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Abstract. Consider the recently introduced notion of probabilistic time-
bounded Kolmogorov Complexity, pK* (Goldberg et al., CCC’22), and let
MpK‘P denote the language of pairs (z, k) such that pK'(z) < k. We
show the equivalence of the following:
— MpKPYP is (mildly) hard-on-average w.r.t. any samplable distribu-
tion D;
— MpKPYP is (mildly) hard-on-average w.r.t. the uniform distribution;
— existence of one-way functions.
As far as we know, this yields the first natural class of problems where
hardness with respect to any samplable distribution is equivalent to hard-
ness with respect to the uniform distribution.
Under standard derandomization assumptions, we can show the same
result also w.r.t. the standard notion of time-bounded Kolmogorov com-
plexity, K*.

1 Introduction

A one-way function [5] (OWF) is a function f that can be efficiently computed
(in polynomial time), yet no probabilistic polynomial-time (PPT) algorithm can
invert f with inverse polynomial probability for infinitely many input lengths
n. Whether one-way functions exist is unequivocally the most important open
problem in Cryptography (and arguably the most importantly open problem in
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the theory of computation, see e.g., [19]): OWFs are both necessary [16] and
sufficient for many of the most central cryptographic primitives and protocols
(e.g., pseudorandom generators [2,12], pseudorandom functions [8], private-key
encryption [9], digital signatures [28], commitment schemes [26], identification
protocols [6], coin-flipping protocols [1], and more). These primitives and proto-
cols are often referred to as private-key primitives, or “Minicrypt” primitives [14]
as they exclude the notable task of public-key encryption [5,27]. Additionally,
as observed by Impagliazzo [10,14], the existence of a OWF is equivalent to the
existence of polynomial-time method for sampling hard solved instances for an
NP language (i.e., hard instances together with their witnesses).

The Win-Win Paradigm, and OWFs from Average-case Hardness of
NP? A central problem in the theory of Cryptography is whether the existence of
OWFs can be based on some simple complexity-theoretic assumptions. Ideally,
we would want an assumption that leads to a win-win scenario: either we have
secure OWFs (and thus can securely implement all primitives in Minicrypt), or
we get some algorithmic breakthroughs that are useful to society/the pursuit of
knowledge etc. The ideal win-win scenario would be to get a construction of OWF
based on worst-case hardness of NP (i.e., on the assumption that NP ¢ BPP)—
the question of whether this is possible goes back to the original work by Diffie
and Hellman [5] and is sometimes referred to as the “holy-grail” of Cryptography.
A slightly less ambitious goal that still would yield a very strong win-win scenario
would be to base the existence of OWF on the existence of an NP language
that is average-case hard w.r.t. to some samplable distribution D. (Note that
the existence of OWF trivially implies this assumption.) If such a reduction
were to be obtained (or in Impagliazzo’s language, if we rule out “Pessiland”—a
world where NP is hard on average but OWFs do not exist.), then either OWF
exists, or we can solve all NP problems “in practice”, whenever the instances are
sampled by an “efficient world”. Unfortunately, also obtaining such a reduction
has remained an open problem for 5 decades:

Does the average-case hardness (w.r.t. some efficiently samplable distribu-
tion) of some language in NP imply the existence of OWFs?

There has, however, been some recent progress towards this question based on
connections between OWFs and Kolmogorov Complexity.

On OWFs and Kolmogorov Complexity. The notion of Kolmogorov com-
plezity (K-complexity), introduced by Solomonoft [31], Kolmogorov [18] and
Chaitin [4], provides an elegant method for measuring the amount of “random-
ness” in individual strings: The K-complexity of a string is the length of the
shortest program (to be run on some fixed universal Turing machine U) that
outputs the string x; the notion of t(-)-time-bounded Kolmogorov Complexity
(K*-complezity) [11,17,18,30,32] considers a time-bounded version of this prob-
lem: K!(z) is defined as the length of the shortest program that outputs the
string  within time ¢(|z|).
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A recent result by Liu and Pass [21] shows that “mild” average-case hardness'
of the time-bounded Kolmogorov complexity problem (when the time-bound
is some polynomial) is equivalent to the existence of OWFs. Additionally, [23]
demonstrates that the same type of result also holds for the, so-called, conditional
time-bounded Kolmogorov Complexity problem [20,24,32,34] (where K'(x|z) is
defined as the length of the shortest program that within time ¢(|z|) outputs x
having access to z) that they also show is NP-complete. The problem, however, is
that it is not known whether the problem is average-case complete with respect
to the wniform distribution. In other words, if NP is average-case hard (with
respect to some samplable distribution), then the (conditional) time-bounded
Kolmogorov complexity problem is hard for some efficiently samplable distri-
bution (by its NP-completeness), but the characterization of OWFs considers
hardness of the problem with respect to the uniform distribution.

Hardness w.r.t. Samplable or the Uniform Distribution. Thus, resolving
the above central open problem (of basing OWF on average-case hardness of NP)
is equivalent to showing that average-case hardness of the time-bounded Kol-
mogorov complexity problem with respect to any samplable distribution implies
average-case hardness with respect to the uniform distribution. More generally,
we may ask:

For what classes of problems does average-case hardness with respect to
any samplable distributions imply average-case hardness with respect
to the uniform distribution?

Our focus here will be on time-bounded Kolmogorov complexity-style prob-
lem due to their connection with cryptography. As mentioned, showing this
for the particular conditional time-bounded Kolmogorov complexity problem is
equivalent to basing OWF on the average-case hardness of NP (i.e., ruling out
Pessiland). But showing this for just the “plain” time-bounded Kolmogorov com-
plexity problem would also yield a very natural win-win scenario: while there
are many important applications to solving the time-bounded Kolmorogov com-
plexity (e.g., optimal file-compression, inductive reasoning in science, optimal
machine learning etc.?), we typically do not care much about solving it on ran-
dom instances, but rather instances with structure. If one can base OWF on the
hardness of this problem with respect to any samplable distribution, we would
get non-existence of OWF implies that the K'-complexity can be “solved in
practice”.

An elegant step in this direction was recently taken by Ilango, Ren and San-
thanam [13]; they show that the existence of OWF's is equivalent to average-case
hardness of a Gap version—with a w(logn) gap—of the Kolmogorov complexity

! By “mild” average-case hardness, we here mean that no PPT algorithm is able to
solve the problem with probability 1— ﬁ on inputs of length n, for some polynomial
p(-).

2 Typically, one would actually like to solve a search version of this problem, where
one not only finds the time-bounded K-complexity of a string but also the program
that “witnesses” this complexity; as we shall see our results actually consider this.
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problem w.r.t. any efficiently samplable distribution; Liu and Pass [22] extend
this result to show that it suffices to assume that it is hard to approximate
K-complexity within a term of w(logn) with respect to any samplable distribu-
tion. [13] also show that under standard derandomization assumption, it suffices
to assume average-case hardness also of a Gap version (again with w(logn)
gap) also of the time-bounded Kolmogorov complexity problem, and thus for
a problem in NP, w.r.t. any samplable distribution. These results thus show
that one can characterize OWFs through average-case hardness of some natu-
ral gap/approximation problem with respect to any samplable distribution. The
problem, however, is that they all work in a gap/approximation regime where
the problem is provably easy under the uniform distribution—It is trivial to pro-
vide a w(logn) approximation of K or K w.r.t. the uniform distribution: simply
output the length of the string! Indeed, as these result show, in this regime, the
sampler for the hard distribution must it self be a OWF. So in a sense, these
result do not give us any insight into how to build a OWF “from scratch”.

As far as we know, the only result that we are away of showing that hardness
with respect to any samplable distributions implies hardness with respect to
the uniform distribution is the seminal result of Impagliazzo and Levin [15];
their result however only shows average-case hardness of NP with respect to
some samplable distribution implies average-case hardness of some (artificial)
specially-constructed NP language with respect to the uniform distribution. As
far as we known, no such reductions are not known for any “natural” classes of
languages.

