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Abstract—This paper presents a framework that enables
analytically shaping the transient behavior of nonlinear dynam-
ical systems, including those with hybrid dynamics combining
continuous-time and discrete-time evolution. Our results hinge
on the interconnection of the original system with an exogenous
dynamic gain system designed to induce a continuous-time
deformation of hybrid time domains. Our approach provides
conditions that ensure the original system’s stability prop-
erties without the dynamic gain are transferable under the
continuous-time deformation to the full interconnected dynam-
ics. We develop these results by leveraging tools from hybrid dy-
namical systems theory, and formulating an appropriate bijec-
tive map that relates the solution sets between the original and
interconnected systems. To illustrate the approach, we present
applications to gradient flow systems and momentum-based
optimization techniques with resets, leveraging the framework
to customize convergence rates for strictly convex objective
functions.

Index Terms— Hybrid Systems,
Prescribed-Time stability

Nonlinear Systems,

I. INTRODUCTION

Controlling convergence rates to equilibrium points or
optimal solutions is critical in dynamical systems theory
and optimization algorithms. In machine learning, faster
convergence can accelerate training of deep neural net-
works, while in embedded control systems, it enables more
responsive and robust performance. Recent research has
explored alternative formulations to achieve faster transient
performance, including momentum-based dynamics [1], [2],
finite-time stability techniques [3], hyperexponential stability
methods [4], and fixed-time stability formulations [5], [6]
where the convergence time is uniformly bounded for all
initial conditions. Within this line of work, prescribed-time
stability has gained increasing attention over the past five
years [7], [8], [9], [10], [11], guaranteeing convergence to
the desired target set within a pre-specified time interval,
regardless of the initial conditions.

State-of-the-art prescribed-time stability approaches rely
on incorporating time-varying or non-Lipschitz vector fields
that exhibit finite-time blow-up behavior to drive the system
to equilibrium before the prescribed convergence time. A
viewpoint recently explored by the authors for switched
systems [12] employs this blow-up effect by formulating
a cascade interconnection between an exogenous dynamical
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system governing the evolution of a dynamic gain and a time-
invariant dynamical system with suitable stability properties
for the target set. This interconnection technique has been
studied in adaptive control for parameter estimation [13], but
has not been comprehensively analyzed for general nonlinear
and hybrid dynamical systems combining continuous and
discrete behaviors.

This addresses this gap by presenting a unifying frame-
work to analytically shape the transient behavior of hybrid
dynamical systems. Our approach is based on the design of
a suitable exosystem that governs the evolution of a dynamic
gain. By analyzing the continuous-time deformations that
the flow of this system induces on hybrid time domains,
we provide sufficient conditions that ensure the original
system’s stability properties, without the dynamic gain, are
transferable under the continuous-time deformation to the
full interconnected dynamics. We develop these results by
leveraging tools from hybrid dynamical systems theory [14],
and formulating an appropriate bijective map that relates the
solution sets between the original and cascade systems.

Our formulation enables addressing a wide array of
time deformations: from simple constant rescaling of time
to prescribed-time scalings. Importantly, our approach can
accommodate systems with hybrid dynamics arising from
logic-based switched controllers, state resets, and other
discrete-time behaviors coupled with physical dynamics.
The proposed techniques have applications in expediting
optimization solvers and enforcing real-time performance in
feedback control.

The paper is organized as follows: Section II introduces
key concepts of hybrid dynamical systems and their solution
sets. Section III illustrates our approach through a motivating
example using a gradient flow system. We present our main
theoretical result in Section IV, followed by its applications
to gradient flow systems and momentum-based optimization
techniques with resets for strictly convex functions in Section
V. Finally, Section VI summarizes our findings and outlines
directions for future research.

II. PRELIMINARIES

Notation: We use |- | to denote the Euclidean norm. Given
a closed set A C R™ and a vector z € R", we let |z]|4 =
minge 4 |2—s|. A function & : R>g xR>¢ — R is of class
KL if it is nondecreasing in its first argument, nonincreasing
in its second argument, lim, _,q+ a(r,s) = 0 for each s €
R>o, and lims_,o a(r, s) = 0 for each r € R>¢. A function
B : Ryg x Ryg X Ryg — Ry belongs to class KLL if
for every s > 0, 5(-,s,-) and SB(, -, s) belong to class L.



