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Abstract

Reconstruction of 3D neural fields from posed images has emerged as a promising
method for self-supervised representation learning. The key challenge preventing
the deployment of these 3D scene learners on large-scale video data is their depen-
dence on precise camera poses from structure-from-motion, which is prohibitively
expensive to run at scale. We propose a method that jointly reconstructs camera
poses and 3D neural scene representations online and in a single forward pass. We
estimate poses by first lifting frame-to-frame optical flow to 3D scene flow via
differentiable rendering, preserving locality and shift-equivariance of the image
processing backbone. SE(3) camera pose estimation is then performed via a
weighted least-squares fit to the scene flow field. This formulation enables us to
jointly supervise pose estimation and a generalizable neural scene representation
via re-rendering the input video, and thus, train end-to-end and fully self-supervised
on real-world video datasets. We demonstrate that our method performs robustly
on diverse, real-world video, notably on sequences traditionally challenging to
optimization-based pose estimation techniques.

1 Introduction

Recent learning-based 3D reconstruction techniques show promise in estimating the underlying 3D
appearance and geometry from just a few posed image observations, in a single feed-forward pass [1–
19]. These techniques offer an exciting new perspective on computer vision: Instead of making
predictions only on pixels, computer vision models might operate directly on the corresponding 3D
scenes. This would be a significant step towards a generalist computer vision model, applicable to
any task involving interaction with the physical world.

A core challenge to the generality of these methods is that they cannot be trained from just video, but
instead require knowledge of per-frame camera poses. Existing methods thus rely on curated datasets
that obtain camera poses via Structure-from-Motion, but this is prohibitively expensive to compute at
scale. Lifting this dataset prerequisite would unlock orders of magnitude more training data, making
large-scale 3D representation learning tractable. Meanwhile, odometry and SLAM methods offer
online camera pose estimation, but may fail to track sequences with dominant camera rotation or with
sparse visual features, and do not reconstruct dense 3D scene representations. While recent efforts
leveraging differentiable rendering have demonstrated impressive results at joint reconstruction of
camera poses and 3D scenes, they still require minutes or hours per scene. Further, these optimization-
based methods cannot leverage learned priors for camera pose estimation, leaving significant progress
in computer vision of the last decade untapped. While prior work has demonstrated self-supervised
learning of joint depth and camera pose prediction [20, 21], these models are constrained to tight
video distributions, such as self-driving video, and do not infer a full 3D representation, only depth.
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We present a method for jointly training feed-forward generalizable 3D neural scene representation
and camera trajectory estimation, self-supervised only by re-rendering losses on video frames,
completely without ground-truth camera poses or depth maps. We propose to leverage single-image
neural scene representations and differentiable rendering to lift frame-to-frame optical flow to 3D
scene flow. We then estimate SE(3) camera poses via a robust, weighted least-squares solver on the
scene flow field. Regressed poses are used to re-construct the underlying 3D scene from video frames
in a feed-forward pass, where weights are shared with the neural scene representation leveraged in
camera pose estimation.

We validate the efficacy of our model for feed-forward novel view synthesis and online camera pose
estimation on the real-world RealEstate10K and KITTI datasets, as well as the challenging CO3D
dataset. We further demonstrate results on in-the-wild scenes in Ego4D and Walking Tours streamed
from YouTube. We demonstrate generalization of camera pose estimation to out-of-distribution
scenes and achieve robust performance on trajectories on which a state-of-the-art SLAM approach,
ORB-SLAM3 [22], struggles.

To summarize, the contributions of our work include:

• We present a new formulation of camera pose estimation as a weighted least-squares fit of an SE(3)
pose to a 3D scene flow field obtained via differentiable rendering.

• We combine our camera pose estimator with a multi-frame 3D reconstruction model, unlocking
end-to-end, self-supervised training of camera pose estimation and 3D reconstruction.

• We demonstrate that our method performs robustly across diverse real-world video datasets,
including indoor, self-driving, and object-centric scenes.

2 Related Work

Generalizable Neural Scene Representations. Recent progress in neural fields [23–25] and
differentiable rendering [10, 26–31] have enabled novel approaches to 3D reconstruction from few or
single images [1–19], but require camera poses both at training and test time. An exception is recently
proposed RUST [32], which can be trained for novel view synthesis without access to camera poses,
but does not reconstruct 3D scenes explicitly and does not yield explicit control over camera poses.
We propose a method that is similarly trained self-supervised on real video, but yields explicit camera
poses and 3D scenes in the form of radiance fields. We outperform RUST on novel view synthesis
and demonstrate strong out-of-distribution generalization by virtue of 3D structure.

SLAM and Structure-from-Motion (SfM). SfM methods [33–35], and in particular,
COLMAP [34], are considered the de-facto standard approach to obtaining accurate geometry and
camera poses from video. Recent progress on differentiable rendering has enabled joint estimation of
radiance fields and camera poses via gradient descent [36–40], enabling subsequent high-quality novel
view synthesis. Both approaches require offline per-scene optimization. In contrast, SLAM methods
usually run online [22, 41, 42], but are notoriously unreliable on rotation-heavy trajectories or scenes
with sparse visual features. Prior work proposes differentiable SLAM to learn priors over camera
poses and geometry [43, 44], but requires ground-truth camera poses for training. Recent work has
also explored how differentiable rendering may be directly combined with SLAM [45–48], usually
using a conventional SLAM algorithm as a backbone and focusing on the single-scene overfitting case.
We propose a fully self-supervised method to train generalizable neural scene representations without
camera poses, outperforming prior work on generalizable novel view synthesis without camera
poses. We do not claim state-of-the-art camera pose estimation, but provide an analysis of camera
pose quality nevertheless, demonstrating robust performance on sequences that are challenging to
state-of-the-art SLAM algorithms, ORB-SLAM3 [22] and Droid-SLAM [43].

Neural Depth and Camera Pose Estimation. Prior work has demonstrated joint self-supervised
learning of camera pose and monocular depth [20, 21, 49–51] or multi-plane images [52]. These
approaches leverage a neural network to directly regress camera poses with the primary goal of
training high-quality monocular depth predictors. They are empirically limited to sequences with
simple camera trajectories, such as self-driving datasets, and do not enable dense, large-baseline novel
view synthesis. We ablate our flow-based camera pose estimation with a similar neural network-based
approach. Most closely related to our work are approaches that infer per-timestep 3D voxel grids
and train a CNN to regress frame-to-frame poses [53, 54]. We benchmark with the most recent
approach in this line of work, Video Autoencoder [53]. Lastly, we strongly encourage the reader
to peruse impressive concurrent work DBARF [55], which also regresses camera poses alongside a
generalizable NeRF. Key differences are that we leverage a pose solver based on 3D-lifted optical
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5 Discussion

Limitations. While we believe our method makes significant strides, it still has several limitations.
As an odometry method, it accumulates drift and has no loop closure mechanism. Our model further
does not currently incorporate scene dynamics, but recent advancements in dynamic NeRF papers
[68–70] present promising perspectives for future research.

Conclusion. We have introduced FlowCam, a model capable of regressing camera poses and
reconstructing a 3D scene in a single forward pass from a short video. Our key contribution is
to factorize camera pose estimation as first lifting optical flow to pixel-aligned scene flow via
differentiable rendering, and then solving for camera pose via a robust least-squares solver. We
demonstrate the efficacy of our approach on a variety of challenging real-world datasets, as well
as in-the-wild videos. We believe that they represent a significant step towards enabling scene
representation learning on uncurated, real-world video.
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