1.1 Our Results

Roughly speaking, our main result shows that for a probabilistic version of K?,
average-case hardness with respect to any samplable distribution (of the exact,
as opposed to the approximate) problem is equivalent to the average-case hard-
ness with respect to the uniform distribution, which in turn is equivalent to
the existence of OWFs. This notion, called probabilistic K* (denoted pK") was
recently introduced by Goldberg et al [7]. Roughly speaking, this notion mea-
sures the length of the shortest program that outputs a string x if we get access
to a random string (think of it as K in the “Common Random String” (CRS)
model). More formally, let

pKi(z) = min{w € N| Pr[r — {0,1}*I*D : K*(z|r) < w] > 6}
and let MpKtP denote the promise problem (ITygs, IIno) where ITygs consists of

(x, k), |k| = [log |=|], pK§/3(x) < k and IIyo consists of (z, k), |k| = [log|z|],

pKf/?)(:z:) > k.

Our main result shows:
Theorem 11 The following are equivalent:

— There exists an efficiently samplable distribution D such MpK'P is mildly
hard-on-average on D for some (or every) sufficiently large polynomial t(-);
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~ MpK'P is mildly hard-on-average on the uniform distribution for some (or
every) sufficiently large polynomial t(-)
- OWF exzists.

In fact, our formal proof is even stronger; we show that it suffices to assume
hardness of a search version of the pK* problem where given any x sampled
from an efficient distribution D, and a random CRS 7, the goal is to find the
shortest program that generates x given r. This yields a strong and natural
win-win scenario:

FEither OWF exist, or we can (with probability 1 —1/poly(n)) find the best
way to compress any efficiently sampled string x, in the presence of a CRS.

We highlight that such compression is not just useful in its own; if ascribe to
Occam’s razor (i.e., “rule of parsimony”: that the simplest way to explain a
phenomena is preferable to a more complex), then solving this search version of
K* (even in the presence of a CRS), yields a powerful tool for scientific discovery.

We next turn to considering the “standard” K* problem; let MK'P denote
the language of pairs of (z,k), |k| = [log|z|], K'(x) < k. We show that under
standard derandomization assumptions (used to show that AM C NP), hardness
of MKP?YP w.r.t. some samplable distribution is equivalent to hardness w.r.t.
the uniform distribution (which by [21] is equivalent to OWF).

Theorem 12. Assume that E Z ioNSIZE[29(™)]. Then, the following are equiv-
alent:

— There exists an efficiently samplable distribution D such that MK'P is mildly
hard-on-average on D for some (or every) sufficiently large polynomial t(-);
~ MK'P is mildly hard-on-average on the uniform distribution for some (or

every) sufficiently large polynomial t(-);
- OWF ezists.

Again, we can strengthen the result and base it on the hardness of solving
the search version of the K* problem.

This final results is related to the recent result by [13], that shows equivalence
of infinitely-often OWFs and the io-average-case hardness of a Gap K problem
(with a w(logn) gap) under a derandomization assumption. First, their result
does not extend to handle also “standard” OWFs (on the other hand, it uses a
weaker derandomization assumptions).® More significantly, our result weakens
the assumption to only require hardness of solving the ezact (as opposed to
Gap/approximate) version of the K problem. This difference is significant, and
the results are different on a qualitative level: K! seemingly is hard to compute
on essentially any “well-spread” distribution (and in particular on the uniform
distribution), but it seems very hard to (unconditionally) find a distribution on
which it is hard to approximate within w(logn). Indeed, as mentioned above,

3 It would seem that we can also use a weaker derandomization assumption in case
we only want to deduce io-OWFs; we defer the details to the full version.
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the proof in [13] essentially show that the Gap problem can only be hard on a
samplable distribution D if the sampling procedure for the distribution itself is
a OWF.

1.2 Proof Overview

We here provide some intuitions behind the proofs of Theorems 11 and 12. We
will show that (1) hardness with respect to any samplable distribution implies
OWF, and (2) OWFs imply hardness with respect to the uniform distribution.
Step (2) will actually follow mostly using the techniques from [21]—they pass
through the notion of an “entropy-preserving PRG” constructed in [21] from
OWFs, and we next observe that just as [21] showed that such PRGs imply (mild)
average-case hardness of MK'P, we can also show (dealing just with some minor
technical details) that they also imply mild average-case hardness of MpK'P.

We here focus on (1); for simplicity of notation, let us start by considering the
standard K* problem. We aim to construct a OWF assuming K* is mildly hard-
on-average to compute with respect to some samplable distribution. Towards
doing this, let us first recall the high-level idea behind the construction of [21],
that was based on the average-case hardness of computing K¢ with respect to
the uniform distribution.

The LP20 OWF. [21] actually only constructs a so-called weak OWF*; a
(strong) OWF can be be obtained by relying on Yao’s hardness amplification
theorem [33]. Their construction proceeds as follows. Let ¢ be a constant such
that every string x can be output by a program of length |z| + ¢ (running on
the fixed Universal Turing machine U). Consider the function f(¢||1I’), where ¢
is a bitstring of length log(n + ¢) and II’ is a bitstring of length n + ¢, that lets
IT be the first £ bits of IT’, and outputs £||y where y is the output generated by
running the program I1° for ¢(n) steps.

We aim to show that if f can be inverted with high probability—significantly
higher than 1 — 1/n—then K'-complexity of random strings z € {0,1}" can be
computed with high probability. The heuristic H, given a string z, simply tries to
invert f on ¢||z for all £ € [n+ ¢|, and outputs the smallest ¢ for which inversion
succeeds.5

The key idea for arguing that this works is that for every string z with K*-
complexity w, there exists some program II, of length w that outputs it; further-
more, by our assumption on ¢, w < n + ¢. We thus have that f(Uptctiog(ntc))
will output w||z with probability at least

4 Recall that an efficiently computable function f is a weak OWF if there exists some
polynomial ¢ > 0 such that f cannot be efficiently inverted with probability better
than 1 — ﬁ for sufficiently large n.

5 Formally, the program/description II is an encoding of a pair (M, w) where M is a
Turing machine and w is some input, and we evaluate M (w) on the Universal Turing
machine U.

5 Or, in case, we also want solve the search problem, we also output the £-bit truncation
of the program II’' output by the inverter.
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1 1

g > L g=tro 27"

n+c T n+c O(n)

(we need to pick the right length, and next the right program). So, if the heuris-
tic fails with probability §, then the one-way function inverter must fail with
probability at least %, which leads to the conclusion that 6 must be small (as

we assumed the inverter fails with probability significantly smaller than %)

Dealing with Samplable Distributions: Step 1. Our main insight is that
the above proof idea actually works to solve K! not only on the uniform dis-
tribution but in fact also on any distribution D that samples any string x with
probability upperbounded by ‘;(;l{((f)) —we refer to such a distribution as being
polynomially bounded by K*. To see why this holds, consider again a string z with
K* complexity w. As before, f(Upciiog(n+e)) Will output wl|z with probability
at least

1
n+c -

Given that this string z is sampled by D with probability < poly(n)2=*, we
again have that if the heuristic fails for a set of string z with probability mass
0, then the OWF inverter must fail with probability §/poly(n) (since pointwise,
the probabilities in the OWFs experiment “dominate” the probabilities assigned
by D, except for a polynomial factor.) This concludes that the LP20 OWF
actually is secure even if we simply assume that K* is hard for any distribution
that is polynomially bounded by K®. (Note that it directly follows that the
uniform distribution is polynomially bounded by K?, by the observation that
K*(x) < |z|+c¢; so this condition already trivially generalizes the condition from
21].)

Dealing with Samplable Distributions: Step 2. In the second step of the
proof we aim to show that if we take an efficiently samplable distribution, then
it must be polynomially bounded by K*. (As we shall discuss shortly, we will not
quite be able to do this, but either turning to pK?, or using derandomization,
will help. But let’s postpone this for a moment.)

The intuition for why this ought to be true is the following. Consider some
efficient sampler D that is able to sample an element x s.t. K'(z) = w with
probability n¢(1).2=%, We can have at most 2%/ n®(M such elements so intuitively,
we can compress z into log(2@~«(M10gn) — 4y — (1) logn bits, which seems like
a contradiction. The problem, however is that we cannot efficiently recover x
from the list of these strings.

However, the very recently-established Coding Theorem of Lu, Oliviera and
Zimand [25] essentially shows how to do this exactly with the caveat that we need
to consider pK* as opposed to just K*. Their proof uses quite heavy machinery.
As an independent contribution, we here provide an elementary proof.

