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Abstract
Comparing spherical probability distributions is
of great interest in various fields, including geol-
ogy, medical domains, computer vision, and deep
representation learning. The utility of optimal
transport-based distances, such as the Wasserstein
distance, for comparing probability measures has
spurred active research in developing computa-
tionally efficient variations of these distances for
spherical probability measures. This paper in-
troduces a high-speed and highly parallelizable
distance for comparing spherical measures us-
ing the stereographic projection and the gener-
alized Radon transform, which we refer to as
the Stereographic Spherical Sliced Wasserstein
(S3W) distance. We carefully address the dis-
tance distortion caused by the stereographic pro-
jection and provide an extensive theoretical anal-
ysis of our proposed metric and its rotationally
invariant variation. Finally, we evaluate the per-
formance of the proposed metrics and compare
them with recent baselines in terms of both speed
and accuracy through a wide range of numer-
ical studies, including gradient flows and self-
supervised learning. Our code is available at
https://github.com/mint-vu/s3wd.

1. Introduction
Applications involving distributions defined on a hyper-
sphere are remarkably diverse, highlighting the importance
of spherical geometries across various disciplines. These
applications include: 1) mapping the distribution of geo-
graphic or geological features on celestial bodies, such as
stars and planets (Jupp, 2020; Cabella & Marinucci, 2009;
Perraudin et al., 2019), 2) magnetoencephalography (MEG)
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imaging (Vrba & Robinson, 2001) in medical domains, 3)
spherical image representations and 360

� images (Coors
et al., 2018; Jiang et al., 2023), such as omnidirectional
images in computer vision (Khasanova & Frossard, 2017),
4) texture mapping in computer graphics (Elad et al., 2005;
Dominitz & Tannenbaum, 2010), and more recently, 5) deep
representation learning, where the latent representation is of-
ten mapped to a bounded space, commonly a sphere, where
cosine similarity is utilized for effective representation learn-
ing (Chen et al., 2020; Wang & Isola, 2020).

The analysis of distributions on hyperspheres is traditionally
approached through directional statistics, also referred to
as circular/spherical statistics (Jammalamadaka et al., 2001;
Mardia et al., 2000; Ley & Verdebout, 2017; Pewsey &
Garcı́a-Portugués, 2021). This specialized field is dedicated
to the statistical analysis of directions, orientations, and
rotations. More recently, with the growing application of op-
timal transport theory (Villani, 2008; Peyré & Cuturi, 2018)
in machine learning, due in part to its favorable statistical,
geometrical, and topological properties, there has been an
increasing interest in using optimal transport to compare
spherical probability measures (Cui et al., 2019; Hamfeldt
& Turnquist, 2022).

One of the main bottlenecks in optimal transport theory is
its high computational cost, generally of cubic complex-
ity. This has sparked extensive research to develop faster
solvers (Cuturi, 2013; Scetbon & Cuturi, 2022; Charikar
et al., 2023) or computationally superior equivalent dis-
tances (Rabin et al., 2012; Bonneel et al., 2015; Kolouri
et al., 2019a). Notably, sliced variations of optimal transport
distances, such as sliced Wasserstein distances (Rabin et al.,
2012) and their various extensions (Kolouri et al., 2019a; Le
et al., 2019; Nguyen et al., 2022), have emerged as effective
solutions. These methods use integral geometry and the
Radon transform (Helgason et al., 2011) to represent high-
dimensional distributions via a set of their one-dimensional
marginals. By doing so, they take advantage of more effi-
cient optimal transport solvers designed for one-dimensional
probability measures, offering a pragmatic approach to com-
paring probability measures. Owing to their computational
efficiency and implementation simplicity, these methods
have been recently adapted for spherical measures, leading
to the development of spherical sliced optimal transport
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methods (Bonet et al., 2023a; Quellmalz et al., 2023). This
comes as part of a broader effort to extend sliced Wasserstein
distances to arbitrary manifolds; in this regard, we also high-
light extensions of these methods to measures supported on
compact manifolds (Rustamov & Majumdar, 2023), hyper-
bolic spaces (Bonet et al., 2023b), and symmetric positive
definite matrices (Bonet et al., 2023c).

The main challenge in developing spherical sliced optimal
transport methods lies in extending the classical Radon trans-
form to its spherical counterparts. In the context of sliced op-
timal transport, such an extension must: 1) map probability
measures on the hypersphere to a family of probability mea-
sures on one-dimensional domains (e.g., R or S1), and 2) be
injective so that a sliced distance can be defined (otherwise,
one will obtain only a pseudo-metric). These requirements
rule out many of the existing extensions of the Radon trans-
form to the sphere, e.g., the classic Funk-Radon transform,
which takes integrals along all great circles (Helgason et al.,
2011; Quellmalz, 2020). Recently, (Quellmalz et al., 2023)
proposed using two such spherical extensions for the Radon
transform, namely, the vertical slice transform (Gindikin
et al., 1994b) and a normalized version of the semicircle
transform (Groemer, 1998), to define sliced optimal trans-
port on the sphere. Notably, the semicircle transform was
also used in (Bonet et al., 2023a) to define a spherical sliced
Wasserstein discrepancy for empirical probability measures.

The recent works on sliced spherical optimal transport
(Bonet et al., 2023a; Quellmalz et al., 2023) map a distribu-
tion defined on a hypersphere into its marginal distributions
on a unit circle, thus requiring circular optimal transport to
compare these marginals. Importantly, the calculation of
optimal transport between two one-dimensional measures
defined on a circle is more expensive (requiring an addi-
tional binary search) than when the measures are defined on
the real line (Martin et al., 2023; Hundrieser et al., 2022).
Motivated by this observation, in this paper, we explore a
spherical Radon transform aimed at converting a spherical
distribution into one-dimensional marginals along the real
line. We utilize the stereographic projection, which is a
smooth bijection, in composition with an injective (nonlin-
ear) map to transform the hypersphere into a hyperplane,
where we then apply the classic Radon transform. The key
advantage of the injective map is its ability to manage the
distortion of distances introduced by the stereographic pro-
jection. We support our proposed method with detailed
theoretical analysis and comprehensive numerical studies.

Contributions. Our specific contributions are as follows:

• Introducing a computationally efficient transport dis-
tance, Stereographic Spherical Sliced Wasserstein dis-
tance (S3W), for spherical probability measures.

• Providing a rotationally invariant variation of the pro-
posed distance, Rotationally Invariant Stereographic

Spherical Sliced Wasserstein distance (RI-S3W).

• Offering theoretical analysis of the proposed distances.

• Demonstrating the performance, both in terms of speed
and accuracy, of the proposed distances in diverse
applications, including gradient flows on the sphere,
representation learning with Sliced-Wasserstein Auto-
Encoders (SWAEs), spherical density estimation via
normalizing flows, sliced-Wasserstein variational infer-
ence on the sphere, and self-supervised learning.

2. Background
2.1. Stereographic Projection

Stereographic projection is a mathematical technique to
map points on a sphere onto a plane. Originating in Greek
astronomy, it projects points from a sphere, typically from
one of its poles, onto a plane tangential to the opposite pole
or onto the “equator plane.” This projection is conformal,
preserving angles and shapes locally, making it significant
in fields like cartography, complex analysis, and computer
graphics. It elegantly translates spherical geometry into
planar terms, maintaining the intricate relationships between
points and angles found on the sphere’s surface.

Let Sd denote the d-dimensional sphere in Rd+1 defined
as Sd := {s 2 Rd+1

: ksk2 = 1}. The stereographic
projection � : Sd \ {sn} ! Rd maps a point s 2 Sd
(excluding the “North Pole,” sn = [0, . . . , 0, 1]) to a point
x 2 Rd by the formula:

[x]i =
2[s]i

1� [s]d+1

, for i = 1, 2, . . . , d. (1)

This projection is a bijective and smooth mapping between
Sd \ {sn} and Rd, i.e., the hyperplane tangent to the sphere
at the south pole, sd+1 = �1, which is commonly used as a
way to visualize spherical geometries in an Euclidean space.

2.2. Radon Transform

The Radon transform is a fundamental tool in integral ge-
ometry, widely used for image reconstruction, particularly
in computed tomography (CT). It transforms a function de-
fined in the d-dimensional Euclidean space, Rd, into an
infinite set of its one-dimensional slices, i.e., its integrals
over hyperplanes parametrized with unit vectors ✓ 2 Sd�1.
Radon transform is instrumental in medical imaging and
has recently attracted ample attention from the machine
learning community for its favorable characteristics for mea-
suring distances between probability measures (Bonneel
et al., 2015; Kolouri et al., 2016a; 2019a) and, more gen-
erally, positive measures (Bai et al., 2023; Séjourné et al.,
2023), and more recently on theoretical analysis of deep
neural networks (Parhi & Nowak, 2023; Unser, 2023).

2



Stereographic Spherical Sliced Wasserstein Distances

Figure 1. Depiction of stereographic projection from S2\{sn} to R2 (a), the stereographic Radon transform integration surfaces on the
sphere, i.e., the level sets of h�(x), ✓i for a fixed ✓ 2 Rd (b), and the generalized stereographic Radon transform integration surfaces on
the sphere, i.e. the level sets of hh � �(x), ✓i for a fixed ✓ 2 Rd

0
.

More formally, the classic Radon transform, denoted by R,
maps a function f in the Lebesgue space L1

(Rd
) — the

space of integrable functions on Rd — to its integrals over
the hyperplanes of Rd. Formally, it is defined as:

Rf(t, ✓) :=

Z

Rd

f(x)�(t� hx, ✓i)dx, (2)

for (t, ✓) 2 R ⇥ Sd�1, where �(·) is the one-dimensional
Dirac delta function, and h·, ·i denotes the Euclidean inner
product. Here, R maps from L1

(Rd
) to L1

(R⇥Sd�1
). Each

hyperplane, H(t, ✓) = {x 2 Rd | hx, ✓i = t}, corresponds
to a level set of a function g : Rd ⇥ Sd�1 ! R, defined as
g(x, ✓) = hx, ✓i. For a fixed ✓, the set of all integrals over
hyperplanes orthogonal to ✓ yields the continuous function
Rf(·, ✓) : R! R, representing a projection or slice of f .

Notably, the Radon transform R : L1
(Rd

)! L1
(R⇥Sd�1

)

is a linear bijection with a closed-form inversion formula.
See the Appendix for details.

2.3. Generalized Radon Transform

The Generalized Radon Transform (GRT) extends the foun-
dational concept of the classic Radon transform, as intro-
duced by Radon in (Radon, 1917), from integration over
hyperplanes in Rd to integration over more complex struc-
tures, namely hypersurfaces or (d� 1)-dimensional mani-
folds. This broader scope of the GRT has been developed
and explored in various works (Beylkin, 1984; Denisyuk,
1994; Ehrenpreis, 2003; Gel’fand et al., 1969; Kuchment,
2006; Homan & Zhou, 2017), in many applications from
impedance and acoustic tomography (Kuchment, 2006) to
machine learning (Kolouri et al., 2019a).

The GRT of a function f 2 L1
(Rd

) involves the integration
of f over hypersurfaces in Rd. These hypersurfaces are
defined as the level sets of a ‘defining function’ (Kolouri
et al., 2019a), g : Rd ⇥ (Rd

0 \ {0})! R, characterized by
Ht,✓ = {x 2 Rd| g(x, ✓) = t}. The GRT of f , denoted as

Gf , is formally given by:

Gf(t, ✓) :=
Z

Rd

f(x)�(t� g(x, ✓)) dx, (3)

where � represents the Dirac delta function, enabling the
integration over the specific level sets defined by g. Note
that g(x, ✓) = hx, ✓i recovers the classic Radon transform.

The injectivity of the GRT is essential for defining dis-
tances between measures through their generalized slices.
The choice of g identifies whether GRT is injective or not.
Kolouri et al. (2019a) enumerate a set of necessary con-
ditions on g to construct a bijective GRT. However, these
conditions are not sufficient and are limited in practical util-
ity, as they do not provide guidance on crafting specific
defining functions that would ensure injectivity.

