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Figure 1. For a given boundary value problem, our differential walk on spheres algorithm makes it possible to differentiate solution values with respect
to problem parameters. Here we consider an inverse problem where we recover the shape of an emissive object from its observed diffusion profile on the
boundary of a box, via gradient-based optimization. Unlike conventional mesh- or grid-based approaches, we can evaluate derivatives at points of interest
without needing to compute a global solution (here, only at the observed points).

We introduce a Monte Carlo method for computing derivatives of the so-

lution to a partial differential equation (PDE) with respect to problem pa-

rameters (such as domain geometry or boundary conditions). Derivatives

can be evaluated at arbitrary points, without performing a global solve or

constructing a volumetric grid or mesh. The method is hence well suited to

inverse problems with complex geometry, such as PDE-constrained shape

optimization. Like other walk on spheres (WoS) algorithms, our method is

trivial to parallelize, and is agnostic to boundary representation (meshes,

splines, implicit surfaces, etc.), supporting large topological changes. We

focus in particular on screened Poisson equations, which model diverse

problems from scientific and geometric computing. As in differentiable ren-

dering, we jointly estimate derivatives with respect to all parameters—hence,

cost does not grow significantly with parameter count. In practice, even

noisy derivative estimates exhibit fast, stable convergence for stochastic

gradient-based optimization, as we show through examples from thermal

design, shape from diffusion, and computer graphics.
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1 INTRODUCTION
Which shape best explains observed physical behavior? How can

one design shapes that maximize (or minimize) a target physical

quantity? Such inverse problems are fundamental to numerous chal-

lenges in science and engineering. For instance, one might need to

assess damage to an airplane wing using indirect thermal measure-

ments [Zalameda and Parker 2014], or infer the shape of a tumor

through deep layers of tissue [Arridge 1999]. Likewise, one might

seek to design circuit geometry that maximizes dissipation of heat

[Zhan et al. 2008], airfoils that generate prescribed lift [Hicks and

Henne 1977], or lightweight structures that withstand significant

load [Allaire et al. 2014]. To solve such problems, one must be able

to efficiently and accurately differentiate solutions to partial differ-

ential equations (PDEs) with respect to the shape of the domain, or

its boundary conditions [Hadamard 1908; Céa et al. 1973]. However,

for problems with complex geometry, even just solving such PDEs

on a fixed domain can be daunting for traditional methods—making

many important inverse problems unapproachable.
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The walk on spheres (WoS) method [Muller 1956; Sawhney and

Crane 2020] and its recent extensions [Sawhney et al. 2022, 2023;

Miller et al. 2024] provide grid-free alternatives to traditional PDE

solvers that entirely bypass the need for volumetric mesh gener-

ation or global solves. Compared to finite element or finite differ-

ence techniques, these Monte Carlo-based methods enable pointwise
evaluation of the solution to linear elliptic PDEs such as the Pois-

son equation, through simulation of independent random walks

(Figure 2, left). As explored by Sawhney and Crane [2020] and in

followup work [Sawhney et al. 2022, 2023; Miller et al. 2024], this

approach offers a degree of geometric robustness and flexibility that

has previously eluded traditional solvers. Yet WoS has historically

been limited to forward tasks (i.e., solving PDEs on a given domain),

rather than inverse tasks such as geometric optimization.

How can we adapt WoS to inverse problems? One idea is to apply

automatic differentiation to existing algorithms—but as in differen-

tiable rendering this naïve strategy is undesirable for several reasons:

1. Automatic differentiation, when naïvely applied to algorithms

like WoS and Monte Carlo path tracing, computes derivatives for

accelerated geometric queries which is both inefficient and imprac-

tical [Niemeyer et al. 2020]. 2. It results in exponential memory

complexity and quadratic computational complexity, compared to

the linear memory and computational complexity of the recursive

forward algorithms [Nimier-David et al. 2020; Vicini et al. 2021].

3. It cannot compute correct derivatives with respect to the evolving

geometry that geometric optimization and inverse problems typi-

cally require [Li et al. 2018; Loubet et al. 2019; Bangaru et al. 2020;

Zhang et al. 2020]. 4. Even in constrained settings where these criti-

cal limitations may not apply, automatic differentiation of Monte

Carlo algorithms results in differential estimators with suboptimal

statistical performance [Zeltner et al. 2021].

We instead take a more principled approach, and formulate PDEs

that compute derivatives (a.k.a. sensitivities) with respect to a collec-

tion of parameters 𝜋 . Crucially, these PDEs can again be estimated

via WoS algorithms—which must now be adapted to handle nesting

between the PDEs characterizing the derivatives, and the solution

itself (Section 4.1). The parameters 𝜋 are analogous to the scene
parameters in differentiable rendering—for example, they might de-

scribe the vertex locations of a triangular mesh, the anchors and

tangents of a cubic spline, the centers of radial basis functions defin-

ing an implicit surface, or the pose of a rigid object. Our method

simultaneously estimates derivatives for all parameters using a set

of nested random walks, making it feasible to optimize systems with

thousands of degrees of freedom (e.g., a densely-sampled mesh).

The Monte Carlo approach is also well-matched to the needs of

descent-based optimization. Far from local minima, the gradient

is merely a heuristic for the ideal descent direction—making exact

gradient computation (as in traditional methods) overkill in most

scenarios. A stochastic approach enables us to reduce the computa-

tional load in early stages of optimization by taking fewer samples,

increasing sample count only as we approach a solution. In fact,

as in differentiable rendering [Gkioulekas et al. 2013; Li et al. 2018;

Zhang et al. 2020; Nimier-David et al. 2020; Vicini et al. 2022; Zhao

et al. 2020], noisy derivatives can actually improve optimization

quality by helping to avoid local minima (Section 6.2). Moreover,

our derivatives do not suffer from numerical robustness issues that

WoS di�erentiable WoS

di�erential walkprimary walk walk o�set

Figure 2. Left:Walk on spheres (Algorithm 1) recursively jumps to a random
point on the largest sphere around the current walk location. The walk
is terminated when it reaches the 𝜀-shell, where the Dirichlet condition
is evaluated at the closest point on the boundary. Right: Differential WoS
(Algorithm 2) also takes a walk to the 𝜀-shell, but additionally launches a
primary walk from an offset point close to the boundary to estimate the
differential boundary condition.

can plague traditional PDE solvers, such as exploding derivatives

due to ill-conditioned elements on an evolving mesh.

Scope. Although our approach applies in principle to many of the

PDEs handled by current (forward) WoS algorithms (e.g., with drift

terms or variable coefficients), we choose to focus this paper on

screened Poisson equations, which strike a good balance between gen-
erality and conceptual and expositional simplicity. Such equations

find widespread use in geometry processing, simulation, graphics,

and scientific computing. For example, they can model the steady-

state temperature inside a conductive solid, the isotropic distribution

of light deep inside a scattering medium, or the diffusive interpola-

tion of boundary values in an inpainted image. We show geometric

optimization examples inspired from these settings in Section 7,

and choose these examples to also showcase the ability of our ap-

proach to optimize complex and varied geometric representations—

triangular meshes, Bézier curves, and implicit surfaces. We provide

a video visualizing these optimization examples, and an open-source

implementation of our solver, on the project website.
1

2 RELATED WORK
Optimizing the parameters of a system, such as its shape, to improve

performance or meet a desired objective is a widely studied mathe-

matical and algorithmic topic. Here we broadly review prior work

on inverse design problems that involve solving PDEs, followed by

Monte Carlo methods for differentiable simulation in graphics.

2.1 PDE-constrained shape optimization
Many application domains require studying how the shape of a sys-

tem evolves under small changes to a PDE solution—for the transfer

of heat [Zhuang et al. 2007; Feppon 2019], deformation of elastic bod-

ies [Ameur et al. 2004; Allaire et al. 2014], flow of fluids [Treuille et al.

2003], distortion of mappings [Sharp and Crane 2018], interpolation

of colors [Zhao et al. 2017], etc. The mathematical roots of PDE-

constrained shape optimization can be traced back to the method

of Hadamard [Hadamard 1908], which computes the sensitivity of

1
https://imaging.cs.cmu.edu/differential_walk_on_spheres
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a problem subject to small deformations of its boundary. With the

advent of powerful computers and advanced numerical methods

like the finite element method (FEM), the mathematical framework

of shape optimization was further developed by authors such as

Céa [Céa et al. 1973; Cea et al. 1974], wherein techniques such as

implicit differentiation and the adjoint method became popular for

efficiently computing derivatives of objective functions dependent

on PDE solutions [Henrot and Pierre 2018]. We use these classical

results, specifically for the screened Poisson equation as reviewed in

Section 4, as the starting point for developing our differential Monte

Carlo method in Section 5. Note that Zhao et al. [2017] and Henrot

and Pierre [2018, Section 5.8] show how to express shape-functional

derivatives in terms of the solution to an adjoint boundary value
problem—we compare this formulation to ours in Appendix B.

2.2 Algorithms for shape optimization
The earliest numerical methods for shape optimization were based

on evolving meshes [Pironneau 1984; Allaire and Pantz 2006], where

a discretized domain serving as an initial guess is deformed under

PDE constraints to better match an objective. Over the past two

decades, level-set based methods [Ameur et al. 2004; Li et al. 2005;

Zhuang et al. 2007; Allaire et al. 2014; Feppon 2019; Lebbe et al.

2019; Gropp et al. 2020] have since superseded purely mesh-based

approaches—here a shape described implicitly as a level set function

is evolved on a fixed background mesh or grid. This representation

enables complex topological changes to the optimized shape (e.g.,
merging of holes, region splitting) without needing to remesh, which

is particularly desirable for optimizations where the final shape is

unknown. Hybrid approaches have also been developed, allowing

for both topological changes and more accurate PDE solutions via

conforming mesh boundaries [Allaire et al. 2013]. More recently,

physics-informed neural networks have emerged as alternatives to

traditional PDE techniques [Raissi et al. 2019]; these methods can

face difficulties in enforcing hard PDE constraints in complex geo-

metric domains [Krishnapriyan et al. 2021], and are currently in

their infancy for shape optimization tasks [Lu et al. 2021].

Grid-based methods in graphics. Computer graphics has devel-

oped specialized algorithms for shape optimization, to handle the

challenging design of fluidic systems [Du et al. 2020; Li et al. 2022],

rigid structures [Zhu et al. 2017; Liu et al. 2018; Whiting et al. 2012],

and acoustic filters [Li et al. 2016]. These methods build on decades

of shape optimization research that leverages grid-based techniques

[Feppon 2019]. Though practical for their intended applications,

these methods are designed for a specific geometric representation

and require global solves to compute gradients during optimization.