Throughout the paper, for two (or more) vectors u,v € R",
we write (u,v) = [u",v"]T to denote their concatenation.

Hybrid Dynamical systems: In this paper, we study hybrid

dynamical systems (HDS) aligned with the framework of
[14], and described by:

dz

—eF 1
z e C, " € F(z), (1a)
zeD, 2" €d(2), (1b)

where z € R™ is the main state, F' : R™ = R"™ is called the
flow map, G : R® = R" is called the jump map, C' C R"”
is called the flow set, and D C R" is called the jump set.
The data of system (1) is represented as H = (C, F, D, G).
Solutions to system (1) are parameterized by a continuous-
time index ¢ € R, which increases continuously during
flows, and a discrete-time index j € Zxq, which increases
by one during jumps. Thus, solutions to (1) are defined on
hybrid time domains (HTDs).

Definition I (Hybrid Time Domains): A set E C Rxo %
Z>q is called a compact hybrid time domain if E =
U?;OI ([tj,tj41],j) for some finite sequence of times
= to < t1... < ty. The set E is a HTD if
for all (T,J) € E, En ([0,7] x {0,...,J}) is a
compact HTD. Given a HTD FE, we use sup,F =
sup{t € R>¢ : 3 j € Z>o, such that (¢,j) € E}. O
Definition 2 (Hybrid Arc): A hybrid arc consists of a
hybrid time domain, denoted by dom(z), and a function
z : dom(z) — R™, such that z(-,j) is locally absolutely
continuous on [; := {t : (t,j) € dom(z)} for each j € Z>¢
such that I; has nonempty interior. (|
Solutions to a hybrid system H are hybrid arcs z satisfying
conditions determined by the hybrid time domain dom(z)
and the data of the HDS (C, F, D, G).
Definition 3 (Solutions to Hybrid Systems): [14, Defini-
tion 2.6] A hybrid arc z is a solution to A in (1) if
2(0,0) € CUD and
1) Forall j € Z>( with I; = {t: (¢,7) € dom(z)} having
nonempty interior: z(¢,j5) € C for all ¢ € intl;, and
2(t,j) € F(z(t,4)) for almost all ¢t € I};

2) For all (t,j) € dom(z) with (t,j + 1) € dom(z):
z(t,j) € D and z(t,j + 1) € G(2(t,7)). O

A solution z to A is maximal if no other solution Z
exists with dom(z) C dom(Z2) and z(¢,j5) = Z(¢, ) for all
(t,j) € dom(z). We denote by Sz (K) the set of all maximal
solutions z to H with 2(0,0) € K C R™. For K = {2},
we write Sy (z0), and let z € Sy indicate that z is a
maximal solution to H when no set K is specified. A solution
is complete if its domain is unbounded. We will use the
following definition to study the stability and convergence
properties of systems of the form (1).

Definition 4: The closed set A C R™ is said to be (-
uniformly globally asymptotically stable (3-UGAS) if there
exists € KCLL such that each z € Sy satisfies

2(t, 5)|a < B(12(0,0)[ 4,1, ), 2)

for all (¢,7) € dom(z). When D = 0 in (1), i.e. for

continuous-time systems, 8-UGAS is defined with 8 € KL

and dropping the j-dependence in (2). (|
III. MOTIVATIONAL EXAMPLE

Consider a cost function f(z) = %, and the gradient-flow
dynamics given by

di
5 = V@) = - 3)
The unique solution to (3) is given by
(s) = ——20 Vo € R,

V2x¢s +1

which yields

4
|0
4(222s +1)%

To improve over the convergence rate of equation (4), we
consider the case where the gradient flow dynamics in (3)
are interconnected in a cascade configuration with a dynamic
gain p whose dynamics satisfy ‘i—’; = 1. We consider p(0) =
to € [1,00), and write the interconnected system as a HDS
with flows given by:

dx du

o = V@), =1
and jump set D = (). Since the dynamics of x4 are indepen-
dent of those of the state x, we can first solve for y to obtain
that p(t) = t 4 po, o € [1,00). Replacing this result in (5)
yields: 9 = —(¢ + p19)2®. This is a separable ODE, which
results in the following solution:

f(z(s)) = Y s>0. 4)