To achieve a practical injective GRT, Chen et al. (2022)
recently introduced a variation of the GRT. They posited
that by setting g(x, ✓) = hh(x), ✓i for an injective function
h : Rd ! Rd

0
, one effectively applies the classic Radon

transform, which is bijective, to the image of h. This ap-
proach leads to an injective GRT, thus resolving the issue
of invertibility. For consistency of notation with Chen et al.
(2022), we denote this variation of the GRT as:

Hf(t, ✓) :=

Z

Rd

f(x)�(t� hh(x), ✓i) dx, (4)

where H : L1
(Rd

)! L1
(R⇥Sd0

�1
). Importantly, a neural

network can effectively parametrize the injective function
h. For instance, h could be a normalizing flow (Kobyzev
et al., 2020). Alternatively, to avoid the complexities as-
sociated with normalizing flows, one can define h(x) as
[xT , ⇢(x)T ]T , where xT and ⇢(x)T are transposed vectors
that are concatenated. Here, ⇢ : Rd ! Rd

0
�1 is any non-

linear function parametrized as a neural network of choice
(Chen et al., 2022). In our experiments, we will use H as
the default GRT due to its injectivity.
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2.4. GRT of Radon Measures

Skipping much of the theoretical details (refer to the ap-
pendix), for a Radon measure µ 2M(Rd

), its Generalized
Radon Transform G(µ) = ⌫ with respect to the defining
function g, is defined as the measure ⌫ 2M(R ⇥ Sd0

�1
)

such that for each  2 C0(R⇥ Sd0
�1

),
Z

R⇥Sd0�1

 (t, ✓) d⌫(t, ✓) =

Z

Rd

(G⇤
( ))(x) dµ(x), (5)

where G⇤ is the dual operator (aka adjoint operator), which
for any  2 L1

(R⇥ Sd0
�1

), is defined as

G⇤
( )(x) =

Z

Sd0�1

 (g(x, ✓), ✓) d�d0(✓) 8x 2 Rd, (6)

where �d0 is the uniform probability measure defined in
Sd0

�1. Importantly, the dual GRT operator satisfies,

G(µ)( ) = µ(G⇤
( )).

Lastly, with a slight abuse of notation, we denote the cor-
responding slice for ✓ 2 Sd0

�1 as G(µ)✓ = g(·, ✓)#µ 2
M(R). Note that f#µ denotes the pushforward of mea-
sure µ with respect to f , defined as f#µ(A) = µ(f�1

(A)).
When µ is a positive or a probability measure in Rd, then
G(µ)✓ is a positive/probability measure in R.

2.5. Wasserstein and Sliced Wasserstein Distances

Let M denote a Riemannian manifold endowed with the
distance d(·, ·) : M ⇥M ! R+. For 1  p < 1, let
µ, ⌫ 2 Pp(M) := {µ 2 P(M)|

R
M

dp(x, x0) dµ(x) <
1 for some x0 2M} be two probability measures defined
on manifold M with a finite p-th moment. Then, the optimal
transport (OT) problem (Villani, 2008) seeks to transport the
mass in µ into ⌫ such that the expected traversed distance is
minimized. This leads to the p-Wasserstein distance:

W p

p
(µ, ⌫) := inf

�2�(µ,⌫)

Z

M⇥M

dp(x, y)d�(x, y), (7)

where �(µ, ⌫) denotes the joint probability measures � 2
P(M ⇥M) with marginals µ and ⌫. Unfortunately, for
discrete probability measures with N particles, solving (7)
generally has a O(N3

logN) complexity. However, for
µ, ⌫ 2 Pp(R) the problem can be solved in O(N logN):

W p

p
(µ, ⌫) =

Z
1

0

kF�1

µ
(t)� F�1

⌫
(t)kpdt (8)

where F�1
µ

and F�1
⌫

are the quantile functions of µ and ⌫.
Notably, similar efficient solvers are developed for when
µ, ⌫ 2 Pp(S1) (Delon et al., 2010; Hundrieser et al., 2022;
Bonet et al., 2023a). For an injective generalized Radon
transform G, such that for µ 2 Pp(M) we have G(µ)✓ 2

Pp(R), the generalized Sliced-Wasserstein distance (Rabin
et al., 2012; Kolouri et al., 2019a) can be defined as:

SW p

G,p
(µ, ⌫) :=

Z

Sd0�1

W p

p
(G(µ)✓,G(⌫)✓)d�d0(✓), (9)

where �d0 2 P(Sd0
�1

) is a probability measure possessing
a non-zero density on the sphere Sd0

�1, often simply the
uniform measure. Recently, Bonet et al. (2023a) introduced
the concept of Spherical Sliced Wasserstein distance, which
involves projecting spherical measures onto great circles,
resulting in G(µ)✓ 2 Pp(S1), and utilizing circular OT to
measure distances between these slices. Notably, circular
OT still necessitates solving an optimization problem to
register cumulative distribution functions on a circle (i.e.,
finding an optimal cut). This results in a slower solver
compared to OT on R.

3. Method
Based on the extended definition of GRT for probability
measures in 2.4, here we formally introduce the “Stereo-
graphic Spherical Radon Transform” and the corresponding
sliced Wasserstein distance, “Stereographic Spherical Sliced
Wasserstein Distance,” for spherical probability measures.

3.1. Stereographic Spherical Radon Transform

Let µ 2 M(Sd) denote a Radon measure defined on Sd
that does not assign mass to the North Pole, i.e., µ({sn}) =
0. We denote the stereographic projection as � : Sd \
{sn} ! Rd, which is a bijection, and we have that �#µ
is a Radon measure defined in Rd. The Stereographic
Spherical Radon transform, of µ is defined as

SR(µ) := R(�#µ) 2M(R⇥ Sd�1
), (10)

and we also define its generalized version as

SG(µ) := G(�#µ) 2M(R⇥ Sd
0
�1

). (11)

Similarly we define SH(µ) := H(�#µ), which provides an
invertible transformation from M(Sd) to M(R⇥ Sd0

�1
).

Proposition 3.1 For µ 2M(Sd) that does not give mass
to the North Pole {sn} the Stereographic Spherical Radon
transforms SG and SH satisfy the following properties:

(1) SG(µ),SH(µ) 2M(R⇥ Sd0
�1

). In addition SG and
SH preserves mass, and if µ is a positive measure, then
SG(µ),SH(µ) are positive measures too. Finally, if
µ 2 P(Sd \ {sn}), then SG(µ),SH(µ) are probability
measures defined on R⇥ Sd0

�1.

(2) The disintegration theorem gives a unique SG(µ)�a.s.
set of measures (SG(µ)✓)✓2Sd0�1 ⇢ M(R),
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and a unique SH(µ)�a.s. set of measures
(SH(µ)✓)✓2Sd0�1 ⇢ M(R) such that for any  2
C0(R⇥ Sd0

�1
),

Z

R⇥Sd0�1

 (t, ✓) dSG(µ)(t, ✓)

=

Z

Sd0�1

Z

R
 (t, ✓) dSG(µ)✓(t) d�d0(✓),

(12)

and similarly for SH. Then, it holds that

SG(µ)✓ = (g(·, ✓) � �)#µ, (13)

and the same holds for SH.

(3) SH is invertible.

The proof of this proposition is included in the appendix
Section D. Being equipped with the proposed stereographic
spherical Radon transform, we are now ready to define our
proposed distance.

3.2. Stereographic Spherical Sliced Wasserstein

Let µ, ⌫ 2 Pp(Sd) denote two probability measures on the
unit sphere in Rd+1. We introduce the formal definition
of the Stereographic Spherical Sliced Wasserstein (S3W )
distances as follows:

S3W p

G,p
(µ, ⌫) :=

Z

Sd0�1

W p

p
(SG(µ)✓,SG(⌫)✓) d�d0(✓).

In this context, �d0 2 P(Sd0
�1

) typically represents a prob-
ability measure possessing a non-zero density on the sphere
Sd0

�1 ⇢ Rd
0
. However, for the sake of simplicity and in

line with common practice, we opt to consider the uniform
measure on Sd0

�1. Similarly, we can define S3W p

H,p
by

integrating over W p

p
(SH(µ)✓,SH(⌫)✓).

Theorem 3.2 The proposed S3WG,p(·, ·) and S3WH,p(·, ·)
are well-defined. Furthermore, S3WG,p(·, ·) is generally
a pseudo-metric in Pp(Sd \ {sn}), i.e., it is non-negative,
symmetric and satisfies triangular inequality. In addition,
S3WH,p(·, ·) defines a metric in Pp(Sd \ {sn}).

The proof is in the appendix Section D.

3.3. Distance Distortion

The Stereographic Projection, while being conformal (i.e.,
preserving angles), severely distorts distances. To demon-
strate the extent of this distortion, consider points s =

(✏, 0, . . . , 0,
p
1� ✏2) and s0 = (�✏, 0, . . . , 0,

p
1� ✏2).

Then, as ✏ ! 0, we have arccos(hs, s0i) ! 0, while
k�(s) � �(s0)k ! 1! This distortion implies that the

transportation cost after the stereographic projection would
be significantly different from the transportation cost on the
sphere, making the naive application of this projection with
optimal transport unsuitable.

In this section, we aim to construct an injective function h
that closely approximates the arclength on the sphere Sd
with the Euclidean distance in the embedded space. Specifi-
cally, we seek to satisfy:

kh(�(s))� h(�(s0))k ⇡ arccos(hs, s0i), 8s, s0 2 Sd.

We introduce two variants of h: an analytical function h1(·)
and a neural network-based learnable function hNN (·), both
mapping to a nearly-isometric embedding from �(s).

We start by defining the analytic function:

h1(x) := arccos

✓
kxk2 � 1

kxk2 + 1

◆
x

kxk , 8x 2 Rd (14)

and provide the following proposition.

Proposition 3.3 For s0, s, s0 2 Sd, where s0 denotes the
South Pole, the stereographic projection �, and h1 as de-
fined in Eq. (14) we have:

• h1(�(s)) = \(s, s0) s[1:d]

ks[1:d]k
. Thus, we have

kh1(�(s))� h1(�(s
0
))k  2⇡

• The following inequality holds,

arccos(hs,s0i)  kh1(�(s))� h1(�(s
0
))k+ ✏(s, s0)

where the equality holds when s, s0, and s0 are in the
same great circle, and ✏(s, s0)! 0 as dSd(s, s0)! 0.

The proof is in the appendix Section H.

Next, we consider training a neural network to obtain a
nearly-isometric Euclidean embedding. To do so, we define

hNN (x) := [hT

1
(x)/C, ⇢T (x)]T (15)

where ⇢ : Rd ! Rd
0
�d is a neural network, and C � 2⇡

a constant. We first note that such hNN : Rd ! Rd
0

is
injective, then train ⇢ by minimizing:

L(⇢) = Es,s0

h
(arccos(hs, s0i)

� khNN (�(s))� hNN (�(s0))k)2
i
, (16)

where s and s0 are sampled according to the uniform distri-
bution in the sphere Sd ⇢ Rd+1, i.e., (s, s0) ⇠ �d+1⇥�d+1.
Figure 2 illustrates the arclength versus the distance in the
embedding for random pairs of samples s, s0 2 Sd with re-
spect to the various scenarios proposed in this section. It is
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Figure 2. Spherical distance (i.e., the arclength) versus the dis-
tance after stereographic projection, where CC denotes Pear-
son’s correlation coefficient. From left to right, when the in-
jective function h = id, and the distance is k�(s) � �(s

0
)k

(a), when h(x) = h1(x) (see Eq. (14)) and the distance is
kh(�(s))� h(�(s

0
))k (b), when h(x) = h1(x) and the distance

is min(kh(�(s))� h(�(s
0
))k, 2⇡ � kh(�(s))� h(�(s

0
))k) (c),

and finally when h(x) = hNN (x) (see Eq. (15)) where ⇢(x) is a
trained neural network minimizing Eq. (16) and C � 2⇡ (d).

evident that an injective function hNN parameterized with a
neural network can yield a nearly-isometric embedding. We
discuss the use of this neural-network based hNN further in
the appendix Section H.1.

To avoid any potential confusion, we emphasize that irre-
spective of the specific choice of h, as long as it maintains
injectivity, S3WH,p remains a valid metric in Pp(Sd). The
discussion in this section is, however, significant, particu-
larly when we aim to ensure that the transportation cost in
the embedding closely resembles the spherical distance.

3.4. Rotationally Invariant Extension of S3W

Rotational symmetry is a significant property when deal-
ing with probability metrics on the sphere. This symmetry
implies that the probability distribution remains unchanged
under rotations, making it a key consideration in spherical
statistics and related applications. It simplifies calculations
and enhances our understanding of the underlying processes
on a spherical surface. Notably, the spherical OT leads to a
rotationally symmetric metric on Pp(Sd). However, our pro-
posed Stereographic Spherical Sliced Wasserstein (S3W )
metric is not rotationally invariant. Here, we propose a rota-
tionally invariant variation of S3W , which leads to a robust
and easy-to-implement rotationally invariant metric.

