the W6 camera, LoCobots, and 
NAO to improve their movement accuracy. 

III. SECURITY 

The server offers remote accessibility using NoMachine, 
which is a remote desktop software that allows users to 
connect to the server from outside of the testbed. This is 
particularly useful for users who need to access the testbed 
from outside of the university campus, as it allows them to 
connect securely and work on their projects as if they were 
physically present in the testbed area. For security purposes, 
robust passwords are in use, providing enhanced integrity 
against unauthorized access. Moreover, each user must have 
an account with the university to have an account on the 
server. Current university students and researchers are able to 
login with the credentials they already possess. This 
separates all directories so users can customize their 
experience and the programs they use. This also ensures the 
integrity of all user data from malicious or accidental actions. 
To further enhance the security of the testbed, regular hard 
drive backups are performed to ensure that user data is safe 
and can be easily restored in case of incidents. The schedule 
of such backups depends on the frequency of users 
committing changes to the server. Hard drive backups are 
stored in a secure location to prevent unauthorized access 
and data breaches. 

The testbed server is a subnetwork of the campus 
network which means that it benefits from the same level of 
protection and security measures as the larger network. This 
includes firewalls, intrusion detection systems, and antivirus 
software that are in place to prevent unauthorized access and 
protect against potential cyber-attacks. In addition to the 
campus security measures, the testbed server has its own 
security protocols. The most relied upon network, the Wi-Fi, 
is secured with WPA2 PSK with 128-bit AES encryption. 

Additionally, the network is not discoverable to outside 
devices, which means that only authorized users with the 
correct credentials can connect to it. To further ensure the 
security of the wireless network, it is purposely designed to 
have a short range to prevent any device outside of the 
testbed work area from connecting to the network. This 
prevents any outside interference, unauthorized access to the 
network, and users accessing devices outside the scope of the 
testbed.  

IV. SCENARIOS 

A doorbell system was used in the testbed for motion 
detection, object identification, and tracking when the door 
was opened. One scenario using the doorbell is as follows: 
NAO actuated the doorbell pressure plate which activated the 
camera. An unlock signal was sent to the smart lock when 
NAO was recognized by the doorbell. The testbed achieved  

  

Fig. 4.  The doorbell can detect objects based on the object detection 
protocol. 

this result by broadcasting a video stream after the doorbell 
was activated. This stream was processed by the main server 
using OpenCV an object detection protocol [16]. 

 OpenCV utilizes Haar cascades to detect objects in a 
video stream. Harr cascades work by analyzing the pixel 
values in an image to identify patterns that correspond to a 
specific object. To achieve this, the Haar cascade algorithm 
utilizes a set of pre-trained models that serve as templates 
describing the visual characteristics of a particular object, 
such as NAO in this case as shown in Fig. 4. The server 
recognized NAO as the entity which activated the doorbell 
and sent a signal to a smart locking system to unlock the 
door. 

A second scenario proved how the doorbell platform was 
expandable and interfaced with other IoT devices. A 
magnetic contact switch (door sensor) was added to the 
doorbell to monitor the opened or closed status of the testbed 
door. When the door is opened, the climate sensor would 
measure the UV light, brightness, temperature, and humidity 
of the room. This result was achieved using the Raspberry Pi 
General Purpose Input/Output (GPIO) pins and editable 
networking scripts. The door sensor connected to a custom 
soldered circuit board and acted as a switch connecting the 
Raspberry Pi 5V power pin to the ground pin. The GPIO5 
pin was connected in parallel to the ground pin to receive 
input on door status. The doorbell monitored the GPIO5 pin 
for a changing voltage. The doorbell measured logic 1 from 
the pin with the door closed and logic 0 with the door open. 
The status was relayed to the server over a Transmission 
Control Protocol (TCP) network socket. Once the server 
sensed a change in door status, it would run a bash script 
through an SSH connection to the climate sensor. The 
climate sensor would report data back to the server through 
another TCP socket. 



 

Fig. 5.  The LoCoBot can detect its surroundings using a lidar sensor and 
process this data to show shapes and distances in RViz. 

