
A Dynamic Distributed Scheduler for Computing
on the Edge

Fei Hu *
Dept. of Computer Science

University of Colorado
fei.hu@colorado.edu

Kunal Mehta
Dept. of Computer Science

University of Colorado
kunal.mehta@colorado.edu

Shivakant Mishra
Dept. of Computer Science

University of Colorado
mishras@colorado.edu

Mohammad AlMutawa
Dept. of Computer Science

Kuwait University
almutawa@cs.ku.edu.kw

Abstract—Edge computing is crucial for IoT applications,
especially those needing quick, private data handling. However,
these applications are resource-intensive, and edge computing
resources are limited compared to cloud capabilities. Efficiently
using these limited resources is essential to meet all application
demands, including latency, privacy, and cost. Due to the dynamic
and hybrid nature of IoT environments, static scheduling systems
often falls short in meeting these diverse constraints. This
paper describes the design, implementation, and evaluation of
a dynamic distributed scheduler for the edge. This scheduler
schedules the execution of various computing tasks across all
computing resources available at the edge in order to satisfy the
diverse constraints of an IoT application. The key characteristic
of this scheduler is that it constantly monitors the current state
of the IoT infrastructure and dynamically adjusts the scheduling
of various computing tasks based on the current environmental
context as well as the current computing and network conditions.
The scheduler utilizes a predictive profiling method to manage
the hybrid and variable nature of edge computing resources and
tasks. A prototype of this scheduler has been implemented and
the paper demonstrates its practicality via an augmented reality
application.

Index Terms—Dynamic Distributed Scheduler, Parallel Com-
puting, Edge Computing, Augmented Reality Applications, De-
vice Profile

I. INTRODUCTION

Edge AI systems [1], [2] have emerged as a promising
solution for handling the growing demand for AI workloads by
bringing computation closer to the data sources and reducing
latency [3], [4]. A key challenge in building AI applications at
the edge is that these applications tend to be highly compute-
intensive and computing capabilities are limited at the edge
server when compared to the cloud. Developers have been
addressing this issue in an ad hoc manner by distributing
different computing tasks of applications across different com-
puting nodes available at the edge, including different low-end
sensing devices as well as different processing units at the edge
server. However, distributing computing tasks across different
computing nodes comes with the added cost of having to
transfer data between nodes. Thus, a careful balance between
the performance improvement due to parallel computation
across different computing nodes and the increased delays due
to data movement is needed to fully realize the performance
benefits of task distribution. This is further complicated by
three important factors prevalent in an IoT environment: (1)

This research is supported by grants from NSF.

Network conditions fluctuate, dynamically altering the com-
munication delays associated with data movement; (2) CPU
load on computing nodes fluctuate due to dynamically varying
contexts, resulting in variable compute times for various
tasks; and (3) Compute nodes at the edge are highly diverse
with widely varying compute, storage, and communication
capabilities [3], [5], [6].

This paper addresses these challenges by building a dynamic
distributed scheduler that schedules different computing tasks
of an application across different computing nodes based on
the current computing and networking conditions to meet all
the requirements of the application by parallel computing,
including latency, privacy, power, and cost constraints. This
system constantly monitors the current compute and network
conditions and dynamically adjusts the scheduling of the
compute tasks accordingly. It has five important features:

1) Device profiling: To address heterogeneity among dif-
ferent computing devices, each device in the IoT envi-
ronment is profiled for different computing tasks under
different computing loads to enable the scheduler to
make optimal scheduling decisions at runtime.

2) Predictive profiling: To address the limitation of pre-
profiling every possible device under every possible
computing environment, the scheduler incorporates a
prediction mechanism to predict the running times of
various computing tasks during runtime and adjusts
schedules accordingly.

3) Two-level scheduling decision: To minimize the over-
head of the scheduler, the scheduling decision is done at
two levels, a primitive scheduling decision at the low-
end devices and a near-optimal scheduling decision at
the edge server.

4) Local compute principle: To address the uncertainty
in determining accurate communication and compute
latency under every possible computing environment,
the scheduler schedules tasks locally as a low-level
scheduling decision as long as this scheduling satisfies
all application requirements.

5) Predictive compute drops: Based on application guid-
ance, the scheduler selectively drops some compute task
instances to maximize meeting the overall application
constraints.

