
One-Way Functions and the Hardness
of (Probabilistic) Time-Bounded

Kolmogorov Complexity w.r.t. Samplable
Distributions

Yanyi Liu1(B) and Rafael Pass2

1 Cornell Tech, New York, USA
yl2866@cornell.edu

2 Tel-Aviv University & Cornell Tech, Tel Aviv, Israel
rafaelp@tau.ac.il

Abstract. Consider the recently introduced notion of probabilistic time-
bounded Kolmogorov Complexity, pKt (Goldberg et al., CCC’22), and let
MpKtP denote the language of pairs (x, k) such that pKt(x) ≤ k. We
show the equivalence of the following:

– MpKpolyP is (mildly) hard-on-average w.r.t. any samplable distribu-
tion D;

– MpKpolyP is (mildly) hard-on-average w.r.t. the uniform distribution;
– existence of one-way functions.

As far as we know, this yields the first natural class of problems where
hardness with respect to any samplable distribution is equivalent to hard-
ness with respect to the uniform distribution.

Under standard derandomization assumptions, we can show the same
result also w.r.t. the standard notion of time-bounded Kolmogorov com-
plexity, Kt.

1 Introduction

A one-way function [5] (OWF) is a function f that can be efficiently computed
(in polynomial time), yet no probabilistic polynomial-time (PPT) algorithm can
invert f with inverse polynomial probability for infinitely many input lengths
n. Whether one-way functions exist is unequivocally the most important open
problem in Cryptography (and arguably the most importantly open problem in

Y. Liu—Work done while visiting the Simons Institute during the Meta-complexity
program. Supported by a JP Morgan fellowship.
R. Pass—Supported in part by NSF Award CNS 2149305, NSF Award CNS-2128519,
NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267, FA9550-23-1-0312, a JP
Morgan Faculty Award, the Algorand Centres of Excellence programme managed by
Algorand Foundation, and DARPA under Agreement No. HR00110C0086. Any opin-
ions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the United States Govern-
ment, DARPA or the Algorand Foundation.

c© International Association for Cryptologic Research 2023
H. Handschuh and A. Lysyanskaya (Eds.): CRYPTO 2023, LNCS 14082, pp. 645–673, 2023.
https://doi.org/10.1007/978-3-031-38545-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38545-2_21&domain=pdf
https://doi.org/10.1007/978-3-031-38545-2_21

646 Y. Liu and R. Pass

the theory of computation, see e.g., [19]): OWFs are both necessary [16] and
sufficient for many of the most central cryptographic primitives and protocols
(e.g., pseudorandom generators [2,12], pseudorandom functions [8], private-key
encryption [9], digital signatures [28], commitment schemes [26], identification
protocols [6], coin-flipping protocols [1], and more). These primitives and proto-
cols are often referred to as private-key primitives, or “Minicrypt” primitives [14]
as they exclude the notable task of public-key encryption [5,27]. Additionally,
as observed by Impagliazzo [10,14], the existence of a OWF is equivalent to the
existence of polynomial-time method for sampling hard solved instances for an
NP language (i.e., hard instances together with their witnesses).

The Win-Win Paradigm, and OWFs from Average-case Hardness of
NP? A central problem in the theory of Cryptography is whether the existence of
OWFs can be based on some simple complexity-theoretic assumptions. Ideally,
we would want an assumption that leads to a win-win scenario: either we have
secure OWFs (and thus can securely implement all primitives in Minicrypt), or
we get some algorithmic breakthroughs that are useful to society/the pursuit of
knowledge etc. The ideal win-win scenario would be to get a construction of OWF
based on worst-case hardness of NP (i.e., on the assumption that NP �⊆ BPP)—
the question of whether this is possible goes back to the original work by Diffie
and Hellman [5] and is sometimes referred to as the “holy-grail” of Cryptography.
A slightly less ambitious goal that still would yield a very strong win-win scenario
would be to base the existence of OWF on the existence of an NP language
that is average-case hard w.r.t. to some samplable distribution D. (Note that
the existence of OWF trivially implies this assumption.) If such a reduction
were to be obtained (or in Impagliazzo’s language, if we rule out “Pessiland”—a
world where NP is hard on average but OWFs do not exist.), then either OWF
exists, or we can solve all NP problems “in practice”, whenever the instances are
sampled by an “efficient world”. Unfortunately, also obtaining such a reduction
has remained an open problem for 5 decades:

Does the average-case hardness (w.r.t. some efficiently samplable distribu-
tion) of some language in NP imply the existence of OWFs?

There has, however, been some recent progress towards this question based on
connections between OWFs and Kolmogorov Complexity.

On OWFs and Kolmogorov Complexity. The notion of Kolmogorov com-
plexity (K-complexity), introduced by Solomonoff [31], Kolmogorov [18] and
Chaitin [4], provides an elegant method for measuring the amount of “random-
ness” in individual strings: The K-complexity of a string is the length of the
shortest program (to be run on some fixed universal Turing machine U) that
outputs the string x; the notion of t(·)-time-bounded Kolmogorov Complexity
(Kt-complexity) [11,17,18,30,32] considers a time-bounded version of this prob-
lem: Kt(x) is defined as the length of the shortest program that outputs the
string x within time t(|x|).

Hardness of Time-Bounded Kolmogorov Complexity 647

A recent result by Liu and Pass [21] shows that “mild” average-case hardness1

of the time-bounded Kolmogorov complexity problem (when the time-bound
is some polynomial) is equivalent to the existence of OWFs. Additionally, [23]
demonstrates that the same type of result also holds for the, so-called, conditional
time-bounded Kolmogorov Complexity problem [20,24,32,34] (where Kt(x|z) is
defined as the length of the shortest program that within time t(|x|) outputs x
having access to z) that they also show is NP-complete. The problem, however, is
that it is not known whether the problem is average-case complete with respect
to the uniform distribution. In other words, if NP is average-case hard (with
respect to some samplable distribution), then the (conditional) time-bounded
Kolmogorov complexity problem is hard for some efficiently samplable distri-
bution (by its NP-completeness), but the characterization of OWFs considers
hardness of the problem with respect to the uniform distribution.

Hardness w.r.t. Samplable or the Uniform Distribution. Thus, resolving
the above central open problem (of basing OWF on average-case hardness of NP)
is equivalent to showing that average-case hardness of the time-bounded Kol-
mogorov complexity problem with respect to any samplable distribution implies
average-case hardness with respect to the uniform distribution. More generally,
we may ask:

For what classes of problems does average-case hardness with respect to
any samplable distributions imply average-case hardness with respect
to the uniform distribution?

Our focus here will be on time-bounded Kolmogorov complexity-style prob-
lem due to their connection with cryptography. As mentioned, showing this
for the particular conditional time-bounded Kolmogorov complexity problem is
equivalent to basing OWF on the average-case hardness of NP (i.e., ruling out
Pessiland). But showing this for just the “plain” time-bounded Kolmogorov com-
plexity problem would also yield a very natural win-win scenario: while there
are many important applications to solving the time-bounded Kolmorogov com-
plexity (e.g., optimal file-compression, inductive reasoning in science, optimal
machine learning etc.2), we typically do not care much about solving it on ran-
dom instances, but rather instances with structure. If one can base OWF on the
hardness of this problem with respect to any samplable distribution, we would
get non-existence of OWF implies that the Kt-complexity can be “solved in
practice”.

An elegant step in this direction was recently taken by Ilango, Ren and San-
thanam [13]; they show that the existence of OWFs is equivalent to average-case
hardness of a Gap version—with a ω(log n) gap—of the Kolmogorov complexity
1 By “mild” average-case hardness, we here mean that no PPT algorithm is able to

solve the problem with probability 1− 1
p(n)

on inputs of length n, for some polynomial

p(·).
2 Typically, one would actually like to solve a search version of this problem, where

one not only finds the time-bounded K-complexity of a string but also the program
that “witnesses” this complexity; as we shall see our results actually consider this.

648 Y. Liu and R. Pass

problem w.r.t. any efficiently samplable distribution; Liu and Pass [22] extend
this result to show that it suffices to assume that it is hard to approximate
K-complexity within a term of ω(log n) with respect to any samplable distribu-
tion. [13] also show that under standard derandomization assumption, it suffices
to assume average-case hardness also of a Gap version (again with ω(log n)
gap) also of the time-bounded Kolmogorov complexity problem, and thus for
a problem in NP, w.r.t. any samplable distribution. These results thus show
that one can characterize OWFs through average-case hardness of some natu-
ral gap/approximation problem with respect to any samplable distribution. The
problem, however, is that they all work in a gap/approximation regime where
the problem is provably easy under the uniform distribution—It is trivial to pro-
vide a ω(log n) approximation of K or Kt w.r.t. the uniform distribution: simply
output the length of the string! Indeed, as these result show, in this regime, the
sampler for the hard distribution must it self be a OWF. So in a sense, these
result do not give us any insight into how to build a OWF “from scratch”.

As far as we know, the only result that we are away of showing that hardness
with respect to any samplable distributions implies hardness with respect to
the uniform distribution is the seminal result of Impagliazzo and Levin [15];
their result however only shows average-case hardness of NP with respect to
some samplable distribution implies average-case hardness of some (artificial)
specially-constructed NP language with respect to the uniform distribution. As
far as we known, no such reductions are not known for any “natural” classes of
languages.

