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Abstract—Edge computing plays a pivotal role in IoT appli-
cations that require rapid and secure data processing. How-
ever, these applications are typically resource-demanding, and
the resources available at the edge are often significantly less
than those available in cloud environments. Thus, optimally
utilizing these constrained resources is key to fulfilling various
application requirements such as low latency, privacy, and cost-
effectiveness. Given the dynamic and hybrid characteristics of
IoT environments, static scheduling approaches frequently fail
to adequately address these complex and varying demands. This
paper presents the design, implementation, and evaluation of
a dynamic distributed scheduler tailored for DNN inferences
on edge computing platforms, based on sophisticated sub-model
profiling techniques. This scheduler’s core feature is its ability to
continuously monitor the state of the IoT infrastructure, dynam-
ically adapting the distribution of computing tasks according to
real-time environmental and network conditions. Diverging from
previous research that typically segments DNN models into two
parts, this study proposes a more granular approach that splits
models into multiple segments, thereby maximizing the utilization
of diverse edge computing resources. The implementation of
this scheduler, including integration with a GPU, demonstrates
its effectiveness across various DNN models, highlighting its
practical utility in leveraging edge computing capabilities.

Index Terms—Dynamic Distributed Scheduler, Parallel Com-
puting, Edge Computing, DNN Models, Device Profile

I. INTRODUCTION

Edge AI systems are increasingly recognized as a vital
strategy for managing the rising demands for Al workloads by
decentralizing processing closer to data sources, thereby mini-
mizing latency [1]. A principal obstacle in deploying Al appli-
cations at the edge is their substantial computational demands
relative to the more limited computing resources typically
available on edge servers compared to cloud environments.
Traditionally, developers have tackled this by dispersing the Al
application’s computational tasks among various nodes within
the edge network, which might include both rudimentary
sensing devices and more sophisticated processors at the edge
server. Nonetheless, this approach introduces the trade-off
of increased data transfer times between nodes against the
benefits of parallel processing. Achieving optimal performance
thus requires a nuanced balance between enhancing processing
speed through task distribution and mitigating the latency
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introduced by data transfers. Three predominant challenges in
IoT settings further complicate this balancing act: (1) Network
conditions are not static but vary dynamically, affecting the
delays in data transfers; (2) The computational load on nodes
can change based on dynamic environmental factors, affecting
task processing times; and (3) Edge computing nodes exhibit
significant diversity in their computational, storage, and net-
working capabilities [2]-[4]

Building on the work presented in [3], which addresses the
scheduling challenges for container-based Al applications, this
paper extends the investigation to scheduling issues specifi-
cally for DNN models.

For heavyweight DNN applications, edge devices—limited
in computing resources— sometimes cannot process the en-
tire application independently. Current research addresses this
challenge by partitioning the DNN model into sub-models,
enabling edge devices to collaborate on a single inference
task through parallel computing. This paper focuses on the
challenge of optimally partitioning DNN models and proposes
a series of solutions to tackle this issue, as detailed in the
subsequent points.

1) Characterizing Layers in DNN Models: Delve into the
specifics of different layers within DNN models, aiming
to understand their roles, functionalities, and impacts on
the network’s performance and computational demands.

2) Profiling of DNN sub-models: To address heterogeneity
among different computing devices, each device in the
IoT environment is profiled for different DNN models
under different computing loads to enable the scheduler
to make optimal scheduling. Compared to container-
based applications, DNN models can be divided into
several sub-models. This profiling targets those potential
sub-models for efficient segmentation.

3) Optimal Scheduling: In the IoT system, all device profil-
ing information is shared with and updated on the edge
server, where the master scheduler makes global optimal
scheduling decisions. The guiding principle is to process
tasks locally if the end devices have the capacity. If
not, all computing nodes are leveraged cooperatively to
handle a single DNN inference.