Let SO(d+1) denote the special orthogonal group in Rd+1,
and let R 2 SO(d + 1) denote a rotation matrix. For
µ 2 Pp(Sd) we denote the rotated measure as R#µ. Given
probability measures µ, ⌫ 2 Pp(Sd), we define the rotation-
ally invariant extension of S3W as:

RI-S3WG,p(µ, ⌫) := ER⇠![S3WG,p(R#µ,R#⌫)], (17)

where ! denotes the normalized Haar measure on SO(d+1)

(i.e., the uniform probability measure which is left-rotation-
invariant1). We similarly define RI-S3WH,p using S3WH,p.

Theorem 3.4 RI-S3WG,p(·, ·) and RI-S3WH,p(·, ·) are
well-defined. Furthermore, RI-S3WG,p(·, ·) is generally
a pseudo-metric in Pp(Sd), i.e., it is non-negative, sym-
metric and satisfies triangular inequality. In addition,
RI-S3WH,p(·, ·) defines a metric in Pp(Sd).

The proof is included in the appendix Section E.

4. Numerical Implementation Details
Stereographic Projection (SP)

A key issue in implementing the SP for S3W concerns
the numerical handling of points near the North Pole. To
ensure numerical stability, we introduce an ✏-cap around the
North Pole, which serves to effectively establish an upper
bound for the norm of the projected points. Specifically, any
point where xd+1 > 1� ✏ is initially mapped to the circle
xd+1 = 1� ✏, and then projected using SP. We refer to this
modified SP as �✏. We discuss the stability of this ✏-cap in
the appendix Section I.3.

The S3W Distances

Let �✏ denote the Stereographic Projection operator that
excludes the ✏-cap around sn 2 Sd, and h : Rd ! Rd

0

an injective defining function, L the number of slices, and
✓l 2 Sd0

�1 a slicing direction. For simplicity, we initially
consider two data distributions with an equal number of
samples and uniform mass distribution (the general case
involving different numbers of samples and non-uniform
mass distribution is discussed in the appendix). Let µ̂ =
1

M
⌃

M

m=1
�xm

and ⌫̂ =
1

M
⌃

M

m=1
�ym

denote the empirical
distributions, where �xm

denotes a Dirac measure centered
at xm. Then, S3W p

H,p
(µ̂, ⌫̂) can be approximated via the

following Monte Carlo estimator:

1

L

LX

l=1

MX

m=1

���hh(�✏(x⇡l[m])), ✓li � hh(�✏(y⇡0
l
[m])), ✓li

���
p

where ⇡l[m] and ⇡0

l
[m] are the sorted indices of the pro-

jected samples on ✓l (see Algorithm 1 for the procedure).
1The Haar measure on a locally compact group G is the unique,

up to positive constants, left-translation-invariant regular Borel
measure on G. If G = SO(d + 1), the group translations are
rotations. Here, we normalize it to obtain a probability measure.

6



Stereographic Spherical Sliced Wasserstein Distances

Algorithm 1 S3W

Input: {xi}Mi=1
⇠ µ, {yj}Mj=1

⇠ ⌫, L projections,
p-th order, ✏ for excluding the ✏-cap around sn.

Initialize: h (injective map), {✓l}Ll=1
(projections)

Compute {ui = h(�✏(xi))} and {vj = h(�✏(yj))}
Initialize distance d = 0

for l = 1 to L do
Compute ul

i
= hui, ✓li, vlj = hvj , ✓li

Sort {ul

i
}, {vl

j
}, s.t ul

⇡l[i]
 ul

⇡l[i+1]
, vl
⇡
0
l
[j]
 vl

⇡
0
l
[j+1]

d = d+ 1

L

P
M

i=1
|ul

⇡l[i]
� vl

⇡
0
l
[i]
|p

end for
Return d

1
p

The RI-S3W Distances

The Monte Carlo approximation of RI-S3W distances can
be written as:

RI-S3Wp(µ̂, ⌫̂) ⇡
1

NR

NRX

n=1

S3Wp((Rn)#µ̂, (Rn)#⌫̂),

where {Rn}NR

n=1
⇢ SO(d + 1) are random rotation ma-

trices. To generate Rn, we adopt the GeoTorch library
(Lezcano-Casado, 2019), which provides a direct method
to sample from SO(d+ 1). Our approach is efficient with
vectorization and parallel processing on GPU. We note that
generating Rn is generally O(NR ·d3), which could become
expensive for high-dimensional data or a large number of
rotations. Instead, we could amortize this cost by presam-
pling a rotation pool which could then be subsampled for
every distance calculation. We denote this implementation
as ARI-S3W , which involves a trade-off in memory and
potential increased bias. In practice, we observe highly fa-
vorable performance in a variety of settings. We discuss this
further in the appendix Section I.

Computational Complexity

Stereographic projection requires O(Nd) where N = n+m
is the total number of data points from the source and target,
and (d+ 1) is the data dimensionality. If n� m, then we
let N = n, and the same analysis holds. Applying h(·) =
h1(·) to the projected data also requires O(Nd). Thereafter,
slicing the data is done in O(LNd), where L is the number
of projections; sorting is done in O(LN logN); and finally,
the distance calculation requires O(LN). The overall time
complexity for S3W is therefore O(LN(d+ logN)). For
RI-S3W , the cost of calculating S3W for all rotations is
O(NRLN(d + logN)). Generating the random rotations
takes an overhead of O(NRd3) (which can be amortized),
and applying these rotations to the data takes O(NRNd2).
The total complexity is O(NR(d3+Nd2+LN(d+logN)).
If we amortize generating the rotation matrices, then the

Figure 3. Runtime comparison for Wasserstein distance, Sinkhorn
distance (Cuturi, 2013) with geodesic distance as cost function,
SW2 (sliced Wasserstein) distance, SSW1 distance (using level
median formula) (Bonet et al., 2023a), SSW2 distance with binary
search (BS) and antipodal closed form (for uniform distribution)
(Bonet et al., 2023a), S3W2 distance (ours), RI-S3W2 distance
(ours), and ARI-S3W2 distance (ours).

per-operation cost becomes O(NRN(d2+Ld+L logN)).

Runtime Comparison

We compare the runtime to compute different distances be-
tween the uniform distribution and a von Mises-Fisher distri-
bution on S100. The results in Figure 3 are averaged over 50
iterations for varying sample sizes of each distribution. We
use L = 200 projections for all sliced methods, NR = 10

rotations for ARI-S3W2 and RI-S3W2, and a pool size of
100 for ARI-S3W2. We do not include the time required
to generate the rotation pool in our ARI-S3W2 measure-
ments. Results for Wasserstein and Sinkhorn are based on
the Python OT library (Flamary et al., 2021).

5. Experiments
Here, we present key results from our numerical experi-
ments. We defer much of the visualization, discussions, and
further results to the appendix Section I. All our experiments
were executed on a Linux server with an AMD EPYC 7713
64-Core Processor, 8 ⇥ 32GB DIMM DDR4, 3200 MHz,
and a NVIDIA RTX A6000 GPU.

5.1. Gradient Flow On The Sphere

Similar to the work of Bonet et al. (2023a), we apply our
proposed distances as a loss function for the gradient flow
problem. We consider a challenging target probability mea-
sure ⌫ with 12 von Mises-Fisher distributions (vMFs), and
aim to solve argmin

µ
S3W (µ, ⌫). Suppose we have access

to the target measure only via i.i.d. samples {yj}Mj=1
, i.e.,

⌫̂ =
1

M

P
M

j=1
�yj

where M = 2400. We initialize 2400

particles uniformly sampled on S2, and directly optimize
these particles with full-batch projected gradient descent on
the surface of the sphere. Figure 4 shows the converged
loss curves after 500 iterations and reports the runtime,
negative log-likelihood (NLL), and the logarithm of the

7
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Method Runtime(s) NLL # logW2 #

SSW (LR=0.01) 94.97 ± 0.96 -4974.50 ± 2.27 -3.27 ± 0.17
SSW (LR=0.05) 94.98 ± 0.27 -4974.46 ± 3.50 -3.32 ± 0.13
S3W 3.32 ± 0.62 -4753.81 ± 83.70 -2.57 ± 0.19
RI-S3W (1) 4.00 ± 0.83 -4957.22 ± 34.70 -3.15 ± 0.26
RI-S3W (5) 10.58 ± 0.27 -4983.56 ± 6.62 -3.50 ± 0.17
ARI-S3W (30) 42.88 ± 0.05 -5025.37 ± 5.57 -4.37 ± 0.21

Figure 4. Learning a mixture of 12 vMFs. ARI-S3W (30) has 30
rotations, pool size of 1000. S3W variants use LR = 0.01. SSW
has an additional LR = 0.05 for better comparison. The plots show
convergence of different distances w.r.t. iterations and runtime.
The table summarizes numerical results for 10 independent runs.
We provide more details of the plots in the appendix Section I.4.1.

2-Wasserstein distance between the distributions for SSW ,
S3W , RI-S3W with NR 2 {1, 5}, and ARI-S3W with
NR = 30 and pool size of 1000. We observe that the pro-
posed distances provide on-par or better performance while
being significantly faster than SSW (up to 20X). Addition-
ally, we provide mini-batch results in the appendix Section
I.2. When the target is only known up to a constant, we use
sliced-Wasserstein variational inference (Yi & Liu, 2022)
(see the appendix, Section I.8).

5.2. Self-Supervised Learning (SSL)

We now show that our method can be an effective loss for
contrastive SSL on the sphere. We adopt the contrastive
objective proposed in (Wang & Isola, 2020), composed
of alignment and uniformity loss terms, and replace the
Gaussian kernel uniformity loss with an S3W -based loss:

L =
1

n

nX

i=1

kzA
i
�zB

i
k2
2
+
�

2

�
S3W2(z

A, ⌫) + S3W2(z
B , ⌫)

�
,

where zA, zB 2 Rn⇥(d+1) are two encoded views of the
same images, ⌫ = Unif(Sd) is the uniform distribution on
Sd and � > 0 is the regularization coefficient. We run our
experiments on CIFAR-10 using a ResNet18 encoder. Fig-
ure 5 visualizes the learned embeddings when d = 2, and
Table 1 assesses the quality of the learned embeddings for
d = 9 using the standard linear classifier evaluation. The
details of these experiments are included in the appendix
Section I.7. We can see that the proposed metrics consis-

Figure 5. Projected features on S2 for CIFAR-10.

Table 1. Standard linear evaluation on CIFAR-10. Accuracy is for
encoded (E) features and projected (P) features on S9 (encoder
feature dimension is 10). Time reported is per epoch of pretraining.

Method Acc.(%) E/P " Time(s/ep.)
Supervised 92.38 / 91.77 —–
(Wang & Isola, 2020) 79.76 / 74.57 24.28
SimCLR (Chen et al., 2020) 79.69 / 72.78 20.94
SSW (Bonet et al., 2023a) 70.46 / 64.52 33.14
SW 74.45 / 68.35 21.09
S3W 78.54 / 73.84 21.36
RI-S3W (5) 79.97 / 74.27 21.59
ARI-S3W (5) 79.92 / 75.07 21.51

tently lead to embeddings that are competitive both in terms
of performance and runtime.