By contrast, ourmethod canwork directly with a variety of bound-

ary representations, such as meshes, splines, NURBS [Marschner

et al. 2021], and even implicit surfaces [Sharp and Jacobson 2022;

Gillespie et al. 2024] that allow for large topological changes (Sec-

tion 7), without the need for any specialization—the only require-

ment is to be able to query the distance to the boundary. Another key

benefit of our Monte Carlo approach over grid-based alternatives

is output-sensitive optimization, i.e., the ability to evaluate deriva-

tives pointwise in regions of interest without a global PDE solve

(Figure 11). Our method also avoids the many challenges associated

with grid generation and adaptive refinement—for instance, it does

not have to contend with numerical issues faced by mesh-based

approaches from ill-conditioned elements. Moreover, even though

derivative estimates computed with our method contain noise, they

are correct in expectation. We can therefore improve their accuracy

at any stage of the optimization by simply taking more samples, in

place of, e.g., increasing the resolution of a background grid.

2.3 Differentiable Monte Carlo simulation
Stochastic gradient optimization has had a profound impact on ma-

chine learning, enabling efficient training of complex models on

large datasets without overfitting [Kingma and Ba 2015]. In recent

years, it has also become popular for differentiable physics simula-

tion [Nimier-David et al. 2019; Hu et al. 2020; Macklin 2022] and

geometric optimization [Remelli et al. 2020; Shen et al. 2021, 2023]

in computer graphics. For instance, it is the method of choice for

differentiable Monte Carlo rendering [Gkioulekas et al. 2013; Li et al.

2018; Zhang et al. 2020; Nimier-David et al. 2020; Vicini et al. 2022;

Zhao et al. 2020], where additional stochasticity in the derivative es-

timates of scene parameters (e.g., lighting, materials and geometry)

has been observed to act as a regularizer for highly underdetermined

inverse rendering problems. When paired with 3D geometry rep-

resentations that allow for easy topological changes, differentiable

Monte Carlo rendering reliably recovers a target geometry using

a random or uninformed initialization of scene parameters [Has-

selgren et al. 2022; Cai et al. 2022; Mehta et al. 2022]. Our method

likewise employs stochastic optimization with noisy derivative esti-

mates for PDE-constrained shape optimization and may be paired

with a range of boundary representations. Similar to differentiable

rendering, cost does not increase significantly with the number

of parameters, as during optimization we simultaneously estimate

derivatives with respect to all parameters with a single PDE solve.

2.4 Walk on spheres
We develop our differential Monte Carlo method using the walk

on spheres algorithm [Muller 1956], which has become a popular

grid-free alternative to traditional PDE solvers in the graphics com-

munity due to its striking similarities with Monte Carlo ray tracing

[Sawhney and Crane 2020]. In a short span of time, WoS has been

generalized to solve a much broader class of linear diffusive PDEs

[Nabizadeh et al. 2021; Sawhney et al. 2022, 2023; Miller et al. 2024;

De Lambilly et al. 2023]; a number of variance reduction techniques

have also been developed to improve estimation quality [Qi et al.

2022; Miller et al. 2023; Bakbouk and Peers 2023; Li et al. 2023],

along with explorations into more advanced applications such as

thermal imaging [Bati et al. 2023] and fluid simulation [Rioux-Lavoie

et al. 2022; Jain et al. 2024; Sugimoto et al. 2024]. Though we focus

primarily on screened Poisson equations with Dirichlet boundary

conditions, our method can in principle be generalized to handle

the larger set of equations WoS can solve, e.g., we describe an exten-

sion to mixed Dirichlet-Robin boundary conditions in Section 5.2.

Moreover, as our approach essentially boils down to coupling two

random walks simulated using WoS, it should benefit directly from

any future improvements to WoS estimators.

ACM Trans. Graph., Vol. 43, No. 6, Article 174. Publication date: December 2024.
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Figure 3. We can compute derivatives on a wide range of boundary repre-
sentations, including those not directly handled by conventional solvers:
implicit surfaces (left) and splines (center). For a solution to a Poisson equa-
tion 𝑢 (𝑥, 𝜋 ) (middle row), here we show the derivatives ¤𝑢 (𝑥, 𝜋 ) (bottom
row) with respect to positional parameters 𝜋 of the boundary 𝜕Ω (𝜋 ) .

WoS for inverse problems. Yılmazer et al. [2022] considered a dif-

ferential version of WoS for optimizing parameterized source terms

and PDE coefficients on a fixed domain. Our emphasis is on optimiz-

ing the shape of the domain and the boundary conditions imposed

on it. These differentiable simulation capabilities are complementary

and useful for different types of inverse problems.

Walk on boundary alternative. The walk on boundary method

[Sugimoto et al. 2023; Sabelfeld and Simonov 2013] is another Monte

Carlo PDE solver that performs random walks over the boundary of

a domain via ray intersection queries. Designing a differential walk

on boundarymethod is conceptually attractive given the close resem-

blance of the forward process to Monte Carlo rendering; however,

prior work [Sawhney et al. 2023; Miller et al. 2024] demonstrates

that the practical application of walk on boundary is hindered by

the lack of convergence guarantees. In particular, in the presence of

either non-convex geometry or mixed boundary conditions, walk

on boundary estimates can fail to converge. By contrast, walk on

spheres is provably convergent and its practical application to com-

plex domains is well demonstrated by prior works [Sawhney and

Crane 2020; Sawhney et al. 2023; Miller et al. 2024].

Concurrent work. In concurrent work, Yu et al. [2024] develop

a similar algorithm to ours for shape optimization constrained by

the screened Poisson equation. Our work differs in a few key ways:

1. The theoretical framework we develop our algorithm on translates

the problem of computing derivatives to one of solving boundary

value problems (BVPs) of the same type as the PDE in consideration

(Section 4). This framework allows us to easily extend our approach

to more general BVPs (Sections 3.4 & 5.2) using existing estimators

that generalize WoS [Sawhney et al. 2023; Miller et al. 2024], which

we demonstrate in a thermal design problem that includes mixed

Dirichlet-Robin boundary conditions (Section 7.3). In principle, our

approach also enables extending other existing estimators for this

PDE (e.g., bidirectional or reverse random walks [Qi et al. 2022;

Miller et al. 2024]) to the differential setting. 2. We provide an unbi-

ased and efficient approach for calculating reverse-mode derivatives

of shape functionals using U-statistics (Section 5.3). 3. We showmore

varied and challenging shape optimization applications, including

optimization of complex 3D meshes, implicit geometry, and Bézier

curves, to help showcase the benefits of Monte Carlo techniques for

PDE-constrained shape optimization.

3 BACKGROUND
We first review concepts from surface evolution and PDE theory, as

well as the walk on spheres algorithm. For in-depth discussion of

differential surface evolution, we refer to Henrot and Pierre [2018].

3.1 Surface evolution
Throughout we optimize a domain Ω(𝜋) ⊂ R3 with boundary

𝜕Ω(𝜋), whose geometry is encoded by a finite set of parameters

𝜋 ∈ R𝑁 . (Section 7 details several possibilities.) For any 𝜋-dependent

function 𝜙 , we denote by ∇𝜙 partial differentiation with respect to

its domain (i.e., the spatial gradient); and by ¤𝜙 partial differentiation

with respect to 𝜋 (i.e., the parameter derivative).
We assume that the parameterization of 𝜕Ω(𝜋) is differentiable,

so that an infinitesimal perturbation of 𝜋 corresponds to an in-

finitesimal deformation of 𝜕Ω(𝜋), described by a velocity field V :

𝜕Ω(𝜋) → R3. Since tangential motion does not change the geome-

try of 𝜕Ω(𝜋), we often require only the normal velocity V𝑛 B 𝑛 · V,
where 𝑛 : 𝜕Ω(𝜋) → R3 is the outward unit normal field. Expres-

sions for the normal velocity depend on whether we model 𝜕Ω(𝜋)
as an implicit or explicit surface (Figure 3).

3.1.1 Implicit surface. In this case, we model the boundary 𝜕Ω(𝜋)
as the zero-level set of an implicit function Γ(·, 𝜋) : R3 → R con-

trolled by 𝜋 ; that is, 𝜕Ω(𝜋) B
{
𝑥 ∈ R3 : Γ(𝑥, 𝜋) = 0

}
. Then, using

the level set equation, the normal velocity at 𝑥 ∈ 𝜕Ω(𝜋) becomes

[Stam and Schmidt 2011; Osher and Fedkiw 2005]

V𝑛 (𝑥, 𝜋) =
¤Γ(𝑥, 𝜋)
∥∇ Γ(𝑥, 𝜋)∥ . (1)

Section 7 shows optimization of an implicit surface represented as

a sum of radial basis functions (harmonic monopoles).

3.1.2 Explicit surface. Herewe imag-

ine the boundary 𝜕Ω(𝜋) is param-

eterized over a reference surface
𝑀 . In particular, we view 𝜕Ω(𝜋)
as the image of a parameterization
Φ(·, 𝜋) : 𝑀 → R3; that is 𝜕Ω(𝜋) B
{Φ(𝑝, 𝜋) : 𝑝 ∈ 𝑀}. Concretely, one can think of Φ as assigning co-

ordinates to vertices of a mesh, or to control handles of a spline

(Section 7). We assume thatΦ is always a diffeomorphism, and hence

ACM Trans. Graph., Vol. 43, No. 6, Article 174. Publication date: December 2024.
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has a well-defined inverse Ψ(·, 𝜋) : 𝜕Ω(𝜋) → 𝑀 . In this case, the

normal velocity at 𝑥 ∈ 𝜕Ω(𝜋) is

V𝑛 (𝑥, 𝜋) = 𝑛𝑥 · ¤Φ(Ψ(𝑥, 𝜋), 𝜋) . (2)

Note that the normal velocity is independent of the specific choice

of parameterization [Grinfeld 2013].

3.2 Screened Poisson equation
The main PDE we consider is a screened Poisson boundary value

problem. For simplicity we focus mainly on Dirichlet boundary con-

ditions; Section 3.4 treats Neumann and Robin boundary conditions.

Primary boundary value problem

Δ𝑢 (𝑥) − 𝜎𝑢 (𝑥) = f (𝑥) in Ω(𝜋),
𝑢 (𝑥) = g(𝑥, 𝜋) on 𝜕Ω(𝜋) . (3)

Here Δ is the negative-semidefinite Laplace operator onR3, 𝜎 ∈ R≥0
is a constant screening coefficient, f : Ω(𝜋) → R is the source term;

g(·, 𝜋) : 𝜕Ω(𝜋) → R is the boundary data, which may also depend

on parameters 𝜋 (Section 4.1), and 𝑢 : Ω(𝜋) → R is the solution of

the BVP. Although 𝑢 implicitly depends on the parameters 𝜋 , we

typically omit this dependence to simplify notation. We refer to

Equation (3) as the primary boundary value problem, to distinguish

it from the BVP developed in Section 4.1 to express derivatives.

3.3 Walk on spheres
Walk on spheres (WoS) algorithms [Muller 1956; Sawhney and Crane

2020] can be used to estimate solutions to PDEs such as Equation (3).