We have developed and extensively tested a prototype of a



dynamic, distributed scheduler tailored for DNN models across
various computing scenarios. The evaluation results show that
this scheduler significantly surpasses existing edge scheduling
solutions in meeting diverse application demands. Specifically,
this paper offers the following key contributions:

o The proposed dynamic distributed scheduler effectively
tackles the challenges posed by device heterogeneity and
the dynamically changing compute and network condi-
tions typical in edge IoT environments. It achieves this
by dynamically segmenting DNN models and adapting
task distribution in response to prevailing operational
conditions.

o To the best of our knowledge, the proposed sub-model
profiling represents the first initiative to apply an optimal
DNN model layer partitioning method. This approach not
only reduces the workload associated with pre-evaluation
but is also practical for application across a wide range
of DNN models.

o The paper presents a prototype implementation of the
proposed scheduler and conducts a thorough performance
evaluation across various operating conditions. The ex-
perimental results demonstrate that this distributed archi-
tecture effectively enhances edge computing efficiency
through parallel processing. Building on the research
presented in paper [3], we have developed a dynamic
distributed scheduler that supports a wide range of Al
applications for edge computing.

II. RELATED WORK

A fractional offloading strategy leveraging the distinctive
layered structure of Deep Neural Networks (DNNs) can be uti-
lized. This approach, called DNN model partitioning, divides
the model so that some layers are processed on the device
and others on the edge server or cloud, potentially reducing
latency by harnessing the computational power of additional
edge devices [5].

Identifying the optimal partition point in a DNN involves
three key steps: first, assessing and modeling resource con-
sumption and data exchange between layers; second, esti-
mating total operational costs based on layer configurations
and network bandwidth; and third, selecting the best partition
point, considering factors like delay and energy requirements.
(61, [71.

Horizontal partitioning of the Deep Learning (DL) model,
distributing it across the end, edge, and cloud layers, is
the most prevalent method of segmentation. The difficulty
rests in smartly determining where to partition the DNN
model. COMET offloads a thread solely based on whether its
execution time surpasses a predefined threshold, disregarding
other factors like data transfer volume or wireless network
availability [9]. Odessa, on the other hand, bases its compu-
tation partitioning decisions on the execution time and data
requirements of only a portion of the function, neglecting the
broader context of the entire application [10]. CloneCloud ap-
plies the same offloading criteria across all instances of a given
function [11]. In contrast, MAUI represents an improvement

in offloading decision-making by evaluating each function
invocation individually and taking the entire application into
account when determining which functions to offload [8].
Paper [12] introduces an on-demand, low-latency inference
framework that optimizes both the model partition strategy,
tailored to the disparate computational capacities of mobile
devices and edge servers, and the early exit strategy, adapted
to complex network conditions. Various strategies have been
devised to distribute a pre-trained DNN across multiple mobile
devices, aiming to speed up DNN inference on these devices
[13]-[16]. Bhardwaj et al. expanded on this by incorporating
memory and communication costs into the distributed infer-
ence framework. To tackle these challenges, they suggested
model compression techniques and a network science-based
algorithm for partitioning knowledge [17], [18]. An alternative
approach to model segmentation involves vertical partitioning
[19].

However, current research reveals several shortcomings: 1)
Lack of consideration for crucial constraints such as latency,
energy, and privacy [9], [10]; 2) Insufficient flexibility for
dynamic edge environments [11]; 3) Inadequacy in distributing
DNN applications across end devices, edge devices, and
the cloud [13], [14], [17]; 4) Ineffectiveness in determining
partition points in architectures with multiple end devices [6].

III. SCHEDULER DESIGN

Deep Neural Networks (DNNs) are structured as directed
graphs, where each node functions as a neuron processing
incoming data to produce outputs. An example depicted in
1 shows a 5-layer DNN used for image classification, with
computational flow directed from left to right. The connections
between neurons map the data flow, forming layers of neurons
that perform identical functions on different input segments.
During a DNN'’s forward pass, the output from one layer serves
as the input for the next, with the network’s depth determined
by its total number of layers.

