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We have studied the peculiarities of electron transport in one-dimensional disordered chain at the presence 
of correlations between on-site interaction and tunneling integrals. In the considered models, the disorder in 
host-lattice sites positions is caused by presence of defects, impurities, existence of electron-phonon interac-
tion, etc. It is shown that for certain combination of parameters the localization of electron state inherited by a 
various of 1D disordered systems disappears, and electron transport becomes possible. The parameters of this 
transport are established. 
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1. Introduction 

It is well known that in one-dimensional (1D) systems 
with random potential U(r) and tunneling integrals t(r) 
(where r  is the coordinate) the localization of quantum 
states takes place [1, 2] for rather wide class of U  and t . It 
means that all one-body wave functions are localized at 
some finite-size area (this size is called radius of localiza-
tion R ) and, hence, transport in such systems is impos-
sible. For example, saying about electron transport, it 
means that transfer of energy, spin, information is impos-
sible over 1D wires with disordered distribution of ions 
forming a host lattice. Note, if we consider finite size 
chain (with length N ) and if R N  then the effects relat-
ed to localization may not appear in measurements. As an 
example, we can cite waveguides, which with high accu-
racy represent one-dimensional systems with a non-ideal 
(disordered) surface. 

The exact criteria for ( )U r  and ( )t r  guaranteeing the 
localization of quantum states are the following: Let ( )U r  
and ( )t r  be random continuous functions with distribution 
densities f  and g : 

(i) space correlations should be absent: Cov[ ( ), ( )]V r V r′
= Cov [ ( ), ( )] = ( , ),t r t r r r′ ′δ  Cov [ ( ), ( )] = 0V r t r′ , where 
Cov [ , ] =x y xy x y〈 〉 − 〈 〉〈 〉 ; 

(ii) the distributions should be continuous; ( ), ( ) > 0f x g x  
( , )x∀ ∈ −∞ ∞ ; 

(iii) the distributions should be identical: 
( ( )) = ( ( ))f U r f U r′ , ( ( )) = ( ( ))g t r g t r′  (so-called homoge-

neous in mean).  
Note that the proofs of corresponding theorems for 

(i)–(iii) are simple essentially in the case of discrete (lat-
tice) models, where the positions of particles are bonded 
with host-lattice sites positions nr , = 1, 2, .n   That is 
why the main part of the investigations concerning one-
body localization are carried out in the framework of dis-
crete models. 

Violation of any of these conditions makes transport pos-
sible, but of course does not guarantee its existence. In each 
case, it is necessary to solve the corresponding problem. 

For example, in paper [2, 4, 5] in the framework of dis-
crete Schrödinger equation was assumed the existence of cor-
relations between U  and t  (i.e., requirement (i) is violated). 
As a result, for a certain combination of U  and t , the localiza-
tion is absent and electron transport takes place. 

In [6–8], a 2-band model (discrete Dirac equation) with 
dimer correlations of potential U  and discrete (Bernoulli) 
distribution of ( )f U  (i.e., requirement (ii) is violated) was 
considered. As in the case above, for a certain combination 
of U  parameters, the localization is absent and electron 
transport takes place. 

The violation of condition (iii) means loss of mean ho-
mogeneity. This case is difficult to implement in practice 
and, hence, rarely studied. 
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2. Hamiltonian 

In our study one-body 1D discrete Hamiltonian was 
chosen in the form  

 ( )*
1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ= .n n n n n n n n n
n n

H t c c t c c U c c+ + +
+ +− + +∑ ∑  (1) 

Here, index n enumerates host-lattice sites, ˆnc+  and ˆnc  are the 
creation/annihilation operators of spin-less fermions on site n, 
nt  are the hopping constants and nU  is on-site potential. 

The disorder in nU  and nt  is caused by the disorder in 
host-lattice site positions:  

 0= , = 0, 1, 2, .n nr na x n+   (2) 

Here, 0a  is the distance between the nearest host-lattice 
sites of ideal (unperturbed) lattice, and nx  are random vari-
ables, so that 0 0nca x ca− ≤ ≤  (in all our calculations 0 = 1a ). 
The constant 0 1/ 2c≤ ≤  can be considered as a disorder 
parameter. Such choice of c allows us to avoid overlapping 
the host-lattice site positions nr  and facilitates the model. 