5.3. Sliced-Wasserstein Autoencoder (SWAE)

We now adopt the SWAE framework proposed by (Kolouri
et al., 2019b) and demonstrate the application of S3W dis-
tances in generative modeling. Let ' : X ! Sd denote
an encoder network and  : Sd ! X denote a decoder
network. The SWAE framework aims to enforce that the
encoded data follow a prior distribution in the latent space.
In our experiments, we use a mixture of vMF distributions
with 10 components on S2 as our prior distribution, which
we denote as q. Then, the training objective for the modified
SWAE is:

min
', 

Ex⇠p[c(x, ('(x))] + � · S3W ('#p, q)

where � is the regularization coefficient, c(·, ·) the recon-
struction loss, for which we use the standard Binary Cross
Entropy (BCE) loss, and p denotes the data distribution.
Details about the network architectures and results on the
MNIST benchmark can be found in the appendix Section
I.9.
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Table 2. CIFAR-10 results for SWAE. We evaluate the latent reg-
ularization loss (log(W2) and NLL), along with the BCE recon-
struction loss on the test data.
Method logW2 # NLL # BCE # Time (s/ep.)
Supervised -0.5132 0.0060 0.6319 5.3243
SSW -2.1949 0.0052 0.6323 15.4651
SW -3.3229 -0.0007 0.6348 5.4661
S3W -3.3381 0.0025 0.6318 5.7511
RI-S3W (5) -3.1424 -0.0043 0.6376 7.5443
ARI-S3W (5) -3.3853 0.0028 0.6332 5.8316

5.4. Earth Density Estimation

We extend our S3W distances to the task of density estima-
tion with normalizing flows on S2. Our focus is on the three
datasets introduced by (Mathieu & Nickel, 2020), represent-
ing the Earth’s surface as a perfect spherical manifold: Earth-
quake (NOAA, 2022), Flood (Brakenridge, 2017), and Fire
(EOSDIS, 2020). Similar to (Bonet et al., 2023a), we use
an exponential map normalizing flow model (Rezende et al.,
2020) (see I.6) optimizing minT S3W (T#⌫, q), where T
is the transformation induced by the model, ⌫ is the data
distribution known via samples {yj}Mj=1

, and q is the prior
distribution on S2. The learned density at y 2 S2 can then
be approximated as f⌫(y) = q(T (y))| det JT (y)| where
JT (y) denotes the Jacobian of T at y.

Table 3. Earth datasets results. We use a pool size of 100 for
ARI-S3W . Stereo denotes the approach introduced by (Gemici
et al., 2016) which involves stereographically projecting the sphere
Sd onto Rd and then performing RealNVP (Dinh et al., 2016).

Method Quake # Flood # Fire #
Stereo 2.04 ± 0.19 1.85 ± 0.03 1.34 ± 0.11
SW 1.12 ± 0.07 1.58 ± 0.02 0.55 ± 0.18
SSW 0.84 ± 0.05 1.26 ± 0.03 0.24 ± 0.18
S3W 0.88 ± 0.09 1.33 ± 0.05 0.36 ± 0.04
RI-S3W (1) 0.79 ± 0.07 1.25 ± 0.02 0.15 ± 0.06
ARI-S3W (50) 0.78 ± 0.06 1.24 ± 0.04 0.10 ± 0.04

6. Conclusion
We introduced a new class of sliced Wasserstein (SW ) dis-
tances for spherical data using the stereographic projection
(SP). We rigorously addressed the distortion issue caused
by SP and presented several high-speed, high-performing
variants of our approach. S3W maps data to a generalized
hypersurface with minimal distortion (via composing SP
with a novel injective function) and efficiently computes
SW over an order of magnitude faster than existing base-
lines in many settings. RI-S3W encodes rotation invari-
ance into S3W , further boosting its performance. Although
RI-S3W is highly parallelizable, we achieved additional
efficiency with our implementation of amortization (denoted
as ARI-S3W ). Given that our approach uses stereographic
projection to map the hypersphere into Euclidean space,
there may exist novel extensions of our slicing framework

to unbalanced settings by leveraging recent advancements in
unbalanced and partial OT on R (Bai et al., 2023; Séjourné
et al., 2023). Moreover, our approach opens up interesting
directions to bridging the spherical manifold and classical
SW literature via pushforwards to appropriate hypersur-
faces. Lastly, we highlight recent advancements in im-
proving the projection complexity of sliced Wasserstein
distances (Deshpande et al., 2019; Nguyen et al., 2020;
Nguyen & Ho, 2022; Nguyen et al., 2022; Nguyen & Ho,
2024; Nguyen et al., 2024). These strategies are compatible
with our proposed S3W distances and can be integrated
with our method to further enhance the projection efficiency
of our metric in comparing high-dimensional spherical mea-
sures.
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Bonneel, N., Rabin, J., Peyré, G., and Pfister, H. Sliced and
Radon Wasserstein barycenters of measures. Journal of
Mathematical Imaging and Vision, 51(1):22–45, 2015.

Bradawl, G. Statistics of earth science data, 2003.

Brakenridge, G. Global active archive of large flood
events. Dartmouth Flood Observatory, University of Col-
orado, 2017. URL http://floodobservatory.
colorado.edu/Archives/index.html.

Cabella, P. and Marinucci, D. Statistical challenges in the
analysis of cosmic microwave background radiation. Ann.
Appl. Stat., 3(1):61–95, 2009.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P.,
and Joulin, A. Unsupervised learning of visual features
by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.
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A. Notation
• (Rd, k·k): d-dimensional Euclidean space, where k·k is the Euclidean norm (or 2�norm): given x = [x1, . . . , xd] 2 Rd,
kxk =

p
x2
1
+ · · ·+ x2

d
. Sometimes we will write k · k2 to stress that we are considering this “2�norm”.

• h·, ·i: canonical inner product in Euclidean spaces.

• Lp
(⌦), where p � 1 and ⌦ ✓ Rd: functional space defined by

Lp
(⌦) := {f : ⌦! R|

Z

⌦

|f |p <1}

endowed with the norm

kfkp =

✓Z

⌦

|f |p
◆ 1

p

.

In the extreme case p =1, we have

L1
(⌦) := {f : ⌦! R| sup |f | <1}. (18)

In our case, ⌦ will be Rd, R⇥ Sd�1, R⇥ Rd
0 \ {0} or Sd.

• C(X): space of real-valued continuous functions defined on the space X .

• C0(Rd
): set of continuous functions “that vanish at infinity”.

• C1: class of infinite differentiable functions.

• Sd�1: the unit sphere in Rd, defined as Sd�1
:= {x 2 Rd

: kxk2 = 1}.

• �d: the uniform probability measure defined in the sphere Sd�1 ⇢ Rd.

• sn = [0, . . . , 0, 1] 2 Rd+1 is the North Pole and s0 = [0, . . . , 0,�1] 2 Rd+1 is the South Pole in Sd ⇢ Rd+1.

• �: stereographic projection (SP).

• �✏: stereographic projection operator whose domain excludes the ✏-cap around sn in the sphere Sd.

• vT : transpose vector.

• H(t, ✓) = {x 2 Rd | hx, ✓i = t} hyperplane.

• Ht,✓ = {x 2 Rd| g(x, ✓) = t} “level set” of g : Rd ⇥ Sd�1 ! R at level t with fixed spherical variable ✓.

• R(·): Radon transform with R : L1
(Rd

)! L1
(R⇥ Sd�1

).

• G(·): Generalized Radon Transform (GRT) with

G(f)(t, ✓) =
Z

Rd

f(x)�(t� g(x, ✓)) dx.

In this formulation, d0 � d in general, and g : Rd ⇥ (Rd
0 \ {0})! R is a function which satisfies the following:

(H.1) g(x, ✓) is C1 function on Rd ⇥ (Rd
0 \ {0}).

(H.2) g(x, ✓) is homogeneous of degree one in ✓, i.e., g(x,�✓) = �g(x, ✓) for all � 2 R.
(H.3) g(x, ✓) is non-degenerate with respect to x in the sense that 8(x, ✓) 2 Rd ⇥ (Rd

0 \ {0}), @g
@x

(x, ✓) 6= 0.

(H.4) The mixed Hessian of g is strictly positive, i.e., det
⇣

@
2
g

@xi@✓j

⌘
> 0.

By property (H.2), G : L1
(Rd

) ! L(R ⇥ Sd0
�1

). We refer (Beylkin, 1984; Denisyuk, 1994; Gel’fand et al., 1969;
Ehrenpreis, 2003; Kuchment, 2006; Homan & Zhou, 2017; Kolouri et al., 2019a) for more details.
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• H(·): a variant and simplified version of the Generalized Radon Transform defined by H : L1
(Rd

)! L1
(R⇥ Sd0

�1
),

H(f)(t, ✓) =

Z

Rd

f(x)�(t� hh(x), ✓i)dx,

where h : Rd ! Rd
0

is injective.

• h1: function defined by (14).

• (t, ✓): the first and second inputs for (generalized) Radon transform, where t 2 R and variable ✓ lies in a pre-defined
sphere: ✓ 2 Sd�1 for the classic Radon transform (R), and ✓ 2 Sd0

�1 for the generalized cases G and H.

• R⇤,G⇤,H⇤: the Hermitian adjoint operators for R,G,H. In particular, R⇤
: L1

(R ⇥ Sd�1
) ! L1

(Rd
), and

G⇤,H⇤
: L1

(R⇥ Sd0
�1

)! L1
(Rd

) with

R⇤
( )(x) =

Z

Sd�1

 (hx, ✓i, ✓)d�d(✓)

G⇤
( )(x) =

Z

Sd0�1

 (g(x, ✓), ✓)d�d0(✓)

H⇤
( )(x) =

Z

Sd0�1

 (hh(x), ✓i, ✓)d�d0(✓)

• M(⌦): Set of all real Radon measures (finite regular Borel measures not necessarily positive, that is, it includes signed
measures) defined on ⌦. In this article ⌦ can be Rd, R⇥ Sd�1, or R⇥ Sd0

�1.

M(⌦) is endowed with the total variation norm

kµkTV = µ+
(⌦) + µ�

(⌦)

where µ± are the positive and negative parts of µ.

• M+(⌦): Set of all positive Radon measures defined on ⌦. It is endowed with the total variation norm kµkTV = µ(⌦).

• P(⌦): Set of all probability measures defined on ⌦ (i.e., positive measures with kµkTV = µ(⌦) = 1).

• Pp(⌦): Set of all probability measures defined on ⌦ with p�th finite moment, that is,

Pp(⌦) = {µ 2 P(⌦) :

Z

⌦

kxkpdµ <1}

We have the following relation:
Pp(⌦) ✓ P(⌦) ✓M+(⌦) ✓M(⌦).

• T#µ: push-forward of the measure µ 2M(X) by the measurable map T : X ! Y , which defines a measure on
M(Y ) such that T#µ(B) = µ ({x 2 X : T (x) 2 B}) for every measurable set B ✓ Y .

• Wp: p-Wasserstein distance.

• µ̂ =
1

M
⌃

M

m=1
�xm

: empirical distribution.

• Unif(X),�(X): Uniform distribution on a measure space X .

• Fµ, F�1
µ

: cumulative distribution function (CDF) and quantile function of the measure µ, respectively.

• SR, SG , and SH: Stereographic Spherical Radon Transforms (SSRT),

SR(µ) = R(�#µ), SG(µ) = G(�#µ), SH(µ) = H(�#µ).
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• S3WR,p, S3WG,p, and S3WH,p: Stereographic Spherical Sliced Wasserstein (S3W) distances

S3W p

R,p
(µ, ⌫) =

Z

Sd�1

W p

p
(SR(µ)✓,SR(⌫)✓) d�d(✓),

S3W p

G,p
(µ, ⌫) =

Z

Sd0�1

W p

p
(SG(µ)✓,SG(⌫)✓) d�d0(✓),

S3W p

H,p
(µ, ⌫) =

Z

Sd0�1

W p

p
(SH(µ)✓,SH(⌫)✓) d�d0(✓).

• E: expected value.

• O(n), SO(n): orthogonal group (rotations and reflections) and special orthogonal group (rotations) of n ⇥ n real
matrices, respectively.

• !: Haar probability measure on the compact group SO(d+ 1).

• ⇡: approximately.

• x ⇠ µ: element x sampled from the distribution µ.

• rx: gradient with respect to the variable x.

• RI � S3WG,p: Rotationally Invariant Extension of S3W defined by (17).

• ARI � S3W : Amortized Rotationally Invariant Extension of S3W used in our experiments.

• dSd(·, ·): The great circle distance on the sphere Sd defined by dSd(s1, s2) = arccos(hs1, s2i) for all s1, s2 2 Sd.

• \(s1, s2): the angle between the points s1 and s2 defined by \(s1, s2) = arccos(hs1, s2i)2 [0,⇡].

B. Radon Transform for Radon Measures
This section will review the classic Radon transform in the general Radon measure setting. In the next section, we introduce
the Generalized Radon Transform (GRT) for general Radon measures.

As we discussed in the main section, given a function f 2 L1
(Rd

), the Radon transform, R(f), is a function in L1
(R⇥Sd�1

).
In particular, for each (t, ✓) 2 R⇥ Sd�1, we have:

R(f)(t, ✓) =

Z

Rd

f(x)�(t� hx, ✓i) dx

=

Z

Rd�1

f(t✓ + U✓⇠) d⇠

where U✓ 2 Rd⇥(d�1) is any matrix such that its columns are formed by an orthonormal basis of ✓? (the subspace which is
perpendicular to the vector ✓), see equation (22) in (Bonneel et al., 2015). It is straightforward to verify the above definition
is well-defined (i.e. R(f) is independent of the choice of U✓).