Neurons

IICat"

Inference (Classify Image)

Fig. 1: A 5-layer DNN Classifies Inference

For applications like face detection, which are relatively
lightweight, the task can be processed entirely locally or
offloaded to an edge server. However, for DNN models, a
fractional offloading approach is more feasible in edge envi-
ronments with limited computing resources. In this partitioning
method, some layers are processed on end devices while others
are handled by the edge server, as demonstrated in Fig. 2. This
example of horizontal partitioning shows a 5-layer DNN model
where node 1 processes the first two layers locally before



sending the results to the edge server, which may further
distribute tasks to other nodes like node 2.

CPU GPU

R

Fig. 2: A DNN Inference Distribution Example

Compared to full application offloading, the main challenge
in partial offloading is identifying the optimal points for
partitioning the layers. This requires a careful balance between
minimizing latency and maximizing computational efficiency
across devices. This paper proposes a design of a dynamic
distributed scheduler for performance improvement.

A. Scheduler Design Principles

Edge IoT environments are characterized by their dynamic
and hybrid nature, encompassing a diverse spectrum of devices
from resource-constrained units to robust edge servers. The
variability in communication and computational demands,
driven by real-time events, necessitates that schedulers dynam-
ically adjust to these changes during runtime. However, this re-
quirement for dynamic adaptation mandates continuous moni-
toring of current computing and networking conditions, which
introduces additional performance overhead. Thus, achieving a
balance between this overhead and the performance improve-
ments from near-optimal scheduling—enabled by accurate,
real-time updates on compute and network states—is crucial
for effective task scheduling and enhanced overall application
performance.

In the context of DNN models, with global information,
the distributed scheduling coordinator makes near-optimal
decisions based on the local compute principle at the end
devices. This approach prioritizes executing tasks on the end
device possessing the necessary data, provided it can satisfy all
application constraints such as real-time latency requirements.
This principle ensures tasks are processed on the device
managing the IoT sensor that requires the data. Conversely, if
an end device cannot meet all application constraints through
local execution, the task may be entirely or partially offloaded

to other end devices or the edge server, ensuring efficient and
timely task execution.

B. Device Profiling

Central to our scheduling methodology is the role of edge
server scheduling, which is crucial for optimizing overall sys-
tem performance. The edge server not only determines which
device will execute a task but also assesses the computational
capacity of the end device, specifically how many layers it can
effectively process.

To address these challenges, we propose a proactive solution
based on the pre-evaluation of sub-models. This approach
involves estimating the processing time between successive
layers on each device. For instance, we might calculate the
time required for a sub-model to execute from Pooling 1 to
Pooling 2 in VGG models. This information enables the edge
server to make informed scheduling decisions that comply
with predefined time constraints.

However, a significant challenge arises from the impracti-
cality of obtaining processing times for all sub-model config-
urations. We will explore this issue further and discuss our
strategies for overcoming it in Section IV.

C. Architecture Workflow

Algorithm 1 The Dynamic Distributed Scheduler Algorithm

Input: profile tables of all computing nodes, time constraint 7'
Output: number of frames meeting time constraint, video with
augmented reality effect
N > total layer number of the DNN model
Ray > time of sub-model from layer a to b on Rasp
E;ij > running of layer i to j on the edge server
mnL > time of layer m to n on GPU with workload L
Trc > transmission from Rasp to GPU
Tce > transmission from GPU to edge server
. if Rony < T then
processing locally on Raspberry Pi
else
for do each bin N...1
if Rop + Gone + Tra < T then
layer a b on Rasp, b+ 1 N on GPU
else
if Rov + Gojr + Ejn +Tre +Te < T then
layer a b on Rasp, b+ 1 j on GPU, j+1 N on

AN T

—_
DR

edge server
16: end if
17: end if
18: end for
19: end if

When an end device such as a Raspberry Pi (R1) receives
a classification request, it forwards this request to the edge
server. As all end devices regularly update their profiles with
detailed processing and transmission times, the edge server
leverages this comprehensive global information to make
optimal scheduling decisions and provide timely responses.