A prototype of this dynamic, distributed scheduler has

979-8-3503-4965-8/24/$31.00 ©2024 IEEE

been implemented and extensively evaluated under different
computing scenarios. Evaluation results demonstrate that this
scheduler outperforms current ad hoc scheduling tasks at the
edge to satisfy various application requirements. We build an
augmented reality application at the edge and demonstrate the
usefulness of our scheduler compared to the current state-
of-the-art. We also provide a predictive profiling solution
where other applications running times are predicted based
on existing application profiling and propose further optimiza-
tions. In particular, the paper provides the following important
contributions:

• The proposed dynamic distributed scheduler addresses the
key challenges of device heterogeneity and dynamically
changing compute and network environment encountered
in an IoT environment at the edge by dynamically adjust-
ing the distributing of tasks based on the current operating
conditions.

• The proposed predictive profiling solution simplifies the
onerous task of pre-profiling every device under every
possible compute scenario.

• The paper provides a prototype implementation of the
proposed scheduler and an extensive performance eval-
uation under different operating conditions. The experi-
ment results indicate that this distributed architecture is
efficient at the edge with parallel computing.

II. RELATED WORK

To overcome the challenges in edge environment [7], [8], in
recent years, many state-of-the-art scheduling techniques have
emerged and those efforts primarily fall into two categories:
centralized scheduling and distributed scheduling [9]. Gener-
ally, centralized methods mainly include convex optimization
[10], approximate algorithm [11], heuristic algorithm [12],
[13], and machine learning [14], [15]; distributed methods
mainly include game theory [16], matching theory [17], auc-
tion [18], federated learning [19], and blockchain [20].

The referenced studies highlight performance improvements
in areas like latency, energy use, cost, utility, profit, and re-
source efficiency. For example, paper [10] leverages Lyapunov
optimization to enhance problem-solving efficiency, with a
focus on minimizing response times. Meanwhile, paper [13]
addresses the distribution challenge as NP-hard, proposing a
greedy heuristic algorithm aimed at satisfying latency require-
ments. Additionally, paper [16] targets energy efficiency with
a distributed algorithm derived from Game Theory.

While these studies present significant benefits in per-
formance metrics, their real-world application faces notable
challenges. Techniques like Lyapunov optimization and de-
composition in complex algorithms may overly complicate
implementation in actual edge networks [10]. Similarly, ap-
proaches based on approximation algorithms, game theory, and
auctions risk converging to local optima [11], [18]. Heuris-
tic and machine learning algorithms often require extensive
parameterization, complicating their adaptability [12], [14].
Matching theory, although considered, may not effectively
address partial offloading issues, which are central to this paper

[17]. Moreover, emerging methods like federated learning and
blockchain, while promising, are still nascent in this domain
[19], [20].

We propose a distributed architecture with a dynamic dis-
tributed scheduler that utilizes device profiling and workload
monitoring to address the mentioned challenges. Employing a
two-tier scheduling approach, the lower level emphasizes local
computing, with comprehensive performance enhancements
elucidated in this paper. Additionally, this framework sets the
stage for upper-level scheduling, where we can delve into
performance enhancement based on current research findings.

III. SCHEDULER DESIGN

Fig. 1: Architecture

An IoT application is typically a long-running application
composed of multiple repetitive compute tasks. For example,
an augmented reality application is comprised of a sequence of
three different compute tasks (extracting frames from a video
stream, detecting objects in a frame and putting labels, and
combining the labelled frames to form a video stream) that
are repetitively executed on a sequence of frames. The goal
of our scheduler is to schedule the execution of these tasks on
different devices so as to ensure that all application constraints
such as real time latency requirements or privacy are satisfied.

Our scheduler is designed for a typical edge-computing
based IoT environment that is comprised of three primary
components as illustrated in Figure 1: an edge server, several
IoT sensors controlled and accessed via end devices, and
(mobile) users. The edge server is the administrative authority
of the IoT environment and interacts with the users as well
as the end devices. It is relatively resource-rich, authenticates
users, supports one or more applications that (authorized) users
may invoke, and interacts with the end devices to operate
IoT sensors. A user interacts with the edge server to invoke
an application and receives the application results from the
edge server as well as from one or more end devices. Finally,
end devices control the operation of IoT sensors based on
the directives given by the edge server, including invoking
sensors and receiving sensor data. While the end devices are
significantly resource-constrained compared to the edge server,

depending on their capabilities, they may execute scheduler
and application tasks based on the directives given by the edge
server. Typical end devices are Raspberry Pi’s, Arduino boards,
smartphones and tablets.