1.1 Our Results

Roughly speaking, our main result shows that for a probabilistic version of Kt,
average-case hardness with respect to any samplable distribution (of the exact,
as opposed to the approximate) problem is equivalent to the average-case hard-
ness with respect to the uniform distribution, which in turn is equivalent to
the existence of OWFs. This notion, called probabilistic Kt (denoted pKt) was
recently introduced by Goldberg et al [7]. Roughly speaking, this notion mea-
sures the length of the shortest program that outputs a string x if we get access
to a random string (think of it as Kt in the “Common Random String” (CRS)
model). More formally, let

pKt
δ(x) = min{w ∈ N | Pr[r ← {0, 1}t(|x|) : Kt(x | r) ≤ w] ≥ δ}

and let MpKtP denote the promise problem (ΠYES,ΠNO) where ΠYES consists of
(x, k), |k| = �log |x|	, pKt

2/3(x) ≤ k and ΠNO consists of (x, k), |k| = �log |x|	,
pKt

1/3(x) > k.
Our main result shows:

Theorem 11 The following are equivalent:

– There exists an efficiently samplable distribution D such MpKtP is mildly
hard-on-average on D for some (or every) sufficiently large polynomial t(·);

Hardness of Time-Bounded Kolmogorov Complexity 649

– MpKtP is mildly hard-on-average on the uniform distribution for some (or
every) sufficiently large polynomial t(·)

– OWF exists.

In fact, our formal proof is even stronger; we show that it suffices to assume
hardness of a search version of the pKt problem where given any x sampled
from an efficient distribution D, and a random CRS r, the goal is to find the
shortest program that generates x given r. This yields a strong and natural
win-win scenario:

Either OWF exist, or we can (with probability 1 − 1/poly(n)) find the best
way to compress any efficiently sampled string x, in the presence of a CRS.

We highlight that such compression is not just useful in its own; if ascribe to
Occam’s razor (i.e., “rule of parsimony”: that the simplest way to explain a
phenomena is preferable to a more complex), then solving this search version of
Kt (even in the presence of a CRS), yields a powerful tool for scientific discovery.

We next turn to considering the “standard” Kt problem; let MKtP denote
the language of pairs of (x, k), |k| = �log |x|	, Kt(x) ≤ k. We show that under
standard derandomization assumptions (used to show that AM ⊂ NP), hardness
of MKpolyP w.r.t. some samplable distribution is equivalent to hardness w.r.t.
the uniform distribution (which by [21] is equivalent to OWF).

Theorem 12. Assume that E �⊆ ioNSIZE[2Ω(n)]. Then, the following are equiv-
alent:

– There exists an efficiently samplable distribution D such that MKtP is mildly
hard-on-average on D for some (or every) sufficiently large polynomial t(·);

– MKtP is mildly hard-on-average on the uniform distribution for some (or
every) sufficiently large polynomial t(·);

– OWF exists.

Again, we can strengthen the result and base it on the hardness of solving
the search version of the Kt problem.

This final results is related to the recent result by [13], that shows equivalence
of infinitely-often OWFs and the io-average-case hardness of a Gap Kt problem
(with a ω(log n) gap) under a derandomization assumption. First, their result
does not extend to handle also “standard” OWFs (on the other hand, it uses a
weaker derandomization assumptions).3 More significantly, our result weakens
the assumption to only require hardness of solving the exact (as opposed to
Gap/approximate) version of the Kt problem. This difference is significant, and
the results are different on a qualitative level: Kt seemingly is hard to compute
on essentially any “well-spread” distribution (and in particular on the uniform
distribution), but it seems very hard to (unconditionally) find a distribution on
which it is hard to approximate within ω(log n). Indeed, as mentioned above,

3 It would seem that we can also use a weaker derandomization assumption in case
we only want to deduce io-OWFs; we defer the details to the full version.

650 Y. Liu and R. Pass

the proof in [13] essentially show that the Gap problem can only be hard on a
samplable distribution D if the sampling procedure for the distribution itself is
a OWF.

1.2 Proof Overview

We here provide some intuitions behind the proofs of Theorems 11 and 12. We
will show that (1) hardness with respect to any samplable distribution implies
OWF, and (2) OWFs imply hardness with respect to the uniform distribution.
Step (2) will actually follow mostly using the techniques from [21]—they pass
through the notion of an “entropy-preserving PRG” constructed in [21] from
OWFs, and we next observe that just as [21] showed that such PRGs imply (mild)
average-case hardness of MKtP, we can also show (dealing just with some minor
technical details) that they also imply mild average-case hardness of MpKtP.

We here focus on (1); for simplicity of notation, let us start by considering the
standard Kt problem. We aim to construct a OWF assuming Kt is mildly hard-
on-average to compute with respect to some samplable distribution. Towards
doing this, let us first recall the high-level idea behind the construction of [21],
that was based on the average-case hardness of computing Kt with respect to
the uniform distribution.

The LP20 OWF. [21] actually only constructs a so-called weak OWF4; a
(strong) OWF can be be obtained by relying on Yao’s hardness amplification
theorem [33]. Their construction proceeds as follows. Let c be a constant such
that every string x can be output by a program of length |x| + c (running on
the fixed Universal Turing machine U). Consider the function f(�||Π ′), where �
is a bitstring of length log(n + c) and Π ′ is a bitstring of length n + c, that lets
Π be the first � bits of Π ′, and outputs �||y where y is the output generated by
running the program Π5 for t(n) steps.

We aim to show that if f can be inverted with high probability—significantly
higher than 1 − 1/n—then Kt-complexity of random strings z ∈ {0, 1}n can be
computed with high probability. The heuristic H, given a string z, simply tries to
invert f on �||z for all � ∈ [n + c], and outputs the smallest � for which inversion
succeeds.6

The key idea for arguing that this works is that for every string z with Kt-
complexity w, there exists some program Πz of length w that outputs it; further-
more, by our assumption on c, w ≤ n + c. We thus have that f(Un+c+log(n+c))
will output w||z with probability at least

4 Recall that an efficiently computable function f is a weak OWF if there exists some
polynomial q > 0 such that f cannot be efficiently inverted with probability better
than 1 − 1

q(n)
for sufficiently large n.

5 Formally, the program/description Π is an encoding of a pair (M, w) where M is a
Turing machine and w is some input, and we evaluate M(w) on the Universal Turing
machine U .

6 Or, in case, we also want solve the search problem, we also output the �-bit truncation
of the program Π ′ output by the inverter.

Hardness of Time-Bounded Kolmogorov Complexity 651

1
n + c

· 2−w ≥ 1
n + c

· 2−(n+c) =
2−n

O(n)

(we need to pick the right length, and next the right program). So, if the heuris-
tic fails with probability δ, then the one-way function inverter must fail with
probability at least δ

O(n) , which leads to the conclusion that δ must be small (as
we assumed the inverter fails with probability significantly smaller than 1

n).

Dealing with Samplable Distributions: Step 1. Our main insight is that
the above proof idea actually works to solve Kt not only on the uniform dis-
tribution but in fact also on any distribution D that samples any string x with
probability upperbounded by poly(n)

2Kt(x) —we refer to such a distribution as being
polynomially bounded by Kt. To see why this holds, consider again a string z with
Kt complexity w. As before, f(Un+c+log(n+c)) will output w||z with probability
at least

1
n + c

· 2−w

Given that this string z is sampled by D with probability ≤ poly(n)2−w, we
again have that if the heuristic fails for a set of string z with probability mass
δ, then the OWF inverter must fail with probability δ/poly(n) (since pointwise,
the probabilities in the OWFs experiment “dominate” the probabilities assigned
by D, except for a polynomial factor.) This concludes that the LP20 OWF
actually is secure even if we simply assume that Kt is hard for any distribution
that is polynomially bounded by Kt. (Note that it directly follows that the
uniform distribution is polynomially bounded by Kt, by the observation that
Kt(x) ≤ |x|+c; so this condition already trivially generalizes the condition from
[21].)

Dealing with Samplable Distributions: Step 2. In the second step of the
proof we aim to show that if we take an efficiently samplable distribution, then
it must be polynomially bounded by Kt. (As we shall discuss shortly, we will not
quite be able to do this, but either turning to pKt, or using derandomization,
will help. But let’s postpone this for a moment.)

The intuition for why this ought to be true is the following. Consider some
efficient sampler D that is able to sample an element x s.t. Kt(x) = w with
probability nω(1)·2−w. We can have at most 2w/nω(1) such elements so intuitively,
we can compress x into log(2w−ω(1) log n) = w − ω(1) log n bits, which seems like
a contradiction. The problem, however is that we cannot efficiently recover x
from the list of these strings.

However, the very recently-established Coding Theorem of Lu, Oliviera and
Zimand [25] essentially shows how to do this exactly with the caveat that we need
to consider pKt as opposed to just Kt. Their proof uses quite heavy machinery.
As an independent contribution, we here provide an elementary proof.

In particular, to efficiently recover x, what if we had access to a universal hash
function H, provided as a CRS? As we shall argue, we can indeed find a short (<
w) representation of x that can be efficiently decoded. Let � denote the number of
random bits used by the sampler, and let S denote the set of random tapes that

652 Y. Liu and R. Pass

map x; note that |S| ≥ 2� · nω(1) · 2−w = 2�−w−ω(1) log n. If we apply H to each
of these random tapes, truncate the answer to log |S|−O(1) bits, then it follows
from the Chebyshev’s inequality that with some large constant probability, there
will exist some random tape leading to x that gets mapped to the all 0 string.
Furthermore, by the same Chebyshev’s inequality-based argument, there are at
most 2�−log |S| = 2w−ω(1) log n strings in total that get mapped to the all 0 string.
We can finally rely on the fact that universal hash functions can be constructed
using a linear mapping, and we can leverage this structure to efficiently index
each of these pre-images to the all 0 string of the hash function. Essentially, we
can simply use a basis for the kernel of the matrix describing the hash function.
Since the space contains 2w−ω(1) log n strings, we will have w − ω(1) log n basis
vectors, and each such string in the space can thus be specified by a binary
vector of length w − ω(1) log n bits.

This still does not contradict the assumption that Kt(x) = w since the
above compression uses an external hash function. However, if we instead switch
to using pKt, then we do get a contradiction. This, of course, requires redoing
also Step 1 w.r.t to pKt, which introduces some additional technicalities but we
can essentially proceed in the same way.

Finally, we remark that if we rely on derandomization assumptions, we can
actually derandomize the hashfunction and actually prove Step 2 also for Kt. (In
fact, proving step 2 for Kt can be obtained as a direct corollary step 2 w.r.t. pKt

and a result from [7] that relates pKt and Kt under derandomization assumption;
for completeness, also provide a a simple direct proof based on derandomizing
the hashfunction.)