Such disorder can be caused by presence of defects, 
impurities or phonon. As far as typical phonon frequencies 

phω  are much less than the frequencies of electron jumps 
elω , one can consider the deformations of lattice nx  as stat-

ic random variables. If so, nU  describes electron-phonon 
on-site interaction and in the framework of Holstein model 
[9] it can be written as 

 ( ) ( )0 1 1ˆ ˆ = ,n n n n nU a a U G x x+
+ −+ + −   

 0 0, , , 0,G U G U∈ ≥  (3) 

where ˆna+ , ˆna  are the phonon creation/annihilation opera-
tors on site n (see, e.g., [2, 10, 11]) and 0U  and G are 
some constants. 

The tunneling integrals were chosen in rather general 
form: 

 1| |
1= (| |) = e ,n nb r r

n n nt t r r A +− −
+ −   

where A  and b  are some constants. In the limit of weak 
disorder 1c , one can expand nt  and in linear approxima-
tion we obtain  
 1= ( ),n n nt V x x+−Γ −   

where the constants ,V Γ∈. Here and further, we will 
follow the notation from [2]. Hence, the tunneling integrals 
nt  can be written as 

 2 2 2
1 1= | | | | ( ) 2 | || || ( ) | cosn n n n nt V x x V x x+ ++ Γ − − Γ − θ   

 e ,i nφ×  (4) 

 tan = Im / Re .n n nt tφ  (5) 

As it is shown in Appendix A, the complex phases nφ  do 
not affect on our results and can be omitted, and instead of (1) 

we will study the properties of real-valued Hamiltonian Ĥ , 
which is tridiagonal with the following non-zero elements:  

 , , 1 1 , 1
ˆ ˆ ˆ= , = | |, = | |n n n n n n n n nH U H t H t− − +− −   . (6) 

The proposed model with Hamiltonian (6) is similar to 
those, described in [2], but looks more realistic. We define 
the disorder in terms of random shifts of host-lattice sites 
with respect to “ideal” positions 0na  [see (2)]. The model 
described in [2] defines the disorder in terms of random 
distances between neighboring host-lattice sites , 1n n+∆ . 
Besides the differences in distribution functions (distribu-
tion of , 1n n+∆  is the distribution of 1n nx x+ − ), our model 
allows us to study consequently the transition from weak to 
strong disorder. Actually, an increase in Γ  and G means an 
increase in the fluctuation of the host-lattice sites with re-
spect to the “ideal” positions. 

At the same time, in the model proposed in [2], = 0Γ  
indeed corresponds to ordered chain, but any small, how-
ever nonzero values of Γ  correspond to small mean dis-
tances between neighboring host sites. This, on own turn, 
corresponds to strong disorder. Moreover, as far as 

, 1 0n n+∆ ≥  n∀ , this leads to either an increase or a decrease 
in all tunneling integrals nt  depending on the value of pa-
rameter φ− θ (see, e.g., (2.1) of [2]). In our model, nt  can 
be larger or smaller than undisturbed value = | |nt Γ  de-
pending on sign of 1( )n nx x+ −  [see (4)]. 

In our model, the diagonal terms ( )1 1n n nU x x+ −−  can 
be both positive and negative. This is physically reasonable: 
depending on compression or rarefication of host-lattice 
chain in the vicinity of nth site this term describes either 
energy gain or energy loss [9]. In the model proposed in [2], 

nU  are either all negative or all positive. 

3. Results and discussion 

We studied the solution of the time-dependent Schrö-
dinger equation with Hamiltonian (6)  

 | ( , )ˆ | ( , ) = n
n

x t
H x t i

t
∂ Ψ 〉

Ψ 〉
∂

   (7) 

with the following initial condition:  
 0| ( , = 0) = ( , ).n nx t x x′Ψ 〉 δ   

This condition corresponds to the localization of an elec-
tron at site with index = 0n  at time moment = 0t . 

