An Internet of Things Testbed for Education and
Community Research

John Swaim
Computer Science and Computer Engineering Department
University of Arkansas
Fayetteville, AR, USA
Jjeswaim@uark.edu

Jia Di
Computer Science and Computer Engineering Department
University of Arkansas
Fayetteville, AR, USA
jdi@uark.edu

Abstract—The testbed presented in this study supplies
various devices to emulate a smart home. The paper highlights
how devices can be connected and programmed to perform
functions using an application programming interface.
Remote-controlled robots in the testbed enable a user to
manipulate, monitor, and configure home-based Internet-of-
Things (IoT) technologies. The paper describes the equipment
used in the testbed, including a wireless security camera, a
smart lock, a climate sensor, and two types of robots. Security
measures implemented in the testbed are also discussed.
Several application scenarios are presented and analyzed on
how they were accomplished to demonstrate the functionalities.
The smart home testbed is a useful resource for education and
development, as it allows for sufficient performance using a
single control point.

Keywords—Testbed, Home Automation, loT, Robot

1. INTRODUCTION

HE Internet of Things (IoT) is a network of objects with

sensors and the capability to connect to the Internet [1].
This network of connected devices communicates either to
each other or to a centralized server. When connected the
devices will share information gathered by sensors as well as
take commands from a server [2][3]. This technology has
been quickly making its way into our homes and places of
work. With the drastic growth in the number of these devices
for a variety of different commercial premises, there is a
push for a more interchangeable and reliable control system
[4]. An application programming interface (API) enables
these devices to be connected and programmed to perform
various functions. If two devices do not share the same
interface, they cannot communicate directly. Currently, most
devices meant for households have their proprietary interface
and are controlled separately [5][6]. Only devices
specifically designed around a base control system have the
benefits of direct communication.

Industry also uses IoT devices to control their systems
inside manufacturing plants. Recently, there have been
advances in edge computing on [oT devices used in business
settings [7-10]. Edge computing devices are more like a
network of computers rather than a single computer with
many sensors [11]. They can process information on their

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Chad Workman
Electrical Engineering Department
University of Arkansas
Fayetteville, AR, USA
cmworkma@uark.edu

Xiaojiang Du
Electrical and Computer Engineering Department
Stevens Institute of Technology
Hoboken, NJ, US4
xdul6@stevens.edu

own and send fewer data signals to the main control point,
freeing up the bandwidth for more devices on the same
network. This form of control network is seen as ideal for
performance. However, this type of system is unreasonable
for a household where the number of devices being used at
the same time is much less as compared to an enterprise
setting. The best control scheme for home use is usually from
a single access point so that all devices are connected to the
main API and can be seen and accessed remotely during their
use [12]. This scheme is more affordable and simpler to
install in homes. As edge computing is getting into
households, the testbed presented in this paper is a valuable
tool for educational and development purposes where a
single control point will better fulfill their requirements[13-
15].

Most current IoT devices are controlled via an app that is
made specifically for that device. This would lead to smart
homes that require the user to have a different app for each
device they own. Besides being inconvenient, the devices
will not work effectively together as a smart home due to the
disconnected nature of individual application programming
interfaces [16].

In this paper, a smart home testbed system is introduced,
which is capable of manipulating, monitoring, and
configuring home-based IoT devices and systems. Section II
describes the structure of the smart home testbed based on
technologies like microcontrollers, TCP sockets, network
broadcasts all centered around a single controlling server.
Section III details the security and accessibility of the testbed
network. Section IV analyzes several scenarios and breaks
down how they were accomplished to demonstrate
functionality. Finally, Section V contains a synopsis of the
smart home testbed system and is concluded by considering
future work.

II. TESTBED OVERVIEW — EQUIPMENT

The testbed is centered around a single access point
server, which establishes a network topology where all
devices and components are managed through a centralized
server. This access point server serves as the primary point of
control, enabling users to monitor and configure all aspects

User's Computer

Testbed Router

Testbed Server

Fig. 1. Remote users can access the testbed through a wireless connection.

of the testbed, including device -configuration, data
collection, and analysis. By centralizing control in a single
server, users can simplify the management of the testbed and
ensure that all devices are working together in a coordinated
manner, reducing the potential for errors or inconsistencies.
In addition, having a single access point server provides
users with more granular control over the testbed, enabling
users to configure the testbed to meet specific research
objectives and evaluate the performance of different devices
and components under various conditions. The topology of
the network including the server and other devices can be
seen in Fig. 1, which supplies a visual representation of how
the testbed is configured and how the devices are connected
to the access point server.