2 Preliminaries

2.1 One-Way Functions

We recall the definition of one-way functions [5]. Roughly speaking, a function
f is one-way if it is polynomial-time computable, but hard to invert for PPT
attackers.

Definition 21. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable func-
tion. f is said to be a one-way function (OWF) if for every PPT algorithm A,
there exists a negligible function μ such that for all n ∈ N,

Pr[x ← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ μ(n)

We may also consider a weaker notion of a weak one-way function [33], where
we only require all PPT attackers to fail with probability noticeably bounded
away from 1:

Definition 22. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable func-
tion. f is said to be an α-weak one-way function (α-weak OWF) if for every
PPT algorithm A, for all sufficiently large n ∈ N ,

Pr[x ← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < 1 − α(n)

Hardness of Time-Bounded Kolmogorov Complexity 653

We say that f is simply a weak one-way function (weak OWF) if there exists
some polynomial q > 0 such that f is a 1

q(·) -weak OWF.

Yao’s hardness amplification theorem [33] shows that any weak OWF can be
turned into a (strong) OWF.

Theorem 23 ([33]). Assume there exists a weak one-way function. Then there
exists a one-way function.

2.2 Time-Bounded Kolmogorov Complexity

We introduce the notion of time-bounded conditional Kolmogorov complexity.
Roughly speaking, the t-time-bounded Kolmogorov complexity, Kt(x | z), of a
string x ∈ {0, 1}∗ conditioned on a string z ∈ {0, 1}∗ is the length of the shortest
program Π = (M,y) such that Π(z) outputs x in t(|x|) steps.

Formally, fix some universal RAM machine U (with only polynomial over-
head), and let t(·) be a running time bound. For any string x, z ∈ {0, 1}∗, we
define

Kt(x | z) = min{w ∈ N | ∃Π ∈ {0, 1}w, U(Π(z), 1t(|x|)) = x}
When z is an empty string, we simply denote the quantity by Kt(x). We consider
RAM machines (as in [7,23]) since it allows z to be as long as (or even longer
than) the running time of the machine Π.

Very recently, Goldberg et al [7] introduced a probabilistic variant of time-
bounded Kolmogorov complexity, denoted as pKt. Let us recall the notion
here. Roughly speaking, in the probabilistic version, the program is allowed
to be picked after a uniform random string. And a string will have small pKt-
complexity if a short program exists over a large fraction of random strings. We
proceed to the formal definition. Let δ(n) be a probability threshold function.
For any string x ∈ {0, 1}∗, the δ-probabilistic t-bounded Kolmogorov complexity
of x [7], pKt

δ(x), is defined to be

pKt
δ(x) = min{w ∈ N | Pr[r ← {0, 1}t(|x|) : Kt(x | r) ≤ w] ≥ δ(n)}

We usually consider δ as being a constant. We omit the subscript δ if δ = 2/3.
We rely on the following decisional/search problems about time-bound Kol-

mogorov complexity (and its probabilistic variant).

Decisional. We turn to defining the decisional version of the minimum time-
bounded Kolmogorov complexity problem. Let MKtP denote the language of
pairs of (x, k), |k| = �log |x|	, Kt(x) ≤ k. For its probabilistic version, let MpKtP
denote the promise problem (ΠYES,ΠNO) where ΠYES consists of (x, k), |k| =
�log |x|	, pKt

2/3(x) ≤ k and ΠNO consists of (x, k), |k| = �log |x|	, pKt
1/3(x) > k.

Search. We will rely on the search version of the minimum time-bounded Kol-
mogorov complexity problem. In our search problem, an instance is a single
string x ∈ {0, 1}∗ (as opposed to a pair of string x and threshold k, as in the

654 Y. Liu and R. Pass

decisional version). A witness of a string x is the shortest program that outputs
x within t(|x|) steps. We turn to the formal definition. Let Search-Kt denote
the binary relation Rsearch-Kt ⊆ {0, 1}n × {0, 1}∗ where (x,Π) ∈ Rsearch-Kt iff
|Π| = Kt(x), and U(Π, 1t(|x|)) = x.

We will also define the search version of the minimum conditional time-
bounded Kolmogorov complexity problem. In this problem, an instance is a pair
of a target string x and an auxiliary input z. And its witness is just the “Kt-
witness” of x conditioned on z. More formally, let Search-cKt denote the binary
relation Rsearch-cKt ⊆ {0, 1}n+t(n) × {0, 1}∗ where ((x, z),Π) ∈ Rsearch-cKt iff
z ∈ {0, 1}t(|x|), |Π| = Kt(x | z), and U(Π(z), 1t(|x|)) = x.

Finally, we recall two useful properties with respect to Kt: (1) The Kt-
complexity of x is always bounded by its length (plus a universal constant);
and (2) random strings will have high Kt-complexity with high probability. We
notice that these two properties are also satisfied if we focus on its probabilistic
variant pKt.

Fact 24 ([7]). The following statements hold.

1. There exists a constant c such that for all polynomials t(n) ≥ n, all functions
δ(n) ≤ 1, for all strings x ∈ {0, 1}∗ it holds that pKt

δ(x) ≤ Kt(x) ≤ |x| + c.
2. For any n ∈ N,m < n, Pr[x ← {0, 1}n : pKt

δ(x) ≤ m] ≥ 1 − 1
δ(n)2n−m+1

2.3 Average-Case Complexity

We turn to defining what it means for complexity problems to be average-case
hard (for PPT algorithms). We will be considering problems that are only defined
on some input lengths (such as MKtP). We say that a language L is defined
over inputs lengths s(·) if L ⊆ ∪n∈N{0, 1}s(n). (For promise problems or search
problems, this can also be done analogously.) For concreteness, note that MKtP
is defined on input lengths s(n) = n + �log n	.

We will also consider ensembles that are only defined on some input lengths.
We say that D = {Dn}n∈N is an ensemble defined over input lengths s(·) if
for all n ∈ N, Dn is a probability distribution over {0, 1}s(n). (In this work, we
will only consider ensembles that are defined only over s(n) = n + �log n	.) We
say that an ensemble D = {Dn}n∈N is samplable if there exists a probabilistic
polynomial-time Turing machine S such that S(1n) samples Dn; we use the
notation S(1n; r) to denote the algorithm S with randomness fixed to r. We
say that D is tD(·)-time samplable if for all n ∈ N, S(1n) terminates in tD(n)
steps. One example of an ensemble defined over input lengths s(·) is the uniform
distribution, which samples each x ∈ {0, 1}s(n) with equal probability for each
n ∈ N.

Definition 25 (Average-case Complexity). We say that a problem P
defined over input lengths s(·) is mildly hard-on-average (mildly HoA) with
respect to an ensemble D (also defined over input lengths s(·)) if there exists
a polynomial p such that for all PPT heuristic H, for all sufficiently large n ∈ N,

Pr[x ← Dn : H(x) fails to solve P on x] ≥ 1
p(n)

Hardness of Time-Bounded Kolmogorov Complexity 655

where

– if P is a language L, H(x) fails to solve L on x iff H(x) �= L(x);
– if P is a promise problem Π = (ΠYES,ΠNO), H(x) fails to solve Π on x iff

x ∈ ΠYES ∧ H(x) = 0 or x ∈ ΠNO ∧ H(x) = 1;
– if P is a search problem R ⊆ {0, 1}∗ × {0, 1}∗, H(x) fails to solve R on x iff

(x,H(x)) �∈ R;

We next show some search-to-decision reductions for the Kolmogorov com-
plexity problems we considered. These reductions are easy to see in the worst-
case setting, we now prove them in the average-case setting. Let D be a distri-
bution ensemble for MKtP (or MpKtP). Recall that Dn will sample a pair of a
string x ∈ {0, 1}n and a threshold k ∈ {0, 1}�log n�. We consider the projected
distribution, D′, of D, where each D′

n is just Dn but only samples x from Dn.

Lemma 26. Let t be a polynomial.

– If there exists an ensemble D under which MpKtP is mildly HoA, then Search-
cKt is mildly HoA w.r.t. (D′,U) where D′ is the projected distribution of D.

– If there exists an ensemble D under which MKtP is mildly HoA, then Search-
Kt is mildly HoA w.r.t. the projected distribution of D.

Proof. We sketch the proof for the former statement, and the latter statement
will follow from essentially the same proof with minor adjustments.

For any polynomial p, we will show that if there is an algorithm A that solves
Search-cKt with probability at least 1− 1

2p(n)2 over (D′,U) for infinitely many n,
then there exists an algorithm H that decides MpKtP with probability ≥ 1− 1

p(n)

w.r.t. D for infinitely many n. Fix some n on which A succeeds over x ← D′
n,

r ← {0, 1}t(n).
Consider the algorithm H that acts as follows. On input (x, k) ← Dn, H

repeats the following procedure for at least n times. In each iteration, H samples
random r ← {0, 1}t(n), and invokes A(x, r). Finally, H outputs 1 if in at least a
half fraction of iterations, A returns a program of length at most k.

By a standard averaging argument, with probability at least 1 − 1
2p(n) over

x ← D′
n, A(x, r) will output a Kt(x | r)-witness with probability at least 1− 1

p(n) .
We refer to such x as being “good”. We argue that on input a good x, H(x) fails
to decide MpKtP = (ΠYES,ΠNO) with probability at most 1

2p(n) : If (x, k) ∈ ΠYES,
it follows that Kt(x | r) ≤ k with probability at least 2/3, and A(x, r) will
output a program with length ≤ k with probability 2/3 − 1

p(n) . By a standard
Chernoff-type argument, if follows that H(x) will output 0 with probability at
most 1

2p(n) . If (x, k) ∈ ΠNO, the same argument can be made and H(x) will
output 1 with probability at most 1

2p(n) . Combining this with the fact that x

is “bad” with probability at most 1
2p(n) , we conclude that the heuristic H fails

with probability at most 1
p(n) . Finally, note that this holds for infinitely many

n, which is a contradiction.