In particular, to efficiently recover x, what if we had access to a universal hash
function H, provided as a CRS? As we shall argue, we can indeed find a short (<
w) representation of = that can be efficiently decoded. Let £ denote the number of
random bits used by the sampler, and let S denote the set of random tapes that

—w




652 Y. Liu and R. Pass

map x; note that |S| > 2¢ . pw(1) . 2-w = gfl—w—w(logn Tf we apply H to each
of these random tapes, truncate the answer to log |S| — O(1) bits, then it follows
from the Chebyshev’s inequality that with some large constant probability, there
will exist some random tape leading to x that gets mapped to the all 0 string.
Furthermore, by the same Chebyshev’s inequality-based argument, there are at
most 207108 15| = gw—w(l)logn gtrings in total that get mapped to the all 0 string.
We can finally rely on the fact that universal hash functions can be constructed
using a linear mapping, and we can leverage this structure to efficiently index
each of these pre-images to the all 0 string of the hash function. Essentially, we
can simply use a basis for the kernel of the matrix describing the hash function.
Since the space contains 2=« 198" strings, we will have w — w(1) logn basis
vectors, and each such string in the space can thus be specified by a binary
vector of length w — w(1)logn bits.

This still does not contradict the assumption that K'(z) = w since the
above compression uses an external hash function. However, if we instead switch
to using pK?, then we do get a contradiction. This, of course, requires redoing
also Step 1 w.r.t to pK*¢, which introduces some additional technicalities but we
can essentially proceed in the same way.

Finally, we remark that if we rely on derandomization assumptions, we can
actually derandomize the hashfunction and actually prove Step 2 also for K*. (In
fact, proving step 2 for K! can be obtained as a direct corollary step 2 w.r.t. pK?
and a result from [7] that relates pK* and K* under derandomization assumption;
for completeness, also provide a a simple direct proof based on derandomizing
the hashfunction.)

2 Preliminaries

2.1 One-Way Functions

We recall the definition of one-way functions [5]. Roughly speaking, a function
f is one-way if it is polynomial-time computable, but hard to invert for PPT
attackers.

Definition 21. Let f: {0,1}* — {0,1}* be a polynomial-time computable func-
tion. f is said to be a one-way function (OWF) if for every PPT algorithm A,
there exists a negligible function p such that for alln € N,

Prlz —{0,1}"y = f(x) : A(1",y) € f 7 (f(2))] < p(n)

We may also consider a weaker notion of a weak one-way function [33], where
we only require all PPT attackers to fail with probability noticeably bounded
away from 1:

Definition 22. Let f: {0,1}* — {0,1}* be a polynomial-time computable func-
tion. [ is said to be an a-weak one-way function (a-weak OWF) if for every
PPT algorithm A, for all sufficiently large n € N,

Prlz — {0,1}"y = f(z) : A(1"y) € 7 (f(2))] <1 - a(n)
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We say that f is simply a weak one-way function (weak OWF) if there exists
some polynomial ¢ > 0 such that f is a ﬁ—weak OWF.

Yao’s hardness amplification theorem [33] shows that any weak OWF can be
turned into a (strong) OWF.

Theorem 23 ([33]). Assume there exists a weak one-way function. Then there
exrists a one-way function.

2.2 Time-Bounded Kolmogorov Complexity

We introduce the notion of time-bounded conditional Kolmogorov complexity.
Roughly speaking, the t-time-bounded Kolmogorov complexity, K'(x|z), of a
string « € {0, 1}* conditioned on a string z € {0, 1}* is the length of the shortest
program IT = (M, y) such that IT(z) outputs z in t(|z|) steps.

Formally, fix some universal RAM machine U (with only polynomial over-
head), and let ¢(-) be a running time bound. For any string z,z € {0,1}*, we
define

K'(z|z) = min{w € N| 31T € {0,1}*,U(II(z), 1"I=D) = z}

When z is an empty string, we simply denote the quantity by K*(z). We consider
RAM machines (as in [7,23]) since it allows z to be as long as (or even longer
than) the running time of the machine I7.

Very recently, Goldberg et al [7] introduced a probabilistic variant of time-
bounded Kolmogorov complexity, denoted as pK®. Let us recall the notion
here. Roughly speaking, in the probabilistic version, the program is allowed
to be picked after a uniform random string. And a string will have small pK*-
complexity if a short program exists over a large fraction of random strings. We
proceed to the formal definition. Let §(n) be a probability threshold function.
For any string « € {0, 1}*, the d-probabilistic t-bounded Kolmogorov complexity
of z [7], pK}(x), is defined to be

pKE(z) = min{w € N| Pr[r — {0,1}/02D : K*(z|r) <w] > d(n)}

We usually consider ¢ as being a constant. We omit the subscript § if § = 2/3.
We rely on the following decisional/search problems about time-bound Kol-
mogorov complexity (and its probabilistic variant).

Decisional. We turn to defining the decisional version of the minimum time-
bounded Kolmogorov complexity problem. Let MK'P denote the language of
pairs of (z, k), |k| = [log|z|], K*(z) < k. For its probabilistic version, let MpK'P
denote the promise problem (IIvgs, [Ino) where ITygs consists of (z,k), |k| =

[og |z[], pKj 3(x) < k and IIno consists of (z,k), |k = [log |2[], pK{ 5(x) > k.

Search. We will rely on the search version of the minimum time-bounded Kol-
mogorov complexity problem. In our search problem, an instance is a single
string z € {0,1}* (as opposed to a pair of string z and threshold k, as in the
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decisional version). A witness of a string x is the shortest program that outputs
x within ¢(|x|) steps. We turn to the formal definition. Let Search-K* denote
the binary relation Rgearch-xt C {0,1}™ x {0,1}* where (z,II) € Rsearch-xt iff
|IT| = K'(z), and U(IT,1*02D)) = .

We will also define the search version of the minimum conditional time-
bounded Kolmogorov complexity problem. In this problem, an instance is a pair
of a target string x and an auxiliary input z. And its witness is just the “K®-
witness” of x conditioned on z. More formally, let Search-cK* denote the binary
relation Rgearch-cit © {0,137 x {0,1}* where ((z,2),IT) € Rsearch-cxt iff
z € {0,1}t0=D 17| = K*(2 | 2), and U(I1(2),1t0=D) = .

Finally, we recall two useful properties with respect to K': (1) The K'-
complexity of z is always bounded by its length (plus a universal constant);
and (2) random strings will have high K'-complexity with high probability. We
notice that these two properties are also satisfied if we focus on its probabilistic
variant pK*.

Fact 24 ([7]). The following statements hold.

1. There exists a constant ¢ such that for all polynomials t(n) > n, all functions
§(n) <1, for all strings x € {0,1}* it holds that pK}(x) < K'(z) < |z| + c.
2. For anyn € Nym < n, Prlz — {0,1}" : pK{(z) <m]>1— W%ﬂ

2.3 Average-Case Complexity

We turn to defining what it means for complexity problems to be average-case
hard (for PPT algorithms). We will be considering problems that are only defined
on some input lengths (such as MKtP). We say that a language L is defined
over inputs lengths s(-) if L C U,en{0,1}*™. (For promise problems or search
problems, this can also be done analogously.) For concreteness, note that MK'P
is defined on input lengths s(n) =n + [logn].

We will also consider ensembles that are only defined on some input lengths.
We say that D = {D,}nen is an ensemble defined over input lengths s(-) if
for all n € N, D,, is a probability distribution over {0,1}*(™). (In this work, we
will only consider ensembles that are defined only over s(n) = n + [logn].) We
say that an ensemble D = {D,, }nen is samplable if there exists a probabilistic
polynomial-time Turing machine S such that S(1™) samples D,,; we use the
notation S(1”;r) to denote the algorithm S with randomness fixed to r. We
say that D is tp(-)-time samplable if for all n € N, S(1™) terminates in tp(n)
steps. One example of an ensemble defined over input lengths s(-) is the uniform
distribution, which samples each z € {0, 1}3(") with equal probability for each
n € N.

Definition 25 (Average-case Complexity). We say that a problem P
defined over input lengths s(-) is mildly hard-on-average (mildly HoA) with
respect to an ensemble D (also defined over input lengths s(-)) if there exists
a polynomial p such that for all PPT heuristic H, for all sufficiently large n € N,

1
Prix < D,, : H(z) fails to solve P on x] > —
p(n)
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where

— if P is a language L, H(x) fails to solve L on x iff H(x) # L(x);

— if P is a promise problem II = (Ilygs, IIno), H(x) fails to solve IT on x iff
x € IIyes NH(z) =0 orx € IIyo AN H(z) =1

- if P is a search problem R C {0,1}* x {0,1}*, H(x) fails to solve R on x iff
(l‘,H(CL’)) ¢ R;

We next show some search-to-decision reductions for the Kolmogorov com-
plexity problems we considered. These reductions are easy to see in the worst-
case setting, we now prove them in the average-case setting. Let D be a distri-
bution ensemble for MK'P (or MpK'P). Recall that D,, will sample a pair of a
string z € {0,1}" and a threshold k € {0,1}/°¢". We consider the projected
distribution, D', of D, where each D!, is just D,, but only samples = from D,,.