The network connecting all testbed smart devices to the
main server takes advantage of Static IP addresses and MAC
address binding. By default, each device has a dynamic IP
address so it would change approximately every week. This

Fenp: 27.28
h‘ﬁgny: 36.27

oy
Light: 1870

Fig. 2. The climate sensor, implemented on a Raspberry Pi Zero, transmits
data to the server and displays it on the onboard screen.

would prevent the server from accessing other devices in the
testbed. Static IP addresses and MAC binding resolve this by
supplying a fixed and unchanging address for each device on
the network. This is vital for the testbed because devices
must communicate with each other and the server in real
time. The code written to accomplish this task contains a
string with the IP address of the other device. Since each
device is always found at the address specified in the testbed
documentation, user code will connect to the correct devices
every time.

The testbed functionality tests were performed using a
Wansview W6 wireless security camera mounted in the
ceiling. It is integrated into the testbed by the Wi-Fi network
to allow communication with all other devices on the
network. It is used to collect data and supply insights into the
behavior and activities of robots and other devices within the
testbed. This data can be analyzed to detect anomalies or
patterns that could be useful in improving the efficiency and
effectiveness of the testbed. The way this data was analyzed
is by broadcasting a livestream that was digitally processed
by a Python script using Open-Source Computer Vision
Library (OpenCV) [17]. Processed video frames were then
utilized to control other devices in the testbed.

The testbed comprises a variety of devices, each
interacting with the testbed in unique ways and collecting
diverse types of data. One of these devices is an August
smart lock connected via Wi-Fi to the main server. This
allowed users to grant or revoke access to the lock based on
specific conditions set by the controlling API. Additionally,
the lock can be configured to alert the server when interacted
with, providing users with valuable data on access patterns
and usage. Another device controlled by the server is a
Raspberry Pi climate sensor as seen in Fig. 2. The Raspberry
Pi is a low-cost, compact computer that is used as a platform
for IoT devices. Attached to the Raspberry Pi via Inter-
Integrated Circuit are sensors to allow users to read the
climate data using Python or other programming languages.
For example, climate sensor data can be used to evaluate the
effectiveness of different cooling strategies on device
performance or to identify the impact of temperature and
humidity on wireless communication and energy

consumption. Due to the implementation of the climate
sensor as a Raspberry Pi, its functionality can be expanded to
meet future testing protocols and user needs. The two types

Fig. 3. Cameras were placed around the testbed for motion detection
protocols, and remote users to view the testbed.

of robots used in the testbed are the LoCobot produced by
Interbotix and NAO developed by the Aldebaran robot
company. LoCobot moves using two wheels while NAO
used servo-controlled legs to move. Both types of robots
were evaluated for how accurately they could travel to a
location within the testbed. All testing was performed on a
3x3m grid divided into 36 squares of 0.5x0.5m as shown in
Fig. 3. Corrections to the movement protocol were made by
measuring the error between the actual position and target
position using a metric tape measure. With this data,
adjustments were made to the W6 camera, LoCobots, and
NAO to improve their movement accuracy.

III. SECURITY

The server offers remote accessibility using NoMachine,
which is a remote desktop software that allows users to
connect to the server from outside of the testbed. This is
particularly useful for users who need to access the testbed
from outside of the university campus, as it allows them to
connect securely and work on their projects as if they were
physically present in the testbed area. For security purposes,
robust passwords are in use, providing enhanced integrity
against unauthorized access. Moreover, each user must have
an account with the university to have an account on the
server. Current university students and researchers are able to
login with the credentials they already possess. This
separates all directories so users can customize their
experience and the programs they use. This also ensures the
integrity of all user data from malicious or accidental actions.
To further enhance the security of the testbed, regular hard
drive backups are performed to ensure that user data is safe
and can be easily restored in case of incidents. The schedule
of such backups depends on the frequency of users
committing changes to the server. Hard drive backups are
stored in a secure location to prevent unauthorized access
and data breaches.

The testbed server is a subnetwork of the campus
network which means that it benefits from the same level of
protection and security measures as the larger network. This
includes firewalls, intrusion detection systems, and antivirus
software that are in place to prevent unauthorized access and
protect against potential cyber-attacks. In addition to the
campus security measures, the testbed server has its own
security protocols. The most relied upon network, the Wi-Fi,
is secured with WPA2 PSK with 128-bit AES encryption.

Additionally, the network is not discoverable to outside
devices, which means that only authorized users with the
correct credentials can connect to it. To further ensure the
security of the wireless network, it is purposely designed to
have a short range to prevent any device outside of the
testbed work area from connecting to the network. This
prevents any outside interference, unauthorized access to the
network, and users accessing devices outside the scope of the
testbed.