The system configuration, comprising a Raspberry Pi (R1),
a GPU, and an edge server, is detailed in Table II, and the
corresponding scheduling algorithm is outlined in Algorithm
1. If R1 is capable of processing the entire inference task



locally, it proceeds without further coordination. If, however,
R1 cannot meet the latency requirements independently, the
scheduler determines an optimal cutting point to maximize
the layers processed on R1 while adhering to time constraints.
The GPU, generally more powerful than R1, is tasked with
processing the subsequent layers. In this setup, the edge server
functions primarily as a coordinator for scheduling rather than
as a computational resource for DNN tasks. Nonetheless, in
scenarios where the GPU reaches capacity, it may partition the
model further, delegating the processing of additional layers
to the edge server to maintain efficiency.

In light of the algorithm, the scheduling overhead can
become significant for DNN models composed of numerous
layers. Pooling layers, however, represent an advantageous
cutting point, as they significantly reduce both processing
time and output data size, thereby minimizing data volume
and enhancing processing speed. Consequently, we advocate
for the use of pooling layers as strategic cutting points.
Detailed discussions and justifications for this approach will
be elaborated in Section IV.

IV. DNN MODEL EVALUATION

we propose to solve the DNN partition problem in the
following steps 1) Characterizing Layers in DNN Models and
2)Pre-evaluation of DNN Model.

A. Characterizing Layers in DNN Models

The various types of layers in today’s DNN models include:

1) Fully-connected Layer (fc)- Every neuron in a fully
connected layer is linked to all neurons in its previous
layer. This layer calculates the weighted sum of the
inputs using predetermined weights

Convolution & Local Layer (conv, local) - In convo-
Iution and local layers, an image is processed through
convolution with learned filters to generate feature maps.
The variation among these layers comes from the size
of their input feature maps, the dimensions and quantity
of the filters, and the stride at which these filters are
applied.

Pooling Layer (pool) - Pooling layers group features
together by applying a predefined function, such as max
or average, to regions of input feature maps. The key
differences in these layers lie in the size of their input,
the dimensions of the pooling region, and the stride at
which pooling is executed.

Activation Layer (act) - Activation layers introduce
non-linearity to neural networks by applying specific
functions to each input individually, outputting data in
equal volume.

2)

3)

4)

Other layer types include normalization layer(norm), soft-
max layer (softmax), argmax layer (argmax),dropout layer
(dropout), etc.

Fully-connected layers introduce high latency, while con-
volution and pooling layers at the network’s front end show
shorter latency. As convolution layers increase and pooling
layers decrease data size, this reduction progresses toward

the back end where fully-connected layers are situated. This
dynamic presents a unique opportunity for computational
partitioning in the middle of the DNN, optimizing between
the mobile and cloud environments.

TN
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Fig. 3: VGG16 Architecture

Take VGG16 as an example [20]. VGG16 is a convolutional
neural network designed for object detection and classification,
achieving an accuracy of 92.7%. It consists of thirteen con-
volutional layers, five Max Pooling layers, and three Dense
layers, totaling 21 layers, as Figure 3 shows. However, only
sixteen of these layers contain learnable parameters. VGG16
accepts input tensors of size 224 by 224, each with 3 RGB
channels.

TABLE I: Output Data Size at Each Layer

Layer [ inputl | convI-1 | convl-2 ] pooll [ conv2-1 [ conv2-2 | pool2 | ...

Data Size (MB) | 0.57 | 1225 | 1225 | 306 | 613 | 613 | 153 | .