Lemma 26. Lett be a polynomial.

— If there exists an ensemble D under which MpK'P is mildly HoA, then Search-
cK* is mildly HoA w.r.t. (D',U) where D' is the projected distribution of D.

— If there exists an ensemble D under which MK'P is mildly HoA, then Search-
Kt is mildly HoA w.r.t. the projected distribution of D.

Proof. We sketch the proof for the former statement, and the latter statement
will follow from essentially the same proof with minor adjustments.

For any polynomial p, we will show that if there is an algorithm A that solves
Search-cK! with probability at least 1 — W over (D',;U) for infinitely many n,
then there exists an algorithm H that decides MpK'P with probability > 1 — ﬁ
w.r.t. D for infinitely many n. Fix some n on which A succeeds over x «— D/,
r {0,134,

Consider the algorithm H that acts as follows. On input (x,k) «— D,, H
repeats the following procedure for at least n times. In each iteration, H samples
random 7 «+ {0,1}*") and invokes A(z,r). Finally, H outputs 1 if in at least a
half fraction of iterations, A returns a program of length at most k.

By a standard averaging argument, with probability at least 1 — over

1
2p(n
x « D), A(x,r) will output a K*(z | r)-witness with probability at leastpi i ﬁ.
We refer to such x as being “good”. We argue that on input a good z, H(z) fails
to decide MpK'P = (Ilygs, ITno) with probability at most 5 ( E JIf (=, k:) € ITyEs,
it follows that K'(z|r) < k with probability at least 2/3, and A(z,r) will
output a program with length < k with probability 2/3 — ﬁ By a standard
Chernoff type argument, if follows that H(x) will output 0 with probability at
most 5——. If (z,k) € IINo, the same argument can be made and H(x) will
2p(n Combining this with the fact that x

is “bad” with probability at most 5 ( ys we conclude that the heuristic H fails

output 1 Wlth probability at most

with probability at most ( 3 Finally, note that this holds for infinitely many
n, which is a contradiction.
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3 Theorems

We state our main results in this section.

Theorem 31. There exists a polynomial v such that the following are equiva-
lent:

1. The ezistence of a tp(-)-time samplable ensemble D, a polynomial t(-), t(n) >
Y(tp(n)) such that Search-cK* is mildly hard-on-average w.r.t. (D,U).

2. The existence of a tp(-)-time samplable ensemble D, a polynomial t(-), t(n) >
Y(tp(n)) such that MpK'P is mildly hard-on-average w.r.t. D.

3. The existence of one-way functions.

4. For all polynomials t(n), t(n) > (1 + &)n for some € > 0, MpK'P is mildly
hard-on-average w.r.t. the uniform distribution.

Proof. (2) = (1) is proved in Lemma 26. The implication (1) = (3) follows from
Theorem 41 (stated and proved in Sect.4). By Theorem 51 (stated and proved
in Sect.5), (3) implies (4). Finally, (4) trivially implies (2).

Theorem 32. Assume that E  ioNSIZE[2("™)]. There exists a polynomial
such that the following are equivalent.

1. The existence of a tp(-)-time samplable ensemble D, and a polynomial (),
t(n) > v(tp(n)), such that Search-K* is mildly hard-on-average w.r.t. D.

2. The existence of one-way functions.

8. For all polynomials t(n), t(n) > (1 + &)n for some ¢ > 0, MK'P is mildly
hard-on-average w.r.t. the uniform distribution.

Proof. (1) = (2) follows from Theorem 42 (stated and proved in Sect.4). By
Theorem 52, (2) implies (3). Finally, the implication (3) = (1) is proved in
Lemma 26.

4 OWTFs from Hardness of MpKP*YP w.r.t. Any Samplable
Distribution

In this section, we show that if there exists a samplable distribution under which
Search-cKP?Y is mildly hard-on-average, then one-way functions exist. In addi-
tion, this result can be extend to assuming mild average-case hardness of Search-
KPY ynder a derandomization assumption. Note that by Lemma 26, hardness
of MpKP°YP (resp MKP°YP) implies hardness of Search-cKPY (resp Search-K*).
Therefore, we obtained OWF's assuming mild average-case hardness of I\/Ipr°|yP
(resp of MKPYP).

Theorem 41. There exists a polynomial ~ such that the following holds.
Assume that there exist a tp(-)-time samplable ensemble D, and a polynomial
t(-), t(n) > v(tp(n)), such that Search-cK* is mildly HoA w.r.t. (D,U). Then,
one-way functions exist.



Hardness of Time-Bounded Kolmogorov Complexity 657

Proof. This theorem follows from Lemma 43 (stated and proved in Sect. 4.1) and
Lemma 46 (stated and proved in Sect.4.2).

Theorem 42. Assume that E Z ioNSIZE[2("™)]. There exists a polynomial
such that the following holds. Assume that there exist a tp(-)-time samplable
ensemble D, and a polynomial t(-), t(n) > ~(tp(n)), such that Search-K* is
mildly HoA w.r.t. D. Then, one-way functions exist.

Proof. This theorem follows from Lemma 44 (stated and proved in Sect.4.1) and
Lemma 48 (stated and proved in Sect.4.2).

The above theorems are proved in two steps. We first show that if we only con-
sider distributions that are “polynomially bounded by the complexity measure”
(defined blow), we can deduce OWFs from average-case hardness of Search-
cKP°Y (if the complexity measure is cKP°) or Search-KP°Y (if KP°Y). Then we
show that any samplable distribution will be polynomial bounded by pKP°Y,
and by KP°Y under derandomization assumption.

We turn to defining what it means for a distribution to be polynomially
bounded by a complexity measure. For a distribution ensemble D, we say that
D is polynomially bounded by pK*® (resp by K*) if there exists a polynomial §(-)
such that for all string z € {0,1}*, n = |z|, Pr[a/ « D, : 2/ = x] < §(n)2 7K' (@)
(resp < 6(n)2~K' (@),

4.1 When D Is Polynomially Bounded

Lemma 43. Assume that there exist a polynomial t and an ensemble D such
that D is polynomially bounded by pK* and Search-cK' is mildly HoA w.r.t. D.
Then, weak one-way functions exist.

Proof. Let ¢ be the constant from Fact 24, and t be the polynomial as in the
lemma statement. We consider the function f : {0,1}Mleg(nto)l4ntett(n)
{0,1}*, which takes an input ¢||IT’||r where |¢| = [log(n + ¢)], [II'| = n+ ¢
and |r| = t(n), outputs

FONT||r) = €l]r]|U (1 (), 107)

where IT is a prefix of IT" and IT is of length ¢ (where the bit-string £ is interpreted
as an integer € [n + ¢]).

This function is only defined over some input lengths, but by an easy padding
trick, it can be transformed into a function f’ defined over all input lengths, such
that if f is weakly one-way (over the restricted input lengths), then f’ will be
weakly one-way (over all input lengths): f’(2’) simply truncates its input z’
(as little as possible) so that the (truncated) input x now becomes of length
n' = [log(n+¢)] +n+ c+t(n) for some n and outputs f(x). This will decrease
the input length by a polynomial factor (since ¢ is a polynomial) so the padding
trick can be applied here.
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We now show that f is a weak OWF (over the restricted input length) assum-
ing that Search-cK' is mildly HoA w.r.t. (D,U). Since the search problem is
mildly HoA and the distribution D is polynomially bounded by pK?! 1—g-n, let p
be the polynomial in the mild average-case hardness and § be the polynomial
in the bound where pK* bounds D. Let g(n) = 16nd(n)p(n)?. We assume for
contradiction that f is not %—Weak one-way. (In the later proof, although the
input length of f we consider is m = [log(n + ¢)] + n + ¢ + t(n) for some n,
we will view n as a “security parameter” and analyze the one-wayness of f on
input length m with respect to n. Since n and m are polynomially related, we
can still conclude that f is weak one-way.) Then there exists a PPT attacker A
that inverts f with probability at least 1 — ( y on infinitely many n. We will use
A to solve the cK* search problem over (D,U) with probability at least 1 —
(and thus a contradiction).