The basic idea is to express the solution 𝑢 (𝑥0) at a point 𝑥0 ∈ Ω as

an integral over a ball around 𝑥0, in terms of the unknown function

𝑢. Applying a single-sample Monte Carlo estimate to this integral

then requires evaluating 𝑢 (𝑥1), leading to a recursive estimation

procedure (akin to Monte Carlo path tracing). The random walk

𝑥0, 𝑥1, . . . terminates when 𝑥𝑘 gets within a small distance 𝜀 > 0 of

the domain boundary 𝜕Ω, where the solution is approximated using

the value of g at the closest boundary point. Here we describe only

the basic WoS estimator needed for our screened Poisson equation;

see references in Section 2.4 for further background.

3.3.1 Notation. For any point 𝑥 ∈ Ω(𝜋), we let 𝑥 be the clos-

est point on the boundary 𝜕Ω(𝜋), and let R(𝑥) B ∥𝑥 − 𝑥 ∥ be
the corresponding shortest distance. We use B(𝑥,R) for the ball

with center 𝑥 and radius R, and B(𝑥) B B(𝑥, R(𝑥)) for the largest
such ball contained in Ω(𝜋). We define the 𝜀-shell of 𝜕Ω(𝜋) as the
set 𝜕Ω𝜀 (𝜋) B {𝑥 ∈ Ω(𝜋) : R(𝑥) ≤ 𝜀}. Finally, we denote by

G, P : R≥0 → R the Green’s function and Poisson kernel (resp.)
for the zero-Dirichlet screened Poisson equation on a ball [Sawh-

ney et al. 2023, Appendix A]; since these functions are rotationally

symmetric, we parameterize them in terms of a positive radius.

3.3.2 WoS estimator for Screened Poisson equations. We can write

the recursive WoS estimator for Equation (3) at point 𝑥0 as follows:

Walk on spheres estimator

𝑢 (𝑥𝑘 )B

g(𝑥𝑘 ), 𝑥𝑘∈ 𝜕Ω𝜀 ,

P(R(𝑥𝑘 ) )
𝑝𝜕B (𝑥𝑘 )

𝑢 (𝑥𝑘+1)+
G( ∥𝑧𝑘−𝑥𝑘 ∥ )

𝑝B (𝑥𝑘 )
f (𝑧𝑘 ), otherwise.

(4)

The next walk point 𝑥𝑘+1 and source point 𝑧𝑘 are sampled from the

sphere 𝜕B(𝑥𝑘 ) and ball B(𝑥𝑘 ) with uniform probability 𝑝𝜕B (𝑥𝑘 ) B
1/|𝜕B(𝑥𝑘 ) | and 𝑝B (𝑥𝑘 ) B 1/|B(𝑥𝑘 ) | (resp.).

Russian roulette. When 𝜎 > 0, contributions at each walk step

are attenuated by a multiplicative factor 𝛼 ∈ [0, 1) (line 12, Algo-
rithm 1). We apply Russian roulette [Pharr et al. 2023, Section 2.2.4]

proportionally to 𝛼 to stochastically terminate walks before they

reach 𝜕Ω𝜀 (𝜋). Early termination improves the efficiency of the WoS

estimator, without introducing additional bias. We summarize the

resulting WoS procedure with Russian roulette in Algorithm 1.

3.4 Mixed Dirichlet-Robin boundary conditions
We can generalize our theory and algorithms to screened Poisson

equations with mixed Dirichlet and Robin boundary conditions.

Suppose we partition the domain boundary 𝜕Ω(𝜋) into a Robin
boundary 𝜕ΩR and a Dirichlet boundary 𝜕ΩD (𝜋). Our BVP becomes

Δ𝑢 (𝑥) − 𝜎𝑢 (𝑥) = f (𝑥) in Ω(𝜋),
𝑢 (𝑥) = g(𝑥, 𝜋) on 𝜕ΩD (𝜋),

𝜕𝑢
𝜕𝑛 (𝑥) − 𝜇𝑢 (𝑥) = h(𝑥) on 𝜕ΩR .

(5)

Here 𝜕/𝜕𝑛 is the normal derivative; 𝜇 ∈ R≥0 is a constant Robin
coefficient; h : 𝜕ΩR → R is the Robin data; for simplicity, we assume

𝜇, h, and 𝜕ΩR do not depend on 𝜋 . The solution to Equation (5) can

be estimated via the walk on stars (WoSt) method [Miller et al. 2024],

which is very similar to WoS but considers star-shaped domains

rather than balls (see Miller et al. [2024, Algorithm 1] for details).

We give a differential version of this estimator in Section 5.2.

4 PDE-CONSTRAINED SHAPE OPTIMIZATION
This section defines our central optimization problem (Equation (6)).

We use classical results from shape optimization [Henrot and Pierre

2018] to express the derivatives in this problem as another BVP

(Section 4.1), which we can then estimate via WoS (Section 5.1).

Shape functional. We consider a domain Ω(𝜋) controlled by pa-

rameters 𝜋 as in Section 3.1, and the solution 𝑢 (·, 𝜋) to the primary

BVP (3) on this domain. We want to determine values for 𝜋 that

locally minimize a shape functional

L(𝜋) B
∫
Ω (𝜋 )

M(𝑥) L(𝑢 (𝑥, 𝜋)) d𝑥 . (6)

Here L : R → R is a differentiable loss function—for example, the

squared loss L(𝑢 (𝑥, 𝜋)) B 1/2∥𝑢 (𝑥, 𝜋) − 𝑢
ref
(𝑥)∥2 relative to a ref-

erence solution 𝑢
ref

. The functionM : R3 → {0, 1} is a binary mask
that we use to localize the functional to a subdomain of Ω(𝜋), such
as a region of interest where a reference is available (see Section 7).

Appendix C considers a more general functional that includes a

boundary term, used in some of our examples (Section 7).
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Algorithm 1 WalkOnSpheres(𝑥, 𝜀)
Input: A point 𝑥 , and a termination parameter 𝜀.

Output: A single-sample estimate 𝑢 (𝑥) for Equation (3).

1: ⊲ Compute distance to and closest point on 𝜕Ω

2: R, 𝑥 ← DistanceToBoundary(𝑥)
3: ⊲ Return boundary value g at 𝑥 if 𝑥 ∈ 𝜕Ω𝜀

4: if R < 𝜀 then return g(𝑥)
5: ⊲ Uniformly sample a point𝑤 inside the unit ball

6: 𝑤 ← SampleUnitBall()

7: ⊲ Compute point for source contribution

8: 𝑧 ← 𝑥 + R ·𝑤
9: ⊲ Compute source contribution

10: 𝑆 ← G(∥𝑧 − 𝑥 ∥)/𝑝B (𝑥) · f (𝑧)
11: ⊲ Compute recursive contribution scale

12: 𝛼 ← P(R)/𝑝𝜕B (𝑥)
13: ⊲ Attempt to terminate walk using Russian roulette

14: if 𝛼 < SampleUniform(0, 1) then return 𝑆

15: ⊲ Uniformly sample a point 𝑣 on the unit sphere

16: 𝑣 ← SampleUnitSphere()

17: ⊲ Compute next walk point

18: 𝑥 ← 𝑥 + R · 𝑣
19: ⊲ Repeat procedure from next walk point

20: return WalkOnSpheres(𝑥, 𝜀) + 𝑆

Differentiating shape functionals. We minimize L(𝜋) using sto-
chastic gradient optimization, which requires stochastic estimates

of the derivative of the shape functional L(𝜋) with respect to the

parameters 𝜋 . From the Reynolds transport theorem, this derivative

equals [Henrot and Pierre 2018, p. 239]:
2

dL
d𝜋
(𝜋) =

∫
Ω (𝜋 )

M(𝑥) ¤𝑢 (𝑥, 𝜋) L′ (𝑢 (𝑥, 𝜋)) d𝑥

+
∫
𝜕Ω (𝜋 )

M(𝑥) V𝑛 (𝑦, 𝜋) L(𝑢 (𝑦, 𝜋)) d𝑦 (𝑦), (7)

where L
′
is the derivative of the scalar loss L. Equation (7) is valid

as long as the integrand of L does not have any 𝜋-dependent

discontinuities—this assumption holds for all 𝜋-independent mask-

ing functions M and smooth loss functions L, as 𝑢 is itself smooth.

Note that the boundary of Ω is always closed; in Section 8 we

discuss how this formulation might be extended to open boundaries.

4.1 The differential boundary value problem
Evaluating Equation (7) requires computing the derivative ¤𝑢 of the

the solution 𝑢 with respect to parameters 𝜋 . In this section, we

express ¤𝑢 as the solution to a different BVP, which can in turn be

estimated via a modified WoS algorithm (Section 5.1).

The primary BVP (3) implicitly defines 𝑢 as a function of 𝜋 . As

explained by Henrot and Pierre [2018, Section 5.3], we can thus use

implicit differentiation to obtain the derivatives ¤𝑢 of this relation-

ship. To this end, we first differentiate both sides of the screened

2
Throughout, we distinguish between total derivatives d/d𝜋 and partial derivatives 𝜕/𝜕𝜋 .

Poisson equation with respect to 𝜋 . Since the Laplacian Δ, screening
coefficient 𝜎 , and source term f are independent of 𝜋 , we get

Δ ¤𝑢 (𝑥) − 𝜎 ¤𝑢 (𝑥) = 0 in Ω. (8)

Implicit differentiation of the boundary condition depends on how

we represent the boundary data g. We consider two cases.

Restricted boundary data. We first consider the case where g is

the restriction of a scalar field gR3 (·, 𝜋) : R3 → R to the domain

boundary, i.e., g(𝑥) = gR3 (𝑥, 𝜋),∀𝑥 ∈ 𝜕Ω(𝜋). Differentiating the

boundary condition in Equation (3) with respect to 𝜋 then yields

¤𝑢 (𝑥) = ¤gR3 (𝑥) +
(
𝜕g

𝜕𝑛
(𝑥) − 𝜕𝑢

𝜕𝑛
(𝑥)

)
V𝑛 (𝑥, 𝜋) on 𝜕Ω(𝜋), (9)

where 𝜕g/𝜕𝑛 = 𝑛𝑥 · ∇gR3 (Appendix A).

Mapped boundary data. When we use an explicit representation

for 𝜕Ω(𝜋) (Section 3.1.2), we can alternatively define boundary

values g𝑀 (·, 𝜋) : 𝑀 → R on the reference surface 𝑀 (possibly de-

pending on 𝜋 ). For instance, if𝑀 is a mesh, then g𝑀 could be defined

via a texture map. These values are then pushed forward to 𝜕Ω(𝜋)
to obtain the current boundary data, i.e., g(𝑥) = g𝑀 (Ψ(𝑥, 𝜋), 𝜋). In
Appendix A we show that differentiating the boundary condition

in Equation (3) yields

¤𝑢 (𝑥) = ¤g𝑀 (Ψ(𝑥)) + ∇g𝑀 (Ψ(𝑥)) · ¤Ψ(𝑥)

+
(
𝜕g

𝜕𝑛
(𝑥) − 𝜕𝑢

𝜕𝑛
(𝑥)

)
V𝑛 (𝑥, 𝜋) on 𝜕Ω(𝜋), (10)

where ∇g𝑀 is the spatial gradient of g𝑀 on the reference surface,

and 𝜕g/𝜕𝑛 = ∇g𝑀 · (𝐽Ψ𝑛𝑥 ), where 𝐽Ψ is the Jacobian of Ψ.

