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Electron transport in one-dimensional disordered lattice
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We have studied the peculiarities of electron transport in one-dimensional disordered chain at the presence
of correlations between on-site interaction and tunneling integrals. In the considered models, the disorder in

host-lattice sites positions is caused by presence of defects, impurities, existence of electron-phonon interac-
tion, etc. It is shown that for certain combination of parameters the localization of electron state inherited by a

various of 1D disordered systems disappears, and electron transport becomes possible. The parameters of this

transport are established.
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1. Introduction

It is well known that in one-dimensional (1D) systems
with random potential U(r) and tunneling integrals #(r)
(where 7 is the coordinate) the localization of quantum
states takes place [1, 2] for rather wide class of U and ¢. It
means that all one-body wave functions are localized at
some finite-size area (this size is called radius of localiza-
tion R) and, hence, transport in such systems is impos-
sible. For example, saying about electron transport, it
means that transfer of energy, spin, information is impos-
sible over 1D wires with disordered distribution of ions
forming a host lattice. Note, if we consider finite size
chain (with length N) and if R 2> N then the effects relat-
ed to localization may not appear in measurements. As an
example, we can cite waveguides, which with high accu-
racy represent one-dimensional systems with a non-ideal
(disordered) surface.

The exact criteria for U(r) and #(r) guaranteeing the
localization of quantum states are the following: Let U(r)
and #(r) be random continuous functions with distribution
densities f and g:

(i) space correlations should be absent: Cov [V (r),V (r")]
=Cov [t(r),t(r"N]=08(r,r"), Cov[V(r),t(r')]=0, where
Cov [x, y]= (xp) - (3)(1);

(ii) the distributions should be continuous; f(x),g(x)>0
Vx € (—0,0);
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(iii)  the distributions should be identical:
JUE) = FUE), gt(r) = g(t(r)) (so-called homoge-
neous in mean).

Note that the proofs of corresponding theorems for
(1)—(iii) are simple essentially in the case of discrete (lat-
tice) models, where the positions of particles are bonded
with host-lattice sites positions r,, n=1, 2, .... That is
why the main part of the investigations concerning one-
body localization are carried out in the framework of dis-
crete models.

Violation of any of these conditions makes transport pos-
sible, but of course does not guarantee its existence. In each
case, it is necessary to solve the corresponding problem.

For example, in paper [2, 4, 5] in the framework of dis-
crete Schrodinger equation was assumed the existence of cor-
relations between U and ¢ (i.e., requirement (i) is violated).
As a result, for a certain combination of U and ¢, the localiza-
tion is absent and electron transport takes place.

In [6-8], a 2-band model (discrete Dirac equation) with
dimer correlations of potential U and discrete (Bernoulli)
distribution of f(U) (i.e., requirement (ii) is violated) was
considered. As in the case above, for a certain combination
of U parameters, the localization is absent and electron
transport takes place.

The violation of condition (iii) means loss of mean ho-
mogeneity. This case is difficult to implement in practice
and, hence, rarely studied.
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2. Hamiltonian

In our study one-body 1D discrete Hamiltonian was
chosen in the form

H= _z (tné;lrén-#l +t:é;1r+lén)+zUncArTén' (1)
n n

Here, index » enumerates host-lattice sites, ¢; and ¢, are the
creation/annihilation operators of spin-less fermions on site #,
t, are the hopping constants and U, is on-site potential.

The disorder in U, and ¢, is caused by the disorder in
host-lattice site positions:

n=0,1,2,.... )

r, = nag +xn,

Here, a, is the distance between the nearest host-lattice
sites of ideal (unperturbed) lattice, and x, are random vari-
ables, so that —ca, < x,, < ca, (in all our calculations a, =1).
The constant 0 <¢<1/2 can be considered as a disorder
parameter. Such choice of ¢ allows us to avoid overlapping
the host-lattice site positions r, and facilitates the model.

Such disorder can be caused by presence of defects,
impurities or phonon. As far as typical phonon frequencies
©,, are much less than the frequencies of electron jumps
®,, one can consider the deformations of lattice x,, as stat-
ic random variables. If so, U, describes electron-phonon
on-site interaction and in the framework of Holstein model
[9] it can be written as

Un ~ (&; +dn>: UO +G(xn+l _xn—l)’
G,.UyeR, G,U,=>0, 3)

where a;, a, are the phonon creation/annihilation opera-
tors on site n (see, e.g., [2, 10, 11]) and U, and G are
some constants.