Motion of an electron means “spreading” of | ( , )nx tΨ 〉  
as the function of time t . The most informative characteris-
tics describing electron transport in terms of | ( , )nx tΨ 〉  is 
time dependence of variance ( )D t  (see, e.g., [2, 8]): 

 ( )22 2 (2) (1)( ) = ( ) ( ) = ( ) ( ) .D t x t x t m t m t〈 〉 − 〈 〉 −  (8) 

Here, (1) ( )m t  and (2) ( )m t  are the corresponding moments: 

 ( ) ˆ( ) = | ( ) | .k km t x〈Ψ Ψ〉   (9) 

Note that, as it is shown in Appendix A, the moments 
do not depend on complex phases of off-diagonal matrix 
elements of the Hamiltonian.  
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Approximation of ( )D t  by power low dependence  

 ( ) , 1D t t tα   (10) 

allows us to establish the existence (or absence) of transport 
and, if transport exists, the character of the transport. For 
example, = 0α  corresponds to absence of transport, 
0 < < 1α  is so-called subdiffusive transport, = 1α  is diffu-
sive motion, 1 < < 2α  is superdiffusive transport, and = 2α  
corresponds to ballistic (free to move) transport. 

We studied the solution of (7) numerically using 8th or-
der Runge–Kutta method. To avoid an influence of finite-
size effects, we checked the probability of finding an elec-
tron on the last (Nth) site of our 1D disordered chain. In all 
our calculations 2 10| ( , ) | < = 10Nx t −Ψ ε  for all t  in the con-
sidered time range 0 / 2t N≤ ≤ . 

To check the obtained result, we performed additional cal-
culations of (8) using spectral data of operator Ĥ  [see (6)]: the 
eignevalues =1{ }N

k kλ  and eigenvectors , =1{ ( )}N
k n k nxψ . These 

values were obtained numerically too. Such approach is appli-
cable for rather “small” systems with length N ≈1000–3000 
because calculation time of spectral data increases as 3N . 
In terms of spectral data, the wavefunction of (7) can be 
written as 

 0
=1

| ( , ) = ( ) ( )e .
N

i tk
n k n k

k
x t x x λΨ 〉 ψ ψ∑  (11) 

The vectors ( )k nxψ  are real-valued and complex conjunc-
tion in (11) is omitted. The results obtained using (7) and 
(11) are in full agreement. 

Typical dependencies ( )D t  for = 10000N  and certain 
combinations of the parameters G, Γ , and θ are presented 
in double-log scale in Fig. 1. In all these calculations = 1V . 
One can see that all possible transport regimes can be real-
ized in the framework of proposed model: from localiza-
tion of states up to ballistic transport. 

Approximation of ( )D t  by the expression (10) at 1t   
allows us to obtain the dependencies of exponent α on 
tunneling (V , Γ , θ) and hopping (G) parameters. These 
dependencies are shown in Fig. 2. One can see that in ra-
ther wide range of 0 < =| | 1G Γ ≤  and 20 160° θ °   
superdiffusive transport regime is realized. For 0 < 20θ °  
and 160 < 180° θ °  transport regime depends on , | |G Γ : if 
0 < = | | < 0.22G Γ  the transport is superdiffusive; if 

= | | > 0.22G Γ  the transport is subdiffusive. If = 0θ ° or 
= 180θ ° and = | | > 0.5G Γ  electron transport is absent. 
It should be noted that the proposed model was formu-

lated within the framework of the linear expansion of on-
site potential nU  (3) and tunneling integrals nt  (4) with 
respect to random lattice deformations nx  (2), i.e., in the 
limits of | | | |G VΓ  . Nevertheless, we extended the 
area of G and | |Γ  up to , | | 1G Γ ≤ . In this case, of course, 
the Hamiltonian (6) can be considered as model only. 

As was shown in [2], the case of = | |G Γ  is of special 
interest due disappearing the scattering. Hence, this case is 
the most prospective for electron transport. An influence of 
G and Γ  on ( )D t  is presented in Fig. 3. 

An absence of transport at = 0 , 180θ ° ° and 
= | | > 0.5G Γ  (see Fig. 4) is of special interest. To under-

stand the reason of such a peculiarity, we performed addi-
tional investigations using Lyapunov exponent [3, 8]. 