656 Y. Liu and R. Pass

3 Theorems

We state our main results in this section.

Theorem 31. There exists a polynomial γ such that the following are equiva-
lent:

1. The existence of a tD(·)-time samplable ensemble D, a polynomial t(·), t(n) ≥
γ(tD(n)) such that Search-cKt is mildly hard-on-average w.r.t. (D,U).

2. The existence of a tD(·)-time samplable ensemble D, a polynomial t(·), t(n) ≥
γ(tD(n)) such that MpKtP is mildly hard-on-average w.r.t. D.

3. The existence of one-way functions.
4. For all polynomials t(n), t(n) > (1 + ε)n for some ε > 0, MpKtP is mildly

hard-on-average w.r.t. the uniform distribution.

Proof. (2) ⇒ (1) is proved in Lemma 26. The implication (1) ⇒ (3) follows from
Theorem 41 (stated and proved in Sect. 4). By Theorem 51 (stated and proved
in Sect. 5), (3) implies (4). Finally, (4) trivially implies (2).

Theorem 32. Assume that E �⊆ ioNSIZE[2Ω(n)]. There exists a polynomial γ
such that the following are equivalent.

1. The existence of a tD(·)-time samplable ensemble D, and a polynomial t(·),
t(n) ≥ γ(tD(n)), such that Search-Kt is mildly hard-on-average w.r.t. D.

2. The existence of one-way functions.
3. For all polynomials t(n), t(n) > (1 + ε)n for some ε > 0, MKtP is mildly

hard-on-average w.r.t. the uniform distribution.

Proof. (1) ⇒ (2) follows from Theorem 42 (stated and proved in Sect. 4). By
Theorem 52, (2) implies (3). Finally, the implication (3) ⇒ (1) is proved in
Lemma 26.

4 OWFs from Hardness of MpKpolyP w.r.t. Any Samplable
Distribution

In this section, we show that if there exists a samplable distribution under which
Search-cKpoly is mildly hard-on-average, then one-way functions exist. In addi-
tion, this result can be extend to assuming mild average-case hardness of Search-
Kpoly under a derandomization assumption. Note that by Lemma 26, hardness
of MpKpolyP (resp MKpolyP) implies hardness of Search-cKpoly (resp Search-Kt).
Therefore, we obtained OWFs assuming mild average-case hardness of MpKpolyP
(resp of MKpolyP).

Theorem 41. There exists a polynomial γ such that the following holds.
Assume that there exist a tD(·)-time samplable ensemble D, and a polynomial
t(·), t(n) ≥ γ(tD(n)), such that Search-cKt is mildly HoA w.r.t. (D,U). Then,
one-way functions exist.

Hardness of Time-Bounded Kolmogorov Complexity 657

Proof. This theorem follows from Lemma 43 (stated and proved in Sect. 4.1) and
Lemma 46 (stated and proved in Sect. 4.2).

Theorem 42. Assume that E �⊆ ioNSIZE[2Ω(n)]. There exists a polynomial γ
such that the following holds. Assume that there exist a tD(·)-time samplable
ensemble D, and a polynomial t(·), t(n) ≥ γ(tD(n)), such that Search-Kt is
mildly HoA w.r.t. D. Then, one-way functions exist.

Proof. This theorem follows from Lemma 44 (stated and proved in Sect. 4.1) and
Lemma 48 (stated and proved in Sect. 4.2).

The above theorems are proved in two steps. We first show that if we only con-
sider distributions that are “polynomially bounded by the complexity measure”
(defined blow), we can deduce OWFs from average-case hardness of Search-
cKpoly (if the complexity measure is cKpoly) or Search-Kpoly (if Kpoly). Then we
show that any samplable distribution will be polynomial bounded by pKpoly,
and by Kpoly under derandomization assumption.

We turn to defining what it means for a distribution to be polynomially
bounded by a complexity measure. For a distribution ensemble D, we say that
D is polynomially bounded by pKt (resp by Kt) if there exists a polynomial δ(·)
such that for all string x ∈ {0, 1}∗, n = |x|, Pr[x′ ← Dn : x′ = x] ≤ δ(n)2−pKt(x)

(resp ≤ δ(n)2−Kt(x)).

4.1 When D Is Polynomially Bounded

Lemma 43. Assume that there exist a polynomial t and an ensemble D such
that D is polynomially bounded by pKt and Search-cKt is mildly HoA w.r.t. D.
Then, weak one-way functions exist.

Proof. Let c be the constant from Fact 24, and t be the polynomial as in the
lemma statement. We consider the function f : {0, 1}�log(n+c)�+n+c+t(n) →
{0, 1}∗, which takes an input �||Π ′||r where |�| = �log(n + c)	, |Π ′| = n + c
and |r| = t(n), outputs

f(�||Π ′||r) = �||r||U(Π(r), 1t(n))

where Π is a prefix of Π ′ and Π is of length � (where the bit-string � is interpreted
as an integer ∈ [n + c]).

This function is only defined over some input lengths, but by an easy padding
trick, it can be transformed into a function f ′ defined over all input lengths, such
that if f is weakly one-way (over the restricted input lengths), then f ′ will be
weakly one-way (over all input lengths): f ′(x′) simply truncates its input x′

(as little as possible) so that the (truncated) input x now becomes of length
n′ = �log(n + c)	 + n + c + t(n) for some n and outputs f(x). This will decrease
the input length by a polynomial factor (since t is a polynomial) so the padding
trick can be applied here.

658 Y. Liu and R. Pass

We now show that f is a weak OWF (over the restricted input length) assum-
ing that Search-cKt is mildly HoA w.r.t. (D,U). Since the search problem is
mildly HoA and the distribution D is polynomially bounded by pKt

1−2−n , let p
be the polynomial in the mild average-case hardness and δ be the polynomial
in the bound where pKt bounds D. Let q(n) = 16nδ(n)p(n)2. We assume for
contradiction that f is not 1

q -weak one-way. (In the later proof, although the
input length of f we consider is m = �log(n + c)	 + n + c + t(n) for some n,
we will view n as a “security parameter” and analyze the one-wayness of f on
input length m with respect to n. Since n and m are polynomially related, we
can still conclude that f is weak one-way.) Then, there exists a PPT attacker A
that inverts f with probability at least 1− 1

q(n) on infinitely many n. We will use
A to solve the cKt search problem over (D,U) with probability at least 1 − 1

p(n)

(and thus a contradiction).
Our search algorithm, H, proceeds as follows. On input z ← Dn, r ← Ut(n),

the search algorithm enumerates over all possible i ∈ [n + c], and for each i, H
will invoke the attacker A to invert f on the string i||r||z. And H will also check
if the inversion succeeds. If the inverter succeeds, it will output a pre-image of
i||r||z. By the definition of f , this string will be of the form i||Π ′||r, and from
which we can obtain a program Π of length i. Finally, H outputs the shortest
program it obtains.

We turn to proving that H is a good search algorithm that succeeds with
probability 1 − 1

p(n) . Fix some n ∈ N such that the inverter A succeeds on
security parameter n. It is helpful here to introduce what it means for a string
z to be “good”: Let α = 1

2p(n) . For each string z ∈ {0, 1}n, r ∈ {0, 1}t(n), we
let wz,r = Kt(z | r) denote the length of the shortest program that outputs z on
input r within t(n) steps. We refer to a string z ∈ {0, 1}n as being good if

Pr[r ← {0, 1}t(n) : A(wz,r||r||z) succeeds] ≥ 1 − α(n)

where the probability is also taken over the internal randomness of A, and the
inverter A succeeds on wz,r||r||z if it returns a valid pre-image. Notice that by
our choice of wz,r, it is guaranteed that a pre-image must exist. Let G denote the
set of all good strings z ∈ {0, 1}n. We first claim that heuristic H will succeeds
with high probability on any good z.

Claim 1. For any z ∈ {0, 1}n, if z is good, then H(z, r) fails with probability at
most 1

2p(n) over random r ← {0, 1}t(n).

Proof. Notice that for any z, r, if the inverter succeeds in inverting f on wz,r||r||z,
it will obtain a program Π of length wz,r that on input r, outputs z within t(n)
steps. By our choice of wz,r, this will be the shortest such program, H(z, r) will
finally output it as a witness. Therefore, if z is good, then H(z, r) will output a
valid Kt(z | r)-witness with probability at least 1 − α(n) = 1 − 1

2p(n) over r.

On the other hand, since our inverter A succeeds with high probability, there
should be only “a few” bad strings. We assume for contradiction that the total

Hardness of Time-Bounded Kolmogorov Complexity 659

probability weight of bad strings (w.r.t. Dn) is ≥ 1
2p(n) . That is,

∑

z �∈G

Pr[z′ ← Dn : z′ = z] ≥ 1
2p(n)

Recall that the distribution D is polynomial bounded by pKt. So for any string
z �∈ G, the probability that z is sampled by Dn is at most δ(n)2−pKt(z). It follows
that ∑

z �∈G

δ(n)2−pKt(z) ≥
∑

z �∈G

Pr[z′ ← Dn : z′ = z] ≥ 1
2p(n)

(1)

However, z will be sampled with probability at least

1
2t(n)

∑

r∈{0,1}t(n)

1
n + c

1
2wz,r

in the one-way function experiment, since for each randomness r, there exists a
program of length wz,r = Kt(z | r) that outputs z (on input r) within t(n) steps,
and the OWF will output z if the program is picked. By the definition of pKt,
it follows that z will be sampled with probability at least

1
n + c

(
2−pKt(z) · 2/3

)
≥ 1

2(n + c)
2−pKt(z) ≥ 1

4n
2−pKt(z)

When a bad string z is sampled, the inverter A will fail with probability at least
1

α(n) . Thus, A will fail with probability at least

∑

z �∈G

1
4nα(n)

2−pKt(z)

By Eq. 1, this is at least

1
4nα(n)

· 1
2p(n)δ(n)

>
1

q(n)

which is a contradiction (since A is a good inverter). We thus conclude that the
total probability weight of bad strings (w.r.t. Dn) is ≤ 1

2p(n) . Finally, by a Union
bound (also taking into account good strings) and Claim 1, the probability that
the heuristic fails w.r.t. Dn is at most 1

p(n) .
Combining the above argument with the fact that the attacker A succeeds

on infinitely many input lengths n, we conclude that H fails with probability at
most 1

p(n) on infinitely many n, which is a contradiction.
We can prove that Lemma 43 also holds for Kt analogously.