The tunneling integrals were chosen in rather general

form:

tn = t(| Pyl =¥y |) = Ae’b‘rnﬁ—l 7”11‘,

where A and b are some constants. In the limit of weak
disorder ¢ <1, one can expand ¢, and in linear approxima-
tion we obtain

t,=V-T(x

n+l X )

where the constants V', I" € C. Here and further, we will
follow the notation from [2]. Hence, the tunneling integrals
t, can be written as

by =WV P+ITP (o =,) =21V 7|3, —,)|cos ©
xeitn (4)
tan ¢, =Im¢, /Ret,. )

As it is shown in Appendix A, the complex phases ¢, do
not affect on our results and can be omitted, and instead of (1)

we will study the properties of real-valued Hamiltonian A ,
which is tridiagonal with the following non-zero elements:

Hn,n :Un’ ﬁn,n—] :_ltn—l |’ I:[ _‘tn | (6)

The proposed model with Hamiltonian (6) is similar to
those, described in [2], but looks more realistic. We define
the disorder in terms of random shifts of host-lattice sites
with respect to “ideal” positions na, [see (2)]. The model
described in [2] defines the disorder in terms of random
distances between neighboring host-lattice sites A, ;.
Besides the differences in distribution functions (distribu-
tion of A, . is the distribution of x,,; —x,), our model
allows us to study consequently the transition from weak to
strong disorder. Actually, an increase in I and G means an
increase in the fluctuation of the host-lattice sites with re-
spect to the “ideal” positions.

At the same time, in the model proposed in [2], =0
indeed corresponds to ordered chain, but any small, how-
ever nonzero values of I" correspond to small mean dis-
tances between neighboring host sites. This, on own turn,
corresponds to strong disorder. Moreover, as far as
A, 141 20 Vn, this leads to either an increase or a decrease
in all tunneling integrals ¢, depending on the value of pa-
rameter ¢—0 (see, e.g., (2.1) of [2]). In our model, ¢z, can
be larger or smaller than undisturbed value ¢, =|T"| de-
pending on sign of (x,,, —x,,) [see (4)].

In our model, the diagonal terms U, ~ (xn = xn_l) can
be both positive and negative. This is physically reasonable:
depending on compression or rarefication of host-lattice
chain in the vicinity of nth site this term describes either
energy gain or energy loss [9]. In the model proposed in [2],
U, are either all negative or all positive.

nn+l

3. Results and discussion

We studied the solution of the time-dependent Schro-
dinger equation with Hamiltonian (6)

IR {ERD)
0

A 19(x,,0) = t

()

with the following initial condition:
[P’ (x,,t=0))=238(x,,xp).

This condition corresponds to the localization of an elec-
tron at site with index n =0 at time moment ¢ =0.

Motion of an electron means “spreading” of | ‘i’(xn,t»
as the function of time 7. The most informative characteris-
tics describing electron transport in terms of | ‘i’(xn,t)) is
time dependence of variance D(¢) (see, e.g., [2, 8]):
2

D(t) = (x(t)) = (x> =mP )= (mV ). B)

Here, m"V(r) and m® (¢) are the corresponding moments:
m® (1) = (¥ | (R)" | ). 9)

Note that, as it is shown in Appendix A, the moments
do not depend on complex phases of off-diagonal matrix
elements of the Hamiltonian.
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Fig. 1. (Color online) Time dependencies of the variance D(¢) (8)
|V |=1,G=|T"| and
the number of host-lattice sites N =10000. Curve / (black line)
corresponds to the ordered chain (G =0), exponent oo =2 [see
(10)]; the case of ballistic transport. Curve 2 (red line) corre-
sponds to G=025 and 6= 90°, a=1.6; the case of
superdiffusive transport. Curve 3 (green line) corresponds to
G=0.2 and 6 = 0°, a.=1; the case of diffusive transport. Curve
4 (blue line) corresponds to G=0.5 and 6 = 0°, a=0.35; the
case of subdiffusive transport. Curve 5 (cyan line) corresponds to
G =0.75and 6 = 0°, a. = 0.01; the case of absence of transport.

Approximation of D(¢) by power low dependence

D(t) ~t*, t>1 (10)

allows us to establish the existence (or absence) of transport
and, if transport exists, the character of the transport. For
example, o=0 -corresponds to absence of transport,
0 <a <1 is so-called subdiffusive transport, oo =1 is diffu-
sive motion, 1 < o < 2 is superdiffusive transport, and oo = 2
corresponds to ballistic (free to move) transport.

We studied the solution of (7) numerically using 8th or-
der Runge—Kutta method. To avoid an influence of finite-
size effects, we checked the probability of finding an elec-
tron on the last (Nth) site of our 1D disordered chain. In all
our calculations | ¥(x,#)[*<&=1071° for all 7 in the con-
sidered time range 0 <t < N /2.