 

Fig. 6.  RViz can convert the Intel RealSense infrared bit map into a 3D 
image that LoCoBot can use to process its surroundings.  

The LoCobot platform was used for navigation and 
object interaction within the testbed. One scenario was tested 
where the LoCobot navigated an obstacle course to reach the 
desired position. Once at the position, the LoCobot picked up 
objects from the floor and placed them into a box. LoCobot 
movement was achieved using the ROS Visualization (RViz) 
remote monitoring software and the MoveIt package from 
the Robot Operating System (ROS) GitHub repository [18]. 
RViz ran on the testbed server, displaying LoCobot servo 
positions, the live camera feed, and lidar range data as shown 
in Fig. 5. The user relied on the RViz display in conjunction 
with the overhead camera feed to navigate the LoCobot and 
avoid obstacles. 

LoCobot picking up and moving objects was 
accomplished with the perception pipeline package from the 
ROS GitHub and the equipped Intel RealSense depth camera 
[19-20]. The user ran an initialization script on the LoCobot 
which made the depth camera project infrared light onto the 
field of view. The depth camera captured the feedback using 
stereoscopic sensors and an RGB module. RViz displayed 
the infra-red depth map in three dimensions overlayed with 

the full-color camera feed shown in Fig. 6. The user then ran 
a Python script on the LoCobot which identified objects 
within the depth map and saved their positions. The LoCobot 
manipulator arm maneuvered to each position, picked up the 
object, moved the object to a user-specified location, and 
dropped the object. 

V. CONCLUSION 

This Internet of Things-based testbed and control system 
was conceived with the intent to progress development in 
motion detection protocols and the application programming 
interface that controls these device networks. The designed 
system works effectively, can be accessed from remote, and 
can be recreated affordably for personal or educational use. 
The motion detection analysis system is unique in low-cost 
testbeds, with which the accuracy of the system performs 
greater than the sum of its components. Based on the most 
common smart devices found today, this single access point 
testbed will work much more effectively to simulate a smart 
home than the state-of-the-art edge computing testbeds do. 

The testbed was designed such that more smart devices 
could be added to fully emulate a smart home and current 
commercially available ecosystems. A microphone and 
speaker will be added to the Raspberry Pi doorbell so that 
users can communicate with the entity pressing the doorbell. 
Another planned device is a smart outlet that monitors power 
consumption and can be switched on remotely. Future 
devices will be designed using the Raspberry Pi platform and 
other low-cost commercially available components.  

ACKNOWLEDGMENT 

This work is supported by the NSF grant No. 2016485. 

The authors would also like to thank G. Tomlinson, L. 

Vaughan, and J. Hansen for their help to set up and evaluate 

the testbed. 

REFERENCES 

 
[1] K. Ashton, "That Internet of Things thing", RFiD J., vol. 22, no. 7, 

pp. 97-114, 2009. 

[2] S. N. Swamy and S. R. Kota, "An Empirical Study on System Level 
Aspects of Internet of Things (IoT)," in IEEE Access, vol. 8, pp. 
188082-188134, 2020, 
https://doi.org/10.1109/ACCESS.2020.3029847. 

[3] A. K. Gupta and R. Johari, "IOT based Electrical Device Surveillance 
and Control System," 2019 4th International Conference on Internet 
of Things: Smart Innovation and Usages (IoT-SIU), 2019, pp. 1-5,  
https://doi.org/10.1109/IoT-SIU.2019.8777342. 

[4] D. Evans, “The Internet of Things: How the next evolution of the 
Internet is changing everything,” CISCO White Paper, vol. 1, pp. 1–
11, 2011 

[5] J. Huang, Y. Meng, X. Gong, Y. Liu and Q. Duan, "A Novel 
Deployment Scheme for Green Internet of Things," in IEEE Internet 
of Things Journal, vol. 1, no. 2, pp. 196-205, April 2014, 
https://doi.org/10.1109/JIOT.2014.2301819. 