A. Scheduler Design Principles

Edge IoT environments are highly dynamic and hybrid,
featuring a range of devices from resource-limited to powerful
edge servers. Variability in communication and compute loads,
influenced by real-time events, necessitates a scheduler to
dynamically adapt to these fluctuations during runtime. How-
ever, this need for dynamic adaptation requires the scheduler
to constantly monitor the current computing and networking
conditions, which adds to the overall performance overhead
of an application. Thus, balancing this extra performance
overhead with the performance gains that result from near
optimal scheduling made possible by having an accurate,
up-to-date compute and network state information is critical
for optimizing task scheduling and enhancing application the
overall application performance.

Our distributed scheduler incorporates local compute prin-
ciple at the end devices to address this challenge: execute
a task at the end device that has the data as long as this
execution can meet all the application constraints such as
real time latency requirements. This entails executing a task
at the end device that controls the IoT sensor whose data
is needed for that task. On the other hand, if the execution
of the task at this end device cannot satisfy all application
constraints, the task along with all the relevant sensor data is
sent to the edge server that uses a complex multi-objective
optimization algorithm for scheduling the execution of the
task. In order to determine if this execution can meet all
application constraints, our schedulers incorporates a two-level
architecture (See Section III-B) and device profiling (discussed
in Section III-C).

B. Architecture Components

As shown in Figure 1, the edge server has four key
components: an Interface Server (IS) component that au-
thenticates and routes user requests, Applications on Edge
Server (APe1, ... APen) components that manage different AI
applications, Maintain Profile (MP) component that updates a
comprehensive device profile table, and a pool of containers—
Container Pool (C1, ... Ck) linked to APe’s to execute different
application tasks.

Each end device has has four key components: an Interface
Receiver (IR) to interact with the edge server, a pool of
containers to execute different application tasks, an Update
Profile (UP) component that periodically sends the current
device state (load, battery power, etc.) to the edge server, and
Application on End Device (APr1, ... Aprm) components that
manage different AI applications and their scheduling. Note
that due to the resource constraints of end devices and specific
characteristics of the IoT sensors that they manage, the size
of their container pool will be significantly smaller than the
size of the container pool at the edge server, and they will

support only a subset of (relevant) applications from all the
applications supported by the edge server.

Our scheduler logically separates the task of determining
the current compute and network conditions from making the
scheduling decision by incorporating a two-level architecture.
The lower level actively monitors and updates current system
state (communication latencies, CPU loads, battery power, etc)
of all compute devices. Each end device periodically sends its
state information (load, battery power, etc.) to the edge server.
Further, each end device continually stores and updates its
own (current) state information and the edge server stores and
updates the state information of all devices.

The upper level of our scheduler architecture makes in-
formed scheduling decisions using the state information being
maintained by the lower level. All end devices and the edge
server have a separate scheduler component. An end device
schedulers make scheduling decisions (execute locally or send
the task to the edge server) based on its own state information
and profile, while the edge server scheduler makes scheduling
decision (which device to execute a task on) using a multi-
objective optimization algorithm based on state information
of all devices and their profiles.

C. Device Profiling
Every computing task involves constraints like real-time

completion, privacy, and cost limits. Determining if a device
can satisfy these while running a task requires knowing the
time and power consumption under current conditions like
CPU load and communication latency. Our scheduler profiles
each device in advance for various conditions and tasks. This
device profile, along with real-time conditions, guides the
scheduler’s decisions. This section details the profiling of task
runtimes across different conditions and devices.

Equation 1 indicates the total processing time for each
task. Ttrans and Treply represent total data transmission and
reply times, while Tqueue indicates the queuing time on
the device, obtained through multi-threading programming.
Determining Tprocess, or processing time, is more complex
due to the diversity of computing tasks, device heterogeneity,
and fluctuating workloads.

Ttotal = Ttrans + Tqueue + Tprocess + Treply (1)

Since a microservice-based architecture using containers
has become the standard of structuring IoT applications at
the edge [22] and due to difficulties in measuring processing
time (Tprocess) under fluctuating workloads, we recommend
using device profiling to establish a detailed profile table,
including active container counts to aid the scheduler in
decision-making. Further exploration of device profiling will
be detailed in Section IV.