Lemma 44. Assume that there exist a polynomial t and an ensemble D such
that D is polynomially bounded by Kt and Search-Kt is mildly HoA w.r.t. D.
Then, weak one-way functions exist.

660 Y. Liu and R. Pass

Proof. This lemma will be proved using similar ideas in the proof of Lemma 43,
so the proof is presented based on the proof of Lemma 43. We assume familiarity
of the proof of Lemma 43.

We will consider roughly the same OWF construction as in Lemma 43, except
that we no longer need to sample a random string r in the construct. We consider
the function f : {0, 1}�log(n+c)�+n+c → {0, 1}∗, which takes an input �||Π ′ where
|�| = �log(n + c)	, and |Π ′| = n + c, outputs

f(�||Π ′) = �||U(Π(r), 1t(n))

where Π is a prefix of Π ′ and Π is of length � (where the bit-string � is interpreted
as an integer ∈ [n + c]).

This function is also only defined over some input lengths, but it suffices to
show that f is a weak OWF over input lengths on which f is well defined. As
showed in Lemma 43, by using a padding trick, we can transform this function
f to a standard OWF.

In this lemma, we will show that f is a weak OWF (over the restricted input
length) assuming that Kt is mildly HoA to search w.r.t. D. Since Search-Kt is
mildly HoA and D is polynomially bounded by Kt, let p be the polynomial in
the mild average-case hardness and δ be the polynomial in the bound where Kt

bounds D. Let q(n) = 8nδ(n)p(n)2. We assume for contradiction that f is not
1
q -weak one-way. (In the later proof, although the input length of f we consider
is m = �log(n + c)	 + n + c + t(n) for some n, we will view n as a “security
parameter”, as in Lemma 43.) Then, there exists a PPT attacker A that inverts
f with probability at least 1 − 1

q(n) on infinitely many n. We will use A to solve
the Search-Kt problem over D with probability at least 1 − 1

p(n) (and thus a
contradiction).

Our search algorithm for Kt, H, proceeds as follows. On input z ← Dn, H
will enumerate over all possible i ∈ [n + c], and for each i, the heuristic will
invoke the attacker A to invert f on the string i||z. And H will also check if the
inversion succeeds. If the inverter succeeds, it will output a pre-image of i||z.
By the definition of f , this string will be of the form i||Π ′, and from which we
can obtain a program Π of length i. Finally, H outputs the shortest program it
obtains.

We turn to proving that H is a good search algorithm that succeeds with
probability 1− 1

p(n) . Fix some n ∈ N such that the inverter A succeeds on security
parameter n. As in Lemma 43, it is also helpful here to introduce what it means
for a string z to be “good”: Let α(n) = 1

2p(n) . For each string z ∈ {0, 1}n, we
let wz = Kt(z) denote the length of the shortest program that outputs z within
t(n) steps. We refer to a string z ∈ {0, 1}n as being good if

Pr[A(wz||z) succeeds] ≥ 1 − α(n)

where the probability is taken over the internal randomness of A. Notice that by
our choice of wz, it is guaranteed that a pre-image must exist. Let G denote the

Hardness of Time-Bounded Kolmogorov Complexity 661

set of all good strings z ∈ {0, 1}n. We first claim that heuristic H will succeeds
with high probability on any good z (similar to the proof of Lemma 43).

Claim 2. For any z ∈ {0, 1}n, if z is good, H(z) fails with probability at most
1

2p(n) .

Proof. Note that if the inverter A succeeds on wz||z, it will obtain a program Π
which is a Kt-witness of z – Π will output z within time t(n) and it’s of length
Kt(z). Therefore, H(z) will eventually output this program. This implies that if
z is good, H(z) will find a correct witness with probability at least 1 − α(n) =
1 − 1

2p(n)

On the other hand, since our inverter A succeeds with high probability, there
should be only “a few” bad strings. We assume for contradiction that the total
probability weight of bad strings (w.r.t. Dn) is ≥ 1

2p(n) . That is,

∑

z �∈G

Pr[z′ ← Dn : z′ = z] ≥ 1
2p(n)

Recall that the distribution D is polynomial bounded by Kt. So for any string
z �∈ G, the probability that z is sampled by Dn is at most δ(n)2−Kt(z). It follows
that ∑

z �∈G

δ(n)2−Kt(z) ≥
∑

z �∈G

Pr[z′ ← Dn : z′ = z] ≥ 1
2p(n)

(2)

However, z will be sampled with probability at least

1
n + c

1
2wz

=
1

n + c

1
2Kt(z)

in the one-way function experiment, since there exists a program of length wz =
Kt(z) that outputs z within t(n) steps, and the OWF will output z if the program
is picked. When a bad string z is sampled, the inverter A will fail with probability
at least 1

α(n) . Thus, A will fail with probability at least

∑

z �∈G

1
2nα(n)

2−Kt(z)

By Eq. 2, this is at least

1
2nα(n)

· 1
2p(n)δ(n)

>
1

q(n)

which is a contradiction (since A is a good inverter). We thus conclude that the
total probability weight of bad strings (w.r.t. Dn) is ≤ 1

2p(n) . Finally, by a Union
bound (to take into account good strings) and Claim 2, the probability that the
heuristic fails w.r.t. Dn is at most 1

p(n) .

662 Y. Liu and R. Pass

4.2 Bounding Any Samplable Distribution

We proceed to showing that samplable distributions are bounded by the com-
plexity measures we consider. We first focus our attention to pKpoly. Towards
this, let us recall the Coding Theorem for pKpoly.

Theorem 45. ([25, Theorem 30]) There exists a polynomial γ such that for
any tD-time samplable ensemble D, any string x ∈ {0, 1}n such that Dn samples
x with probability δ > 0, for any polynomial t such that t(n) ≥ γ(tD(n)), it holds
that

pKt(x) ≤ log(1/δ) + O(log tD(n))

The coding theorem roughly says that if a (samplable) distribution assign too
much weight to an individual string, we will be able to find a short description
of that string. We next use the coding theorem to show that any samplable
distribution can be bounded by pKpoly.

Lemma 46. There exists a polynomial γ such that for all polynomial t, any tD-
time samplable ensemble D is polynomially bounded by pKt if t(n) ≥ γ(tD(n)).

Proof. Let γ be the polynomial in Theorem 45. It follows that for any tD-time
D, any x, δ = Pr[Dn = x], and any polynomial t(n) ≥ γ(tD(n)), it holds that

1/δ · tD(n)O(1) ≥ 2pKt(x)

which implies that δ ≤ tD(n)O(1) · 2−pKt(x). Notice that tD(n)O(1) is a poly-
nomial, and the above equation holds for any x in the support of D, we thus
conclude that D is polynomially bounded by pKt.

The above proof relies on Theorem 45, whose proof uses tools from complexity
theory (unconditional PRGs that fool constant-depth circuits). As a result of
independent interest, in Appendix A, we present an alternative direct proof of
Lemma 46 (which implicitly also proves Theorem 45) using only elementary
machinery (in particular, simply universal hash functions).

We move on to considering Kpoly. As observed by [7], Kpoly is at most pKpoly

up to an additive O(log n) factor under a derandomization assumption.

Proposition 47 ([7, Proposition 66]). Assume that E �⊆ ioNSIZE[2Ω(n)]. It
holds that there exists a polynomial p such that for every polynomial t, t′, t′(n) ≥
p(t(n)), for every x ∈ {0, 1}n, it holds that

Kt′
(x) ≤ pKt(x) + log(t(n))

Combining the above Proposition and Lemma 46, we prove that any sam-
plable distribution will also be bounded by Kpoly. (In addition, we also give
another proof of this statement (see the Lemma below for a formal version) in
Appendix A without using Proposition 47, for concreteness.)

Hardness of Time-Bounded Kolmogorov Complexity 663

Lemma 48. Assume that E �⊆ ioNSIZE[2Ω(n)]. There exists a polynomial γ′ such
that for all polynomial t′, any tD-time samplable ensemble D is polynomially
bounded by Kt′

if t′(n) ≥ γ′(tD(n)).

Proof. The proof of Lemma 48 relies on the proof of Lemma 46, and we refer
the reader to the proof of Lemma 46 for notations used in this proof. Let p be
the polynomial in Proposition 47. Recall that the proof of Lemma 46 showed
that δ ≤ tD(n)O(1) · 2−pKt(x). We now consider any polynomial t′ such that
t′(n) ≥ p(t(n)). By Proposition 47, it follows that

δ ≤ tD(n)O(1) ·2−pKt(x) ≤ tD(n)O(1) ·2−Kt′
(x)+log(t(n)) = tD(n)O(1)t(n) ·2−Kt′

(x)

Thus, we conclude that D is polynomially bounded by Kt′
.

5 Hardness of MpKpolyP w.r.t. Uniform from OWFs

We here show that that for every polynomial t(n) ≥ 1.1n, the existence of
OWFs implies mild average-case hardness of MpKpolyP and mild average-case
hardness of MKpolyP. Our proof closely follows the proof in [21] with only minor
modifications to deal with the fact that we now consider the probabilistic variant
of Kolmogorov complexity and we focus on languages/promise problems.

Theorem 51. Assume that one-way functions exist. Then, MpKtP is mildly
hard-on-average with respect to the uniform distribution.

Proof. This theorem follows from Theorem 55 and Theorem 56.