Summary. Combining Equations (8)–(10), we can express the

derivative ¤𝑢 of the BVP solution 𝑢 with respect to the parameters 𝜋

as the solution to the following BVP:

Differential boundary value problem

Δ ¤𝑢 (𝑥) − 𝜎 ¤𝑢 (𝑥) = 0 in Ω(𝜋),
¤𝑢 (𝑥) = D(𝑥, 𝜋)−V𝑛 (𝑥, 𝜋) 𝜕𝑢𝜕𝑛 (𝑥) on 𝜕Ω(𝜋) . (11)

In Equation (11), the function D can be inferred from the right-hand

side of either Equation (9) or Equation (10). We call Equation (11)

the differential boundary value problem. Comparing the differential

BVP with the primary BVP (Equation (3)), we observe the following:

O1. Both BVPs solve the screened Poisson equation with Dirichlet

boundary conditions in the same domain, differing only in their

source term and boundary data.

O2. The two BVPs are nested, as the boundary data for ¤𝑢 in the

differential BVP depends on the solution 𝑢 to the primary BVP.

These observations will facilitate the derivation of Monte Carlo

estimators for the differential BVP in Section 5.1.

5 MONTE CARLO DERIVATIVE ESTIMATION
We now develop Monte Carlo algorithms for estimating the shape-

functional derivative dL/d𝜋 in Equation (7). We do this in two parts:

First, in Section 5.1, we introduce a differential walk on spheres
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algorithm for computing point estimates of ¤𝑢 (·, 𝜋). Then, in Sec-

tion 5.3, we explain how to use these estimates to form Monte Carlo

estimates of the domain and boundary integrals in Equation (7).

The differentiable rendering literature often refers to estimates

of ¤𝑢—and in particular their evaluation on a dense sampling of

the domain Ω(𝜋)—as forward-mode derivatives [Nimier-David et al.

2020; Vicini et al. 2021; Zhang et al. 2023]. Our differential walk on

spheres algorithm in Section 5.1 allows computing such derivatives,

which we visualize in Figure 3, 6, and 8 to evaluate variance and

bias. However, as we explain in Section 5.3, in optimization settings

we can use our algorithm to directly compute so-called reverse-
mode (backward) derivatives dL/d𝜋 with respect to all parameters 𝜋 ,

without storing intermediate forward-mode derivatives. Doing so

is analogous to the radiative backpropagation procedure by Nimier-

David et al. [2020] and Vicini et al. [2021].

5.1 Differential walk on spheres
Observations O1 and O2 provide guidance for how to develop a

Monte Carlo algorithm for estimating ¤𝑢. Observation O1 shows that

the WoS estimator we presented in Section 3.3, for the solution 𝑢 to

the primary BVP (3), can also estimate the solution ¤𝑢 to the differ-

ential BVP (11), with a caveat: Observation O2 shows we must nest
a WoS estimator for the primary BVP within one for the differential

BVP—that is, allow the latter to use the outputs of the former.

The fact that (the normal derivative of) 𝑢 only appears in the

Dirichlet boundary data of the differential BVP Equation (11) makes

this nesting straightforward: Once the WoS estimator for ¤𝑢 reaches

some point inside 𝜕Ω𝜀 (𝜋), to compute the Dirichlet boundary data

needed for termination, it invokes the WoS estimator for 𝜕𝑢/𝜕𝑛, as
we describe below. This nesting is equivalent to a process that starts

a random walk for ¤𝑢 and, at the point where the walk terminates,

starts another random walk for 𝜕𝑢/𝜕𝑛 (Figure 2).

Estimating normal derivatives. Complicating slightly this nesting

procedure is the fact that the boundary condition of the differential

BVP (11) uses not the solution 𝑢, but its normal derivative 𝜕𝑢/𝜕𝑛 at a

boundary point 𝑥 ∈ 𝜕Ω(𝜋). A modified WoS algorithm by Sawhney

and Crane [2020, Section 3] can estimate spatial gradients; however,

as Miller et al. [2023, Section 3.2] explain, it cannot do so at boundary

points. Instead, Miller et al. approximate the normal derivative at 𝑥

at an offset point 𝑥 − ℓ ·𝑛𝑥 with ℓ > 𝜀, which they then estimate with

the modified WoS algorithm [Sawhney and Crane 2020, Equation

13]. The result is the overall estimator

𝜕̂𝑢

𝜕𝑛
(𝑥)

[Miller et al. 2023]

B
𝜕̂𝑢

𝜕𝑛
(𝑥 − ℓ · 𝑛𝑥 ) =

3

ℓ

(
𝑛𝑦 · 𝑛𝑥

)
· 𝑢 (𝑦), (12)

where the point𝑦 is sampled uniformly on the sphere 𝜕B(𝑥 − ℓ · 𝑛𝑥 ).
We instead use backward differences to estimate the normal de-

rivative through an estimate of the solution at the offset point as

𝜕̂𝑢

𝜕𝑛
(𝑥) B g(𝑥) − 𝑢 (𝑥 − ℓ · 𝑛𝑥 )

ℓ
. (13)

In Equations (12) and (13), 𝑢 uses the WoS estimator of Equation (4).

We found empirically (Figure 8) that our approach results in similar

bias but less variance than the approach of Miller et al. [2023]. We

suspect that the backward-differences estimator reduces variance

by avoiding a cosine term over the first ball of the recursive walk.

finite di�erence WoS gradientWoS gradient

Figure 4. Left: The WoS estimator for the normal derivative by Sawhney
and Crane [2020] in Equation (12) is undefined for points on the boundary,
𝑥 ∈ 𝜕Ω (𝜋 ) , so Miller et al. [2023] evaluate it at an offset point 𝑥 − ℓ · 𝑛.
Right: We instead use the backward-difference approximation of the normal
derivative in Equation (13) at the offset point.

A more comprehensive comparison of derivative estimators near

the boundary, including off-centered gradient estimators [Yu et al.

2024, Equation 26], would be a useful future experiment.

Final estimator. Starting at the location 𝑥0 = 𝑥 where we want to

estimate ¤𝑢, we can write our estimator recursively as follows:

Differential walk on spheres estimator

¤̂𝑢 (𝑥𝑘 )B

D(𝑥𝑘 )−

V𝑛 (𝑥𝑘 )
ℓ (g(𝑥𝑘 )−𝑢 (𝑥𝑘 − ℓ𝑛𝑥𝑘 )), 𝑥𝑘∈ 𝜕Ω

𝜀 ,

P(R(𝑥𝑘 ) )
𝑝𝜕B (𝑥𝑘 )

¤̂𝑢 (𝑥𝑘+1), otherwise.
(14)

In Equation (14), 𝑢 is the WoS estimator of Equation (4). As in WoS,

the next walk point 𝑥𝑘+1 is sampled on the sphere 𝜕B(𝑥𝑘 ) with
uniform probability 𝑝𝜕B (𝑥𝑘 ). We term Equation (14) the differential
walk on spheres estimator. As in WoS, we can also combine this esti-

mator with Russian roulette for improved efficiency; we summarize

the resulting procedure in Algorithm 2.

We conclude with two observations about the estimator in Equa-

tion (14): 1. Whereas at any point 𝑥 the solution 𝑢 (𝑥) is a scalar, the
derivative ¤𝑢 (𝑥) is an 𝑁 -dimensional vector, where 𝑁 is the number

of parameters 𝜋 . Algorithm 2 estimates the derivatives with respect

to all parameters 𝜋 with a single walk. 2. Along with a single-sample

estimate of ¤𝑢 (𝑥), Algorithm 2 can provide a single-sample estimate

of 𝑢 (𝑥) by returning the Dirichlet boundary condition at the ter-

minal point g(𝑥) in Line 11—effectively, using the same walk for

both ¤𝑢 (𝑥) and 𝑢 (𝑥). We do not make this modification explicit in

Algorithm 2 to keep the basic algorithm simple, but we use it for

estimation of reverse-mode derivatives in Section 5.3.

5.2 Differential walk on stars
We now return to the BVP (5) with mixed Dirichlet-Robin boundary

conditions. We can derive a Monte Carlo estimator for the derivative

¤𝑢 of its solution 𝑢 with respect to parameters 𝜋 , exactly analogously

to how we did so for the primary BVP (3) in Sections 4.1 and 5.1. In
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Algorithm 2 DiffWalkOnSpheres(𝑥, 𝜀, ℓ)
Input: A point 𝑥 , a termination parameter 𝜀, and an offset ℓ .

Output: A single-sample estimate ¤̂𝑢 (𝑥) for Equation (11).

1: ⊲ Compute distance to and closest point on 𝜕Ω

2: R, 𝑥 ← DistanceToBoundary(𝑥)
3: ⊲ Compute and return boundary value at 𝑥 if 𝑥 ∈ 𝜕Ω𝜀

4: if R < 𝜀 then
5: ⊲ Compute outward normal at 𝑥

6: 𝑛 ← BoundaryNormal(𝑥)
7: ⊲ Compute offset point

8: 𝑜 ← 𝑥 − ℓ𝑛
9: ⊲ Estimate primary BVP solution at offset point

10: 𝑢 ←WalkOnSpheres(𝑜, 𝜀)
11: ⊲ Return boundary value at 𝑥

return D(𝑥) − V𝑛 (𝑥) (g(𝑥) − 𝑢)/ℓ
12: ⊲ Compute recursive contribution scale

13: 𝛼 ← P(R)/𝑝𝜕B (𝑥)
14: ⊲ Attempt to terminate walk using Russian roulette

15: if 𝛼 < SampleUniform(0, 1) then return 0

16: ⊲ Uniformly sample a point 𝑣 on the unit sphere

17: 𝑣 ← SampleUnitSphere()

18: ⊲ Compute next walk point

19: 𝑥 ← 𝑥 + R · 𝑣
20: ⊲ Repeat procedure from next walk point

21: return DiffWalkOnSpheres(𝑥, 𝜀, ℓ)

particular, ¤𝑢 is the solution to the BVP [Henrot and Pierre 2018]

Δ ¤𝑢 (𝑥) − 𝜎 ¤𝑢 (𝑥) = 0 in Ω(𝜋),
¤𝑢 (𝑥) = D(𝑥, 𝜋)−V𝑛 (𝑥, 𝜋) 𝜕𝑢𝜕𝑛 (𝑥) on 𝜕ΩD (𝜋),

𝜕 ¤𝑢
𝜕𝑛 (𝑥) − 𝜇 ¤𝑢 (𝑥) = 0 on 𝜕ΩR .