D. Predictive Profiling
A key challenge in device profiling is acquiring compre-

hensive profiling information in advance under every possible
workload, which is highly time-consuming and sometimes
even infeasible. The goal of predictive profiling is to estimate

the running times of various compute tasks on a device under
different workloads (number of containers running concur-
rently) based on the amount of time it takes to run a single task
container with other containers running concurrently. Equation
2 shows how we do this estimation. In this equation, notation
Tym indicates the amount of time it would take to run a
new container for task y while there are m containers of
task y already running at present. The equation illustrates an
estimate of the amount of time it would take to run a new
task x container while there are m task x containers already
running concurrently. This estimate is based on first computing
a multiplying factor (Tym � Ty1)/Ty1 for a candidate task y
using actual experiments.

Txm = Tx1 ⇤ (Tym � Ty1)/Ty1 (2)

E. Architecture Workflow

Algorithm 1 The Dynamic Distributed Scheduler Algorithm
Input: profile tables of all computing nodes, time constraint T ,
original video
Output: number of frames meeting time constraint, video with
augmented reality effect

1: tpr1 . predictive running time on R1
2: tpr2 . predictive running time on R2
3: tpes . predictive running time on the edge server
4: tcr1 . Current time constraint on R1
5: tcr2 . Current time constraint on R2
6: tces . Current time constraint on the edge server
7: tq1 . Queuing time on R1
8: tqes . Queuing time on the edge server
9: tr1es . Communication delay from R1 to the edge server

10: tesr2 . Communication delay from the edge server to R2
11: R1 PRO(num) . Function for predictive running time on R1
12: R2 PRO(num) . Function for predictive running time on R2
13: ES PRO(num) . Function for predictive time on the edge server
14: tpr1 R1 PRO(num)
15: tcr1 T � tq1
16: if tpr1 < tcr1 then
17: Process this frame locally
18: else
19: Send this frame to the edge server
20: tpr2 R2 PRO(num)
21: tcr2 tcr1 � tr1es � tesr2
22: if tpr2 < tcr2 then
23: Send this frame to R2
24: else
25: tpes ES PRO(num)
26: tces tcr1 � tr1es � tqes
27: if tpes < tces then
28: The edge server processes this frame
29: else
30: Drop this frame
31: end if
32: end if
33: end if

Figure 1 shows a distributed scheduler system where the
Interface Server (IS) receives user requests and forwards them
to the appropriate Application on Edge Server (APe) based on
the user’s location. The APe identifies the right end device, like
a Raspberry Pi with a camera, to fetch data and initiate the

requested application. Responses are then sent back to the user.
The system uses multi-threading for efficiency and dynamic
scheduling based on current loads, monitored by the Update
Profile (UP) module, to optimize resource use across devices.

The workflow and pseudo-code outlined in Algorithm 1
detail a two-level decision process for task allocation. At the
local level, device R1 evaluates whether to process tasks in-
house or offload them to the edge server, based on local
computing capabilities and device profiling. At the global
level, the edge server uses comprehensive profiling data to
either distribute tasks to other end devices or handle them
locally, aiming for near-optimal resource utilization.

IV. DEVICE PROFILE EVALUATION

A. Profile Evaluation Scenarios
This section explores four scenarios to simulate real-world

application workloads in containers, divided into warm and
cold categories. Warm containers are pre-initialized and ready
to execute tasks quickly, offering fast response times. Con-
versely, cold containers require initialization and loading of
necessary runtime environments and code upon request, which
introduces latency before processing begins.

TABLE I: System Configuration

Component Name Specifications

Edge Server 2.3GHz Dual-Core Intel Core i5,
8 GB RAM, 256GB Disk

Raspberry Pi Quad core Cortex-A72 (ARM v8) 64-bit
8GB RAM, 1.8GHz Clock Speed

Smart Phone Octa-core (4x2.3 GHz Mongoose,
4x1.6 GHz Cortex-A53), 4GB RAM

TABLE II: Profile of Warm Container on the Edge Server
of containers 1 2 3 4 5 6 7 8

Average Time (ms) 223 273 366 464 540 644 837 947
Total Time (ms) 11193 6930 6216 5951 5794 5507 6020 6099

TABLE III: Profile of Warm Container on the Raspberry Pi

of containers 1 2 3 4 5 6
Average Time (ms) 597 613 651 860 1071 1290

Total Time (ms) 29934 15399 11072 11042 11043 11074

We examine container performance across four scenarios
involving N containers, distinguishing between warm and cold
statuses: 1) Total processing time for N cold containers; 2)
Impact on warm containers when adding a new cold container;
3) Total processing time for N warm containers; 4) Effects on
existing warm containers when adding a new warm container.