Fig. 1. (Color online) Time dependencies of the variance ( )D t  (8) 
| | = 1V , = | |G Γ  and 

the number of host-lattice sites = 10000N . Curve 1 (black line) 
corresponds to the ordered chain ( = 0G ), exponent = 2α  [see 
(10)]; the case of ballistic transport. Curve 2 (red line) corre-
sponds to = 0.25G  and =θ  90°, = 1.6α ; the case of 
superdiffusive transport. Curve 3 (green line) corresponds to 

= 0.2G  and =θ  0°, = 1α ; the case of diffusive transport. Curve 
4 (blue line) corresponds to = 0.5G  and =θ  0°, = 0.35;α  the 
case of subdiffusive transport. Curve 5 (cyan line) corresponds to 

= 0.75G  and =θ  0°, = 0.01α ; the case of absence of transport.  

Fig. 2. (Color online) The dependencies of exponent α  [see (10)] 
on parameter θ for different values of =G Γ. In all these calcula-
tions, = 1V , and the number of host-lattice sites = 20000N . 
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Applying Fürstenberg theorem [12, 13], one can write 
Lyapunov exponent γ  as the following: 

 
1

=

1 ˆ( ) = ln ( )lim k
n k n

T
n→∞

 
 γ λ λ
 
 
∏ . (12) 

Here, the transfer matrices k̂T  have the form [3, 12, 8] 

 
1| |

ˆ | | | |( ) = .
1 0

k k

k kk

U t
t tT

−− λ − λ  
 
 

 (13) 

As far as typical values of Lyapunov exponent 1R−γ 
1/2 ( )D t− → ∞ , where R  is the localization radius, the 

zeros of γ  indicate on possible delocalization of the states 
(more exactly, the condition = 0γ  is necessary, but not suffi-
cient for delocalization of the states, see, e.g., [3, 8]). 

The results of our calculations are presented in Fig. 5. 
We see that at = 90θ ° the behavior of Lyapunov exponent 
γ  in the neighborhood of root (0) = 0γ  is ( ) βγ λ λ , where 

> 1β . At the same time at = 0θ ° and = 180θ ° the behavior 
Lyapunov exponent γ  in the neighborhood of roots 

( 2) = 0γ ±  is ( )( ) (2 ) βγ λ ± −λ , where < 1β . It was shown 
in [3, 8] that such root-like singularities may not lead to 
delocalization of states. 

4. Conclusions 

We have studied electron transport properties in 1D disor-
dered chain in the framework of one-body Schrödinger equa-
tion. In the presented model the disorder is caused by an in-
fluence of defects, impurities or phonons on the positions of 
ions, forming host-lattice chain. We have shown, that such 
disorder affects both on the values of on-site potential U  and 
on tunneling integrals t . Just due to the correlations between 
random U  and t  electron transport becomes possible. We 
have studied and influence of model parameters on this 
transport. The areas of localization, superdiffusion and 
subdiffusion transport have been established. It has been 
shown that for certain combinations of model parameters 
(| | = 1V , = | | > 0.5G Γ  and for = 0 , 180θ ° °) electron 
transport is impossible, despite the fact that Lyapunov expo-
nent vanishes in the considered energy region. 
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Fig. 3. (Color online) Time dependencies of the variance ( )D t  (8) 
in double-log scale. In all these calculations, | | = 1V , = 90θ ° and 
the number of host-lattice sites = 10000N . Curve 1 (black line) 
corresponds to = | | = 0.5G Γ , exponent = 1.5α  [see (10)]. Curve 
2 (red line) corresponds to = 0.5G  and | | = 0Γ , = 0α . Curve 3 
(green line) corresponds to = 0G  and | | = 0.5Γ , = 0α . Curve 4 
(blue line) corresponds to = 0.5G  and | | = 1Γ , = 0α ; Curve 5 
(cyan line) corresponds to = 1G  and | | = 0.5Γ , = 0α .  

Fig. 4. “Phase diagram” based on the analysis of the dependence 
of exponent α  (10) on the parameters = | |G Γ  and θ. Wide 
vertical solid lines at and = 180θ ° correspond to localization 
area ( = 0α ). 