Notably, the Radon transform R : L1
(Rd

)! L1
(R⇥ Sd�1

) is a linear bijection with a closed-form inversion formula. For
a function f 2 L1

(Rd
), the Radon transform Rf can be inverted using the inverse Radon transform, denoted by R�1. The

inversion formula is given by:

f(x) = R�1
(Rf)(x) =

Z

Sd�1

�
Rf(·, ✓) ⇤ ⌘(·)

�
(hx, ✓i) d�d(✓), (19)

where ⌘(·) is a one-dimensional high-pass filter with corresponding Fourier transform F⌘(!) = c|!|d�1, which appears
due to the Fourier slice theorem (Helgason et al., 2011), and ‘⇤’ is the convolution operator. This integral formula effectively
reconstructs f from its Radon transform and, in the medical imaging community, is referred to as ‘filtered back projection.’
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Besides, the fact that the Radon transform R is a bounded linear operator from L1
(Rd

) to L1
(R ⇥ Sd�1

), yields to the
definition of the dual operator 2, denoted as R⇤, which is generally called “back projection” (Helgason et al., 2011; Rubin,
2015). By definition of the dual operator and Riesz representation theorem that identifies the dual space of L1 with L1, for
each  2 L1

(R⇥ Sd�1
), we have

Z

R⇥Sd�1

 (t, ✓)R(f)(t, ✓) dt d�d(✓) =

Z

Rd

f(x)R⇤
( )(x) dx. (20)

Moreover, R⇤
: L1

(R⇥ Sd�1
)! L1

(Rd
) has closed form: For each x 2 Rd and  2 L1

(R⇥ Sd�1
),

R⇤
( )(x) =

Z

Sd�1

 (hx, ✓i, ✓) d�d(✓), (21)

where �d is the uniform probability measure defined in the sphere Sd�1 ⇢ Rd .

As discussed in the main section, the classic Radon transform can describe the distribution in projected 1D space. Indeed,
suppose f is the density of a probability measure µ, and ✓ 2 Sd�1, then function R(f)(·, ✓) : R ! R�0 is exactly the
density of the projected probability measure of µ into the space spanned by ✓. We denote this projection ✓#µ by using
pushforward notation where we identify ✓ 2 Sd�1 with the function

✓ : Rd ! Rd

x 7! hx, ✓i ✓, (22)

which range lies of the line generated by the direction ✓. Thus, we write

R(f)(·, ✓) = ✓#µ 2M(R). (23)

However, when µ is not a continuous measure, continuous (e.g. empirical distribution), then ✓#µ does not admit a density
function. To address this limitation and extend R to any king of finite measures, we follow a measure-theoretic approach
of the Radon transform as in (Bonneel et al., 2015) by using equation (20). We refer the reader also to (Helgason et al.,
2011)[Ch.1, Sec.5]).

For this extension, we first recall the classical Riesz-Markov representation theorem and the lemma for the identity between
Radon measures.

Theorem B.1 (Riesz-Markov Representation theorem) Suppose ⌦ is a separable and locally compact space, then the
dual space of the Banach space (C0(⌦), k · k1), denoted as (C0(⌦)

⇤, k · k⇤), is isomorphic to (M(⌦), k · kTV ). In
particular, for each bounded linear functional ⇠ 2 C0(⌦)

⇤, there exists a unique ⌫ 2M(⌦) such that

⇠( ) =

Z

⌦

 (x) d⌫(x), and k⇠k⇤ = k⌫kTV .

Lemma B.2 (Identity of Radon measures) Given µ1, µ2 2M(⌦) where ⌦ ⇢ Rd, the following are equivalent:

(1) ⌫1 = ⌫2

(2)
R
⌦
 (x) d⌫1(x) =

R
⌦
 (x) d⌫2(x), 8 2 C0(⌦)

(3)
R
⌦
 (x) d⌫1(x) =

R
⌦
 (x) d⌫2(x), 8 2 L1

(⌦)

We will refer to the spaces C0(⌦) and L1
(⌦) as the spaces of test functions for M(⌦).

Proof: If ⌫1 = ⌫2, we directly have (2), (3). Since C0(⌦) ⇢ L1
(⌦), then (3) implies (2). All we need to prove is

(2)) (1). By the Riesz-Markov Representation theorem B.1, M(⌦) is isometric to (C0(⌦)
⇤, k · k⇤). By the identity in the

dual space, we have ⌫1 = ⌫2 given (2). ⇤
2Some references call the back projection as adjoint (aka Hermitian conjugate) operator e.g. (Bonneel et al., 2015; Unser, 2023).
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Based on the above theorem, for µ 2M(Rd
), its Radon transform R(µ) = ⌫ is defined as the measure ⌫ 2M(R⇥ Sd�1

)

such that for each  2 C0(R⇥ Sd�1
),
Z

R⇥Sd�1

 (t, ✓) d⌫(t, ✓) =

Z

Rd

(R⇤
( ))(x) dµ(x), (24)

where the dual operator R⇤ is defined in (21). Synthetically, one usually writes

R(µ)( ) = µ(R⇤
( )).

Note that, by the above lemma, we can choose the L1
(R⇥ Sd�1

) space of test functions. In particular, by setting  = 1A

for any Borel set A ⇢ R⇥ Sd�1, we can verify that ⌫ is Radon measure if µ is Radon measure. Similarly, ⌫ is a positive
Radon measure if µ is positive. In addition, one can obtain k⌫kTV = kµkTV . Thus, if µ is a probability measure on Rd,
then ⌫ = R(µ) is a probability measure defined on R⇥ Sd�1.

By the disintegration theorem in classic measure theory, there exists a ⌫�a.s. unique set of measures (⌫✓)✓2Sd�1 ⇢M(R)
such that for any  2 C0(R⇥ Sd�1

), we have
Z

R⇥Sd�1

 (t, ✓) d⌫(t, ✓) =

Z

Sd�1

Z

R
 (t, ✓) d⌫✓(t) d�d(✓). (25)

Similar to (23) for the classic Radon measure, given a fixed ✓ 2 Sd�1, R(µ)✓ describes the projected measure of µ into the
1D space spanned by ✓ (Bonneel et al., 2015)[Proposition 6], that is:

R(µ)✓ = ⌫✓ = ✓#µ 2M(R).

C. Generalized Radon Transform for Probability Measures
Extending the Radon transform as in (3) and (4) is natural. In this section, we review those definitions.

Given g : Rd ⇥ (Rd
0 \ {0})! R, such that g satisfies the technical assumptions [H.1–H.4] listed in the Notation section

and given in (Beylkin, 1984) and (Kolouri et al., 2019a), the Generalized Radon Transform (GRT) is defined as

G(f)(t, ✓) =
Z

Rd

f(x)�(t� g(x, ✓)) dx, 8(t, ✓) 2 R⇥ (Rd
0
\ {0}).

Note, for each (t, ✓) 2 R⇥ (Rd
0 \ {0}), we set the corresponded hyper-surface as Ht,✓ = {x 2 Rd | g(x, ✓) = t}. By the

homogeneity property (H.2), H�t,�✓ = Ht,✓, 8� 2 R. Then,

Gf(�t,�✓) = Gf(t, ✓), 8(t, ✓,�) 2 R⇥ (Rd
0
\ {0})⇥ R.

Thus, the hypersurface can be parameterized by (t, ✓) 2 R⇥ Sd�1, and we can redefine G as a mapping from space L1
(Rd

)

to L1
(R⇥ Sd0

�1
).

Furthermore, as G is an linear operator from L1
(Rd

) to L1
(R ⇥ Sd0

�1
), we can define the dual operator G⇤ of G as in

(Homan & Zhou, 2017) (also called the adjoint operator). In analogy with the Radon transform, this is done by the duality
between L1 and L1: For each  2 L1

(R⇥ Sd0
�1

),

G⇤
( )(x) =

Z

Sd0�1

 (g(x, ✓), ✓) d�d0(✓), 8x 2 Rd, (26)

where �d0 is the uniform probability measure defined in Sd0
�1.

In the specific case, g(x, ✓) = hh(x), ✓i, where h : Rd ! Rd
0

is a injective function, the induced GRT becomes

H(f)(t, ✓) =

Z

Sd0�1

f(x)�(t� hh(x), ✓i) dx, 8(t, ✓) 2 R⇥ Sd
0
�1,
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with corresponding dual operator

H⇤
( )(x) =

Z

Sd0�1

 (hh(x), ✓i, ✓) d�d0(✓), 8 2 L1
(R⇥ Sd

0
�1

), x 2 Rd. (27)

In this case, that is g(x, ✓) = hh(x), ✓i for h = (h1, . . . , hd0) : Rd ! Rd
0
, properties [H.1-H.4] read as follows: First,

notice that the real inner product in Rd defines, in each variable, a C1 function which is homogeneous of degree one. In
particular, (H.2) is trivially satisfied. Then, h must satisfy:

(a) In place of (H.1): h 2 C1.

(b) In place of (H.3): For all (x, ✓) 2 Rd ⇥ Sd0
�1,

�
h @h
@x1 (x), ✓i, . . . , h @h@xd (x), ✓i

�
6= 0.

(c) In place of (H.4): det
⇣⇥

@hi

@xj

⇤
1i1,1jd0

⌘
> 0.

In particular, if d = d0, let Jh denote the Jacobian of h = (h1, . . . , hd) : Rd ! Rd, that is, the d0 ⇥ d matrix Jh =
⇥
@hi

@xj

⇤
ij

.
Then, condition (b) can be written as the matrix-vector multiplication Jh(x) · ✓ 6= 0, and condition (c) is equivalent
det(Jh(x)) > 0 for all x 2 Rd, and so in this case (b) is redundant. Therefore, when d = d0, h : Rd ! Rd must satisfy:

h 2 C1 and det (Jh) > 0.

Inspired by the framework of classic Radon transform for Radon measure, we can extend the idea into the GRT setting. In
particular, given µ 2M(Rd

), we define the measures G(µ) and H(µ) as follows: For each test function  2 C0(R⇥Sd0
�1

),
Z

R⇥Sd0�1

 (t, ✓) dG(µ)(t, ✓) =
Z

Rd

G⇤
( )(x) dµ(x) (28)

Z

R⇥Sd0�1

 (t, ✓) dH(µ)(t, ✓) =

Z

Rd

H⇤
( )(x) dµ(x) (29)

Proposition C.1 Given µ 2M(Rd
), the measures G(µ),H(µ) is defined in (28) and (29) have the following properties:

(1) G(µ) is well-defined, i.e., G(µ) 2M(R⇥ Sd0
�1

).

(2) If µ 2M+(Rd
), then G(µ) 2M+(R⇥ Sd0

�1
). Similarly, if µ 2 P(Rd

), then G(µ) 2 P(R⇥ Sd0
�1

).

(3) G preserves the the total variation norm, i.e., kµkTV = kG(µ)kTV . In particular, G preserves mass.

(4) If µ 2 P(Rd
), then G(µ) 2 P(R⇥ Sd0

�1
).

(5) Given µ 2M(Rd
), the disintegration theorem gives a unique G(µ)�a.s. set of measures (G(µ)✓)✓2Sd0�1 ⇢M(R)

such that for any  2 C0(R⇥ Sd0
�1

),
Z

R⇥Sd0�1

 (t, ✓) dG(µ)(t, ✓) =
Z

Sd0�1

Z

R
 (t, ✓) dG(µ)✓(t) d�d0(✓)

Then, it holds that
G(µ)✓ = g(·, ✓)#µ.

(6) Properties (1)� (5) hold true for H in place of G.

(7) Given µ 2M(Rd
), the disintegration theorem gives a unique H(µ)�a.s. set of measures (H(µ)✓)✓2Sd0�1 ⇢M(R)

such that for any  2 C0(R⇥ Sd0
�1

),
Z

R⇥Sd0�1

 (t, ✓) dH(µ)(t, ✓) =

Z

Sd0�1

Z

R
 (t, ✓) dH(µ)✓(t) d�d0(✓)

Then, it holds that
H(µ)✓ = ✓#h#µ,

or equivalently, H(µ)✓ = (✓ � h)#µ, where the function ✓ is defined as in (22).
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(8) H(µ) = R(h#µ) for every µ 2M(Rd
).

(9) When h is injective, H is invertible.