IV. SCENARIOS

A doorbell system was used in the testbed for motion
detection, object identification, and tracking when the door
was opened. One scenario using the doorbell is as follows:
NAO actuated the doorbell pressure plate which activated the
camera. An unlock signal was sent to the smart lock when
NAO was recognized by the doorbell. The testbed achieved

Fig. 4. The doorbell can detect objects based on the object detection
protocol.

this result by broadcasting a video stream after the doorbell
was activated. This stream was processed by the main server
using OpenCV an object detection protocol [16].

OpenCV utilizes Haar cascades to detect objects in a
video stream. Harr cascades work by analyzing the pixel
values in an image to identify patterns that correspond to a
specific object. To achieve this, the Haar cascade algorithm
utilizes a set of pre-trained models that serve as templates
describing the visual characteristics of a particular object,
such as NAO in this case as shown in Fig. 4. The server
recognized NAO as the entity which activated the doorbell
and sent a signal to a smart locking system to unlock the
door.

A second scenario proved how the doorbell platform was
expandable and interfaced with other IoT devices. A
magnetic contact switch (door sensor) was added to the
doorbell to monitor the opened or closed status of the testbed
door. When the door is opened, the climate sensor would
measure the UV light, brightness, temperature, and humidity
of the room. This result was achieved using the Raspberry Pi
General Purpose Input/Output (GPIO) pins and editable
networking scripts. The door sensor connected to a custom
soldered circuit board and acted as a switch connecting the
Raspberry Pi 5V power pin to the ground pin. The GPIOS
pin was connected in parallel to the ground pin to receive
input on door status. The doorbell monitored the GPIOS pin
for a changing voltage. The doorbell measured logic 1 from
the pin with the door closed and logic 0 with the door open.
The status was relayed to the server over a Transmission
Control Protocol (TCP) network socket. Once the server
sensed a change in door status, it would run a bash script
through an SSH connection to the climate sensor. The
climate sensor would report data back to the server through
another TCP socket.

Fig. 5. The LoCoBot can detect its surroundings using a lidar sensor and
process this data to show shapes and distances in RViz.

loer

g e
|ipomeosbatses: .. copimiE e

locobot/ci.

Fig. 6. RViz can convert the Intel RealSense infrared bit map into a 3D
image that LoCoBot can use to process its surroundings.

The LoCobot platform was used for navigation and
object interaction within the testbed. One scenario was tested
where the LoCobot navigated an obstacle course to reach the
desired position. Once at the position, the LoCobot picked up
objects from the floor and placed them into a box. LoCobot
movement was achieved using the ROS Visualization (RViz)
remote monitoring software and the Movelt package from
the Robot Operating System (ROS) GitHub repository [18].
RViz ran on the testbed server, displaying LoCobot servo
positions, the live camera feed, and lidar range data as shown
in Fig. 5. The user relied on the RViz display in conjunction
with the overhead camera feed to navigate the LoCobot and
avoid obstacles.

LoCobot picking up and moving objects was
accomplished with the perception pipeline package from the
ROS GitHub and the equipped Intel RealSense depth camera
[19-20]. The user ran an initialization script on the LoCobot
which made the depth camera project infrared light onto the
field of view. The depth camera captured the feedback using
stereoscopic sensors and an RGB module. RViz displayed
the infra-red depth map in three dimensions overlayed with

the full-color camera feed shown in Fig. 6. The user then ran
a Python script on the LoCobot which identified objects
within the depth map and saved their positions. The LoCobot
manipulator arm maneuvered to each position, picked up the
object, moved the object to a user-specified location, and
dropped the object.

V. CONCLUSION

This Internet of Things-based testbed and control system
was conceived with the intent to progress development in
motion detection protocols and the application programming
interface that controls these device networks. The designed
system works effectively, can be accessed from remote, and
can be recreated affordably for personal or educational use.
The motion detection analysis system is unique in low-cost
testbeds, with which the accuracy of the system performs
greater than the sum of its components. Based on the most
common smart devices found today, this single access point
testbed will work much more effectively to simulate a smart
home than the state-of-the-art edge computing testbeds do.

The testbed was designed such that more smart devices
could be added to fully emulate a smart home and current
commercially available ecosystems. A microphone and
speaker will be added to the Raspberry Pi doorbell so that
users can communicate with the entity pressing the doorbell.
Another planned device is a smart outlet that monitors power
consumption and can be switched on remotely. Future
devices will be designed using the Raspberry Pi platform and
other low-cost commercially available components.

ACKNOWLEDGMENT

This work is supported by the NSF grant No. 2016485.
The authors would also like to thank G. Tomlinson, L.
Vaughan, and J. Hansen for their help to set up and evaluate
the testbed.

REFERENCES

[1] K. Ashton, "That Internet of Things thing", RFiD J., vol. 22, no. 7,
pp. 97-114, 2009.