Fig. 5. (Color online) The dependencies of the Lyapunov expo-
nent γ  on energy λ . | | = 1V , = | | = 0.5G Γ  and the number of 
host-lattice sites = 10000N . Black line corresponds to = 90θ ° . 
Red line corresponds to = 0θ °  and green line corresponds 
to = 180θ ° . 
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Appendix A 

Tridiagonal Hermitian matrix Ĥ  (1) can be reduced 
to symmetric (real-valued) form Ĥ  using unitary trans-
formation  

 1ˆ ˆ ˆ ˆ= ,H U HU−  (A1) 

where unitary matrix Û  is diagonal:  

 

1

=1
11 = 1, = e , = 2, 3, .

n

k
k

i

nnU U n

−

− α∑
   

Here, kα  are the complex phases of off-diagonal ele-
ments (4), (5).  

Let | ( , )nx tΨ 〉  be the solution of time-dependent Schrö-
dinger equation with Hamiltonian Ĥ  (1) and | ( , )nx tΨ 〉  be 
the corresponding solution of Schrödinger equation with 
Hamiltonian Ĥ  (6), (14). 

We will show that the unitary transformation do not af-
fect on the moments ( ) ( )km t  (9), i.e., 

 ( ) ˆ ˆ( ) = | ( ) | = | ( ) | ,k k km t x x〈Ψ Ψ〉 〈Ψ Ψ〉    

 ( ) ,,
ˆ( ) =k kx α βα β

α δ ,  

and, hence, do not affect on ( )D t  (8). 
According to the definition, 

 ( ) 2( ) = ( ) | ( , ) |k k
n n

n
m t x x tΨ∑ .  

The relationship between | Ψ〉 and | Ψ〉  is 

 ,
=1

= .
N

j jU α α
α

Ψ Ψ∑    

Hence, 

 ( ) *
,

=1
= ( )

N
k k

j j j j
j

m x Ψ Ψ∑   

 * *
, , ,

=1 =1 =1
= ( ) ( )

N N N
k

j j j j
j

x U Uα β α β
α β

Ψ Ψ∑∑∑   .  

As far as Û  is unitary, * 1
, ,=j jU U −
β β . Thus, 

 ( ) 1 *
, , ,

=1 =1 =1
= ( ) ( )

N N N
k k

j j j j
j

m x U U −
α β α β

α β

′ ′Ψ Ψ∑ ∑∑   

 1 *
, , ,

=1 =1 =1
= ( ) ( )

N N N
k

j j j j
j

U x U−
β α α β

α β

′ ′Ψ Ψ∑ ∑∑   

 *
,

=1 =1 =1
= ( ) ( ) ,

N N N
k

j
x β α α β

α β

′ ′Ψ Ψ∑∑∑    

where  

 ( ) 1
, , ,,

=1

ˆ = ( )
N

k k
j j j j

j
x U x U−

β αβ α ∑   

are the matrix elements of operator ˆkx  in new basis. As far 
as ˆkx  and Û  are diagonal:  

 ( ) 1
, , ,,

=1

ˆ = ( )
N

k k
j j j j

j
x U x U−

β αβ α ∑   

 ( )1
, , , , , ,

=1
= ( ) = .

N
k k

j j j j j j
j

U x U x−
β β α α β α
δ δ∑   

Finally, we have 

 ( ) *
,

=1 =1

ˆ= | ( ) | = ( ) ( )
N N

k k km x x α β α β
α β

〈Ψ Ψ〉 Ψ Ψ∑∑     

 ˆ= | |kx〈Ψ Ψ〉  .  
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Транспорт електронів в одновимірній 
невпорядкованій ґратці 

V. Slavin, Y. Savin, M. Klimov, M. Kiyashko 

Досліджено особливості транспорту електронів в одно-
вимірному невпорядкованому ланцюжку за наявності кореляцій 
між амплітудами взаємодії електронів з вузлами ґратки та 
амплітудами тунелювання. У розглянутій моделі невпорядко-
ваність позицій вузлів ґратки зумовлена наявністю дефектів, 
домішок, електрон-фононною взаємодією тощо. Показано, що 
за певної комбінації параметрів локалізація електронних станів 
зникає і стає можливим транспорт електронів. Параметри цього 
транспорту встановлено. 

Ключові слова: низьковимірні системи, невпорядковані сис-
теми, електронний транспорт. 
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