Proof:

(1) Let µ 2M(Rd
). By (Beylkin, 1984; Homan & Zhou, 2017), we have that (6) is the dual operator of G. In fact, by

functional analysis theory, L1 is the dual space of Banach space L1, and thus, G⇤
: L1

(R ⇥ Sd0
�1

) ! L1
(Rd

)

is well-defined. In particular,
R
Rd G⇤

( )(x) dµ(x) is finite for all  2 C0(R ⇥ Sd0
�1

) ⇢ L1
(R ⇥ Sd0

�1
). Then,

expression (28) is finite for all  2 C0(R ⇥ Sd0
�1

), and moreover defines G(µ) as an element in the dual space of
C0(R⇥ Sd0

�1
). By Theorem B.1, we have G(µ) 2M(R⇥ Sd0

�1
).

(2) Let µ 2M+(Rd
) and  2 C0(R ⇥ Sd0

�1
) with  (t, ✓) � 0, 8t, ✓. Thus, by definition (6), G⇤ (x) � 0, 8x 2 Rd.

Therefore,
Z

R⇥Sd0�1

 (t, ✓) dGµ(t, ✓) =
Z

Rd

G⇤
( )(x) dµ(x) � 0

which follows from the facts G⇤
( ) � 0 and µ 2M+(Rd

). Since the above property holds for all non-negative test
function  2 C0(R⇥ Sd0

�1
), we obtain that G(µ) 2M+(R⇥ Sd0

�1
).

(3) Set  = 1R⇥Sd0�1 2 L1
(R⇥ Sd0

�1
). By definition of G⇤, we have

G⇤
( )(x) =

Z

Sd0�1

1 d�d0(✓) = 1, 8x 2 Rd.

That is, G⇤
(1R⇥Sd0�1) = 1Rd . Now, let µ 2M(Rd

). We have that

µ(Rd
) =

Z

Rd

1Rd dµ =

Z

Rd

G⇤
(1R⇥Sd0�1) dµ =

Z

R⇥Sd0�1

1R⇥Sd0�1 dG(µ) = G(µ)(R⇥ Sd
0
�1

). (30)

Let µ+ and µ� are the positive and negative parts of µ, that is, µ = µ+ � µ�, where µ± 2M+(Rd
). By property (2)

we have that G(µ±
) 2M+(R⇥ Sd0

�1
). By linearity of G, we have

G(µ) = G(µ+ � µ�
) = G(µ+

)| {z }
M+

�G(µ�
)| {z }

M+

,

which by the uniqueness of the Hahn-Jordan decomposition theorem implies that the positive and negative parts of the
measure G(µ) are G(µ+

) and G(µ�
), respectively. That is,

G(µ)± = G(µ±
).

Then,

kG(µ)kTV = G(µ)+(R⇥ Sd
0
�1

) + G(µ)�(R⇥ Sd
0
�1

)

= G(µ+
)(R⇥ Sd

0
�1

) + G(µ�
)(R⇥ Sd

0
�1

)

= µ+
(R⇥ Sd

0
�1

) + µ�
(R⇥ Sd

0
�1

) = kµkTV ,

that is, kG(µ)kTV = kµkTV .

(4) If µ 2 P(Rd
), combining the property G(µ) 2 M+(R ⇥ Sd0

�1
) with the property kG(µ)kTV = kµkTV = 1, we

obtain that G(µ) 2 P(R⇥ Sd0
�1

).
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(5) We will follow the ideas in (Bonneel et al., 2015)[Proposition 6]. For any test function  2 C0(R⇥ Sd0
�1

) we have

Z

Sd0�1

Z

R
 (t, ✓) dG(µ)✓(t) d�d0(✓) =

Z

R⇥Sd0�1

 (t, ✓) dG(µ)(t, ✓) (disintegration theorem)

=

Z

Rd

G⇤
( )(x) dµ(x) (definition of G(µ))

=

Z

Rd

Z

Sd0�1

 (g(x, ✓), ✓) d�d0(✓) dµ(x) (definition of G⇤
)

=

Z

Sd0�1

Z

Rd

 (g(x, ✓), ✓) dµ(x) d�d0(✓)

=

Z

Sd0�1

Z

R
 (t, ✓) d(g(·, ✓)#µ)(t) d�d0(✓),

where the fourth equality follows from Fubini theorem and the fact  is bounded and µ,�d0 are finite measures;
in the fifth equality, t = g(x, ✓) and we use the definition of pushforward. By uniqueness of the disintegration of
measures we have G(µ)✓ = g(·, ✓)#µ. This also can be shown by choosing an arbitrary  0 2 C0(R), defining
 (t, ✓) :=  0(t), 8(t, ✓) 2 R⇥ Sd0

�1, so  2 C0(R⇥ Sd0
�1

), and therefore we have

Z

R
 0(t) dG(µ)✓(t) =

Z

Sd0�1

Z

R
 (t, ✓) dG(µ)✓(t) d�d0(✓)

=

Z

Sd0�1

Z

R
 (t, ✓) d(g(·, ✓)#µ)(t) d�d0(✓)

=

Z

R
 0(t) d(g(·, ✓)#µ)(t).

(6) For H, properties (1)� (5) can be derived similarly.

(7) As in (5), we will follow the ideas in (Bonneel et al., 2015)[Proposition 6]. For any test function  2 C0(R⇥ Sd0
�1

)

we have

Z

Sd0�1

Z

R
 (t, ✓) dH(µ)✓(t) d�d0(✓) =

Z

R⇥Sd0�1

 (t, ✓) dH(µ)(t, ✓) (disintegration theorem)

=

Z

Rd

H⇤
( )(x) dµ(x) (definition of H(µ))

=

Z

Rd

Z

Sd0�1

 (g(x, ✓), ✓) d�d0(✓) dµ(x) (definition of H⇤
)

=

Z

Sd0�1

Z

Rd

 (hh(x), ✓i, ✓) dµ(x) d�d0(✓) (Fubini’s Theorem)

=

Z

Sd0�1

Z

R
 (hy, ✓i, ✓) d(h#µ)(y) d�d0(✓) (definition of pushforward)

=

Z

Sd0�1

Z

R
 (t, ✓) d(✓#h#µ)(t) d�d0(✓) (definition of pushforward).

Thus, by the uniqueness of the disintegration of measures, we have H(µ)✓ = ✓#h#µ = (✓ � h)#µ.
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(8) Let µ 2M(Rd
), and let  2 C0(R⇥ Sd0

�1
) be any test function. Following the ideas from (7), we have

Z

R⇥Sd0�1

 (t, ✓) dH(µ)(t, ✓) =

Z

Rd

H⇤
( )(x) dµ(x)

=

Z

Rd

Z

Sd0�1

 (hh(x), ✓i, ✓) d�d0(✓) dµ(x)

=

Z

Rd

Z

Sd0�1

 (hy, ✓i, ✓) d�d0(✓) dh#µ(y)

=

Z

Rd

(R⇤
( ))(y) dh#µ(y)

=

Z

R⇥Sd0�1

 (t, ✓) dR(h#µ)(t, ✓),

where in the third equality y = h(x) and we use the definition of pushforward; the first and fifth equation follows from
the equations (28) and (5), respectively. Therefore, H(µ) = R(h#µ).

(9) By Proposition 7 in (Bonneel et al., 2015), we have the mapping

h#(µ) 7! R(h#(µ)) = H(µ) (31)

is invertible. If h is injective, we have µ 7! h#(µ) is invertible. Thus, µ 7! H(µ) is invertible.

⇤

D. Stereographic Spherical Radon Transform and Stereographic Spherical Sliced Wasserstein
Distance for Probability Measures

Based on the extended definition of GRT for probability measures, in this section, we formally introduce the “Stereographic
Spherical Radon Transform” and the corresponding sliced Wasserstein distance, “Stereographic Spherical Sliced Wasserstein
distance” for general probability measures.

Given µ 2 M(Sd) and the stereographic projection � : Sd \ {sn} ! Rd, which is a bijection, we have that �#µ is a
measure defined in Rd. The generalized Stereopgraphic Spherical Radon transform, of µ has two versions SG(µ) and
SH(µ) defined as follows:

SG(µ) := G(�#µ) and SH(µ) := H(�#µ). (32)

That is, from (28) and (29), we have that for each test function  2 C0(R⇥ Sd0
�1

)

Z

R⇥Sd0�1

 (t, ✓) dSG(µ)(t, ✓) =

Z

Rd

G⇤
( )(x) d�#µ(x) =

Z

Sd\{sn}
G⇤

( )(�(s))dµ(s), (33)
Z

R⇥Sd0�1

 (t, ✓) dSH(µ)(t, ✓) =

Z

Rd

H⇤
( )(x) d�#µ(x) =

Z

Sd\{sn}
H⇤

( )(�(s)) dµ(s). (34)

Proposition D.1 Let µ 2 M(Sd) that does not give mass to the North Pole {sn}. The Stereographic Spherical Radon
transforms defined in (32) have the following properties:

(1) SG(µ),SH(µ) 2 M(R ⇥ Sd0
�1

). In addition SG and SH preserves mass, and if µ is a positive measure, then
SG(µ),SH(µ) are positive measures too. Finally, if µ 2 P(Sd \ {sn}), then SG(µ),SH(µ) are probability measures
defined on R⇥ Sd0

�1.

(2) The disintegration theorem gives a unique SG(µ)�a.s. set of measures (SG(µ)✓)✓2Sd0�1 ⇢ M(R), and a unique
SH(µ)�a.s. set of measures (SH(µ)✓)✓2Sd0�1 ⇢M(R) such that for any  2 C0(R⇥ Sd0

�1
),

Z

R⇥Sd0�1

 (t, ✓) dSG(µ)(t, ✓) =

Z

Sd0�1

Z

R
 (t, ✓) dSG(µ)✓(t) d�d0(✓), and

Z

R⇥Sd0�1

 (t, ✓) dSH(µ)(t, ✓) =

Z

Sd0�1

Z

R
 (t, ✓) dSH(µ)✓(t) d�d0(✓). (35)
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Then, it holds that
SG(µ)✓ = (g(·, ✓) � �)#µ, and SH(µ)✓ = (✓ � h � �)#µ, (36)

where we recall that the function ✓ is defined as in (22)

(3) SH is invertible.

Proof:

(1) If µ 2M(Sd) is such that does not give mass to {sn}, then �#µ is a measure defined in Rd with the same total mass.
Thus, since SG(µ) = G(�#µ), the conclusion follows from by (1)–(4) in Proposition (C.1). Similar to SH(µ).

(2) By definition of SG and (5) in Proposition (C.1) we have

SG(µ)✓ = g(·, ✓)#(�#µ) = g(�(·), ✓)#µ.

Similarly, by definition of SH and (7) in Proposition (C.1) we have

SH(µ)✓ = (✓ � h)#�#µ = (✓ � h � �)#µ.

(3) Finally, since the stenographic projection � : Sd \ {sn}! Rd is invertible, then following composition

M(Sd \ {sn})!M(Rd
)!M(R⇥ Sd

0
�1

)

µ 7�! �#µ 7�! H(�#µ) = SH(µ)

is invertible as each mapping is invertible. Similarly,

P(Sd \ {sn})! P(Rd
)!M(R⇥ Sd

0
�1

)

µ 7�! �#µ 7�! H(�#µ) = SH(µ)

is invertible. Thus µ 7! SH(µ) is an invertible mapping either general measures or for probability measures.

⇤

Remark D.2 If g(x, ✓) = hx, ✓i, then the generalized Radon transform G coincides with the classical Radon transform R,
and the corresponding Stereographic Spherical Radon transform coincides with the one defined in (10):

SR(µ) = R(�#µ)

for any Radon measure µ 2M(Sd) that does not assign mass to {sn}

We introduce the notation �✓
g
,�✓

h
: Sd\{sn}! Rd

0

�✓
g
(z) := g(�(z), ✓)✓, �✓

h
(z) := hh(�(z), ✓i✓,

having range in the line generated by ✓ 2 Sd0
�1. The expressions (13) in (2) in the above Proposition can be written as

SG(µ)✓ = �✓
g#

µ, SH(µ)✓ = �✓
h#

µ

and we call them slices of the SSRT of µ.