[6] S. L. Keoh, S. S. Kumar and H. Tschofenig, "Securing the Internet of 
Things: A Standardization Perspective," in IEEE Internet of Things 
Journal, vol. 1, no. 3, pp. 265-275, June 2014,  
https://doi.org/10.1109/JIOT.2014.2323395.  

[7]  A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, 
"Internet of Things for Smart Cities," in IEEE Internet of Things 
Journal, vol. 1, no. 1, pp. 22-32, Feb. 2014, 
https://doi.org/10.1109/JIOT.2014.2306328. 

[8] L. Catarinucci et al., "An IoT-Aware Architecture for Smart 
Healthcare Systems," in IEEE Internet of Things Journal, vol. 2, no. 



6, pp. 515-526, Dec. 2015, 
https://doi.org/10.1109/JIOT.2015.2417684. 

[9] S. Savazzi, V. Rampa and U. Spagnolini, "Wireless Cloud Networks 
for the Factory of Things: Connectivity Modeling and Layout 
Design," in IEEE Internet of Things Journal, vol. 1, no. 2, pp. 180-
195, April 2014, https://doi.org/10.1109/JIOT.2014.2313459. 

[10] A. Ciuffoletti, "OCCI-IoT: An API to Deploy and Operate an IoT 
Infrastructure," in IEEE Internet of Things Journal, vol. 4, no. 5, pp. 
1341-1348, Oct. 2017, https://doi.org/10.1109/JIOT.2017.2734068. 

[11] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge Computing: Vision 
and Challenges," in IEEE Internet of Things Journal, vol. 3, no. 5, pp. 
637-646, Oct. 2016, https://doi.org/10.1109/JIOT.2016.2579198. 

[12] S. Lee, H. Choi, T. Kim, H. -S. Park and J. K. Choi, "A Novel 
Energy-Conscious Access Point (eAP) System With Cross-Layer 
Design in Wi-Fi Networks for Reliable IoT Services," in IEEE 
Access, vol. 10, pp. 61228-61248, 2022, 
https://doi.org/10.1109/ACCESS.2022.3181304.    

[13] Y. Ouyang and T. Yan, "Profiling Wireless Resource Usage for 
Mobile Apps via Crowdsourcing-Based Network Analytics," in IEEE 
Internet of Things Journal, vol. 2, no. 5, pp. 391-398, Oct. 2015, 
https://doi.org/10.1109/JIOT.2015.2415522. 

[14] K. Liu et al., "On Manually Reverse Engineering Communication 
Protocols of Linux-Based IoT Systems," in IEEE Internet of Things 
Journal, vol. 8, no. 8, pp. 6815-6827, 15 April15, 2021, 
https://doi.org/10.1109/JIOT.2020.3036232.  

[15] C. Stolojescu-Crisan, C. Crisan, and B.-P. Butunoi, “An IOT-based 
Smart Home Automation System,” Sensors, vol. 21, no. 11, p. 3784, 
2021. https://doi.org/10.3390/s21113784.  

[16] K. Liu et al., "Security Analysis of Mobile Device-to-Device Network 
Applications," in IEEE Internet of Things Journal, vol. 6, no. 2, pp. 
2922-2932, April 2019, https://doi.org/10.1109/JIOT.2018.2877174. 

[17] OpenCV Official website https://opencv.org/ 

[18] Ros-Planning, “Ros-planning/moveit: The MOVEIT Motion Planning 
Framework,” GitHub, https://github.com/ros-planning/moveit  

[19] Interbotix,“Interbotix_ros_rovers/interbotix_ros_xslocobots/interbotix 
_xslocobot_perception at Main · Interbotix/interbotix_ros_rovers,” 
GitHub, https://github.com/Interbotix/interbotix_ros_rovers/tree/main 
/interbotix_ros_xslocobots/interbotix_xslocobot_perception  

[20] “Intel RealSense ID solution F400,” Intel® RealSenseTM Developer 
Documentation, https://dev.intelrealsense.com/docs/intel-realsense-id-
f450-module-and-f455-peripheral#datasheet 

 