(15)

The observations O1 and O2 we made for the Dirichlet-only pri-

mary and differential BVPs (Equations (3) and (11)) also hold for

their mixed Dirichlet-Robin counterparts (Equations (5) and (15)).

Importantly, in the latter case nesting happens through only the

Dirichlet boundary condition. Thus, we can estimate ¤𝑢 using a dif-

ferential WoSt algorithm that relates to the original WoSt exactly

analogously to the relationship between differential and original

WoS (Algorithms 1 and 2): Namely, the differential WoSt estimator

performs a random walk to estimate ¤𝑢, until it reaches a point in
the 𝜀-shell around 𝜕ΩD; there, it invokes the WoSt estimator, which

performs another random walk to estimate 𝜕𝑢/𝜕𝑛. In Section 7.3, we

use this differential WoSt algorithm in a thermal design setting.

We emphasize that the above approach applies only to the case

where the Robin boundary condition in Equation (5) is independent

of the parameters 𝜋 we optimize. We leave parameterizing and

differentiating the Robin boundary condition to future work, but

discuss challenges with such an extension in Section 8.

5.3 Computing reverse-mode derivatives
We approximate the domain and boundary integrals in Equation (7)

using Monte Carlo integration, by uniformly sampling points in

the domain Ω(𝜋) (for the first integral) or boundary 𝜕Ω(𝜋) (for the

second integral), and evaluating the corresponding integrands at

those locations. Evaluating the integrand at different sample points

𝑥 ∈ Ω(𝜋) requires computing the loss function derivative L
′
, which

in turn requires computing values for both 𝑢 and ¤𝑢. The option to

share walks between the primary and differential WoS estimators

of these values creates opportunities for optimization. To elaborate,

in the rest of this section, we specialize to the squared loss function

L(𝑢 (𝑥)) B 1/2∥𝑢 (𝑥) − 𝑢
ref
(𝑥)∥2. Then

d L

d𝜋
(𝑢 (𝑥)) = 𝑢 (𝑥) ¤𝑢 (𝑥) − 𝑢

ref
(𝑥) ¤𝑢 (𝑥) . (16)

We discuss two baseline approaches to estimate Equation (16), and

in particular the product𝑢 ¤𝑢. Then we propose our own improved ap-

proach. For this discussion, we assumewe have performed 2𝑀 walks

of Algorithm 2, augmented as we described above so that each walk

estimates both 𝑢 and ¤𝑢, with corresponding outputs

{
𝑢̂𝑚, ¤̂𝑢𝑚

}
2𝑀

𝑚=1
.

We visualize all approaches in Figure 5 for the case𝑀 = 1.

Uncorrelated product estimator. The first baseline approach uses

disjoint sets of walks—equivalently, separate calls to Algorithm 1

and Algorithm 2—to compute independent estimates 𝑢̂ and ¤̂𝑢, then
computes their product. We can express this approach as

𝑢̂ B
1

𝑀

𝑀∑︁
𝑚=1

𝑢̂𝑚, ¤̂𝑢 B 1

𝑀

2𝑀∑︁
𝑚=𝑀+1

¤̂𝑢𝑚, ⟨𝑢 ¤𝑢⟩unc B 𝑢̂ · ¤̂𝑢. (17)

This approach is unbiased:
3
from independence,E[⟨𝑢 ¤𝑢⟩unc] = E

[̂
𝑢
]
·

E
[̂
¤𝑢
]
. However, it is sample-inefficient: it does not leverage the fact

that each walk produces estimates for both 𝑢 and ¤𝑢, resulting in

variance that scales as O(1/𝑀2).

Correlated product estimator. The second baseline approach uses

all walks to compute correlated estimates 𝑢̂ and ¤̂𝑢, then again com-

putes their product. We can express this approach as

𝑢̂ B
1

2𝑀

2𝑀∑︁
𝑚=1

𝑢̂𝑚, ¤̂𝑢 B 1

2𝑀

2𝑀∑︁
𝑚=1

¤̂𝑢𝑚, ⟨𝑢 ¤𝑢⟩cor B 𝑢̂ · ¤̂𝑢. (18)

Conversely to the uncorrelated approach, this approach is sample-

efficient: it uses outputs for both 𝑢 and ¤𝑢 from all walks, and thus

reduces variance at a faster rate O(1/4𝑀2). However, it is biased:
because of correlation, E[⟨𝑢 ¤𝑢⟩cor] ≠ E

[̂
𝑢
]
· E

[̂
¤𝑢
]
.

Our approach: U-statistic product estimator. To combine unbiased-

ness and sample efficiency, we introduce an approach that uses

U-statistics—a methodology from statistics [Lee 1990] for combin-

ing estimators input to symmetric functions (e.g., product) without
introducing bias. Within computer graphics, Kettunen et al. [2021]

used U-statistics to evaluate power-series transmittance estimators.

The U-statistic product estimator uses all pairwise combinations

of estimates 𝑢̂𝑚 and ¤̂𝑢𝑚′ such that𝑚 ≠𝑚′

⟨𝑢 ¤𝑢⟩U-stat B
1

2𝑀 (2𝑀 − 1)

2𝑀∑︁
𝑚=1

2𝑀∑︁
𝑚′=1
𝑚′≠𝑚

𝑢̂𝑚 ¤̂𝑢𝑚′ . (19)

Compared to the correlated estimator ⟨𝑢 ¤𝑢⟩corr in Equation (18),

we observe that the U-statistic summation: 1. excludes only the

3
More precisely, it does not introduce additional bias beyond that from the primary and

differential WoS estimators (due to the 𝜀-shell and normal-derivative approximations).
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unbiased

walk #1 walk #2estimators

Figure 5. A Monte Carlo estimate of the product ⟨𝑢 ¤𝑢 ⟩ requires estimating
both the solution 𝑢 and derivative ¤𝑢. A single sampled walk simultaneously
provides estimates of 𝑢 and ¤𝑢, but the product estimates 𝑢 ¤𝑢 are correlated
and introduce bias. Rather than resort to uncorrelated estimates, which
uses a single estimate from each walk, U-statistics shares complementary
estimates across walks, which reduces variance without introducing bias.

2𝑀 correlated product terms 𝑢̂𝑚 ¤̂𝑢𝑚 to achieve unbiasedness, i.e.,
E[⟨𝑢 ¤𝑢⟩U-stat] = E

[̂
𝑢
]
· E

[̂
¤𝑢
]
; 2. includes all other 2𝑀 (2𝑀 − 1) prod-

uct terms to achieve sample efficiency, reducing variance at a rate

O(1/4𝑀2). We can write Equation (19) equivalently as

⟨𝑢 ¤𝑢⟩U−stat =
1

2𝑀 (2𝑀 − 1)

2𝑀∑︁
𝑚=1

¤̂𝑢𝑚
(
𝑆 − 𝑢̂𝑚

)
, 𝑆 B

2𝑀∑︁
𝑚=1

𝑢̂𝑚 . (20)

Equation (20) provides a way to compute the U-statistic estima-

tor in O(2𝑀) time, resulting in negligible computational overhead

compared to the correlated and uncorrelated estimator. However,

this estimator introduces a memory overhead, due to the need to

store 𝑢̂𝑚 and ¤̂𝑢𝑚 estimates as we sample walks. In our implemen-

tation, we strike a balance between sample efficiency and memory

efficiency by applying U-statistics in batches of 𝐵 < 2𝑀 walks,

computing Equation (20) after every 2𝑀/𝐵 walks. In Section 6.3, we

evaluate experimentally the performance of the U-statistic estimator

compared to the uncorrelated and correlated ones, confirming it

achieves sample efficiency while retaining unbiasedness.

Other loss functions. Our discussion assumed the squared loss

function, but similar considerations apply to any other differentiable

loss function L: namely, we can apply the uncorrelated, correlated,

and U-statistic estimators to the product d L/d𝜋 = ¤𝑢 L′ (𝑢), instead of

¤𝑢𝑢. In this case, none of the estimators will be unbiased, because in

general E[L′ (𝑢)] ≠ L
′ (E[𝑢]). However, we expect that the relative

performance of the three estimators in terms of bias and sample

efficiency will remain the same as in the case of the squared loss.

Our discussion on estimation of products ¤𝑢 L′ (𝑢) for reverse-
mode differentiation finds exact parallels in differentiable rendering,

where such products appear when differentiating inverse rendering

objectives. For example, Gkioulekas et al. [2016, Section 5] explain

the need to use uncorrelated sets of paths for unbiased estimation

of squared-loss derivatives; and Nicolet et al. [2023, Section 4] ex-

plain the bias when using other loss functions. These works also

highlight the critical role of unbiasedness in ensuring convergence

of stochastic gradient optimization, justifying our own focus on

reducing bias while maintaining sample efficiency in reverse-mode

derivatives. Given these parallels, our U-statistic estimator could

potentially be useful also in differentiable rendering applications.

solution FD (converged) FD (equal time) ours
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Figure 6. Finite-difference (FD) approximations of derivatives (middle-right)
require only primary walks, but scale poorly with parameter count. Differen-
tial WoS (far-right) instead computes derivatives for all parameters 𝜋 with
a single differential walk, leading to less noisy results at equal time.

6 IMPLEMENTATION AND EVALUATION
We implement differential WoS on top of the open-source Zombie
library [Sawhney and Miller 2023], without any changes to its WoS

orWoSt routines for solving primary BVPs. For optimization, we use

a combination of vector Adam [Ling et al. 2022] for shape parameters

(e.g., mesh vertices), and Adam [Kingma and Ba 2015] for all others

parameters (e.g., pose, rotation, color values). We use a constant

learning rate of 10
−3
, and exponential annealing of the number of

walks per evaluation point (Section 6.2).

Before applying our solver to shape optimization problems in Sec-

tion 7, in this section we evaluate several aspects of its performance:

We first evaluate the accuracy of its derivative estimates against

finite differencing (Section 6.1). We then study the impact of noisy

derivatives on optimization (Section 6.2). We finally conduct an

ablation study of hyperparameters and design choices (Section 6.3).

6.1 Comparison to finite differencing
To validate the accuracy of the derivative estimates output by our

differential WoS estimator, we compare them in Figure 6 against

estimates from finite differencing (specifically using forward differ-

ences). We make two observations: 1. When run till convergence,

both techniques produce very similar outputs, thus providing evi-

dence in support of the accuracy of our differential WoS estimator.