Given two measures µ1, µ2 2 P(Sd), we introduce the formal definition of Stereographic Spherical Sliced Wasserstein
(S3W) distance as follows:

S3W p

G,p
(µ1, µ2) :=

Z

Sd0�1

W p

p
(SG(µ1)✓,SG(µ2)✓) d�d0(✓)

=

Z

Sd0�1

W p

p
(�✓

g#
µ1,�

✓

g#
µ2) d�d0(✓) (37)

S3W p

H,p
(µ1, µ2) :=

Z

Sd0�1

W p

p
(SH(µ1)✓,SH(µ2)✓) d�d0(✓)

=

Z

Sd0
W p

p
(�✓

h#
µ1,�

✓

h#
µ2) d�d0(✓), (38)

where �d0 2 P(Sd0
�1

) is the uniform measure on Sd0
�1.
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Theorem D.3 The above definitions S3WG,p(·, ·) and S3WH,p(·, ·) are well-defined. Furthermore, S3WG,p(·, ·) is a
pseudo-metric in P(Sd\{sn}), i.e., it is non-negative, symmetric and satisfies triangular inequality. In addition, S3WH,p(·, ·)
defines a metric in P(Sd \ {sn}).

Proof: Given probability measures µ1, µ2 2 P(Sd \ {sn}), by (1) in Proposition D.1 we have that SG(µ1),SG(µ2) are
probability measures defined on R⇥ Sd0

�1. Thus, by (2) in Proposition D.1, SG(µ1)✓,SG(µ2)✓ are probability measure
on R. Then, W p

p
(SG(µ1)✓,SG(µ2)✓) is well-defined and thus S3W p

G,p
(·, ·) is well defined. Analogously, S3W p

H,p
(·, ·) is

well-defined.

Since the Wasserstein distance Wp(·, ·) in P(R) is non-negative and symmetric and �d0 is a positive measure we have that
S3WG,p(·, ·) and S3WH,p(·, ·) are non-negative and symmetric.

For triangular inequality, let µ1, µ2, µ3 2 P(Sd \ {sn}),

S3WG,p(µ1, µ3) =

✓Z

Sd0�1

W p

p
(SG(µ1)✓,SG(µ3)✓)d�d0(✓)

◆1/p


✓Z

Sd0�1

(Wp(SG(µ1)✓,SG(µ2)✓) +Wp(SG(µ2)✓,SG(µ3)✓))
p d�d0(✓)

◆1/p


✓Z

Sd0�1

W p

p
(SG(µ1)✓,SG(µ2)✓)

◆1/p

+

✓Z

Sd0�1

W p

p
(SG(µ2)✓,SG(µ3)✓)

◆1/p

= S3WG,p(µ1, µ2) + S3WG,p(µ2, µ3)

where the first inequality holds from the fact Wp(·, ·) in P(R) is a metric; the second inequality follows from Minkowski
inequality in Lp

(Sd0
�1

). Then, S3WG,p(·, ·) is a Pseudo-metric. Analogously for S3WH,p(·, ·).

In addition, suppose S3WH,p(µ1, µ2) = 0, we have SH(µ1)✓ = SH(µ2)✓ where the equality holds �d0(✓)�a.s. Then,
from (35) we can deduce that SH(µ1) = SH(µ2). Since SH is invertible by Proposition (D.1), we have µ1 = µ2. Thus,
S3WH,p(·, ·) is a metric.

⇤
Lastly, and similar to the max-sliced Wasserstein distance, here we define the max-S3W distance as:

Max-S3W p

G,p
(µ1, µ2) := sup

✓2Sd0�1

W p

p
(SG(µ1)✓,SG(µ2)✓), (39)

and similarly for H we define Max-S3W p

H,p
.

E. Rotationally Invariant Stereographic Spherical Sliced Wasserstein Distances (RI-S3W)
In this section, we discuss the Rotationally Invariant S3W distance (17):

RI-S3WG,p(µ, ⌫) := ER⇠![S3WG,p(R#µ,R#⌫)].

First, we describe the uniform (Haar) distribution in O(d+1) denoted as !. Precisely, we will describe how a (d+1)⇥(d+1)

orthonormal matrix R with rows v1, . . . , vd+1 can be randomly generated as a sample of !. The procedure relies on the
Gram-Schmidt algorithm:

First, we randomly select v1 2 Sd, in particular, we denote it as v1 ⇠ �d+1, that is, we sample v1 according to �d+1 which
is the uniform distribution in Sd.

Next, v2 should selected from span(v1)? = H(v1, 0) = {v : hv1, vi = 0} and satisfy kv2k = 1, where span(v1) is the 1D
sub-space in Rd spanned by v1. Denote Sd�1

(v1) := Sd \H(v1, 0). Note, it is essentially a d� 1 sphere. We randomly
select v2 2 Sd�1

(v1), denoted as v2 ⇠ �d given v1, where �d denotes the uniform distribution in sphere Sd�1
(v1).

In the third step, similarly, let Sd�2
(v1, v2) := Sd \H(v1, 0) \H(v2, 0), and sample v3 ⇠ �d�1 given v1, v2, where �d�1

is the uniform distribution in the d� 2 sphere Sd�2
(v1, v2).
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Continue this process recursively until step d + 1. Note that at the last iteration, we have an orthonormal set of vectors
{v1, . . . , vd}, and S0(v1, . . . vd) is a 0-dimensional sphere, that is, it is a set of two points {u1, u2}. We randomly select
vd+1 as one of those two points in S0(v1, . . . vd), denoting vd+1 ⇠ �1, where �1 is the uniform distribution in S0(v1, . . . , vd)
(that is, �1 = 0.5�u1 + 0.5�u2 ).

Thus, the uniform probability measure ! in O(d+ 1) can be described in the following way: Consider an arbitrary Borel set
A ⇢ O(d+ 1), and let Ai := {v 2 Sd : v is the i�th row of R, R 2 A} for i = 1, 2, . . . d+ 1, then

!(A) :=

Z

v12A1,...,vd+12Ad+1

d�1(vd+1) d�2(vd) . . . d�d(v2) d�d+1(v1). (40)

where we are using the above notation, that is, �d+1 is the uniform distribution on Sd, and �d+1�k is the uniform distribution
on Sd(v1, . . . , vk) for |  k  d (i.e., �d is the uniform distribution on Sd(v1), . . . , �2 is the uniform distribution on
Sd(v1, . . . , vd�1), �1 is the uniform distribution on Sd(v1, . . . , vd)). In particular, ! is constant, in the sense that its density
function is constant: Indeed, let f�d+1 , . . . , f�2 denote the density functions of �d+1, . . . ,�2 (which are all constant equal
to the reciprocal of the “surface area” of the corresponding sphere). Then, let f! denote the density function of probability
measure !, and so, for each R = [vT

1
, vT

2
, . . . , vT

d+1
] 2 O(d+ 1)

f!(R) = f�d+1(v1) · · · · · f�2(vd) · �1(vd+1) =
1

2

dY

i=1

1

kSiki
(41)

Thus we call ! uniform distribution. We mention that it is also called a Haar measure for the special orthogonal group
SO(d+ 1). Finally, we can normalize it so that we have a probability distribution.

Next, we discuss the proof of Theorem 3.4. We first introduce the following lemma.

Lemma E.1 Consider sn = [0, . . . , 0, 1] 2 Rd+1 the North Pole of Sd. Let s1 2 Sd and A = {R 2 O(d+1) : Rs1 = sn}.
Then A = {R 2 O(d+ 1) : the (d+ 1)�th row of R is s1}. Furthermore, !(A) = 0.

Proof: Let B = {R 2 O(d + 1) : the (d+ 1)�th row of R is s1}. It is straightforward to verify B ⇢ A. For the other
direction, for any R = [vT

1
, . . . , vT

d+1
] 2 A we have

vT
i
s1 = 0 if i 6= d+ 1

vT
d+1

s1 = 1 if i = d+ 1

Thus, Rs1 = sn, and we have A ⇢ B.

Next, we will show !(A) = 0. Let A0
= {R 2 O(d+ 1) : 1st row of R is s1}. We have !(A0

) = !(A). Then A0

1
= {s1}.

and (40), we have

!(A0
) 

Z

v1=s1

✓Z

v2,...vd2Sd
d�1(vd+1) . . . d�d(v2)

◆
d�d+1(v1) = 0,

which completes the proof. ⇤
Proof: [Proof of Theorem 3.4].

We first claim that (17) is well-defined.

Let S(µ, ⌫) = {s 2 Sd : min(µ({s}), ⌫({s})) > 0}. Since µ, ⌫ are probability measures, we have that S(µ, ⌫) is a finite
set. For each s 2 S, let A(s) = {R 2 O(d + 1) : Rs = sn}. Note that S3WG,p(R#µ,R#⌫) is well-defined for each
R 2 O(d+ 1) \A(µ, ⌫), where A(µ, ⌫) =

S
s2S(µ,⌫)

A(s). By lemma E.1,

!(A(µ, ⌫)) = !

0

@
[

s2S(µ,⌫)

A(s)

1

A 
X

s2S(µ,⌫)

!(A(s)) = 0.

Thus, we have that

RI � S3WG,p(µ, ⌫) := ER⇠![S3WG,p(R#µ,R#⌫)] =

Z

R2O(d+1)\A(µ,⌫)

S3WG,p(R#µ,R#⌫) d!(R)
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is well-defined.

Now, we will verify its properties.

By Theorem D.3, S3WG,p is non-negative, and symmetric. Thus RI-S3WG,p(·, ·) is also non-negative and symmetric.

For the triangle inequality, let µ1, µ2, µ3 2 P(Sd). Similarly to before, let A(µ1, µ2, µ3) =
S

s2S(µ1,µ2,µ3)
A(s). Since

!(A(µ1, µ2, µ3)) = 0, we have

RI � S3WG,p(µ1, µ3) =

Z

O(d+1)

S3WG,p(R#µ,R#⌫) d!(R) =

Z

SO(d+1)\A(µ1,µ2,µ3)

S3WG,p(R#µ,R#⌫) d!(R)


Z

SO(d+1)\A(µ1,µ2,µ3)

(S3WG,p(R#µ1, R#µ2) + S3WG,p(R#µ2, R#µ3)) d!(R) (Triangular inequality)

=

Z

SO(d+1)\A(µ1,µ2,µ3)

S3WG,p(R#µ1, R#µ2) d!(R) +

Z

SO(d+1)\A(µ1,µ2,µ3)

S3WG,p(R#µ2, R#µ3) d!(R)

=

Z

SO(d+1)

S3WG,p(R#µ1, R#µ2) d!(R) +

Z

SO(d+1)

S3WG,p(R#µ2, R#µ3) d!(R)

= RI � S3WG,p(µ1, µ2) +RI � S3WG,p(µ2, µ3)

where the second and previous to last equalities hold from the fact !(A(µ1, µ2, µ3)) = 0. Thus, RI-S3WG,p(·, ·) is a
well-defined pseudo-metric.

Similarly, we can prove RI-S3WH,p(·, ·) is a well-defined pseudo-metric.

Finally, it remains to show that µ = ⌫ if RI-S3WH,p(µ, ⌫) = 0. If that holds, then for all R 2 SO(d+ 1) \ A(µ, ⌫), we
have S3WH,p(R#µ,R#⌫) = 0. Pick one of such rotations R. From Theorem D.3, and the fact R#µ,R#⌫ 2 P(Sd \{sn}),
we have R#µ = R#⌫. Since

Rd+1 3 v 7! Rv 2 Rd+1

is a one-by-one mapping, we have µ = ⌫.

⇤

F. Funk Radon Transform and Stereographic Spherical Radon Transform
The Funk-Radon Transform (Quinto, 1982; Helgason et al., 2011; Quellmalz, 2017; 2020), which is also known as the
Minkowski-Funk transform or the spherical Radon transform is a classical and significant mathematical tool used in integral
geometry, with profound applications in image reconstruction and analysis. It plays a crucial role in fields like tomography,
allowing for the reconstruction of images from projection data. In this section, we discuss the relation between the Funk
Transform and the Stereographic Spherical Radon Transform.

First, we review some basic concepts about the Funk transform. In the sphere Sd ⇢ Rd+1 centered at the origin with radius
1, every (d� 1)�dimensional sub-sphere (“circle”) is the intersection of Sd with a d�dimensional hyperplane, that is,

S(s, t) = {s0 2 Sd | hs, s0i = t},

where s 2 Sd is normal to the hyperplane and t 2 [�1, 1] is the signed distance of the hyperplane to origin. For example,
if t = ±1, S(s, t) consists of only the singleton {±s}. As another example, when t = 0, for any s 2 Sd, the sub-sphere
S(s, 0) is a “great circle” (a sub-sphere of dimension d� 1 in Rd+1 centered at the origin and with radius 1).