Theorem 52. Assume that one-way functions exist. Then, MKtP is mildly
hard-on-average with respect to the uniform distribution.

Proof. This theorem follows from Theorem 55 and Theorem 57.

5.1 Some Additional Preliminaries

Let us first recall some additional standard preliminaries.

Computational Indistinguishability. We recall the definition of (computa-
tional) indistinguishability [9].

Definition 53. Two ensembles {An}n∈N and {Bn}n∈N are said to be μ(·)- indis-
tinguishable, if for every probabilistic machine D (the “distinguisher”) whose
running time is polynomial in the length of its first input, there exists some
n0 ∈ N so that for every n ≥ n0:

|Pr[D(1n, An) = 1] − Pr[D(1n, Bn) = 1]| < μ(n)

We say that are {An}n∈N and {Bn}n∈N simply indistinguishable if they are
1

p(·) -indistinguishable for every polynomial p(·).

664 Y. Liu and R. Pass

Statistical Distance and Entropy. For any two random variables X and Y
defined over some set V, we let SD(X,Y) = 1

2

∑
v∈V |Pr[X = v] − Pr[Y = v]|

denote the statistical distance between X and Y . For a random variable X, let
H(X) = E[log 1

Pr[X=x]] denote the (Shannon) entropy of X, and let H∞(X) =
minx∈Supp(X) log 1

Pr[X=x] denote the min-entropy of X.

5.2 Entropy-Preserving PRGs

Liu and Pass [21] defined a notion of a conditionally-secure entropy-preserving
pseudorandom generator (cond EP-PRG). Roughly speaking, a cond EP-PRG is
a function where the output is indistinguishable from the uniform distribution
and also preserves the entropy in the input only when conditioned on some
event E.

Definition 54. An efficiently computable function G : {0, 1}n → {0, 1}n+γ log n

is a μ(·)-conditionally secure entropy-preserving pseudorandom generator (μ-
cond EP-PRG) if there exist a sequence of events = {En}n∈N and a constant
α (referred to as the entropy-loss constant) such that the following conditions
hold:

– (pseudorandomness): {G(Un |En)}n∈N and {Un+γ log n}n∈N are μ(n)-
indistinguishable;

– (entropy-preserving): For all sufficiently large n ∈ N, H(G(Un |En)) ≥
n − α log n.

We say that G has rate-1 efficiency if its running time on inputs of length n is
bounded by n + O(nε) for some constant ε < 1.

Theorem 55. ([21]) Assume that OWFs exist. Then, for every γ > 1, there
exists a rate-1 efficient μ-cond-EP PRG Gγ : {0, 1}n → {0, 1}n+γ log n, where
μ = 1

n2 .

Though in [21], running time was counted in terms of execution on Turing
machines, as noted in [23], the PRG is also rate-1 efficient when run on a RAM.

5.3 Hardness of MpKtP and MKtP from Cond EP-PRG

Theorem 56. Assume that for some γ ≥ 4, there exists a rate-1 efficient μ-
cond EP-PRG G : {0, 1}n → {0, 1}n+γ log n where μ(n) = 1/n2. Then, for every
ε > 0, all t(n) ≥ (1 + ε)n, MpKtP is mildly HoA w.r.t. the uniform distribution.

Proof. The proof follows exactly the same structure as the proof [21] with only
minor adjustments to deal with the fact that we now consider probabilistic Kol-
mogorov complexity and MpKtP, a promise problem. Essentially, the key obser-
vation is that random strings have high probabilistic Kolmogorov complexity,
and due to this observation, essentially the proof in [21] can still be applied. We
proceed to the full details.

Hardness of Time-Bounded Kolmogorov Complexity 665

Let γ ≥ 4, and let G′ : {0, 1}n → {0, 1}m′(n) where m′(n) = n + γ log n
be a rate-1 efficient μ-cond EP-PRG, where μ = 1/n2. For any constant c, let
Gc(x) be a function that computes G′(x) and truncates the last c bits. It directly
follows that Gc is also a rate-1 efficient μ-cond EP-PRG (since G′ is so). Consider
any ε > 0 and any polynomial t(n) ≥ (1 + ε)n and let p(n) = 2n2(α+γ+1).

Assume for contradiction that there exists some PPT H(x, k) that decides
MpKtP with probability 1 − 1

p(m) over random x ∈ {0, 1}m, k ∈ {0, 1}�log m� for
infinitely many m ∈ N. Since m′(n + 1) − m′(n) ≤ γ + 1, there must exist some
constant c ≤ γ + 1 such that H succeeds (to decide MpKtP) with probability
1 − 1

p(m) for infinitely many m of the form m = m(n) = n + γ log n − c. Let
G(x) = Gc(x); recall that G is a rate-1 efficient μ-cond EP-PRG (trivially, since
Gc is so), and let α, {En}, respectively, be the entropy loss constant and sequence
of events, associated with it.

We next show that H can be used to break the cond EP-PRG G. Towards this,
note that a random string still has high pKt-complexity with high probability:
for m = m(n), by Fact 24, we have,

Pr
x∈{0,1}m

[pKt
1/3(x) > m − γ

2
log n] ≥ 1 − 3

nγ/2
, (3)

However, any string output by G, must have “low” pKt complexity : For every
sufficiently large n,m = m(n), we have that,

Pr
x∈{0,1}n

[pKt
1(G(x)) > m − γ

2
log n] = 0, (4)

since for every string r ∈ {0, 1}t(m), G(x) can be produced by a program Π with
the seed x of length n and the code of G (of constant length) hardwired in it
(and the string r is skipped). The running time of Π is bounded by t(m) for
all sufficiently large n (since G is rate-1 efficient) , so Kt(G(x)) = n + O(1) ≤
m − γ/2 log n for sufficiently large n (since recall that γ ≥ 4).

Based on these observations, we now construct a PPT distinguisher A break-
ing G. On input 1n, x, where x ∈ {0, 1}m(n), A(1n, x) picks k = m − γ

2 log n.
A outputs 1 if H(x, k) outputs 1 and 0 otherwise. Fix some n, m = m(n) for
which H succeeds to decide MpKtP with probability 1

p(m) . The following two
claims conclude that A distinguishes Um(n) and G(Un |En) with probability at
least 1

n2 .

Claim 3. A(1n,Um) outputs 0 with probability at least 1 − 4
nγ/2 .

Proof. Note that A(1n, x) will output 0 if (1) x is a string with pKt
1/3-complexity

larger than m − γ/2 log n and (2) H succeeds on input (x, k). (Note that if (1)

666 Y. Liu and R. Pass

holds, (x, k) is guaranteed to be a NO instance in MpKtP.) Thus,

Pr[A(1n, x) = 0]

≥ Pr[pKt
1/3(x) > m − γ/2 log n ∧ H succeeds on (x, k)]

≥ 1 − Pr[pKt
1/3(x) ≤ m − γ/2 log n] − Pr[H fails on (x, k)]

≥ 1 − 3
nγ/2

− 1
p(m)

≥ 1 − 4
nγ/2

.

where the probability is over a random x ← Um, k ← �log m	 and the random-
ness of A and H.

Claim 4. A(1n, G(Un |En)) outputs 0 with probability at most 1 − 1
n + 2

n2

Proof. Recall that by assumption, H(x, k) fails to decide whether (x, k) ∈ MpKtP
for a random x ∈ {0, 1}m, k ∈ {0, 1}�log m� with probability at most 1

p(m) .

By an averaging argument, for at least a 1 − 1
n2 fraction of random tapes r

for H, the deterministic machine Hr fails to decide MpKtP with probability at
most n2

p(m) . Fix some “good” randomness r such that Hr decides MpKtP with

probability at least 1 − n2

p(m) .
We next analyze the success probability of Ar. Assume for contradiction that

Ar outputs 1 with probability at least 1 − 1
n + 1

nα+γ on input G(Un |En). Recall
that (1) the entropy of G(Un |En) is at least n − α log n and (2) the quantity
− log Pr[G(Un |En) = y] is upper bounded by n for all y ∈ G(Un |En). By an
averaging argument, with probability at least 1

n , a random y ∈ G(Un |En) will
satisfy

− log Pr[G(Un |En) = y] ≥ (n − α log n) − 1.

We refer to an output y satisfying the above condition as being “good” and other
y’s as being “bad”. Let S = {y ∈ G(Un |En) : Ar(1n, y) = 0 ∧ y is good}, and
let S′ = {y ∈ G(Un |En) : Ar(1n, y) = 0 ∧ y is bad}. Since

Pr[Ar(1n, G(Un |En)) = 0] = Pr[G(Un |En) ∈ S] + Pr[G(Un |En) ∈ S′],

and Pr[G(Un |En) ∈ S′] is at most the probability that G(Un |En) is “bad”
(which as argued above is at most 1 − 1

n), we have that

Pr[G(Un |En) ∈ S] ≥
(

1 − 1
n

+
1

nα+γ

)
−

(
1 − 1

n

)
=

1
nα+γ

.

Furthermore, since for every y ∈ S, Pr[G(Un |En) = y] ≤ 2−n+α log n+1, we also
have,

Pr[G(Un |En) ∈ S] ≤ |S|2−n+α log n+1

Hardness of Time-Bounded Kolmogorov Complexity 667

So,

|S| ≥ 2n−α log n−1

nα+γ
= 2n−(2α+γ) log n−1

However, for any y ∈ G(Un |En), if Ar(1n, y) outputs 0, then by Eq. 4, pKt
1(y) ≤

m−γ/2 log n = k (and therefore a YES instance in MpKtP), so Hr fails to decide
MpKtP on input (y,m − γ/2 log n).

Thus, the probability that Hr fails (to decide MpKtP) on a random input
(y, k) (where y and k are uniformly sampled in {0, 1}m and {0, 1}�log m�) is at
least

|S|/2m+�log m� =
2n−(2α+γ) log n−1

2n+γ log n+�log m� ≥ 1
2n2(α+γ+1)

which contradicts the fact that Hr fails to decide MpKtP with probability at
most n2

p(m) < 1
2n2(α+γ+1) (since n < m).