B. Profile Evaluation Results
For evaluation, we chose face detection using the Viola-

Jones algorithm [21]. Performance tests were conducted on a
laptop and a Raspberry Pi, with details provided in Table I.
For space limit, we show partial results here. Tables II and III

(a) Experiment Results with 240p Video (b) Experiment Results with 480p Video (c) Experiment Results with 240p Video

Fig. 2: Experiment Results with Variable Video Resolution

display warm container test outcomes total processing time for
50 images (29KB).

Based on the above results, we know that first of all, with
more containers, average processing times increase due to the
limited computing resources. Then for the total processing
time for all tasks as shown in Table II, increasing containers
from 1 to 2 cuts the processing time for 50 images nearly
in half, from 11193ms to 6930ms, utilizing dual-core CPU
more efficiently. However, beyond 3 containers, CPU usage
nears capacity, with idle CPU dropping close to 0%, leading
to minimal time improvements. Consequently, performance
plateaus around 6000ms as additional containers no longer
enhance efficiency due to CPU load saturation.

The results affirm the approach of aligning the number of
active containers with system workloads, establishing a strong
basis for dynamic distributed scheduling strategies.

V. EVALUATION AND RESULTS ANALYSIS

A. An Augmented Reality Application

Augmented Reality (AR) integrates computer-generated
content with live video, enhancing real-world scenes via device
cameras. Commonly used in security, video conferencing, and
healthcare, AR is particularly effective for face detection in
streaming videos. The technology functions in three phases:
extracting frames, detecting faces, and reassembling frames
into their original sequence [23], [24].

Aimed at real-time processing within edge networks, tasks
are allocated based on resource intensity, with frame extraction
at the end device connected to the camera and face detection
distributed across nodes for efficiency. This setup requires
a robust scheduling system to ensure seamless application
performance by effectively managing computing resources
across the network, particularly focusing on the scheduling of
face detection tasks within the application. All device profile
evaluations have been completed. Due to space limitations, we
have included only the results for the 1080p video in Table
IV.

TABLE IV: Devices Profile with 1080p Video
of containers 1 2 3 4

Edge Server (ms) 681 1171 1837 2527
Rasp (ms) 3055 5898 8744 ⇥

Fig. 3: AR Application End-to-End Time

Fig. 4: Predictive profiling vs Actual Profiling

B. Experiment Results

This section details experimental outcomes across different
video resolutions, illustrated in Figures 2a, 2b, and 2c for
240p, 480p, and 1080p videos, respectively. We evaluated
our scheduler against four static methods: 1) All R1, where
all object detection is done on Rasp 1; 2) All ES, with
all detections on the edge server; 3) Even Odd, alternating
detections between Rasp 1 and the edge server based on frame
parity; and 4) Random, where frame processing is randomly
assigned between Rasp 1 and the edge server. Figure 2a
displays the performance of a 240p video with 1145 frames
under four time constraints (100ms, 300ms, 500ms, 700ms).

• As expected, for higher values of time constraints, all al-
gorithms successfully process a higher number of frames.

• Our dynamic distributed scheduler significantly outper-
forms the single-node algorithms All R1 and All ES,
especially excelling over All R1. As shown in Table
IV, the edge server’s higher processing capabilities boost
frame processing success rates. Although All ES closely
matches our scheduler’s performance, its heavy workload

(a) Dynamic Distributed Scheduler (b) Extend Dynamic Distributed Scheduler

Fig. 5: Extend the Dynamic Distributed Scheduler

emphasizes the benefits of our more effective and efficient
dynamic distributed scheduling strategy.

• Our dynamic distributed scheduler significantly outper-
forms the Even Odd and Random algorithms, especially
under tight constraints.

Figures 2b and 2c display results for 480p and 1080p videos
with 1145 frames, underscoring the dynamic distributed sched-
uler’s enhanced performance with the growing processing time
gap between the Raspberry Pi and the edge server as resolution
increases.