2. When run for equal time, differential WoS produces estimates of

much lower RMSE than finite differencing. The performance im-

provement differential WoS provides becomes more pronounced as

the number of parameters increases. The reason is that, to compute

derivatives with respect to 𝑁 parameters, finite differencing must

perform 𝑁 + 1 independent primary walks; by contrast, differen-

tial WoS needs to perform only one differential walk irrespective

of the value of 𝑁 . The only overhead on differential WoS as 𝑁 in-

creases is storing a sparse vector of derivatives and computing, at

the end of the walk, additional normal velocity terms V𝑛 (𝑥, 𝜋) for
any parameter that influences the boundary at the terminal location.
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Figure 7. Monte Carlo estimation allow us to trade off between efficiency
and noise during optimization by choosing the number of walks used for
each derivative estimate. At equal time (middle), noisy derivatives make
more progress towards the optimal parameters 𝜋 , while at equal iterations
(right), refined derivatives reach a more optimal solution.

Importantly, the number of WoS calls—or equivalently, the total

number of walks—is constant with respect to 𝑁 .

6.2 Optimization with noisy derivatives
In Figure 7, we show an experiment where we optimize the position

of a mesh so as to match the solution to a screened Poisson equation

on a nearby slice plane. We use this setting to evaluate how the

variance of derivative estimates impacts optimization convergence

and runtime. To this end, we optimize the mesh position by varying

the number of differential walks per point (WPP) on the slice plane.

Using a smaller WPP results in derivative estimates that are noisier

yet also faster to compute; and conversely for larger WPP.

Our experiments show that, at equal time, using noisy derivatives
(2 WPP) performs much better (i.e., achieve faster progress towards
the target mesh position) than using accurate derivatives (16 WPP

or 128 WPP). On the other hand, at equal number of iterations, using
more accurate derivatives converges faster than using noisy deriva-

tives. This behavior highlights a critical advantage of stochastic

gradient optimization, namely its ability to improve optimization

runtime by using noisy (but unbiased) gradients to trade off between

accuracy of descent directions versus iteration cost [Kushner and

Yin 2003; Bottou and Bousquet 2008]. In practice, to ensure stable

convergence, we follow Pfeiffer and Sato [2018] and progressively

increase WPP using the annealing schedule

WPP𝑡 = WPP0 · exp(log(WPP𝑇 /WPP0) · 𝑡/𝑁 ) . (21)

Here 𝑇 is the number of total iterations, 𝑡 = 1, . . . ,𝑇 is the current

iteration, and WPP0 and WPP𝑇 are the number of walks at the start

and end of the optimization (resp.). This schedule provides fast-to-

compute, but approximate descent directions in the early stages

of the optimization where accuracy is not as important, and more

accurate directions in the latter stages.

6.3 Ablations
In Figure 8, we ablate hyperparameters of differential WoS to com-

pare the RMSE of estimated derivatives against reference derivatives

computed using finite-differences. We use a 2D bunny mesh normal-

ized to fit inside a unit sphere along with spatially varying Dirichlet

boundary conditions, and compute the derivative ¤𝑢 (𝑥, 𝜋) with re-

spect to a 𝑦-translation of the mesh.

𝜀-shell size. As Figure 8(a) shows, a larger 𝜀 value leads to lower

variance but larger bias. We use 𝜀 = 10
−3

(corresponding to 1/1000×
the dimension of the scene’s bounding cube) for all other experi-

ments, as it provides a reasonable balance between bias and variance.

Normal derivative estimator. As Figure 8(b) shows, our backward-
difference estimator (Equation (13)) achieves 20% lower RMSE than

the estimator by Miller et al. [2023] (Equation (12), implemented in

Zombie [Sawhney and Miller 2023] with antithetic sampling and

control variates for reduced variance). We thus use the backward-

difference estimator in all other experiments. We expect the perfor-

mance difference between the two estimators to be smaller if the

point 𝑦 ∈ 𝜕B in Equation (12) is sampled using cosine-weighted

sampling [Pharr et al. 2023, Section 13.6.3].

Normal derivative offset. As Figure 8(c) shows, the offset ℓ in the

backward-difference estimator (13) can result in increased bias if it

is either too small or too large. In the extreme case when ℓ < 𝜀, WoS

terminates immediately and returns the estimate𝑢 (𝑥−ℓ ·𝑛𝑥 ) = g(𝑥),
thus incorrectly always outputting zero normal derivative estimates.

At ℓ = 𝜀, half of the first WoS steps will be inside the epsilon shell,

which still leads to significant bias. Moving in the opposite direction,

a large value ℓ = 100×𝜀 results in noticeable bias due to discretization
error. Empirically, we found ℓ = 10 × 𝜀 to perform well, and thus

use this value for all other experiments.

U-statistic estimator. Figure 8(d) compares our U-statistic estima-

tor (with a batch size 𝐵 = 8) and the uncorrelated and correlated

estimators from Section 5.3. Relative to the uncorrelated estima-

tor, the correlated estimator increases bias but reduces variance,

overall improving RMSE (which includes both bias and variance)

by about 10 − 25% depending on the WPP. Our U-statistic estima-

tor achieves comparable RMSE to the correlated estimator, while

remaining unbiased. We choose to use the U-statistic estimator in

all other experiments, despite the fact that the correlated estimator

slightly outperforms it in terms of RMSE. This choice is because

prior work in differentiable rendering [Nicolet et al. 2023; Luan et al.

2021] has shown that low-variance yet biased derivative estimates

can hinder convergence of stochastic gradient optimization.

7 GEOMETRIC EXAMPLES
We apply differential WoS on a range of PDE-constrained shape

optimization tasks, including: diffusion-based pose estimation (Sec-

tion 7.1) and surface reconstruction (Section 7.2), thermal design

(Section 7.3), image-space curve inflation (Section 7.4), and inverse

diffusion curves (Section 7.5). In most examples we optimize only

boundary geometry, though we show joint optimization of bound-

ary geometry and data in Section 7.5. We report detailed statistics

for each optimization task in Table 1. The project website includes:

1. a video file visualizing the optimization process for all of our

examples; and 2. code for our implementation.
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Figure 8. We ablate various hyperparameters of differential WoS on a 2D scene with spatially varying Dirichlet boundary conditions, to study the convergence
of derivative estimates. Derivatives are computed with respect to a translation of the mesh in the 𝑦-direction.

7.1 Pose estimation
Background. Pose estimation seeks to recover the position, ori-

entation, and scale of a known shape. A challenging subset of this

problem uses measurements of light partially obscured by scattering

on a diffusive surface [Isogawa et al. 2020] or through a diffusive

medium [Raviv et al. 2014]. We consider the latter scenario in Fig-

ure 9, where we approximate radiative transport in diffusive media

with a screened Poisson equation [Wang and Wu 2007, Ch. 5].

Setup. In Figure 9, we model a fixed-shape emissive object as a

Dirichlet boundary, and optimize seven pose parameters: four for

rotation and scale (Euler-Rodrigues parameterization), and three

for translation. The Dirichlet boundary influences the image plane

measurements via the primary BVP (3) with f = 0 and g = 1.

Output-sensitive optimization. Our differential WoS algorithm can

efficiently optimize shape functionals (6) that are localized, through

the masking function M, in small subsets of the domain Ω(𝜋): As a
pointwise estimator, differential WoS can estimate gradients only at

locations where M = 1, unlike conventional grid-based solvers that

are constrained to output derivatives over the entire domain—thus

wasting significant compute. This output sensitivity of differential

WoS makes it well-suited to application settings where we can only

initial optimized target

iters

R
M

SE

configuration

0 1
initial 375 iters 750 iters optimized target

Figure 9. We recover the rotation, position, and scale of a complex boundary
mesh (116k faces) to match a solution profile on an image plane (top right).

measure physical quantities (e.g., light, heat, electric potentials)

locally. To demonstrate output sensitivity, in Figure 9 we optimize

pose by minimizing a shape functional that uses the squared loss

L and a mask M to compare with a reference solution only on an

image plane (Figure 9, top right corner). Differential WoS allows us

to focus all computation only on this image plane.

7.2 Shape from diffusion
Background. Differentiable Monte Carlo rendering algorithms

[Zhang et al. 2023], alongside effective preconditioners [Nicolet

et al. 2021], have recently shown great promise for shape recon-

struction tasks from radiometric images, providing benefits such as

geometric robustness and scalability, output sensitivity, and trivial

parallelism. Differential WoS can bring the same benefits to shape

reconstruction tasks from measurements of diffusive phenomena

that can be modeled via elliptic PDEs. Such measurements can

arise in medical imaging applications due to deep tissue scattering

[Schweiger et al. 1995; Arridge 1999], or from alternative imaging

modalities such as thermal imaging [Harbrecht and Tausch 2013].

In Figures 1 and 10, we show proof-of-concept experiments for such

shape-from-diffusion tasks.

Setup. As in the pose estimation experiment, we model an emis-

sive object of unknown shape as a Dirichlet boundary with constant

Dirichlet data. We represent the object as triangular mesh, initial-

ized to a spherical shape. We optimize the mesh vertices to match a

reference solution specified on the six faces of a bounding box, as

in Figure 1 (top right). The emissive object influences the solution

on the bounding box via the primary BVP (3) with f = 0 and g = 1.

Gradient preconditioning. During optimization, we use the Lapla-

cian gradient preconditioner from Nicolet et al. [2021], and remesh

every 100 iterations [Botsch and Kobbelt 2004]. In addition to Vector

Adam, we also follow the suggestion of Nicolet et al. [2021] to adapt

step size using the maximum momentum across all parameters.

High-frequency details. Surface details are faithfully reconstructed
to the extent to which they influence diffusive measurements. Due to

diffusion, fine geometry details have little influence on the solution

at points away from the emissive boundary. We showcase this phe-

nomenon in Figure 10 (bottom row): reconstructing a low-frequency
approximation to the ground truth high-frequency sphere geometry

perfectly reproduces the reference solution.
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Figure 10. Inspired by shape-from-diffusion applications, we use measurements on a bounding box (far right, column) to evolve 3D models starting from
a sphere (left). As with any reconstruction through a diffusive medium, high-frequency surface details have negligible influence on the solution, and are
therefore not captured in the reconstructions (bottom row).

7.3 Optimization-driven thermal design
Background. Elliptic PDEs are at the heart of classic optimization-

driven design problems ranging from finding airfoil shapes that min-

imize drag at cruising speeds, to constructing electromagnets that

induce fields with specific characteristics [Pironneau 1984]. Recently,

thermal systems have become a major focus of optimization-driven

design [Zhan et al. 2008; Dbouk 2017], as the shape of components

can critically impact, for instance, the performance of integrated

circuits or the effectiveness of heat exchangers.

Setup. In Figure 11, we optimize toaster heating elements to

achieve a target temperature profile on a slice of bread. Follow-

ing Sawhney et al. [2023, Section 6.5], we model conductive heat

transfer from the toaster wires (corresponding to a parameterized

Dirichlet boundary 𝜕ΩD (𝜋) with 500 line segments) to the slice of

bread (corresponding to a fixed Neumann boundary 𝜕ΩR with 250k

faces), by solving the BVP (5) with f = 0, g = 1, 𝜇 = 0, and h = 0.

As this is a mixed Neumann-Dirichlet BVP, we use the differential

WoSt algorithm of Section 5.2 for optimization.