B. Pre-evaluation of DNN Model

We propose to evaluate sub-model-based profiling at each
pooling layer, which includes

1) Data Size Variations - Evaluate the output data size
for each pooling layer on a specific device. In neural
networks, convolution layers initially expand data which
is subsequently reduced by pooling layers, progressively
diminishing the data size through the network. As a
result, the data size in the final layers is smaller than
the original input.
sub-model Latency - Evaluate the sub-model running
time at each pooling layer, as observations indicate that
incorporating a pooling layer typically results in reduced
processing times for sub-models.

2)

A shorter processing time and reduced output data size make
a pooling layer an ideal cutting point, as it both minimizes data
volume and accelerates processing. Additional evidence will
be provided to support this assertion.

We designated a 1.9MB image as the input and observed
the data size changes across each layer, with a subset of the
results presented in Table 1. The initial layers involve a pattern
where convolutional layers increase data volume, followed
by pooling layers that decrease it, effectively reducing the
overall data size progressively. For instance, the data size at
the input layer stands at 0.57MB, which escalates to 12.25MB
post-Convl. This increase is attributed to the Conv-1 layer’s
utilization of 64 filters, while subsequent layers—Conv-2
with 128 filters, Conv-3 with 256 filters, and Conv-4 and
Conv-5 each deploying 512 filters—substantially enhance the
depth relative to the original input. Each pooling operation,



employing a 2 x 2 kernel with a stride of 2, diminishes the
height and width of the feature maps, exemplified by Pooling1
which reduces the data size from 12.25MB to 3.06MB.

To fully leverage the computing resources of edge devices,
it is crucial to balance data transfer times with computation
latency. Therefore, we evaluated the sub-model latency on
an edge server, with system specifications detailed in Table
I, and part of results are shown in Table III. Sub-model
latency measures the processing time from the input layer to
a given layer, focusing particularly on the last convolution
layer of each block and the subsequent pooling layer. Our
findings indicate that deeper layers generally exhibit increased
processing times. Interestingly, we observed that the inclusion
of a pooling layer typically reduces running time. For instance,
the running time after the first convolution layer (Convl-2)
is 97.33 ms, while the subsequent pooling layer (Poolingl)
decreases to 96.73 ms, with later blocks following this trend.

TABLE II: System Configuration

Component Name Specifications

2.3GHz Dual-Core Intel Core i5,
8 GB RAM, 256GB Disk

Edge Server

Quad core Cortex-A72 (ARM v8) 64-bit

Raspberry Pi 8GB RAM, 1.8GHz Clock Speed

128-Core Maxwell GPU,
Quad-Core ARM @ 1.43GHz CPU,
4GB RAM

GPU

TABLE III: Sub-Model Latency

[ Layer | ConvI2 | pooll | Conv22 | pool2 | Conv3-3 | pool3 | Comd-3 | pood | Convs-3 | pools |
[“Time (ms) | 9733 | 9673 | 14527 | 143.10 | 23771 | 22446 | 29406 | 291.06 | 319.16 | 318.02 |

Adding a pooling layer typically reduces sub-model pro-
cessing time due to two factors: 1) Data Movement and
Copying: Splitting a model introduces overhead from data
transfer between hardware components or within the GPU,
which can negate computational savings from fewer operations
due to pooling. 2) Model Caching and Optimization: Deep
learning frameworks optimize computational graphs more ef-
fectively when models are run as a whole rather than in parts.
These optimizations include layer operations and memory
usage across the entire model, and splitting the model can
disrupt this. Thus, a pooling layer serves as an effective cutting
point because it decreases data size and enhances processing
efficiency.

V. EVALUATION

We established various scenarios to assess the effectiveness
of the DNN layer partitioning and dynamic scheduling algo-
rithm. We began with Case 1, using a Raspberry Pi as the edge
device and an edge server, and progressed to Case 2, which
incorporates GPU utilization.

A. Casel: Raspberry Pi and Edge Server

In this scenario, the Raspberry Pi receives requests for 50
VGG16 inferences and forwards them to the edge server. The
edge server, serving as the coordinator with comprehensive
global information, makes scheduling decisions for each in-
ference. It determines whether to split the model and at which
point to execute the split, then communicates these decisions
back to the Raspberry Pi. If the model is split, the latter half
will be offloaded to the edge server for further processing.