Our search algorithm, H, proceeds as follows. On input z < Dy, 17 < Uy(y),
the search algorithm enumerates over all possible i € [n + ¢|, and for each i, H
will invoke the attacker A to invert f on the string i||r||z. And H will also check
if the inversion succeeds. If the inverter succeeds, it will output a pre-image of
i||r]|z. By the definition of f, this string will be of the form #||II’||r, and from
which we can obtain a program IT of length ¢. Finally, H outputs the shortest
program it obtains.

We turn to proving that H is a good search algorithm that succeeds with
probability 1 — ﬁ. Fix some n € N such that the inverter A succeeds on
security parameter n. It is helpful here to introduce what it means for a string
z to be “good”: Let av = 5 ( 5- For each string z € {0,1}", r € {0, 1) we
let w,, = K'(z|r) denote the length of the shortest program that outputs z on
input r within ¢(n) steps. We refer to a string z € {0,1}" as being good if

(n)

Pr[r « {0,131 : A(w. ||r||2) succeeds] > 1 — a(n)

where the probability is also taken over the internal randomness of A, and the
inverter A succeeds on w, ,||r||z if it returns a valid pre-image. Notice that by
our choice of w, ., it is guaranteed that a pre-image must exist. Let G denote the
set of all good strings z € {0,1}"™. We first claim that heuristic H will succeeds
with high probability on any good z.

Claim 1. For any z € {0,1}", if z is good, then H(z,r) fails with probability at
most % over random r « {0,1}4("),

Proof. Notice that for any z, r, if the inverter succeeds in inverting f on w, ,||r||z,
it will obtain a program II of length w, , that on input r, outputs z within ¢(n)
steps. By our choice of w, ,, this will be the shortest such program, H(z,r) will
finally output it as a witness. Therefore, if z is good, then H(z,r) will output a
valid K*(z | r)-witness with probability at least 1 — a(n) =1 — #(n) over 7.

On the other hand, since our inverter A succeeds with high probability, there
should be only “a few” bad strings. We assume for contradiction that the total
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probability weight of bad strings (w.r.t. D,,) is > #(n). That is,
ZPr[z’HDn:zlzz] > !
2p(n)

z2¢G

Recall that the distribution D is polynomial bounded by pK?. So for any string
z € G, the probability that z is sampled by D,, is at most §(n)2~PX (2) 1t follows
that

Z 5(n)2 PK' () > Z Pr[z « D, :2' =2] >
2¢G z2¢G

2p(n) M

However, z will be sampled with probability at least

1 1 1
t(n) Z Wz, r
2 re{o34m) n+c?2

in the one-way function experiment, since for each randomness r, there exists a
program of length w, , = K'(z|r) that outputs z (on input r) within ¢(n) steps,
and the OWF will output z if the program is picked. By the definition of pK?,
it follows that z will be sampled with probability at least

%4—0 (2717Kt(2) : 2/3)

S 9-PK'(s) 5 L o-pK'(2)
“2(n+c¢) ~ 4n

When a bad string z is sampled, the inverter A will fail with probability at least
L Thus, A will fail with probability at least

a(n)*
3 L gpk'(e)
e 4dna(n)

By Eq. 1, this is at least

1 1
dna(n)  2p(n)é(n) = q(n)

which is a contradiction (since A is a good inverter). We thus conclude that the
total probability weight of bad strings (w.r.t. D,,) is < %. Finally, by a Union
bound (also taking into account good strings) and Claim 1, the probability that
the heuristic fails w.r.t. D,, is at most p%.

Combining the above argument with the fact that the attacker A succeeds
on infinitely many input lengths n, we conclude that H fails with probability at

most ﬁ on infinitely many n, which is a contradiction.

We can prove that Lemma 43 also holds for K* analogously.

Lemma 44. Assume that there exist a polynomial t and an ensemble D such
that D is polynomially bounded by K' and Search-K* is mildly HoA w.r.t. D.
Then, weak one-way functions exist.
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Proof. This lemma will be proved using similar ideas in the proof of Lemma 43,
so the proof is presented based on the proof of Lemma 43. We assume familiarity
of the proof of Lemma 43.

We will consider roughly the same OWEF construction as in Lemma 43, except
that we no longer need to sample a random string r in the construct. We consider
the function f : {0, 1}/1ee(nt+e)l+nte £ 1}* which takes an input ¢||IT" where
|¢| = [log(n + ¢)], and |IT'| = n + ¢, outputs

FT’y = U (r),110)

where IT is a prefix of IT” and IT is of length ¢ (where the bit-string ¢ is interpreted
as an integer € [n + ¢J).

This function is also only defined over some input lengths, but it suffices to
show that f is a weak OWF over input lengths on which f is well defined. As
showed in Lemma 43, by using a padding trick, we can transform this function
f to a standard OWF.

In this lemma, we will show that f is a weak OWF (over the restricted input
length) assuming that K* is mildly HoA to search w.r.t. D. Since Search-K* is
mildly HoA and D is polynomially bounded by K%, let p be the polynomial in
the mild average-case hardness and ¢ be the polynomial in the bound where K*
bounds D. Let g(n) = 8nd(n)p(n)?. We assume for contradiction that f is not

%—weak one-way. (In the later proof, although the input length of f we consider

is m = [log(n + ¢)] + n + ¢ + t(n) for some n, we will view n as a “security
parameter”, as in Lemma 43.) Then, there exists a PPT attacker A that inverts
1

f with probability at least 1 — 2tm Oon infinitely many n. We will use A to solve
1

the Search-K*' problem over D with probability at least 1 — o) (and thus a
contradiction).

Our search algorithm for K*, H, proceeds as follows. On input z < D,,, H
will enumerate over all possible i € [n + ¢|, and for each ¢, the heuristic will
invoke the attacker A to invert f on the string ¢||z. And H will also check if the
inversion succeeds. If the inverter succeeds, it will output a pre-image of i||z.
By the definition of f, this string will be of the form ||IT’, and from which we
can obtain a program IT of length i. Finally, H outputs the shortest program it
obtains.

We turn to proving that H is a good search algorithm that succeeds with
probability 1— ﬁ. Fix some n € N such that the inverter A succeeds on security
parameter n. As in Lemma 43, it is also helpful here to introduce what it means
for a string z to be “good”: Let a(n) = #(n). For each string z € {0,1}", we
let w, = K'(z) denote the length of the shortest program that outputs z within
t(n) steps. We refer to a string z € {0,1}"™ as being good if

Pr[A(w,||z) succeeds] > 1 — a(n)

where the probability is taken over the internal randomness of A. Notice that by
our choice of w,, it is guaranteed that a pre-image must exist. Let G denote the
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set of all good strings z € {0,1}". We first claim that heuristic H will succeeds
with high probability on any good z (similar to the proof of Lemma 43).

Claim 2. For any z € {0,1}", if z is good, H(z) fails with probability at most
1
2p(n)

Proof. Note that if the inverter A succeeds on w,||z, it will obtain a program IT
which is a K*-witness of z — IT will output z within time ¢(n) and it’s of length
Kt(z). Therefore, H(z) will eventually output this program. This implies that if
z is good, H(z) will find a correct witness with probability at least 1 — a(n) =
1— L1

2p(n)

On the other hand, since our inverter A succeeds with high probability, there
should be only “a few” bad strings. We assume for contradiction that the total
probability weight of bad strings (w.r.t. D,,) is > #(M That is,

1

2p(n)

ZPr[z’ —Dy,:2 =z]>
z2¢G

Recall that the distribution D is polynomial bounded by K*. So for any string
z € (G, the probability that z is sampled by D,, is at most 6(n)2_Kt(2). It follows
that
Z 5(n)27Kt(z) > Z Pr[z' « D, : 2/ =2] >
2¢G z¢G

2 () @

However, z will be sampled with probability at least

1 1 1 1

n+c2w:  n+c2K:)

in the one-way function experiment, since there exists a program of length w, =
K*(z) that outputs z within ¢(n) steps, and the OWF will output z if the program
is picked. When a bad string z is sampled, the inverter A will fail with probability
at least ﬁ Thus, A will fail with probability at least

3 I k')
2na(n)

2¢G

By Eq. 2, this is at least
1 1 1
2na(n) 2p(n)é(n) = q(n)

which is a contradiction (since A is a good inverter). We thus conclude that the
total probability weight of bad strings (w.r.t. Dy,) is < . Finally, by a Union

1
2p(n)
bound (to take into account good strings) and Claim 2, the probability that the

heuristic fails w.r.t. D,, is at most —t~.
p(n)
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4.2 Bounding Any Samplable Distribution

We proceed to showing that samplable distributions are bounded by the com-
plexity measures we consider. We first focus our attention to pKP°Y. Towards
this, let us recall the Coding Theorem for pKPY.