(z,p) € R x [1,00), (5)

Zo

w(t) = 2 , ©6)
V23 (2 + pot) +1
for all ¢ > 0, and leads to
4
X
Fa(t) = il . ™

4 (203 (5 + pot) +1)
The improved convergence bound in (7) can be obtained

from the bound (4) by substituting the time variable s with ¢
and then transforming it under the diffeomorphism D, (t) =

% - %S This diffeomorphism satisfies %Dno (t)=1,

which is the flow map for p in (5).

The above motivating example illustrates that by inter-
connecting a gradient system with a dynamic gain, the
convergence rate can be improved from O(1/t2) to O(1/t*).
However, obtaining this result relied on having access to the
closed-form solution for the state trajectory under intercon-
nected dynamics. For general nonlinear systems where such
closed-form solutions are unavailable, it remains unclear
what conditions would permit the application of a similar in-
terconnection procedure to achieve faster convergence rates.
Additionally, the example only addressed a continuous-time
dynamical system, while many applications involve systems
with hybrid dynamics. Consequently, two fundamental ques-
tions arise:
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Fig. 1: Scheme of the cascade interconnection between
hybrid dynamics and gain dynamics

1) What are the conditions on the original system’s dynam-
ics that allow for the application of the interconnection
procedure and enable an improvement in the conver-
gence bounds?

2) Can similar improvements be expected when intercon-
necting systems with hybrid dynamics?

In the following sections, we provide a unified approach to
address both questions.

IV. MAIN RESULTS

We consider a class of dynamical systems arising from
the cascade interconnection of a target system exhibit-
ing continuous-time and discrete-time dynamics, and a
continuous-time dynamical system that governs the evolution
of a dynamic gain u. The structure of this interconnection
is shown in Figure 1. We model the resulting dynamics
as a hybrid dynamical system of the form (1), with state
z = (z,pn) € R" x &), where &), := [1,00). The hybrid
dynamics are characterized by the following data:

d
z € Cy x X, d—i € pFy(x) x {F, ()}, (8a)
z€ D, x X, zteG(z)x{u} (8b)

where C,, D, C R". We refer to the HDS (8) as the nominal
HDS and denote it with /. Our main objective is to certify
the stability properties of a suitable closed set A C R™ under
the nominal HDS H, by deriving the stability properties from
a target HDS H. This target system has state 2 = (Z, /i) and
is defined by the following data:

dz

. 1 "
& € Fp(2) x {ﬂFu(M)},
e G@) x {a}.

z €Oy x Xy, (9a)

2 e D, X X, (9b)

To obtain our results, the following assumption will play a
key role.

Assumption 1: a) For every fip € X, there exists a unique
and complete solution to the gain ODE % = %Fu(ﬂ).
b) For each ¢ € &), there exists non-decreasing diffeomor-
phism D, : 7. — R>q, where 7. C R>¢ and min 7. = 0,
satisfying D.(0) = 0 for all ¢ € X, and:

9D (1) = (70D (),

where [ is the unique solution to the gain ODE. ]

Vit € 77“)7 Mo € Xl“ (10)

Assumption 1 restricts the type of dynamic gains we
consider for our approach to those compatible with suitable
deformations of the continuous-time domain, as charac-
terized by the parameterized diffeomorphisms D.. Below,
we present several examples illustrating different dynamic
gains, their associated flow-maps F),, and the respective
diffeomorphisms D, satisfying Assumption 1.