We first determined the success rate, defined as the pro-
portion of inferences completed within the time constraints.
The results, presented in Table IV, show that our dynamic
distribution scheduler achieved a success rate of 98%. This
significantly outperforms the Neurosurgeon algorithm, which
achieved a success rate of 82%, underscoring the superior
efficiency of our scheduler.

TABLE IV: Success Rate

Algorithm
Success Rate

Dynamic Scheduler
98%

Neurosurgeon
82%

We also assessed the edge device utilization rate, which
reflects the proportion of layers processed on the endpoint
device. The findings, detailed in Table V, reveal that the
utilization rate for our dynamic distributed scheduler stands
at 33%, which is 10 times higher than that achieved by the
Neurosurgeon algorithm.

TABLE V: Edge Device Utilization Rate

Algorithm
Utilization Rate

Dynamic Scheduler
33%

Neurosurgeon
4%

B. Case2.1: Rasp and GPU

GPUs excel in handling computer graphics and image
processing due to their highly parallel architecture, making
them superior to general-purpose CPUs for algorithms that
process large data blocks simultaneously. Recently, GPUs have
become increasingly popular for demanding computational
tasks in areas like deep learning and data mining.

We incorporated a GPU to highlight the effectiveness of our
dynamic distributed scheduler in this scenario. The Raspberry
Pi receives requests for 50 DNN inferences and forwards them
to the edge server. Acting as the coordinator with compre-
hensive global information, the edge server makes scheduling
decisions for each inference, including whether to split the
model and at which layer to execute the split, and then relays
these decisions back to the Raspberry Pi. If the model is split,
the GPU instead of the edge server functions as an additional
processing node.

C. Case2.2: Rasp, GPU, and Edge Server

This scenario mirrors case 2.1, with the distinction that the
edge server also functions as a computing node. If the GPU is
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Fig. 4: Success Rate with Variable GPU Load

overloaded and unable to handle the current task, the model
may either be offloaded from the GPU to the edge server or
the GPU may split the model at a specific layer, offloading
the subsequent layers to the edge server for processing. All
decisions are made by the edge server when the Raspberry Pi
sends a request to it.

Figure 4 presents the experimental results for scenarios 2.1
and 2.2, under varying GPU loads ranging from Oms to 100ms.
As the GPU load increases, the DNN processing capacity
diminishes. The blue line represents the system’s success rate
when the edge server functions as a computing node, while
the red line depicts the success rate when the edge server
solely acts as a scheduling coordinator. As illustrated by the
blue line, an increase in GPU load correlates with a decrease
in success rate. This decline indicates that when the GPU is
burdened with additional tasks, its ability to handle parallel
computations is compromised, leading to longer processing
times and lower success rates. The red line exhibits a similar
pattern. A comparison between the two lines reveals that as
the GPU load escalates, the edge server assumes some tasks
that the overloaded GPU cannot process promptly, thereby
fulfilling the time constraints.

VI. CONCLUSION

this paper introduces a dynamic distributed scheduler opti-
mized for DNN inferences in edge computing environments.
Our approach diverges from traditional static scheduling by
adapting in real-time to changes in computing and network
states, thus enhancing resource utilization. Key contributions
of this work include 1) A novel model partitioning strategy that
segments DNN models into multiple sub-models, allowing for
more flexible and efficient use of edge computing resources. 2)
The introduction of sub-model profiling, a pioneering method
that optimizes DNN layer partitioning to reduce pre-evaluation
work and adapt to various architectures. 3) A prototype imple-
mentation of the scheduler integrated with a GPU, extensively
tested to demonstrate superior performance over existing edge
scheduling solutions. This research enhances the capabilities of
edge computing frameworks to meet the stringent requirements
of modern IoT applications, establishing a foundation for
future advancements in distributed computing.
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