We conclude that for every good randomness r, Ar outputs 0 with probability
at most 1 − 1

n + 1
nα+γ . Finally, by union bound (and since a random tape is bad

with probability ≤ 1
n2), we have that the probability that A(G(Un |En)) outputs

1 is at most
1
n2

+
(

1 − 1
n

+
1

nα+γ

)
≤ 1 − 1

n
+

2
n2

,

since γ ≥ 2.
We conclude, recalling that γ ≥ 4, that A distinguishes Um and G(Un |En) with
probability of at least
(

1 − 4
nγ/2

)
−

(
1 − 1

n
+

2
n2

)
≥

(
1 − 4

n2

)
−

(
1 − 1

n
+

2
n2

)
=

1
n

− 6
n2

≥ 1
n2

for infinitely many n ∈ N.

Theorem 57. Assume that for some γ ≥ 4, there exists a rate-1 efficient μ-
cond EP-PRG G : {0, 1}n → {0, 1}n+γ log n where μ(n) = 1/n2. Then, for every
ε > 0, all t(n) ≥ (1 + ε)n, MKtP is mildly HoA w.r.t. the uniform distribution.

Proof. The proof of Theorem 56 can also prove this theorem by replacing pKt

with Kt, and MpKtP with MKtP.

A An Alternative Proof of Lemma 46 and Lemma 48

As mentioned in Sect. 4.2, we provide direct proofs for Lemma 46 and Lemma 48.
Let us start by a reminder of the statement of Lemma 46.

Lemma A1. (Lemma 46, restated). There exists a polynomial γ such that
for all polynomial t, any tD-time samplable ensemble D is polynomially bounded
by pKt if t(n) ≥ γ(tD(n)).

We recall the notion of a universal hash function [3].

668 Y. Liu and R. Pass

Definition A2. Let H�
m be a family of functions where m < � and each function

h ∈ H�
m maps {0, 1}� to {0, 1}m. We say that H�

m is a universal hash family if
(i) the functions hσ ∈ H�

m can be described by a string σ of �c bits where c is a
universal constant that does not depend on �; (ii) for all x �= x′ ∈ {0, 1}�, and
for all y, y′ ∈ {0, 1}m

Pr[hσ ← H�
m : hσ(x) = y and hσ(x′) = y′] = 2−2m

We will rely on the following properties of universal hash functions.

Proposition A3. Let � ∈ N, S ⊆ {0, 1}� be a set, H�
m be a universal hash

family such that m ≤ log |S|. The following statements hold:

– With probability at least 1 − 2− log |S|+m+3 over hσ ← H�
m, there exists s ∈ S

such that hσ(s) = 0m.
– With probability at least 1 − 2−�+m+3 over hσ ← H�

m, |h−1
σ (0m)| ≤ 2 · 2�−m.

For completeness, we provide the proof of Proposition A3 here.

Proof. We first prove the former statement. We consider picking a random hash
function hσ ← H�

m. For each element s ∈ S, let Xs denote the random variable
such that Xs = 1 iff hσ(s) = 0m. Let X denote the random variable X =∑

s∈S Xs. Note that E[X] = |S|/2m and the variance of X is

V(X) = E[X2 − E[X]2] = |S|(1
2m

− 1
22m

) ≤ E[X]

since H�
m is a universal hash family and all s1, s2 ∈ S, Xs1 and Xs2 are indepen-

dent. Therefore the variance of X is very small and we can apply Chebyshev’s
Inequality to show that

Pr[X = 0] ≤ Pr[|X − E[X]| ≥ E[X] − 1]

≤ Pr[|X − E[X]| ≥ (
√

V(X)/2)
√

V(X)]

≤ 1
V(X)/4

≤ 2− log |S|+m+3

So we conclude that with probability at least 1−Pr[X = 0] ≥ 1−2− log |S|+m+3,
there exists s ∈ S such that hσ(s) = 0m.

The latter statement follows from essentially the same proof. For each element
z ∈ {0, 1}�, let Yz denote the random variable such that Yz = 1 iff hσ(z) = 0m.
Let Y denote the random variable Y =

∑
z∈{0,1}� Yz. Note that E[Y] = 2�/2m

and the variance of Y is

V(Y) = E[Y 2 − E[Y]2] = 2�(
1

2m
− 1

22m
)

since H�
m is a universal hash family and all z1, z2 ∈ {0, 1}�, Yz1 and Yz2 are

independent.. Notice that by Chebyshev’s inequality,

Pr[Y ≥ 2 · 2�−m] ≤ Pr[|Y − E[Y]| ≥ (
√

V(Y)/2)
√

V(Y)] ≤ 1
V(Y)/4

≤ 2−�+m+3

So we conclude that with probability at least 1−2−�+m+3, |h−1
σ (0m)| ≤ 2 ·2�−m.

Hardness of Time-Bounded Kolmogorov Complexity 669

We turn to introducing the linear universal hash family construction [3].

Proposition A4 ([3]). Let �,m ∈ N,m < �. For each σ ∈ {0, 1}�m+m, define
hσ to be the function such that for each x ∈ {0, 1}�, hσ(x) = Ax + b where
σ = (A, b), A is a binary matrix of m × �, and b is a binary vector of length m.
Let H�

m = {hσ |σ ∈ {0, 1}�m+m}.
Then, it holds that H�

m is a universal hash family.

We are now ready to prove Lemma A1.

Proof. Consider any polynomial t, and any tD-time samplable ensemble D. Let
M be the PPT sampler such that M(1n, r) uses r ∈ {0, 1}tD(n) as random coins
and samples Dn for each n ∈ N.

We will show that D is polynomially bounded by pKt
1−2−n . Consider any

string x ∈ {0, 1}∗, n = |x|. Let � = tD(n) be the length of the random tape
of M . Let px = Pr[r ← {0, 1}�, x′ = M(1n, r) : x′ = x] denote the probability
mass of x in Dn. Our goal is to show that there exists a polynomial δ such that
px ≤ δ(n)2−pKt(x) holds for all x.

Let S = {r ∈ {0, 1}� : M(1n, r) = x} be the set of random tapes on which
M will output x. (Note that |S| = 2�px.) Let m = �log |S|	 − 5. Let H�

m be the
universal hash family defined in Proposition A4.

For any hash function hσ ∈ H�
m, we refer to a hash function hσ as being good

if (1) ∃s ∈ S, hσ(s) = 0m and (2) |h−1(0m)| ≤ 2 · 2�−m. We first claim that with
high probability over hσ ← H�

m, hσ will be good.

Claim 5. hσ is good with probability at least 1/2 over hσ ← H�
m.

Proof. By Proposition A3 and a Union Bound, a random hσ is good with prob-
ability at least 1 − 2− log |S|+m+3 − 2−�+m−3 ≥ 1

2 .

We next claim that given a good hash function hσ, there exists a short program
of size roughly log |S| that produce the string x.

Claim 6. For any good hash function hσ ∈ H�
m, there exists a program Π of

length at most
O(log �) + �log 1/px	

that, given hσ as input, outputs the string x within time O(�3).

Proof. Since hσ is good, and let s be an string ∈ S such that hσ(s) = 0m. Note
that if s can be produced using a short program, x can be generated by running
M(1n, s), which adds |M | = c bits to the description and can be done in time
tD(n).

Finally, we show how to produce s using linear algebra. Recall that the hash
function hσ(x) is defined to be Ax + b where σ = (A, b), A, b are a binary
matrix and a binary vector. We can use the Gaussian Elimination algorithm
to find an vector v ∈ {0, 1}� such that Av + b = 0m and a basis (b1, . . . , bd)
for the kernel of A. Note that each y ∈ h−1(0m) can be represented by a d-bit

670 Y. Liu and R. Pass

coordinate vector (under the basis (b1, . . . , bd) and with respect to the offset
vector v). So d ≤ � − m + 1 and s can also be represented a coordinate vector of
� − m + 1 bits (and let e denote this vector). We then use this fact to construct
a program Π with length ≤ 4 log � + � − m + O(1) bits to produce the string
x. Π has the integers n, �, the coordinate vector, and the code of M hardcoded
(≤ 4 log � + � − m + 1 + O(1) bits). On input a hash function description σ, it
computes v and (b1, . . . , bd) using Gaussian Elimination and Gram Schmidt, and
computes s =

∑
i∈[d] bi ·ei +v. Finally, Π outputs M1(1n, s). Notice that Π runs

in time O(�3) + tD(n) = O(tD(n)3) ≤ t(n). Also notice that Π can be described
by 4 log � + � − m + 1 + O(1), and we fix c to be the constant such that Π can
be described using 4 log � + � − m + c bits.

Finally, we are ready to show that px ≤ δ(n)2−pKt(x). Towards this, we will
prove that

pKt(x) ≤ O(log �) + �log 1/px	
and the aforementioned inequality will follow if we set δ(n) = �O(1) = tD(n)O(1)

to be a large polynomial. Consider any random string r ∈ {0, 1}2n(�m+m), and
we view r as r = σ1||σ2|| . . . ||σ2n where each σi is a description of a random
hash function hσi

← H�
m. By Claim 5, with probability at least 1 − 2−2n ≥ 2/3,

there exists i ∈ [2n] such that hσi
is a good hash function. By Claim 6, there

exists a program Π ′ that on input hσi
, outputs the string x. Thus, let Π be a

program with the index i and Π ′ hardcoded, and Π on input r simply outputs
Π ′(hσi

). Note that Π can be implemented using O(log �) + �log 1/px	 bits, and
it terminates within time O(�3). By picking γ(n) = O(n3), it follows that Π runs
in O(�3) ≤ γ(�) ≤ γ(tD(n)) ≤ t(n).

We below prove Lemma 48. We first recall the statement.