Figure 3 illustrates the end-to-end processing times of the
AR application for a 480p video, highlighting the efficiency
of different scheduling strategies. The All R1 algorithm takes
697 seconds, significantly longer than the average 495 seconds
for other algorithms, indicating a 41% increase in overhead
when processing exclusively on the Raspberry Pi. This sug-
gests that offloading tasks to the edge server reduce overhead
more effectively than local processing on the Raspberry Pi.

VI. OPTIMIZATION

We optimize the dynamic distributed scheduler for the
following two aspects: first, we propose a predictive profiling
solution to avoid completed profile evaluation. Second, we
extend the dynamic distributed scheduler to accommodate
more computing nodes and further optimize the algorithm.

A. Predictive Profiling and Dynamic Update
With guidance in Section III predictive profiling, leveraging

240p profiling data, we predict 1080p face detection times un-
der various conditions. Table V summarizes these predictions
compared with actual evaluation time.

TABLE V: Predictive Profile
of containers 0 1 2

Predictive Time (ms) 3055 6032 8112
Actual Evaluation Time (ms) 3055 5898 8744

Table V shows that the predicted times align well with
actual times. To improve precision, we do runtime profiling as
well. In this approach, we start with the predicted profile and
then monitor the execution times during runtime to update the
profile dynamically. For example, initiating a new container

updates the profiling for M active containers with recent
data. Figure 4 compares the results with actual and predictive
profiling for a 1080p video under various time constraints,
revealing similar success rates between both methods.

B. Balance Between the Load on the Edge Server and Success
Rate

To evaluate the performance with multiple end devices,
Figure 5a demonstrates the processing of a 1080p video under
constraints ranging from 4000ms to 6000ms, highlighting
individual component performance and Figure 5b shows the
system’s enhanced performance with the addition of Raspberry
Pi 2 (R2).

Upon comparing figures, we observe that under higher
time constraints, more frames are processed by end devices,
reducing the load on the edge server. While R2 reduces the
edge server’s workload, its effect on overall performance is
slight. Increasing the time constraint from tight to medium
improves the frame success rate. However, further loosening
constraints diminishes returns. This analysis not only expands
the scale of the Dynamic Distributed Scheduler but also offers
a strategy to optimize load distribution and success rates across
the network.

VII. CONCLUSION

This study introduces a distributed system designed to facil-
itate AI applications at the edge through parallel computing.
To address the challenges posed by device diversity and the
fluctuating computational and network conditions inherent
to IoT environments, we introduce a dynamic distributed
scheduler that adjusts task allocation in real-time based on
current operational states. This scheduler, grounded in com-
prehensive device profiling, is further refined through two
strategies: 1) predictive profiling with dynamic updates during
task allocation, and 2) fine-tuning device profiles for enhanced
performance. Our experimental findings demonstrate the broad
applicability and effectiveness of this dynamic distributed
scheduler. For future work, we plan to delve deeper into
optimal-level scheduling and integrate it with current research
to further enhance scheduling efficiency.

REFERENCES

[1] W. Li, and M. Liewig, ”A survey of AI accelerators for edge en-
vironment,” In Trends and Innovations in Information Systems and
Technologies: Volume 2 8 (pp. 35-44). Springer International Publishing,
2020.

[2] D. Liu, H. Kong, X. Luo, W. Liu and R. Subramaniam, ”Bringing AI to
edge: From deep learning’s perspective,” Neurocomputing, 485, pp.297-
320, 2022.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, ”Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, 3(5), pp.637-646, 2016.

[4] K. Cao, Y. Liu, G. Meng, and Q. Sun, ”An overview on edge computing
research,” IEEE Access, 8, pp.85714-85728, 2020.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ”A survey
on mobile edge computing: The communication perspective,” IEEE
communications surveys & tutorials 19, no. 4 (2017): 2322-2358.

[6] T. Nepusz, and T. Vicsek, ”Controlling edge dynamics in complex
networks,” Nature Physics, 8(7), pp.568-573, 2012.

[7] R. Han, S Wen, C. Liu, Y. Yuan, G. Wang, and L. Chen. ”EdgeTuner:
Fast scheduling algorithm tuning for dynamic edge-cloud workloads and
resources.” IEEE Conference on Computer Communications, pp. 880-
889. 2022.