Example 1:  a) Linear: Let, F,(u) = 0. Then, the
diffeomorphism D.(t) = ct, with ¢ € X, satisfies
the matching equation (10) with 7. = Rx>. This type
of transformation appears in the singular-perturbation
literature where constant parameters are employed to
induce sufficient time-scale separations in multi-time
scale systems; see [15, Ch. 11].

b) Monomial: Let F, (1) = (p — 1)/15%?, p > 1. The
unique solution to the gain ODE % = (p—1) ﬂﬁ, e
X, is given by

p—1

ils) = (u§ " +5-p) ", o € X,
Then the map D, : R>o — Rxo:
_1 \P _p_
(t + cp—l) —cr-1
p

satisfies the matching equation (10) with 7, := R>o.

¢) Exponential: Let F, () = p. The unique solution to the
gain ODE =1, i e X, is given by: 4(s) = s + up.
Then, the map D. : R>o — R>( defined as

D.(t) :=

, cEX,,

D.(t) =ce' —¢, c€ X,

satisfies the matching equitation (10) with 7, = R>g.
5 >
d) Prescribed-Time: Let F,,(u) = %, T > 0. The unique

solution to the gain ODE % = i/ is given by

Sl

1(s) = fige™.
Then, the map D, : 7. := [0, Y/c) — R>( defined as

T
Dc(t) =T"In (M) , CE X/“

satisfies the matching equation (10) with 7. :== [0, Y /c).
dynamic gains characterized by a finite-escape time
Ty, = T/uo > 0 which evolve according to the flow-
map F,(u) = p?/T have recently gained widespread
adoption in the context of prescribed-time regulation of
dynamical systems [7]. In this context, the term T},
receives the name of the prescribed-time.

To leverage the deformations of time-domains induced
by the dynamic gains satisfying Assumption 1, we use the
following assumption on the target system H.

Assumption 2: Every solution 2 € &y satisfies
sup,dom(2) = oo. O

Now, by exploiting the cascade interconnection structure
of the HDS 7, we can obtain the following result.



Lemma 1: Suppose Assumptions 1 and 2 are satisfied, and

let D. := D, X idz., for all ¢ € X),. Then, the map
W 87:[ — 87.[ (11a)
2= (&, 01) — 20Dy0,0), (11b)

is a bijection between maximal solution sets. Moreover,

dom (W(%)) = Du(lo 0) (dom(2)) for every 2 € Sy O

We are now ready to present our main result, which
establishes a connection between the stability properties of
the target hybrid dynamical system 7 and the nominal hybrid
dynamical system H.

Theorem 1: Let Ap := Ax X, with A C R™ a closed set,
and suppose that Assumptions 1 and 2 are satisfied. Suppose
that Ay is 8-UGAS for #. Then, for every zo = (2o, o) €
(Cy UD,) x X,, and every z € Sy(zp) it follows that

|2(t, 5)] 40 < B(120| 40, Duo (£), 5),

for all (¢, ) € dom(z). O

Remark 1: When the function § € KL takes an ex-
ponential form, and the dynamics of the gain follow the
structure given in Examples la)-c), Theorem 1 certifies
that the nominal system exhibits hyperexponential stability
properties in the sense defined by [4]. If the gain dynamics
are specified as in Example 1d), then Theorem 1 recovers
the prescribed-time stability results via flows studied in [12]
for hybrid systems, and in [16] for ODEs.

V. APPLICATIONS

This section showcases Theorem 1 through two optimiza-
tion examples.

1) Acceleration of Gradient Flows: Let f be a strictly
convex, radially unbounded, and continuously differentiable
function. Consider the nominal HDS denoted as H,, with
continuous-time dynamics

dx du

where we assumed that the map F), satisfies Assumption 1,
and with no discrete-time evolution, i.e., with D = (). Under
these dynamics, we establish the stability of the compact
set A :== {z*}, where z* is the unique minimizer of f. To
this end, we begin by considering the target HDS 7:Lg with
continuous-time evolution:
dz dao 1

@vaf(i'% ds :ﬁFM(ﬂ)7 éz(jaﬂ

=F,(p), (z,p) e R" x &, (12)