Lemma A5 (Lemma 48, restated). Assume that E �⊆ ioNSIZE[2Ω(n)]. There
exists a polynomial γ′ such that for all polynomial t′, any tD-time samplable
ensemble D is polynomially bounded by Kt′

if t′(n) ≥ γ′(tD(n)).

Proof. The idea behind our proof is to derandomize the hash function used in
Lemma A1. Therefore, this proof will rely on the proof of Lemma A1 heavily
and we assume familiarity of Lemma A1.

Let t, tD,D,M, x, n, �, px, S,m,H�
m, hσ be as in Lemma A1. The proof of

Lemma A1 shows that (1) with probability at least 0.5, a random hash function
is “good” (as defined in Lemma A1) and (2) if a hash function is good, there
exists a small program Π that produces x on input the hash function within
time poly(�). Note that for the purpose of derandomization, the probability 0.5
is good enough for us and we don’t need the parallel repetition performed in the
end of Lemma A1.

Towards derandomizing hσ, we first show that whether hσ is good can be
verified by a non-deterministic circuit. Consider a non-deterministic circuit Nx

with the string x hardcoded in it. Recall that a hash function hσ is good if (1)
∃s ∈ S such that hσ(s) = 0m and (2) |h−1(0m)| ≤ 2 · 2�−m. (1) can be checked
by guessing a string w ∈ {0, 1}�, verifying if hσ(w) = 0m and if M(1n, w)

Hardness of Time-Bounded Kolmogorov Complexity 671

outputs x. (2) can be checked deterministically. Recall that hσ is a linear hash
function defined to be hσ(x) = Ax + b where σ = (A, b). By facts in linear
algebra, |h−1

σ (0m)| = 2d where d is the dimension of the kernel for A. And d
can be computed using Gram Schmidt. Therefore, we can implement a non-
deterministic circuit Nx such that Nx(σ) = 1 iff hσ is good (so Nx accepts with
probability at least 0.5), and Nx is of size ≤ O(|σ|2).

Shaltiel and Umas [29] showed that under the assumption that E �⊆
ioNSIZE[2Ω(n)], there exists a PRG G : {0, 1}O(log l) → {0, 1}l running in time
poly(l) such that for all l ∈ N, for all non-deterministic circuits C of size ≤ O(l2),
it holds that

|Pr[C(G(UO(log l))) = 1] − Pr[C(Ul) = 1]| ≤ 1
6

It follows that G also fools Nx. Thus, there exists a seed z ∈ {0, 1}O(log |σ|) such
that hG(z) is a good hash function.

We are now ready to show that x has a deterministic short description. We
consider a program Π with the seed z hardcoded in it. Π first compute σ = G(z).
Since hσ is a good hash function, as shown in the proof of Lemma 46, there exists
a program Π ′ of length at most

O(log �) + �log 1/px	
that produces the string x on input the hash function description σ within time
O(�3). Π also hardcodes the program Π ′, and Π just runs it on σ to obtain x.
Note that Π’s running time is bounded by the PRG’s running time (≤ poly|σ|)
plus the running time of Π ′ (≤ O(�3)). So there exists a polynomial γ′ such that
Π runs in time γ′(�) ≤ γ′(tD(n)). Consider any polynomial t′(n) ≥ γ′(tD(n)).
It follows that

Kt′
(x) ≤ |z| + O(1) + O(log �) + �log 1/px	 ≤ −�log 1/px	 + O(log n)

which implies that there exists a polynomial δ such that for all x, px ≤
δ(n)2−Kt′

(x). Note that this holds for any tD-time ensemble if t′(n) ≥ γ′(tD(n)),
which concludes our proof.

References

1. Blum, M.: Coin flipping by telephone - A protocol for solving impossible problems.
In: COMPCON1982, Digest of Papers, Twenty-Fourth IEEE Computer Society
International Conference, San Francisco, California, USA, 22–25 February 1982,
pp. 133–137. IEEE Computer Society (1982)

2. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984)

3. Carter, L., Wegman, M.: Universal classes of hash functions. J. Comput. Syst. Sci.
18(2), 143–154 (1979)

4. Chaitin, G.J.: On the simplicity and speed of programs for computing infinite sets
of natural numbers. J. ACM 16(3), 407–422 (1969)

672 Y. Liu and R. Pass

5. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

6. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC 1990, pp. 416–426 (1990). http://doi.acm.org/10.1145/100216.100272

7. Goldberg, H., Kabanets, V., Lu, Z., Oliveira, I.C.: Probabilistic Kolmogorov com-
plexity with applications to average-case complexity. In: 37th Computational Com-
plexity Conference (CCC 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik
(2022)

8. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of
random functions. In: CRYPTO, pp. 276–288 (1984)

9. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

10. Gurevich, Y.: The challenger-solver game: variations on the theme of p=np. In:
Logic in Computer Science Column, The Bulletin of EATCS (1989)

11. Hartmanis, J.: Generalized Kolmogorov complexity and the structure of feasible
computations. In: 24th Annual Symposium on Foundations of Computer Science
(SFCS 1983), pp. 439–445 (1983). https://doi.org/10.1109/SFCS.1983.21

12. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

13. Ilango, R., Ren, H., Santhanam, R.: Robustness of average-case meta-complexity
via pseudorandomness. In: Proceedings of the 54th Annual ACM SIGACT Sym-
posium on Theory of Computing, pp. 1575–1583 (2022)

14. Impagliazzo, R.: A personal view of average-case complexity. In: Structure in Com-
plexity Theory 1995, pp. 134–147 (1995)

15. Impagliazzo, R., LA, L.: No better ways to generate hard np instances than picking
uniformly at random. In: Proceedings [1990] 31st Annual Symposium on Founda-
tions of Computer Science, pp. 812–821. IEEE (1990)

16. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: 30th Annual Symposium on Foundations of
Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1
November 1989, pp. 230–235 (1989)

17. Ko, K.: On the notion of infinite pseudorandom sequences. Theor. Comput. Sci.
48(3), 9–33 (1986). https://doi.org/10.1016/0304-3975(86)90081-2

18. Kolmogorov, A.N.: Three approaches to the quantitative definition of information.
Int. J. Comput. Math. 2(1–4), 157–168 (1968)

19. Levin, L.A.: The tale of one-way functions. Prob. Inf. Trans. 39(1), 92–103 (2003).
https://doi.org/10.1023/A:1023634616182

20. Levin, L.A.: Universal search problems (Russian), translated into English by BA
Trakhtenbrot in [32]. Prob. Inf. Transmission 9(3), 265–266 (1973)

21. Liu, Y., Pass, R.: On one-way functions and Kolmogorov complexity. In: 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, 16–19 November 2020, pp. 1243–1254. IEEE (2020)

22. Liu, Y., Pass, R.: A note on one-way functions and sparse languages. Cryptology
ePrint Archive (2021)

23. Liu, Y., Pass, R.: On one-way functions from np-complete problems. In: Proceed-
ings of the 37th Computational Complexity Conference, pp. 1–24 (2022)

24. Longpré, L., Mocas, S.: Symmetry of information and one-way functions. In: Hsu,
W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 308–315. Springer, Hei-
delberg (1991). https://doi.org/10.1007/3-540-54945-5 75

http://doi.acm.org/10.1145/100216.100272
https://doi.org/10.1109/SFCS.1983.21
https://doi.org/10.1016/0304-3975(86)90081-2
https://doi.org/10.1023/A:1023634616182
https://doi.org/10.1007/3-540-54945-5_75

Hardness of Time-Bounded Kolmogorov Complexity 673

25. Lu, Z., Oliveira, I.C., Zimand, M.: Optimal coding theorems in time-bounded
Kolmogorov complexity. In: 49th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2022). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik (2022)

26. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991). https://doi.org/10.1007/BF00196774

27. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signa-
tures and public-key cryptosystems (reprint). Commun. ACM 26(1), 96–99 (1983).
https://doi.org/10.1145/357980.358017

28. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: STOC, pp. 387–394 (1990)

29. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-
random generator. J. ACM (JACM) 52(2), 172–216 (2005)

30. Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of
the 15th Annual ACM Symposium on Theory of Computing, 25–27 April 1983,
Boston, Massachusetts, USA, pp. 330–335. ACM (1983)

31. Solomonoff, R.: A formal theory of inductive inference, part I. Inf. Control 7(1),
1–22 (1964). https://doi.org/10.1016/S0019-9958(64)90223-2

32. Trakhtenbrot, B.A.: A survey of Russian approaches to Perebor (brute-force
searches) algorithms. Annal. History Comput. 6(4), 384–400 (1984)

33. Yao, A.C.: Theory and applications of trapdoor functions (extended abstract). In:
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
USA, 3–5 November 1982, pp. 80–91 (1982)

34. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the develop-
ment of the concepts of information and randomness by means of the theory
of algorithms. Russ. Math. Surv. 25(6), 83–124 (1970). https://doi.org/10.1070/
RM1970v025n06ABEH001269

https://doi.org/10.1007/BF00196774
https://doi.org/10.1145/357980.358017
https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/10.1070/RM1970v025n06ABEH001269
https://doi.org/10.1070/RM1970v025n06ABEH001269

	One-Way Functions and the Hardness of (Probabilistic) Time-Bounded Kolmogorov Complexity w.r.t. Samplable Distributions
	1 Introduction
	1.1 Our Results
	1.2 Proof Overview

	2 Preliminaries
	2.1 One-Way Functions
	2.2 Time-Bounded Kolmogorov Complexity
	2.3 Average-Case Complexity

	3 Theorems
	4 OWFs from Hardness of MpKpolyP w.r.t. Any Samplable Distribution
	4.1 When D Is Polynomially Bounded
	4.2 Bounding Any Samplable Distribution

	5 Hardness of MpKpolyP w.r.t. Uniform from OWFs
	5.1 Some Additional Preliminaries
	5.2 Entropy-Preserving PRGs
	5.3 Hardness of MpKtP and MKtP from Cond EP-PRG

	A An Alternative Proof of Lemma 46 and Lemma 48
	References