[8] J. Pang, Z. Han, R. Zhou, H. Tan, and Y. Cao. ”Online scheduling algo-
rithms for unbiased distributed learning over wireless edge networks.”
Journal of Systems Architecture 131 (2022): 102673.

[9] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, ”Resource Scheduling in Edge
Computing: A Survey,” IEEE Communications Surveys & Tutorials 23,
no. 4 (2021): 2131-2165.

[10] Y. Deng, Z. Chen, X. Yao, S. Hassan, and A. MA Ibrahim, ”Parallel
Offloading in Green and Sustainable Mobile Edge Computing for Delay-
Constrained IoT System,” IEEE Transactions on Vehicular Technology
68, no. 12 (2019): 12202-12214.

[11] H. Badri, T. Bahreini, D. Grosu, and K. Yang, ”Energy-Aware Applica-
tion Placement in Mobile Edge Computing: A Stochastic Optimization
Approach.” IEEE Transactions on Parallel and Distributed Systems 31,
no. 4 (2019): 909-922.

[12] W. Zhang, Z. Zhang, S. Zeadally, H. Chao, and V. C. Leung. ”Energy-
Efficient Workload Allocation and Computation Resource Configuration
in Distributed Cloud/Edge Computing Systems with Stochastic Work-
loads.” IEEE Journal on Selected Areas in Communications 38, no. 6
(2020): 1118-1132.

[13] T. Huang, W. Lin, Y. Li, L. He, and S. Peng. ”A Latency-Aware Multiple
Data Replicas Placement Strategy for Fog Computing,” Journal of Signal
Processing Systems 91 (2019): 1191-1204.

[14] Z. Ning, P. Dong, X. Wang, J. J. Rodrigues, and F. Xia, ”Deep
Reinforcement Learning for Vehicular Edge Computing: An Intelligent
Offloading System.” ACM Transactions on Intelligent Systems and
Technology (TIST) 10, no. 6 (2019): 1-24.

[15] H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu. ”Optimization of Lightweight
Task Offloading Strategy for Mobile Edge Computing Based on Deep
Reinforcement Learning.” Future Generation Computer Systems 102
(2020): 847-861.

[16] S. Ranadheera, S. Maghsudi, and E. Hossain, ”Computation Offloading
and Activation of Mobile Edge Computing Servers: A Minority Game,”
IEEE Wireless Communications Letters 7, no. 5 (2018): 688-691.

[17] B. Gu, Z. Zhou, S. Mumtaz, V. Frascolla, and A. K. Bashir, ”Context-
Aware Task Offloading for Multi-Access Edge Computing: Matching
with Externalities,” IEEE global communications conference (GLOBE-
COM), pp. 1-6. IEEE, 2018.

[18] D. Zhang, L. Tan, J. Ren, M. K. Awad, S. Zhang, Y. Zhang, and
P. Wan, ”Near-Optimal and Truthful Online Auction for Computation
Offloading in Green Edge-Computing Systems.” IEEE Transactions on
Mobile Computing 19, no. 4 (2019): 880-893.

[19] J. Konečný, B. McMahan, and D. Ramage, ”Federated Optimization:
Distributed Optimization Beyond the Datacenter.” arXiv:1511.03575
(2015).

[20] Y. Jiao, P. Wang, D. Niyato, and Z. Xiong, ”Social Welfare Maxi-
mization Auction in Edge computing Resource Allocation for Mobile
Blockchain,” IEEE International Conference on Communications (ICC),
pp. 1-6. IEEE, 2018.

[21] Y.Q. Wang, ”An analysis of the Viola-Jones face detection algorithm,”
Image Processing On Line 4 (2014): 128-148.

[22] R. Morabito, ”Virtualization on Internet of Things Edge Devices with
Container Technologies: A Performance Evaluation,” IEEE Access 5
(2017): 8835-8850.

[23] M. Mekni, and A. Lemieux, ”Augmented reality: Applications, chal-
lenges and future trends,” Applied computational science 20 (2014):
205-214.

[24] F. Hu, K. Mehta, S. Mishra, and M. AlMutawa. ”Distributed Edge
AI Systems.” In Proceedings of the IEEE/ACM 16th International
Conference on Utility and Cloud Computing, pp. 1-6. 2023.