Similar to Sawhney et al. [2023], we visualize the solution using a

phenomenological model that maps temperature𝑢 (𝑥, 𝜋) to color val-
ues. We further constrain the heating elements by regularizing their

polyline geometry with a bending and stretching energy [Bergou

et al. 2008]. Though we cannot achieve arbitrarily sharp temperature

profiles due to the physical constraints of diffusive heat transfer, we

find the closest physically realizable profiles.

Output-sensitive optimization. The heating elements are optimized

with respect to a temperature loss defined on the Neumann bound-

ary 𝜕ΩR. To determine the reference temperature on 𝜕ΩR, we project

a target temperature profile 𝑢
ref

from an image plane S onto 𝜕ΩR

via ray tracing—we denote this projection operation as proj(𝑥). Do-
ing so, we can avoid directly integrating our loss over all 250k faces

on 𝜕ΩR, and instead integrate it over just the image plane,

L(𝜋) B
∫
S
∥𝑢 (proj(𝑥), 𝜋) − 𝑢

ref
(𝑥)∥2 d𝑥 (22)

This “deferred shading” approach evaluates derivatives at the mini-

mum resolution necessary to capture the details in the target tem-

perature profile (i.e., 1282 resolution grid), and only from visible

locations on 𝜕ΩR (i.e., the front of the slice of bread). Compared

to a naive evaluation at 124k mesh faces of 𝜕ΩR, deferred shading

reduces the number of evaluation points by an order of magnitude.

Local modifications. When updating a temperature profile resem-

bling the word “ham” to the word “jam”, we initialize with the

heating elements optimized for “ham”. Output-sensitive optimiza-

tion lets us optimize with respect to the loss only over the letter “j”,

which reduces average iteration time by over 80%.

7.4 Image-space curve inflation
Background. Many prior works have observed the central rela-

tionship between silhouettes and 3D shape [Ikeuchi and Horn 1981;

Cipolla and Giblin 2000; DeCarlo et al. 2003], which allows depth
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Figure 11. We optimize the heating elements of a toaster (Dirichlet boundary, middle row) to achieve a target temperature profile (bottom row) on a slice of
bread (Neumann boundary, top row). For partial updates to a target profile (e.g.“ham” to “jam”, bottom right), we leverage locality-sensitive optimization by
computing derivatives only over the modified profile.
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Figure 12. Baran and Lehtinen [2009] define smooth heightfields over a
domain as the solution to a Poisson equation with zero Dirichlet boundary
conditions. We optimize an implicit boundary, specifically the position and
scale of harmonic radial basis functions, to achieve a target heightfield
visualized as a shaded surface (top row).

to be modeled in image space as the solution to a Poisson equation

with boundary conditions imposed along silhouettes [Ikeuchi and

Horn 1981; Gorelick et al. 2006]. Inspired by this relationship, Baran

and Lehtinen [2009] propose an artistic curve inflation model where

height is modeled as a solution to the BVP Equation (3) with 𝜎 = 0,

f = 4, and g = 0. Intuitively, the height𝑢 is zero on the boundary, and

is smoothly “inflated” into the interior of Ω(𝜋). Thus controlling the
boundary of the BVP allows controlling the resulting height field.

We consider the inverse problem in Figure 12, where we recover the

boundary from a heightfield produced with curve inflation.

Setup. In Figure 12, we optimize the boundary 𝜕Ω(𝜋) to match a

reference heightfield 𝑢
ref
(𝑥)—which we visualize as a shaded sur-

face. We represent the boundary 𝜕Ω(𝜋) implicitly as the zero-level

set of a function ℎ(𝑥, 𝜋) parameterized as the sum of 𝑁 harmonic

monopoles—each with a scale 𝑎𝑛 ∈ R and position 𝑝𝑛 ∈ R2

ℎ(𝑥, 𝜋) B 𝑐 +
𝑁∑︁
𝑛=1

𝑎𝑛

∥𝑥 − 𝑝𝑛 ∥
, 𝜕Ω(𝜋) B

{
𝑥 ∈ R2 : ℎ(𝑥, 𝜋) = 0

}
. (23)

By using an implicit representation, we can easily handle large topo-

logical changes to the boundary, as we show in Figure 12. Applying

differential WoS in this setting requires simply implementing con-

servative closest point queries for this implicit representation. As ℎ

is a harmonic function, we can achieve this using Harnack bounds
[Gillespie et al. 2024]: these bounds provide a conservative radius
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Figure 13. Inspired by Zhao et al. [2017], we optimize Bézier curves and
RGB boundary conditions to generate a diffusion solution that matches
a target image. Unique to differential WoS, we can directly optimize the
control points and handles of the Bézier curves.

for an empty sphere at any point, as well as a gradient-sensitive

condition |ℎ(𝑥) | < |∇ℎ(𝑥) |𝜀 for terminating walks at an 𝜀-shell.

Implicit boundary integrals. Direct sampling of the boundary in-

tegral in the shape functional derivative (7) is not feasible in this

example, because the boundary is defined implicitly. We instead

approximate the boundary integral as a volume integral,

dL
d𝜋
(𝜋) ≈

∫
Ω (𝜋 )\𝜕Ω𝜀 (𝜋 )

¤𝑢 (𝑥, 𝜋) L′ (𝑢 (𝑥, 𝜋)) d𝑥

+ 1

2𝜀

∫
𝜕Ω𝜀 (𝜋 )

V𝑛 (𝑥, 𝜋) L(𝑢 (𝑥, 𝜋)) d𝑥, (24)

where 𝜕Ω𝜀 (𝜋) B {𝑥 ∈ Ω(𝜋) : min𝑦∈𝜕Ω (𝜋 ) ∥𝑥 − 𝑦∥ < 𝜀}. In the

limit of 𝜖 → 0 we recover the original boundary integral.

7.5 Inverse diffusion curves
Background. Orzan et al. [2013] introduced diffusion curves as a

vector graphic primitive that models images as the solution 𝑢 (𝑥) :
Ω → [0, 1]3 to a Laplace equation—that is, the BVP Equation (3) with
𝜎 = 0 and f = 0—with RGB-valued Dirichlet boundary conditions

g(·, 𝜋) along a boundary 𝜕Ω(𝜋) represented as Bézier curves. Rather
than manually create diffusion curves, Zhao et al. [2017] optimize

𝜕Ω(𝜋) and g(·, 𝜋) to match a target image. They use FEM to solve

Equation (3), which constrains them to use a polyline boundary

representation. As we show in Figure 13, with differential WoS we

can instead optimize a boundary encoded using Bézier curves.

Setup. We jointly optimize over both the Bézier curves 𝜕Ω(𝜋)
and the RGB-valued Dirichlet boundary conditions g(·, 𝜋) to match

a target image. We enforce 𝐺1
continuity connections between the

curves, by parameterizing the boundary so that adjacent Béziers

have co-linear control handles. Our optimization also accounts for

continuous Dirichlet conditions arising from linear interpolation of

RGB values between control points.

Monte Carlo length regularization. We follow Zhao et al. [2017,

Section 5.3] and use a length regularizer 𝑅(𝜋) B 𝛼
∫
𝜕Ω (𝜋 ) d𝑙 (𝑥) to

penalize geometrically complex curves. During optimization, we

use Monte Carlo estimation of the derivative of this regularizer:

¤𝑅(𝜕Ω(𝜋)) = 𝛼

∫
𝜕Ω (𝜋 )

𝜅 (𝑥) V𝑛 (𝑥) d𝑙 (𝑥) (25)

where 𝜅 is the curvature of the Bézier curve (available in closed

form). To ensure the regularization is scaled appropriately rela-

tive to estimator variance, we decay its strength using a schedule

𝛼𝑡 B 𝛼0 (WPP0/WPP𝑡 )−1/2, where 𝛼𝑡 andWPP𝑡 are the regularization

strength and WPP (resp.) at the 𝑡𝑡ℎ gradient iteration. We choose

the decay rate of the schedule to match the expected Monte Carlo

convergence rate of O(𝑛−1/2).

8 CONCLUSION AND FUTURE WORK
We introduced a differential walk on spheres method to estimate

derivatives with respect to perturbations of the domain boundary.

In developing this method, we crucially take the approach of differ-

entiating the functional relationship in Equation (3) rather than the

estimator in Equation (4). This approach allows us to easily adapt

the the classic WoS method, used for solving primary PDEs [Muller

1956; Sawhney and Crane 2020], into a method for solving a set of

nested BVPs for the parameter derivative.

Even though these nested BVPs are well known in the shape opti-

mization literature [Henrot and Pierre 2018], using WoS to estimate

them brings to PDE-constrained shape optimization the unique

benefits of Monte Carlo methods—output-sensitive evaluation, geo-

metric robustness and flexibility, and the scalability of stochastic

gradient-based optimization. We illustrated these benefits through

varied geometric examples, yet our method is only a first step to-

wards applying Monte Carlo PDE solvers to real-world inverse

problems. To help further this goal, we discuss generalizations and

improvements for enhancing the capabilities of our method.

More sophisticated physical models. We focused on the screened

Poisson equation due to its conceptual simplicity and widespread

use in graphics and other sciences. This PDE already places our

technique within scope for inverse problems used in practice. For in-

stance, medical imaging with electrical impedance tomography [Ch-

eney et al. 1999] involves optimizing a variable diffusion coefficient

in a screened Poisson equation with Robin boundary conditions

[Uhlmann 2009]—recent work generalizes WoS to PDEs of this form

[Sawhney et al. 2022; Miller et al. 2024]. Thermal imaging techniques

like shape from heat [Chen et al. 2015] require simulating both the

propagation of infrared light and the transfer of heat through solids

via conduction. Already Bati et al. [2023] have developed such a

Monte Carlo solver for coupled heat transfer; a differential variant

could be derived by considering both differentiable rendering and

differential WoS. However, more general inverse problems require

extending our technique to more general PDEs. For example, the

design of heat exchangers [Feppon 2019] involves simulating the

coupled physics of convection and conduction, often via simplified

models for the flow of fluids and heat diffusion (resp.)—simulation

of fluids in a Monte Carlo framework with WoS (and related solvers)

has recently garnered attention in graphics [Rioux-Lavoie et al. 2022;

Jain et al. 2024; Sugimoto et al. 2024].