To check the obtained result, we performed additional cal-
culations of (8) using spectral data of operator H [see (6)]: the
eignevalues {1, }Y, and eigenvectors {y, (xn)},i\f 41~ These
values were obtained numerically too. Such approach is appli-
cable for rather “small” systems with length N ~1000-3000
because calculation time of spectral data increases as N°>.
In terms of spectral data, the wavefunction of (7) can be
written as

N .
[P0, 00 = D W () (xg)e ™+ (11)
k=1
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Fig. 2. (Color online) The dependencies of exponent o [see (10)]
on parameter 0 for different values of G =T. In all these calcula-
tions, V' =1, and the number of host-lattice sites N = 20000.

The vectors vy, (x,) are real-valued and complex conjunc-
tion in (11) is omitted. The results obtained using (7) and
(11) are in full agreement.

Typical dependencies D(¢) for N =10000 and certain
combinations of the parameters G, I', and 6 are presented
in double-log scale in Fig. 1. In all these calculations V' =1.
One can see that all possible transport regimes can be real-
ized in the framework of proposed model: from localiza-
tion of states up to ballistic transport.

Approximation of D(¢) by the expression (10) at r > 1
allows us to obtain the dependencies of exponent o on
tunneling (V, I', 6) and hopping (G) parameters. These
dependencies are shown in Fig. 2. One can see that in ra-
ther wide range of 0<G=|T'|<1 and 20° <6 <160°
superdiffusive transport regime is realized. For 0 <6 < 20°
and 160° < 0 <180° transport regime depends on G, |T"|: if
0<G=|T'"|<0.22 the transport is superdiffusive; if
G =|T"|>0.22 the transport is subdiffusive. If 6=0° or
6=180°and G =|T"|> 0.5 electron transport is absent.

It should be noted that the proposed model was formu-
lated within the framework of the linear expansion of on-
site potential U, (3) and tunneling integrals ¢, (4) with
respect to random lattice deformations x, (2), i.e., in the
limits of G ~|I'|< |V |. Nevertheless, we extended the
area of G and |I"| up to G,|I"|<1. In this case, of course,
the Hamiltonian (6) can be considered as model only.

As was shown in [2], the case of G =|T"| is of special
interest due disappearing the scattering. Hence, this case is
the most prospective for electron transport. An influence of
G and T on D(¢) is presented in Fig. 3.

An absence of transport at ©=0°180° and
G=|I'|>0.5 (see Fig. 4) is of special interest. To under-
stand the reason of such a peculiarity, we performed addi-
tional investigations using Lyapunov exponent [3, §].

1274 Fizyka Nyzkykh Temperatur/Low Temperature Physics, 2024, Vol. 50, No. 12



Electron transport in one-dimensional disordered lattice

1
100
10F 2
D
3
1_
4
0.1F 5
100 1000

t

Fig. 3. (Color online) Time dependencies of the variance D(¢) (8)
in double-log scale. In all these calculations, |V |=1, 8 =90° and
the number of host-lattice sites N =10000. Curve / (black line)
corresponds to G =|I"|=0.5, exponent o =1.5 [see (10)]. Curve
2 (red line) corresponds to G=0.5 and |T'|=0, o =0. Curve 3
(green line) corresponds to G=0 and |T"'|=0.5, o =0. Curve 4
(blue line) corresponds to G=0.5 and |T'|=1, a=0; Curve 5
(cyan line) corresponds to G =1 and |T"|=0.5, o = 0.

Applying Fiirstenberg theorem [12, 13], one can write
Lyapunov exponent y as the following:
J. (12)

1
[ 15
k=n

Here, the transfer matrices 7, . have the form [3, 12, 8]

n—o0

1
Y(A) = lim —111[
n

U—A 4|
LM =] 4l LSS (13)
1 0
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Fig. 4. “Phase diagram” based on the analysis of the dependence
of exponent o (10) on the parameters G=|I"| and 6. Wide
vertical solid lines at and 6=180° correspond to localization
area (o = 0).

Fig. 5. (Color online) The dependencies of the Lyapunov expo-
nent y onenergy A. |V |=1, G=|T|=0.5 and the number of
host-lattice sites N =10000 . Black line corresponds to 6 =90°.
Red line corresponds to ©=0° and green line corresponds
to 0=180°.

As far as typical values of Lyapunov exponent y ~ R~!
~ D72(t > o), where R is the localization radius, the
zeros of y indicate on possible delocalization of the states
(more exactly, the condition y = 0 is necessary, but not suffi-
cient for delocalization of the states, see, e.g., [3, 8]).