Theorem 45. ([25, Theorem 30]) There exists a polynomial v such that for
any tp-time samplable ensemble D, any string x € {0,1}™ such that D,, samples
x with probability 6 > 0, for any polynomial t such that t(n) > v(tp(n)), it holds
that

pK!(z) < log(1/8) + Olog tp(n))

The coding theorem roughly says that if a (samplable) distribution assign too
much weight to an individual string, we will be able to find a short description
of that string. We next use the coding theorem to show that any samplable
distribution can be bounded by pKP°Y.

Lemma 46. There exists a polynomial v such that for all polynomial t, any tp-
time samplable ensemble D is polynomially bounded by pK® if t(n) > v(tp(n)).

Proof. Let v be the polynomial in Theorem 45. It follows that for any ¢p-time
D, any x,0 = Pr[D,, = z], and any polynomial ¢(n) > v(tp(n)), it holds that

1/6 - tp(n)°M) > opK' (@)

which implies that § < tp(n)°® - 272K (@) Notice that tp(n)°® is a poly-
nomial, and the above equation holds for any z in the support of D, we thus
conclude that D is polynomially bounded by pK®.

The above proof relies on Theorem 45, whose proof uses tools from complexity
theory (unconditional PRGs that fool constant-depth circuits). As a result of
independent interest, in Appendix A, we present an alternative direct proof of
Lemma 46 (which implicitly also proves Theorem 45) using only elementary
machinery (in particular, simply universal hash functions).

We move on to considering KP°Y. As observed by [7], KP°Y is at most pKPY
up to an additive O(logn) factor under a derandomization assumption.

Proposition 47 ([7, Proposition 66]). Assume that E ¢ ioNSIZE[2?(™]. It
holds that there exists a polynomial p such that for every polynomial t,t', t'(n) >
p(t(n)), for every x € {0,1}", it holds that

K" (2) < pK*(x) + log(t(n))

Combining the above Proposition and Lemma 46, we prove that any sam-
plable distribution will also be bounded by KP°Y. (In addition, we also give
another proof of this statement (see the Lemma below for a formal version) in
Appendix A without using Proposition 47, for concreteness.)
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Lemma 48. Assume that E Z ioNSIZE[2?(™)]. There exists a polynomial ¥ such
that for all polynomial t', any tp-time samplable ensemble D is polynomially
bounded by K if t'(n) > ~/(tp(n)).

Proof. The proof of Lemma 48 relies on the proof of Lemma 46, and we refer
the reader to the proof of Lemma 46 for notations used in this proof. Let p be
the polynomial in Proposition 47. Recall that the proof of Lemma 46 showed
that § < tp(n)°M . 2-PK' (@) We now consider any polynomial ¢’ such that
t'(n) > p(t(n)). By Proposition 47, it follows that

§<tp (n)O(l) .27pKt(m) <tp (n)O(l) '27Kt/(z)+log(t(n)) =tp (n)O(l)t(n) . Q,Kt/(z)

Thus, we conclude that D is polynomially bounded by K ¢

5 Hardness of MpKP*YP w.r.t. Uniform from OWFs

We here show that that for every polynomial ¢(n) > 1.1n, the existence of
OWFs implies mild average-case hardness of MpKP®YP and mild average-case
hardness of MKP?YP. Our proof closely follows the proof in [21] with only minor
modifications to deal with the fact that we now consider the probabilistic variant
of Kolmogorov complexity and we focus on languages/promise problems.

Theorem 51. Assume that one-way functions exist. Then, MpK'P is mildly
hard-on-average with respect to the uniform distribution.

Proof. This theorem follows from Theorem 55 and Theorem 56.

Theorem 52. Assume that one-way functions exist. Then, MK'P is mildly
hard-on-average with respect to the uniform distribution.

Proof. This theorem follows from Theorem 55 and Theorem 57.

5.1 Some Additional Preliminaries

Let us first recall some additional standard preliminaries.

Computational Indistinguishability. We recall the definition of (computa-
tional) indistinguishability [9].

Definition 53. Two ensembles { Ay }nen and { By }nen are said to be p(-)- indis-
tinguishable, if for every probabilistic machine D (the “distinguisher”) whose
running time is polynomial in the length of its first input, there exists some
ng € N so that for every n > ng:

IPr[D(1", A,) = 1] — Pr[D(1", B,) = 1]| < u(n)

We say that are {Ap}neny and {By}nen simply indistinguishable if they are

p(l,) -indistinguishable for every polynomial p(-).
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Statistical Distance and Entropy. For any two random variables X and Y
defined over some set V, we let SD(X,Y) = 13> | |Pr[X = v] — Pr[Y = v||
denote the statistical distance between X and Y. For a random variable X, let
H(X) = Ellog ﬁ] denote the (Shannon) entropy of X, and let Hoo(X) =

MiNg e Supp(x) 10g ﬁ denote the min-entropy of X.

5.2 Entropy-Preserving PRGs

Liu and Pass [21] defined a notion of a conditionally-secure entropy-preserving
pseudorandom generator (cond EP-PRG). Roughly speaking, a cond EP-PRG is
a function where the output is indistinguishable from the uniform distribution
and also preserves the entropy in the input only when conditioned on some
event E.

Definition 54. An efficiently computable function G : {0,1}"* — {0, 1}n+7losn
is a p(-)-conditionally secure entropy-preserving pseudorandom generator (u-
cond EP-PRG) if there exist a sequence of events = {E,}nen and a constant

a (referred to as the entropy-loss constant) such that the following conditions
hold:

- (pseudorandomness): {G(Uy | Epn)}nen and {Uniryiogntnen are p(n)-
indistinguishable;

— (entropy-preserving): For all sufficiently large n € N, H({G(U, | E,)) >
n —alogn.

We say that G has rate-1 efficiency if its running time on inputs of length n is
bounded by n + O(n®) for some constant € < 1.

Theorem 55. ([21]) Assume that OWFs exist. Then, for every v > 1, there

exists a rate-1 efficient p-cond-EP PRG G : {0,1}" — {0,1}"F718n where
1

n= 5z

Though in [21], running time was counted in terms of execution on Turing
machines, as noted in [23], the PRG is also rate-1 efficient when run on a RAM.

5.3 Hardness of MpK!P and MK'P from Cond EP-PRG

Theorem 56. Assume that for some v > 4, there exists a rate-1 efficient -
cond EP-PRG G : {0,1}" — {0, 1}"*71°8" where pu(n) = 1/n?. Then, for every
€ >0, all t(n) > (1+ €)n, MpK'P is mildly HoA w.r.t. the uniform distribution.

Proof. The proof follows exactly the same structure as the proof [21] with only
minor adjustments to deal with the fact that we now consider probabilistic Kol-
mogorov complexity and MpK'P, a promise problem. Essentially, the key obser-
vation is that random strings have high probabilistic Kolmogorov complexity,
and due to this observation, essentially the proof in [21] can still be applied. We
proceed to the full details.
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Let v > 4, and let G’ : {0,1}"* — {0,1}™' () where m/(n) = n + ylogn
be a rate-1 efficient y-cond EP-PRG, where y = 1/n?. For any constant c, let
G¢(z) be a function that computes G’(z) and truncates the last ¢ bits. It directly
follows that G° is also a rate-1 efficient u-cond EP-PRG (since G’ is so). Consider
any £ > 0 and any polynomial t(n) > (1 +¢)n and let p(n) = 2n2(@+7+1),

Assume for contradiction that there exists some PPT H(x, k) that decides
MpK'P with probability 1 — ﬁ over random z € {0,1}™, k € {0,1}/°e™1 for
infinitely many m € N. Since m/(n+ 1) —m/(n) < v+ 1, there must exist some
constant ¢ < v + 1 such that H succeeds (to decide MpKtP) with probability
1- ﬁ for infinitely many m of the form m = m(n) = n + ylogn — c. Let
G(z) = G°(x); recall that G is a rate-1 efficient u-cond EP-PRG (trivially, since
G¢is s0), and let «, { E, }, respectively, be the entropy loss constant and sequence
of events, associated with it.