Parameterized Robin boundaries. We discussed in Section 5.2 how

WoSt [Sawhney et al. 2023; Miller et al. 2024] can be used, in a limited

ACM Trans. Graph., Vol. 43, No. 6, Article 174. Publication date: December 2024.
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Table 1. We report the average iteration time of differential WoS across a variety of applications. For certain applications, we increase the number of
differential walks per point on an exponential schedule (indicated by “initial→ final” in the table). The number of differential walks lists the walks per
iteration, whereas the number of primary walks lists the number of recursive walks to estimate the differential boundary condition, for each differential walk.
All applications were run on a 12 core i9-10920X Intel CPU, except for curve inflation which was prototyped on a NVIDIA 3090 GPU.

application geometry 𝜕Ω(𝜋) parameters 𝜋 # eval pts # diff. walks # primary walks # iters avg. iter time (s)

pose estimation mesh (58k vertices) pose matrix 128
2

2→ 64 2 1.5k 8s

surface reconstruction mesh (2.5k vertices) vertex pos. 6 × 642 16→ 256 16 1k 82s

thermal design polylines (500 vertices) vertex pos. 128
2

4→ 16 8 250 12s

curve inflation implicit (32 monopoles) pos. & scale 128
2

4 4 150 2s

diffusion curves Béziers (14 curves) pos. & tangents 128
2

2→ 64 2 1k 3s

capacity, to optimize the Dirichlet boundary in a mixed Dirichlet-

Robin BVP. Optimizing parameterized Robin boundaries 𝜕ΩR (𝜋) is
likewise possible by evaluating a corresponding nested Dirichlet-

Robin BVP [Henrot and Pierre 2018, Page 230, Eq 5.79]. In this case,

nesting occurs via a differential Robin boundary condition evaluated

at each step of the differential WoSt estimator. However unlike

Equation (15), this boundary condition involves evaluating second-

order spatial gradients that can lead to high variance—lowering

noise of such gradients is necessary to make this approach practical.

Open boundaries. In Section 4 we restricted our discussion to

closed boundaries, and this restriction is a current limitation of our

method. The reason for this restriction is that, when working with

an open boundary, the differential BVP will include a boundary

condition with a Dirac delta term on the boundary perimeter. WoS

cannot importance sample such localized boundary conditions, and

thus this limitation also constrains differential WoS. This limitation

could be overcome by using alternative bidirectional solvers [Qi

et al. 2022; Miller et al. 2024] that simulate reverse random walks

starting from the boundary. Support for open boundaries should be

possible by using reverse differential walks with our method.

Variance reduction. More generally, any improvement in estima-

tion quality to the underlying WoS estimator should translate di-

rectly to differential WoS—this includes recently developed variance

reduction strategies for WoS [Qi et al. 2022; Miller et al. 2023; Bak-

bouk and Peers 2023; Li et al. 2023] we did not consider in this

paper for simplicity. Specific to geometric optimization, it is also

worthwhile investigating how to reuse derivative estimates with

similar values across successive iterations in an optimization to

improve efficiency; such strategies have found success in differ-

entiable Monte Carlo rendering, in the form of recursive control

variates [Nicolet et al. 2023] and reservoir-based temporal impor-

tance resampling [Chang et al. 2023]. Finally, we should improve

upon the basic finite difference schemewe use in Section 5.1 to lower

both the variance and bias in our normal derivative estimates—the

alternative normal derivative estimator developed by Yu et al. [2024]

applies directly to our method as well.
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A DIFFERENTIATION OF DIRICHLET BOUNDARY
CONDITION WITH TEXTURE MAPPING

We consider boundary data g B g𝑀 ◦ Ψ that composes the inverse

parameterization Ψ(·, 𝜋) : 𝜕Ω(𝜋) → [0, 1]2 with a texture function

g𝑀 (·, 𝜋) : [0, 1]2 → R. We determine the boundary condition to use

in the differential BVP by implicitly differentiating the boundary

condition of the BVP (3)—which we reproduce here:

𝑢 (𝑥, 𝜋) = g(𝑥, 𝜋) = g𝑀 (Ψ(𝑥, 𝜋), 𝜋) on 𝜕Ω(𝜋) . (26)

Differentiating the left-hand side and using the chain rule yields:

d

d𝜋
𝑢 (𝑥, 𝜋) = ¤𝑢 (𝑥, 𝜋) + ∇𝑢 (𝑥, 𝜋) · V(𝑥, 𝜋) . (27)

Doing likewise for the right-hand side gives us:

d

d𝜋
g𝑀 (Ψ(𝑥, 𝜋), 𝜋) = ¤g𝑀 (Ψ(𝑥, 𝜋), 𝜋)

+ ∇g𝑀 (Ψ(𝑥, 𝜋), 𝜋)
d

d𝜋
Ψ(𝑥, 𝜋) (28)

= ¤g𝑀 (Ψ(𝑥, 𝜋), 𝜋)
+ ∇g𝑀 (Ψ(𝑥, 𝜋), 𝜋)

·
( ¤Ψ(𝑥, 𝜋) + ∇Ψ(𝑥, 𝜋) V(𝑥, 𝜋)) . (29)

We use the identity ∇g𝑀 · ∇Ψ = ∇g and make dependence on 𝜋

implicit to simplify this expression:

d

d𝜋
g𝑀 (Ψ(𝑥)) = ¤g𝑀 (Ψ(𝑥))

+ ∇g𝑀 (Ψ(𝑥)) · ¤Ψ(𝑥) + ∇g(𝑥) V(𝑥, 𝜋). (30)

Lastly, we note that, as Equation (26) requires that 𝑢 and g agree

along the boundary, their tangential gradients are the same. Thus,
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by equating Equations (27) and (30) and eliminating tangential com-

ponents on both sides, we arrive at the boundary condition:

¤𝑢 (𝑥) = ¤g𝑀 (Ψ(𝑥)) + ∇g𝑀 (Ψ(𝑥)) · ¤Ψ(𝑥)

+
(
𝜕g

𝜕𝑛
(𝑥) − 𝜕𝑢

𝜕𝑛
(𝑥)

)
V𝑛 (𝑥, 𝜋) on 𝜕Ω(𝜋), (31)

which is the same as Equation (10).

B THE ADJOINT BOUNDARY VALUE PROBLEM
We briefly comment on an alternative formulation for computing

derivatives of PDE-constrained shape functionals L(𝜋) as in Equa-

tion (6). Zhao et al. [2017] and Henrot and Pierre [2018, Section 5.8]

show that we can express the derivative of the shape functional as:

dL
d𝜋
(𝜋) =

∫
𝜕Ω (𝜋 )

𝜕𝑎

𝜕𝑛
(𝑦)

(
𝜕g

𝜕𝑛
(𝑦) − 𝜕𝑢

𝜕𝑛
(𝑦)

)
V𝑛 (𝑦, 𝜋) d𝜎 (𝑦), (32)

where 𝑎(·, 𝜋) : Ω(𝜋) → R is the solution to the adjoint boundary
value problem:

Δ𝑎(𝑥) − 𝜎𝑎(𝑥) = L
′ (𝑢 (𝑥)) in Ω(𝜋),

𝑎(𝑥) = 0 on 𝜕Ω(𝜋). (33)

Compared to Equation (7), Equation (32) is simpler because it re-

quires estimating only a boundary integral and no domain integral.

Compared to the differential BVP (11), the adjoint BVP is also a

screened Poisson equation with Dirichlet boundary conditions; how-

ever, the primary BVP is nested within the source term, and not the

boundary data. Consequently, though the solution 𝑎 could still be

estimated using WoS, nesting is more difficult: As the source term

is invoked at every recursion step of WoS, nesting would require

launching a walk for estimating 𝑢 at every step along the walk for

estimating 𝑎, resulting in quadratic complexity. By contrast, nesting

for the differential BVP requires launching a walk for estimating 𝑢

at only the last step of the walk for estimating ¤𝑢, maintaining linear

complexity (Algorithm 2). This complexity difference motivated our

choice to use the differential BVP. The quadratic complexity of the

adjoint approach could potentially be overcome using off-centered

connections ([Sawhney et al. 2022, Section 5.2] and [Sawhney and

Crane 2020, Section 4.3]) to merge the walks for 𝑢 back into the

walk for 𝑎; or caching schemes [Miller et al. 2023; Li et al. 2023]

that estimate 𝑢 without a walk. Such approaches are exciting future

research directions.

C MORE GENERAL SHAPE FUNCTIONAL
In some of our experiments in Section 7, we use a more general

shape functional of the form:

L(𝜋) B
∫
Ω (𝜋 )

M(𝑥) L(𝑢 (𝑥, 𝜋)) d𝑥

+
∫
𝜕Ω (𝜋 )

m(𝑦) l(𝑢 (𝑦, 𝜋)) dA(𝑦), (34)

where L, l : R → R are differentiable loss functions, and M,m :

R3 → {0, 1} are binary mask functions. Compared to Equation (6),

the shape functional of Equation (34) includes an additional loss

term evaluated on the boundary 𝜕Ω(𝜋). Differentiating this shape

functional produces [Henrot and Pierre 2018, p. 239]:

dL
d𝜋
(𝜋) =

∫
Ω (𝜋 )

M(𝑥) ¤𝑢 (𝑥, 𝜋) L′ (𝑢 (𝑥, 𝜋)) d𝑥

+
∫
𝜕Ω (𝜋 )

m(𝑦) ¤𝑢 (𝑦, 𝜋) l′ (𝑢 (𝑦, 𝜋))

+ V𝑛 (𝑦, 𝜋)
(
M(𝑦) L(𝑢 (𝑦, 𝜋))

+m(𝑦) 𝜅 (𝑦) l(𝑢 (𝑦, 𝜋))

+m(𝑦) l′ (𝑢 (𝑦, 𝜋)) 𝜕𝑢
𝜕𝑛
(𝑦, 𝜋)

)
dA(𝑦), (35)

where L
′, l′ are the derivatives of the scalar losses L, l; and 𝜅 is the

mean curvature. Equation (35) is valid under the same two assump-

tions we made for Equation (7), and requires computing values of

𝑢, 𝜕𝑢/𝜕𝑛, and ¤𝑢 like that equation. Thus we can estimate the shape

functional derivative of Equation (35) using the same algorithm we

developed in Section 5 for the derivative of Equation (7).

ACM Trans. Graph., Vol. 43, No. 6, Article 174. Publication date: December 2024.


	Abstract
	1 Introduction
	2 Related Work
	2.1 PDE-constrained shape optimization
	2.2 Algorithms for shape optimization
	2.3 Differentiable Monte Carlo simulation
	2.4 Walk on spheres

	3 Background
	3.1 Surface evolution
	3.2 Screened Poisson equation
	3.3 Walk on spheres
	3.4 Mixed Dirichlet-Robin boundary conditions

	4 PDE-constrained shape optimization
	4.1 The differential boundary value problem

	5 Monte Carlo derivative estimation
	5.1 Differential walk on spheres
	5.2 Differential walk on stars
	5.3 Computing reverse-mode derivatives

	6 Implementation and evaluation
	6.1 Comparison to finite differencing
	6.2 Optimization with noisy derivatives
	6.3 Ablations

	7 Geometric examples
	7.1 Pose estimation
	7.2 Shape from diffusion
	7.3 Optimization-driven thermal design
	7.4 Image-space curve inflation
	7.5 Inverse diffusion curves

	8 Conclusion and Future Work
	Acknowledgments
	References
	A Differentiation of Dirichlet Boundary Condition with Texture Mapping
	B The adjoint boundary value problem
	C More general shape functional