The results of our calculations are presented in Fig. 5.
We see that at 6 =90° the behavior of Lyapunov exponent
y in the neighborhood of root y(0) = 0 is y(A) ~ AP, where
B> 1. At the same time at 6 = 0° and 6 = 180° the behavior
Lyapunov exponent y in the neighborhood of roots
Y(£2) =0 is y(L) ~ (i(2—k))ﬁ, where B <1. It was shown
in [3, 8] that such root-like singularities may not lead to
delocalization of states.

4. Conclusions

We have studied electron transport properties in 1D disor-
dered chain in the framework of one-body Schrodinger equa-
tion. In the presented model the disorder is caused by an in-
fluence of defects, impurities or phonons on the positions of
ions, forming host-lattice chain. We have shown, that such
disorder affects both on the values of on-site potential U and
on tunneling integrals ¢. Just due to the correlations between
random U and ¢ electron transport becomes possible. We
have studied and influence of model parameters on this
transport. The areas of localization, superdiffusion and
subdiffusion transport have been established. It has been
shown that for certain combinations of model parameters
(V]=1, G=|T'|>0.5 and for 6=0°180°) electron
transport is impossible, despite the fact that Lyapunov expo-
nent vanishes in the considered energy region.
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Appendix A

Tridiagonal Hermitian matrix EI (1) can be reduced
to symmetric (real-valued) form A using unitary trans-
formation

H=U"HU, (A1)
where unitary matrix U is diagonal:
n—1
=i [e7

U,=1, U, =e =

nn

n=2,3,....
Here, a, are the complex phases of off-diagonal ele-
ments (4), (5).

Let | W(x,,t)) be the solution of time-dependent Schro-
dinger equation with Hamiltonian H (1) and | ‘i’(xn,t)) be
the corresponding solution of Schrodinger equation with
Hamiltonian A (6), (14).

We will show that the unitary transformation do not af-
fect on the moments m™® (¢) (9), i.e.,

m B (6)= (¥ |DF [ ¥) = (P | (D | D),
(@), , = " ups

and, hence, do not affect on D(z) (8).
According to the definition,

m B (0) = (6 0,0 P
n
The relationship between | ¥) and | ¥) is
N ~
¥, = Zl U o,
o

Hence,

N
(k) — k *
m )_Z(x )Y Y
Jj=1

N N N
k * jod jod *
ZZZ ),V jaljp¥ o (Fp) -
j=la=1p=1
As far as U is unitary, U;,B =Uj, .. Thus,
N N N
k
m® = ZZZ(X )IIUI uUBIlP (\PB)
j=1 a=1 p=1
N N N
:Z Z ZUBJ(X )IIU ¥ (‘PB)
j=1 a=1 p=1
N N N
=D D (g Vi (W)
j=la=1p=1
where
N
Ak _ 1,k
(x )B,a _;Uﬁ,j(x )iV

are the matrix elements of operator ¥ in new basis. As far
as ¥ and U are diagonal:

(),

:Z BJSB/(X )jjUj(lS(lj

N

_ -1 k

- ZUB,J' () Uja
Jj=1

(< )y

Z

Finally, we have

N N
m® = (WD L) =D D7) 05 P (Pp)
a=1p=1
= (P |2 |P).
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TpaHCcnopT eneKkTPoHiB B OAHOBUMIPHIN
HeBnopsaKoBaHin rpatLi

V. Slavin, Y. Savin, M. Klimov, M. Kiyashko

JlocmimkeHo OCOONMMBOCTI  TPAHCIIOPTY ENICKTPOHIB B OITHO-
BHMIpHOMY HEBITOPSIIKOBAHOMY JIAHITIOXKKY 32 HAsIBHOCTI KOpEIISIIiH
MDK aMIUTITyZaMH B3a€MOJii €IEKTPOHIB 3 BY3IaMM IPATKU Ta
aMIUTTYJaMi TYHEJIFOBAaHHS. Y PO3IBHYTIH MOZIEN HEeBHOPSAKO-
BaHICTh TO3UIIH BY3/TiB IPATKM 3yMOBJICHA HAsBHICTIO NE(EKTIB,
JIOMIIIOK, eIEeKTPOH-(OHOHHOIO0 B3aemoxieto Tomo. [Tokasano, mo
3a MEeBHO! KOMOIHAIIT TapamMeTpiB JIOKATI3aLlisl eIEKTPOHHIX CTaHiB
3HHKAE 1 CTa€ MOXIIMBIM TPAHCIOPT eeKTpoHiB. [lapamerpu mporo
TPAHCHOPTY BCTAHOBJICHO.

Kiro4oBi cioBa: HU3pKOBUMIpHI CHCTEMH, HEBIIOPSAKOBAHI CHC-
TEMHU, CJICKTPOHHUN TPaHCIIOPT.
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