) ER" x X,

and no discrete-time dynamics, and assume that the ODE d”
satisfies Assumption 1. Next, we augment the system w1th a
timer state 7 with dynamics g—; =1, 7 € Ry, and denote
the resulting HDS with .. We study the stability properties
of the set Ay x R>o, Ap = A x X,, by considering the
candidate Lyapunov function

V(a7 = (1) ~ 1)+ gle

§|x|A7

where f* := f(z*). The continuous-time derivative of V’
along the trajectories of H, is given by:

SV 7) = (7 - [F@) + (VF(@),a* —~ 8)])
—FVI@) (13)
Letting d¢(z*, x) == f* — [f(2) + (Vf(Z),2* — Z)], by the

strict convexity of f, it follows that d¢(z*,z) > 0 for all
& € R™\ A, and that d¢(z*,2) = 0 and Vf(2) = 0 if and
only if & € A. From (13), it follows that

d

ds
for some p. € PD, and all (2,7) € R" x X, x Rx,
where we used the fact that |(f1,7)|x, xrse = O for all
(ft,7) € X, x R>q. By [17, Theorem 3.19. 3a)] this implies
that there exists B € KL such that Ay x R>¢ is S,-UGAS
for #L,. Additionally, since for every solution (Z,7) € Sy,
it follows that |7(s)|r., = 0 for all s € dom(2,7) = Rx,
we obtain that Ay is 84-UGAS for 7:£g. Additionally, for any
such solution (Z,7), we obtain that

d #()) = —pe (12(3)]4)

—~ V(s
SV(EGs),
for every s € Ry(. Integrating both sides and using the
definition of V' yields

UG - )+ 5 =Vo ~ [ pulle@Lads

where Vi = V(z0,70) and (20,70) = (2(0),7(0)). Then,
using the positive definiteness of p. together with the fact
that 7(s) = 7o + s, we obtain the following bound:

f@s) - < 0 < Yo

< =
s+79 s

for any s € R>(. Using these results, together with Lemma

1 and Theorem 1, we obtain the following proposition.

V(2,7) = =pe (12la) = =pe(|(2,7) g xrso),  (14)

15)

Proposition 1: There exists S, € KL such that for any
(@0, o) € R™x X, and any solution (x, 1) to the accelerated
gradient flow dynamics (12), the following bound holds

|z(t) — 2" < Byg(lwo — 7], Dpo (1)),
for all ¢ € dom((z, 1)), where D, is as defined in Assump-
tion 1. Moreover, for any such solution, the sub-optimality
measure f(-) — f* satisfies

co
fla®) =< 5—
(=(t)) IO
where ¢y € R is a constant that depends on the initial
condition x. O

(16)

a7

Remark 2: Proposition 1 extends the results of the ex-
ample in Section III to the case of strictly convex func-
tions, and arbitrary dynamic gains satis2fying Assumption
1. In particular, if we let Fj, (1) = % (Example 1-d)),
the dynamics described in (12) achieve convergence of the
function f(xz(t)) to the optimal value f* within prescribed-
time 7),, = o/ Y, adjustable to the user preference by the
choice of T > 0. |
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Fig. 2: Trajectories of solutions to the gradient-flow dynamics with dynamic gain H, and the momentum-based dynamics
with resets H,,, under different parameterizations of the gain flow maps F),.

2) Acceleration of Hybrid Dynamics with Momentum:
When the convex function f has low curvature, the dynamics
in (12) might still suffer from poor transient performance.
When 4 = 1 and F),(;) = 0, this issue has been addressed
in the existing literature by the use of momentum-based
dynamics; see [1],[2],[18]. Inspired by these approaches,
we consider a momentum-based nominal HDS, denoted as
Hpm, with state z = (z,p), where z = (z1,79,73) €
R™ x R™ x [T, T], flow-map given by ':

i1 %({EQ —(El)