We next show that H can be used to break the cond EP-PRG G. Towards this,
note that a random string still has high pK*-complexity with high probability:
for m = m(n), by Fact 24, we have,

¥ 3
P K! — =1 >1——= 3
Br K@) > m - Jlogn] 21— . (3)

However, any string output by G, must have “low” pK® complexity : For every
sufficiently large n, m = m(n), we have that,

Pr [pK! — Yiogn] = 4
ze{O,rl}"[p 1(G(x)) >m 5 ogn| =0, (4)

since for every string r € {0, l}t(m), G(zx) can be produced by a program IT with
the seed z of length n and the code of G (of constant length) hardwired in it
(and the string r is skipped). The running time of I7 is bounded by t(m) for
all sufficiently large n (since G is rate-1 efficient) , so K'(G(z)) = n+ O(1) <
m — v/2logn for sufficiently large n (since recall that v > 4).

Based on these observations, we now construct a PPT distinguisher A break-
ing G. On input 1", z, where 2 € {0,1}("™  A(1",z) picks k = m — 7 logn.
A outputs 1 if H(z, k) outputs 1 and 0 otherwise. Fix some n, m = m(n) for
which H succeeds to decide MpK'P with probability Tin)' The following two
claims conclude that A distinguishes U,y and G(Uy, | E;,) with probability at
least 2.

n

Claim 3. A(1™,U,,) outputs 0 with probability at least 1 — ﬁ.

Proof. Note that A(1", z) will output 0 if (1) z is a string with pKf/3-complexity
larger than m — y/2logn and (2) H succeeds on input (z,k). (Note that if (1)
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holds, (z,k) is guaranteed to be a NO instance in MpK'P.) Thus,
Pr[A(1", z) = 0]
> PrlpK] j3(x) > m —v/2logn A'H succeeds on (, k)]
>1- Pr[pKf/S(x) < m —~v/2logn] — Pr[H fails on (z, k)]

L R
w2 p(m)
>
- _W.

where the probability is over a random x «— U,,, k < [logm] and the random-
ness of A and H.

Claim 4. A(1",G(U, | E,)) outputs 0 with probability at most 1 — 1 + 2

Proof. Recall that by assumption, H(z, k) fails to decide whether (z, k) € MpK'P
for a random z € {0,1}™, k € {0,1}/°8™1 with probability at most

p(m)”
By an averaging argument, for at least a 1 — # fraction of random tapes r
for H, the deterministic machine H,. fails to decide MpK'P with probability at

p?;). Fix some “good” randomness r such that M, decides MpK'P with

2
. 1 n
probability at least 1 o)

most

We next analyze the success probability of A,.. Assume for contradiction that
A, outputs 1 with probability at least 1 — L + —L— on input G(U, | E,,). Recall
that (1) the entropy of G(U, | E,) is at least n — alogn and (2) the quantity
—log Pr[G(Uy | E.) = y] is upper bounded by n for all y € G(U, | E,). By an
averaging argument, with probability at least %, a random y € G(U, | E,) will
satisfy

—logPr|GU, | En) = y] > (n — alogn) — 1.
We refer to an output y satisfying the above condition as being “good” and other
y's as being “bad”. Let S = {y € GU, | E,) : A-(1",y) = 0 Ay is good}, and
let '’ ={ye GU,|E,): A-(1",y) =0 Ay is bad}. Since
Pr[A.(1",G(U, | E,)) = 0] = Pr[G(U,, | E,,) € S] + Pr[G(U, | E,) € 5],
and Pr[GU, | E,) € S’] is at most the probability that G(U,, | E,,) is “bad”

(which as argued above is at most 1 — 1), we have that

1 1 1 1
PriGUn | ) € 5] 2 <1 n + nOH—'y) N (1 N n) = patre

Furthermore, since for every y € S, Pr[G(U, | E,) = y] < 27"teloentl we also
have,

Pr[G(U, | E,) € 8] < |S|2 Helosntl
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So,
n—alogn—1
2 & _ 2n7(2a+'\/) logn—1

|S| = noty
However, for any y € G(U,, | E,,), if A-(1",y) outputs 0, then by Eq. 4, pK}(y) <
m—-/2logn = k (and therefore a YES instance in MpK'P), so H,. fails to decide
MpK'P on input (y,m — v/2logn).

Thus, the probability that H, fails (to decide MpKtP) on a random input
(y,k) (where y and k are uniformly sampled in {0,1}™ and {0,1}°8™1) is at

least
2n—(2a+’y) logn—1 1

m+[logm] _
‘S|/2 - on+ry log n+[log m] Z 2n2(a+’y+1)
which contradicts the fact that M, fails to decide MpK'P with probability at
2
most ey < W (since n < m).
We conclude that for every good randomness r, A,. outputs 0 with probability
at most 1 — % + nalﬂ . Finally, by union bound (and since a random tape is bad

with probability < 1), we have that the probability that A(G (U, | E,)) outputs

1 is at most
1 1 1 1 2
— 4+ |1-—+ §17—+7,
n n

noty n

since vy > 2.
We conclude, recalling that v > 4, that A distinguishes U,,, and G(U,, | E,,) with
probability of at least

RS U U S WA S U B A NS SR N |
n/2 n n?) ™~ n? n n2) n n2 " n2
for infinitely many n € N.

Theorem 57. Assume that for some v > 4, there exists a rate-1 efficient -
cond EP-PRG G : {0,1}" — {0,1}"+71°8" where pu(n) = 1/n%. Then, for every
€ >0, all t(n) > (1 + €)n, MK'P is mildly HoA w.r.t. the uniform distribution.

Proof. The proof of Theorem 56 can also prove this theorem by replacing pK*
with K*, and MpK'P with MK'P.

A  An Alternative Proof of Lemma 46 and Lemma 48

As mentioned in Sect. 4.2, we provide direct proofs for Lemma 46 and Lemma 48.
Let us start by a reminder of the statement of Lemma 46.

Lemma Al. (Lemma 46, restated). There exists a polynomial v such that
for all polynomial t, any tp-time samplable ensemble D is polynomially bounded

by pK* if t(n) > y(tp(n)).

We recall the notion of a universal hash function [3].
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Definition A2. Let H:, be a family of functions where m < £ and each function
h € HE, maps {0,1}¢ to {0,1}™. We say that H:, is a universal hash family if
(i) the functions hy € H: can be described by a string o of £° bits where c is a
universal constant that does not depend on ¢; (i) for all v # 2’ € {0,1}*, and
for ally,y’ € {0,1}™

Prhy «— H: :ho(z) =y and he(a') =y'] =272™
We will rely on the following properties of universal hash functions.

Proposition A3. Let ¢ € N, S C {0,1}¢ be a set, HY, be a universal hash
family such that m <log|S|. The following statements hold:

— With probability at least 1 — 27198 1S14m+3 gper by HE | there exists s € S
such that hy(s) = 0™.
— With probability at least 1 — 2=T™%3 over h, «— M’ , |h;1(0™)] < 2.20-m,

For completeness, we provide the proof of Proposition A3 here.

Proof. We first prove the former statement. We consider picking a random hash
function h, « an. For each element s € S, let X, denote the random variable
such that Xy = 1 iff h,(s) = 0™. Let X denote the random variable X =
> scg Xs- Note that E[X] = [S|/2™ and the variance of X is

1 < E[X]

V(X) = E[X* ~ E[XP’) = |S](51; ~ gam) <

since H¢, is a universal hash family and all sy, so € S, X,, and X, are indepen-
dent. Therefore the variance of X is very small and we can apply Chebyshev’s
Inequality to show that

Pr[X = 0] < Pr[|X — E[X]| > [] 1]

< Pr[|X —E[X]| > (V/V(X)/2)vV/V
1 <9 log |S|+m+3

V(X)/4 ~
So we conclude that with probability at least 1 —Pr[X = 0] > 1 — 2~ log[Sl+m+3,
there exists s € S such that h,(s) = 0™.