[2] S.N. Swamy and S. R. Kota, "An Empirical Study on System Level
Aspects of Internet of Things (IoT)," in IEEE Access, vol. 8, pp.
188082-188134, 2020,
https://doi.org/10.1109/ACCESS.2020.3029847.

[3] A. K. Gupta and R. Johari, "IOT based Electrical Device Surveillance
and Control System," 2019 4th International Conference on Internet
of Things: Smart Innovation and Usages (IoT-SIU), 2019, pp. 1-5,
https://doi.org/10.1109/10T-SIU.2019.8777342.

[4] D. Evans, “The Internet of Things: How the next evolution of the
Internet is changing everything,” CISCO White Paper, vol. 1, pp. 1-
11,2011

[5] J. Huang, Y. Meng, X. Gong, Y. Liu and Q. Duan, "A Novel
Deployment Scheme for Green Internet of Things," in IEEE Internet
of Things Journal, vol. 1, no. 2, pp. 196-205, April 2014,
https://doi.org/10.1109/JI0T.2014.2301819.

[6] S.L.Keoh, S. S. Kumar and H. Tschofenig, "Securing the Internet of
Things: A Standardization Perspective," in IEEE Internet of Things
Journal, wvol. 1, mo. 3, pp. 265275, June 2014,
https://doi.org/10.1109/J1I0T.2014.2323395.

[7] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi,
"Internet of Things for Smart Cities," in IEEE Internet of Things
Journal, wvol. 1, mo. 1, pp. 22-32, Feb. 2014,
https://doi.org/10.1109/JI0T.2014.2306328.

[8] L. Catarinucci et al., "An IoT-Aware Architecture for Smart
Healthcare Systems," in IEEE Internet of Things Journal, vol. 2, no.

[10]

[11]

[12]

[13]

6, pp- 515-526,
https://doi.org/10.1109/J10T.2015.2417684.

S. Savazzi, V. Rampa and U. Spagnolini, "Wireless Cloud Networks
for the Factory of Things: Connectivity Modeling and Layout
Design," in IEEE Internet of Things Journal, vol. 1, no. 2, pp. 180-
195, April 2014, https://doi.org/10.1109/JI0T.2014.2313459.

A. Ciuffoletti, "OCCI-IoT: An API to Deploy and Operate an IoT
Infrastructure," in IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1341-1348, Oct. 2017, https://doi.org/10.1109/JI0T.2017.2734068.

W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge Computing: Vision
and Challenges," in IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637-646, Oct. 2016, https://doi.org/10.1109/JI0T.2016.2579198.

S. Lee, H. Choi, T. Kim, H. -S. Park and J. K. Choi, "A Novel
Energy-Conscious Access Point (eAP) System With Cross-Layer
Design in Wi-Fi Networks for Reliable IoT Services," in IEEE
Access, vol. 10, pp. 61228-61248, 2022,
https://doi.org/10.1109/ACCESS.2022.3181304.

Y. Ouyang and T. Yan, "Profiling Wireless Resource Usage for
Mobile Apps via Crowdsourcing-Based Network Analytics," in IEEE
Internet of Things Journal, vol. 2, no. 5, pp. 391-398, Oct. 2015,
https://doi.org/10.1109/JI0T.2015.2415522.

Dec. 2015,

[14]

[15]

[16]

[17]

(18]

[19]

[20]

K. Liu et al, "On Manually Reverse Engineering Communication
Protocols of Linux-Based IoT Systems," in IEEE Internet of Things
Journal, vol. 8, no. 8, pp. 6815-6827, 15 Aprill5, 2021,
https://doi.org/10.1109/JI0T.2020.3036232.

C. Stolojescu-Crisan, C. Crisan, and B.-P. Butunoi, “An IOT-based
Smart Home Automation System,” Sensors, vol. 21, no. 11, p. 3784,
2021. https://doi.org/10.3390/s21113784.

K. Liu et al., "Security Analysis of Mobile Device-to-Device Network
Applications," in IEEE Internet of Things Journal, vol. 6, no. 2, pp.
2922-2932, April 2019, https://doi.org/10.1109/JI0T.2018.2877174.

OpenCV Official website https://opencv.org/

Ros-Planning, “Ros-planning/moveit: The MOVEIT Motion Planning
Framework,” GitHub, https://github.com/ros-planning/moveit

Interbotix,“Interbotix_ros_rovers/interbotix_ros_xslocobots/interbotix
_xslocobot_perception at Main - Interbotix/interbotix_ros_rovers,”
GitHub, https://github.com/Interbotix/interbotix_ros_rovers/tree/main
/interbotix_ros_xslocobots/interbotix_xslocobot_perception

“Intel RealSense ID solution F400,” Intel® RealSenseTM Developer
Documentation, https://dev.intelrealsense.com/docs/intel-realsense-id-
f450-module-and-f455-peripheral#datasheet