3
j:2 :MFm(m) = —2$3Vf($1) ) N:F/—L(:U’)v
T3 i
and flow-set defined as C), x X&), where the map F), is
assumed to satisfy Assumption 1, and where C), = R™ x
R" x [T, T), with T > T > 0 being tunable parameters. The
discrete-time dynamics of H,, evolve according to

x
17+ = Gm(m) =|lT1], K
T

(18)

whenever z € D,, x X,,, where D,, = R" x R" x {T}.
The HDS #,,, with © = 1 and F),(i) was introduced in [18,
Eq. (8)] as an alternative to overcome the lack of uniformity
in the convergence properties of Nesterov’s ODE [1], which
precludes obtaining S-UGAS bounds of the from (4); see
[19, Remark. 2]. Indeed, using [18, Theorem 3.1], we can
obtain the 5-UGAS of the set

Ay = A x X, where A= {z*} x {z*} x [T, T,
for the target HDS 7:£m, which is of the from in (9) with
F,=F,, C, =C,,and D, = D,,. This fact, together with
Lemma 1 and Theorem 1, allows us to obtain the following
proposition.
Proposition 2: There exists a function 3, € KLL such

that for any (zo, o) € R™ x X}, and any solution (z, 1) to
the HDS H,,,,

|$|A < ﬁm(lmolA’Duo (t)vj)v

for all (¢,7) € dom((z,pu)), where D, is as defined in
Assumption 1. Moreover, any such solution induces the

19)

dx;
dt -

"Here &, stands for

bound
49
(Dpuo (t) — £5)%

where t; = min{t : (t,7) € dom((z, 1))}, and {c;}32, is
a sequence of monotonously decreasing positive constants.[]

3) Numerical Example: To numerically verify Proposi-
tions 1 and 2, we consider the cost function f(z) = 455z —
x*[4, where z* = (m,2m,37). We simulate the trajectories
resulting from the HDS H, and #,,, using realizations of
each gain flow map presented in Example 1, and using
the initial conditions zp = (100,100,100) and po = 1.
The momentum-based system ., is implemented with reset
parameters 7' = 0.01 and T = 3.5, and initial conditions
.%'1(0,0) = .’L‘Q(0,0) = Xo, 183(070) = I, and Mo = 1.

The resulting trajectories of the suboptimality measure
f(x(t))— f* are shown in Figure 2, verifying the theoretical
bounds derived in Propositions 2 and 1. As illustrated, incor-
porating momentum and resets can improve convergence to
the cost function minimizer compared to the gradient flow,
regardless of the chosen dynamics for the gain. However,
suitable reset parameters 7° and T must be selected in
advance. As the time deformation induced by the gain flow
map transitions from constant rescaling (leftmost plot) to
prescribed-time scaling (rightmost plot), the frequency of
resets naturally increases. This occurs because the state x3
responsible for triggering resets is scaled by the dynamic
gain, while the reset threshold T remains constant. This
empirical evidence indicates that tuning reset or switching
parameters with dynamic gains generally requires accounting
for the time-domain deformation induced by the gain flow
mappings. Recent work by the authors in [12] explored this
direction by introducing blow-up average-activation time and
blow-up average-dwell time conditions for prescribed-time
regulation of switched systems. These conditions account for
the finite escape times of the dynamic gains employed in
prescribed-time stability approaches for switched systems.

fla(t,5)) = " < (20)

VI. CONCLUSIONS

This paper introduces a framework for modulating the
transient behavior of nonlinear dynamical systems, including
hybrid systems with both continuous-time and discrete-time
dynamics. Our approach involves interconnecting the original
system with an exogenous dynamic gain, which generates



appropriate continuous-time deformations of hybrid time
domains. We establish sufficient conditions for preserving
stability properties through these time deformations, thus
enabling a spectrum of transient behaviors ranging from
constant to prescribed-time scalings. The proposed approach
has potential applications in enhancing the performance
of optimization algorithms and improving real-time con-
trol systems. Future research directions include extending
this framework to systems exhibiting input-to-state, local,
semiglobal, and practical stability properties. Other direc-
tions include endowing the dynamic gains p with different
discrete-time evolutions.
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