The latter statement follows from essentially the same proof. For each element
z € {0,1}*, let Y, denote the random variable such that Y, = 1 iff h,(z) = 0™.
Let Y denote the random variable Y = 3 ;¢ V.. Note that E[Y] = 2f j2m
and the variance of Y is

1 1

V(Y) = ElY? — EV]?] = 2 — o)

since H!, is a universal hash family and all 21,2, € {0,1}*, Y,, and Y,, are
independent.. Notice that by Chebyshev’s inequality,

1
Pl”[Y >92. 2€—m] < PI‘HY _ E | > N /2 N ( )/4 < 2—£+m+3

So we conclude that with probability at least 1 —2~¢Fm+3 |p—1(0™)| < 2.26-™,
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We turn to introducing the linear universal hash family construction [3].

Proposition A4 ([3]). Let {,m € N,m < £. For each o € {0,1}'™*™  define
he to be the function such that for each x € {0,1}, h,(z) = Az + b where
o= (A,b), A is a binary matriz of m x £, and b is a binary vector of length m.
Let HY, = {ho |0 € {0,1}m ™},

Then, it holds that an s a universal hash famaily.
We are now ready to prove Lemma Al.

Proof. Consider any polynomial ¢, and any ¢p-time samplable ensemble D. Let
M be the PPT sampler such that M (1",7) uses € {0,1}*?(™) as random coins
and samples D,, for each n € N.

We will show that D is polynomially bounded by pK?! ,_,. Consider any
string x € {0,1}*, n = |z|. Let £ = tp(n) be the length of the random tape
of M. Let p, = Pr[r «— {0,1},2' = M(1",7) : 2’ = x] denote the probability
mass of x in D,,. Our goal is to show that there exists a polynomial ¢ such that
Pz < 8(n)27PK" (@) holds for all z.

Let S = {r € {0,1}* : M(1",7) = z} be the set of random tapes on which
M will output z. (Note that |S| = 2‘p,.) Let m = [log|S|] — 5. Let H%, be the
universal hash family defined in Proposition A4.

For any hash function h, € HY,, we refer to a hash function h, as being good
if (1) 3s € S, hy(s) = 0™ and (2) |h~1(0™)] < 2-2¢7™. We first claim that with
high probability over h, «+ H’ , h, will be good.

Claim 5. h, is good with probability at least 1/2 over h, «— HY,.

Proof. By Proposition A3 and a Union Bound, a random h, is good with prob-
ability at least 1 — 27 log[SlFm+3 _ g—tm=3 > 1,

We next claim that given a good hash function h,,, there exists a short program
of size roughly log |S| that produce the string x.

Claim 6. For any good hash function h, € H’,, there exists a program II of
length at most

O(log¥) + [log 1/p, |

that, given h, as input, outputs the string x within time O(£3).

Proof. Since h, is good, and let s be an string € S such that h,(s) = 0™. Note
that if s can be produced using a short program, z can be generated by running
M (1™, s), which adds |[M| = ¢ bits to the description and can be done in time
tp(n).

Finally, we show how to produce s using linear algebra. Recall that the hash
function h,(z) is defined to be Az + b where 0 = (A,b), A,b are a binary
matrix and a binary vector. We can use the Gaussian Elimination algorithm
to find an vector v € {0,1} such that Av +b = 0™ and a basis (by,...,bg)
for the kernel of A. Note that each y € h=1(0™) can be represented by a d-bit



670 Y. Liu and R. Pass

coordinate vector (under the basis (by,...,bq) and with respect to the offset
vector v). So d < ¢ —m+ 1 and s can also be represented a coordinate vector of
¢ —m + 1 bits (and let e denote this vector). We then use this fact to construct
a program II with length < 4log¢ 4+ ¢ — m + O(1) bits to produce the string
x. IT has the integers n, ¢, the coordinate vector, and the code of M hardcoded
(< 4logl+ ¢ —m+ 1+ O(1) bits). On input a hash function description o, it
computes v and (b1, . ..,by) using Gaussian Elimination and Gram Schmidt, and
computes s = Zie[d] b;-e;+v. Finally, IT outputs M; (1™, s). Notice that IT runs
in time O(£3) +tp(n) = O(tp(n)?) < t(n). Also notice that IT can be described
by 4log¢+ ¢ —m+ 1+ O(1), and we fix ¢ to be the constant such that IT can
be described using 4log £ + £ — m + ¢ bits.

Finally, we are ready to show that p, < 5(n)2_pKt(‘”). Towards this, we will
prove that
pK'(z) < O(log{) + [log 1/p. ]

and the aforementioned inequality will follow if we set d(n) = £O() = tp(n)0M)
to be a large polynomial. Consider any random string r € {0, 1}2"“’”"””), and
we view r as r = o1l|oz||...||o2, where each o; is a description of a random
hash function h,, «— H!,. By Claim 5, with probability at least 1 — 272" > 2/3,
there exists ¢ € [2n] such that h,, is a good hash function. By Claim 6, there
exists a program IT’ that on input h,,, outputs the string z. Thus, let IT be a
program with the index 4 and I’ hardcoded, and II on input r simply outputs
IT'(hy,). Note that IT can be implemented using O(log ¢) + [log1/p,] bits, and
it terminates within time O(¢2). By picking v(n) = O(n?), it follows that IT runs
in O(%) < 1) < A(tp()) < L),
We below prove Lemma 48. We first recall the statement.

Lemma A5 (Lemma 48, restated). Assume that E ¢ ioNSIZE[2(™)]. There
exists a polynomial v such that for all polynomial t', any tp-time samplable
ensemble D is polynomially bounded by K* if t'(n) > ~'(tp(n)).

Proof. The idea behind our proof is to derandomize the hash function used in
Lemma A1l. Therefore, this proof will rely on the proof of Lemma Al heavily
and we assume familiarity of Lemma A1l.

Let t,tp,D,M,z,n,,p;,S,m, H’,,hy be as in Lemma Al. The proof of
Lemma Al shows that (1) with probability at least 0.5, a random hash function
is “good” (as defined in Lemma Al) and (2) if a hash function is good, there
exists a small program IT that produces x on input the hash function within
time poly(¢). Note that for the purpose of derandomization, the probability 0.5
is good enough for us and we don’t need the parallel repetition performed in the
end of Lemma Al.

Towards derandomizing h,, we first show that whether h, is good can be
verified by a non-deterministic circuit. Consider a non-deterministic circuit IV,
with the string  hardcoded in it. Recall that a hash function h, is good if (1)
3s € S such that hy(s) = 0™ and (2) [h=1(0™)] < 2-2¢"™. (1) can be checked
by guessing a string w € {0,1}¢, verifying if h,(w) = 0™ and if M (1", w)
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outputs z. (2) can be checked deterministically. Recall that h, is a linear hash
function defined to be hy,(x) = Az + b where 0 = (A,b). By facts in linear
algebra, |h;1(0™)| = 2¢ where d is the dimension of the kernel for A. And d
can be computed using Gram Schmidt. Therefore, we can implement a non-
deterministic circuit N, such that N, (o) = 1 iff h, is good (so N, accepts with
probability at least 0.5), and N, is of size < O(|o]?).

Shaltiel and Umas [29] showed that under the assumption that E ¢
ioNSIZE[27(™)] there exists a PRG G : {0,1}°0°8D) — {0, 1} running in time
poly(l) such that for all I € N, for all non-deterministic circuits C of size < O(I?),
it holds that

| PrC(GUogogn)) = 1] — Pr{OU) = 1]] < %

It follows that G also fools N,. Thus, there exists a seed z € {0,1}°0oeloD such
that hg(.) is a good hash function.

We are now ready to show that z has a deterministic short description. We
consider a program IT with the seed z hardcoded in it. IT first compute o = G(z).
Since h,, is a good hash function, as shown in the proof of Lemma 46, there exists
a program II’ of length at most

O(log ¢) + [log 1/p]

that produces the string x on input the hash function description o within time
O(¢3). IT also hardcodes the program II’, and IT just runs it on o to obtain .
Note that II’s running time is bounded by the PRG’s running time (< poly|o|)
plus the running time of IT’ (< O(£3)). So there exists a polynomial 4 such that
IT runs in time 7'(£) < +/'(tp(n)). Consider any polynomial ¢'(n) > +'(tp(n)).
It follows that

K" (2) < |2| + O(1) + O(log £) + [log 1/p, ] < —[log 1/p,] + O(log n)

which implies that there exists a polynomial § such that for all z, p, <

6(n)2_Kt/(x). Note that this holds for any ¢p-time ensemble if t'(n) > +'(tp(n)),
which concludes our proof.
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