The Spherical Transform or Spherical Mean Operator (Quellmalz, 2017) of a function defines on Sd is formally defined as a
function on Sd ⇥ [�1, 1] by the surface integral

Uf(s, t) := 1

kS(s, t)kd�1

Z

S(s,t)

f dS(s, t) =
1

kS(s, t)kd�1

Z

Rd+1

f(s0)�(t� hs, s0i) ds0, (s, t) 2 Sd ⇥ [�1, 1], (42)

where kS(s, t)kd�1 denotes the “surface area” of the sub-sphere S(s, t), and dS(s, t) is the induced volume form on the
surface S(s, t). In the special case d = 2, given f defined on S2 ⇢ R3, the integral in (42) is carried out with respect to the
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arclength dS of the circle S(s, t), that is,

Uf(s, t) = 1

2⇡ · radius(S(s, t))

Z

S(s,t)

f dS(s, t) :=
1

2⇡ · radius(S(s, t))

Z
b

a

f(r(u))kr0(u)k du,

where radius(S(s, t)) denotes the radius of the circle S(s, t), r(u) for a  u  b is a parametrization of S(s, t), and kr0(u)k
is the magnitude of the tangent vector r0(u) to S(s, t). Besides, in the special case d = 3, given f defined on S3 ⇢ R4, we
have that S(s, t) is 2-dimensional sphere and we get

Uf(s, t) = 1

4

3
⇡ · radius(S(s, t))3

Z

S(s,t)

f dS(s, t) :=
1

4

3
⇡ · radius(S(s, t))3

Z Z
f(r(u, v))kru ⇥ rvk du dv,

where radius(S(s, t)) denotes the radius of the sphere S(s, t), r(u, v) is a parametrization of S(s, t), and kru ⇥ rvk is the
magnitude of the cross-product between the partial derivatives ru and rv , which is a normal vector to S(s, t).

The inversion of this Spherical Mean Operator is an over-determined problem (for instance, Uf(s, t) = f(s) for all s 2 Sd).
In application, one has access restrictions of Uf(s, t) to specific sub-spheres S(s, t), and this yields different transforms.

One important example arises when we restrict Uf(s, t) to “great circles” S(s, 0) getting the classical Funk-Radon transform
F1, that is,

F1f(s) := Uf(s, 0), s 2 Sd. (43)

Another example, studied in (Abouelaz & Daher, 1993; Gindikin et al., 1994a; Helgason et al., 2011) arises when considering
the restriction to the family of sub-spheres containing the North Pole sn = [0, . . . , 0, 1] 2 Rd+1.

Similarly as in (Quellmalz, 2017; 2020), we will interested in a generalized Funck-Radon transform given by the following
restriction of U . Let s = [s1, . . . , sd+1] 2 Sd ⇢ Rd+1, and ⇠ 2 [�1, 1]. Consider the point [0, . . . , 0, ⇠sd+1] 2 Rd+1

located in the same positive axis as the North Pole sn = [0, . . . , 0, 1] and inside the sphere Sd3. Then, we restrict Uf to the
integrals over the intersections of the sphere Sd with hyperplanes containing the point [0, . . . , 0, ⇠sd+1], that is,

⇣s
⇠
:= S(s, ⇠sd+1) = {s0 2 Sd| hs, s0i = ⇠sd+1}, ⇠ 2 [�1, 1], s 2 Sd.

Then, the generalized Funk-Radon transform is defined by

U⇠f(s) := Uf(s, ⇠sd+1) =
1

k⇣s
⇠
kd�1

Z

⇣
s

⇠

f d⇣s
⇠
=

1

k⇣s
⇠
kd�1

Z

Rd+1

f(s0)�(⇠sd+1 � hs, s0i) ds0, (44)

where k⇣s
⇠
kd�1 is the volume (“surface area”) of sub-sphere (circle, if d = 2) ⇣s

⇠
and d⇣s

⇠
is the integration over the surface

⇣s
⇠

(path, if d = 2).

Remark F.1 Note, the generalized Funk-Radon transform has been further generalized by (Rubin, 2022) under the name
“spherical slice transform.” In particular, choose ↵ 2 Rd+1 and let T (↵, k) denote the set of all k-dimensional affine planes
that pass through ↵ and intersect Sn:

T (↵, k) = {H(a) = ↵+H : H is hyperplane, dim(H) = k,H(a) \ Sd 6= ;}.

Pick H 2 T (↵, k), then H \ Sd is a k � 1 dimensional sub-circle (or a point). The spherical slice transform of function
f 2 L1(Sd) is defined as:

SS↵f(H) =

Z

H\Sd
f(s)dH \ Sd, 8H 2 T (↵, k). (45)

When k = d, pick s 2 Sd and ⇠ 2 [�1, 1], we define affine plane

H(s, ⇠sn) = ⇠sn + s?,

3In (Quellmalz, 2017; 2020), ⇠ 2 [0, 1) and so [0, . . . , 0, ⇠sd+1] lies strictly inside the sphere.
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we have H 2 T (⇠sn, d) and ⇣xis = H(s) \ Sd. Thus

SSf(H(s, ⇠sn)) = U⇠(f)(s).

That is, the generalized Funk transform (43) is a special case of the spherical slice transform (45).

As said before, the goal of this section is to discuss the relationship between a generalized Funk-Radon transform (44) and
the Stereographic Radon transform. For doing that let us first consider the stereographic projection � : Sd \ {sn}! Rd

given by the formula

�(s) =
s[1 : d]

1� sd+1

, 8s = [s1, . . . , sd, sd+1] 2 Sd, (46)

where s[1 : d] := [s1, . . . , sd] 2 Rd, which corresponds to the intersection with the equator plane xd+1 = 0, rather than (1)
which corresponds to projection onto the plane xd+1 = �1 (which has a factor of 2 in (46)).

It is straightforward to verify that the inverse of �, denoted as ��1, is as follows:

��1
(x) = [(1� sd+1)x, sd+1], where sd+1 =

kxk2 � 1

kxk2 + 1
, 8x 2 Rd. (47)

See Figures 6, 7 and 8.

Figure 6. Visualization for d = 1 of the stereographic projection � defined by the formula (1). The ambient space Rd+1 is depicted in
green, while the unit sphere (circle) Sd is in blue. The North and South Poles are labeled as sn and s0, respectively. The projected space
Rd

= �(Sd \ sn) is highlighted in red, corresponding to the plane (line) in Rd+1 defined by all points with the last coordinate equal to
�1. Two points, ✓1 and ✓2 (blue dots), from Sd are projected through � obtaining the points �(✓1) and �(✓2) (red dots).
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Figure 7. Visualization for d = 1 of the stereographic projection � defined by the formula (46). The ambient space Rd+1 is depicted in
green, while the unit sphere (circle) Sd is in blue. The North and South Poles are labeled as sn and s0, respectively. The projected space
Rd

= �(Sd \ sn) coincides with the hyperplane xd+1 = 0, which in the figure is nothing but the horizontal axis. Two points, ✓1 and ✓2

(blue dots), from Sd are projected through � obtaining the points �(✓1) and �(✓2) (red dots). The South Pole is projected to the origin in
Rd and the points in the Equator are fixed points for this stereographic projection.

Figure 8. Visualization for d = 2 of the stereographic projection � defined by the formula (46). The ambient space is the 3D space R3.
The sphere S2 is depicted in blue. The projected space R2

= �(S2 \ sn) is depicted in grey. The points in the Equator are fixed points for
this stereographic projection, and circles parallel to the Equator are mapped to circles in the plane as shown in the plot: If the height of
the circle is positive, its projection is a circle with radius greater than 1 as the case depicted in the figure; if the height is negative, its
projection is a circle with radius smaller than 1.

When we set ⇠ = 1 we have the following relations between the sub-spheres ⇣s
1

and the hyperplanes H(t, ✓) through the
stereographic projection �.

Proposition F.2 Consider the sub-sphere (circle) ⇣s
1
= {s0 2 Sd| hs0, si = sd+1}, where s = [s1, . . . , sd, sd+1] 2 Sd is

such that s 6= sn = [0, . . . , 0, 1]. Then, �(⇣s
1
) is a hyperplane in Rd, precisely,

�(⇣s
1
) =

�
x 2 Rd | hx, ✓i = t

 
,

where ✓ = s[1:d]

ks[1:d]k
and t = sd+1p

1�s
2
d+1

.

Conversely, given hyperplane H(t, ✓) = {x 2 Rd | hx, ✓i = t} for ✓ 2 Sd�1 and t 2 R, we have

��1
(H(t, ✓)) = ⇣s

1
,

where s = [

q
1� s2

d+1
✓, sd+1] with sd+1 = sign(t) t

2

t2+1
.

Proof: Let s 2 Sd, and consider s0 2 ⇣s
1

. Let x0
= �(s0) = s

0
[1:d]

1�s
0
d+1

. Then, we can write s0 = [(1� s0
d+1

)x0, s0
d+1

]. Besides,
since

s2
1
+ · · ·+ s2

d
+ s2

d+1
= 1,
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by defining ✓ = s[1:d]

ks[1:d]k
, we can write s =

hq
1� s2

d+1
✓, sd+1

i
. Then, we have that

sd+1 = hs0, si

= s0
d+1

sd+1 + h(1� s0
d+1

)x0,
q
1� s2

d+1
✓i

= s0
d+1

sd+1 + (1� s0
d+1

)

q
1� s2

d+1
hx0, ✓i. (48)

That is,
hx0, ✓i = sd+1q

1� s2
d+1

.

Thus,

�(⇣s
1
) =

8
<

:x 2 Rd | hx, ✓i = sd+1q
1� s2

d+1

9
=

; .

For the converse, given ✓ 2 Sd�1 and t 2 R, consider x0 2 H(t, ✓). By using (47), let

s0 = ��1
(x) = [(1� s0

d+1
)x, s0

d+1
], 8x 2 Rd

where s0
d+1

=
kx

0
k
2
�1

kx0k2+1
.

We set s = [

q
1� s2

d+1
✓, sd+1] with sd+1 = sign(t)

q
t2

t2+1
. So, we have that s 2 Sd because

(1� s2
d+1

) ✓2|{z}
=1

+s2
d+1

= 1,

and also we have that t = sd+1p
1�s

2
d+1

. Thus, we have that

hx0, ✓i = t =
sd+1q
1� s2

d+1

and by reversing the above proof (see (48)), we have that it implies that

sd+1 = hs0, si,

and so s0 2 ⇣s
1
. Combining with the fact � is invertible, we have

��1
(H(t, ✓)) = ⇣s

1
.

⇤

Lemma F.3 Let s 2 Sd different from the North Pole sn = [0, . . . , 0, 1], the South Pole s0 = [0, . . . , 0,�1], and consider
S0 the unique great circle (meridian) that passes through the North Pole sn, the South Pole s0, and the point s. For each
ŝ 2 S0, we define the functions

✓(ŝ) :=
ŝ[1 : d]

kŝ[1 : d]k , t(ŝ) :=
sd+1q
1� s2

d+1

.

For all ŝ 2 S0, ✓(ŝ) = ✓(s). In addition t : S0 \ {sn}! R is a bijection.

Proof: Without loss of generality, we can suppose s = [cos↵, 0, . . . , 0, sin↵] for some ↵ 2 (� 3

2
⇡, 1

2
⇡). Thus, ✓(s) =

[1, 0, . . . 0], and

S0 =

⇢
ŝ↵ = [cos ↵̂, 0, . . . , 0, sin ↵̂] : ↵̂ 2 [�3

2
⇡,

1

2
⇡]

�
.
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Pick ŝ↵ 2 S0 \ {sn}, we have ✓(ŝ↵) = [1, 0, . . . , 0]. In addition, t(ŝ↵) = sin↵

| cos↵|
is a one by one mapping. ⇤

Notice that for S2 ⇢ R3, if we visualize S2 as the Earth and we pick the point s 2 S2 to be the Royal Observatory in the
town of Greenwich, London, England, then S0 is the Greenwich meridian (or “prime meridian”).

Finally, we discuss the relation between the variant Funk transform defined in (44) with ⇠ = 1 (i.e., U1) and the Stereographic
Spherical Radon transform defined in (10) as

SR(µ) = R(�#µ)

for any Radon measure µ 2 M(Sd) that does not assign mass to {sn}. In particular, we can define the Stereographic
Spherical Radon transform for L1 functions f : Sd \ {sn}! R, as they can be viewed as densities of continuous measures.

Indeed, let µ be the corresponding measure for f , that is,
Z

Sd\{sn}
 0(s)f(s) d�d+1(s) =

Z

Sd\{sn}
 0(s) dµ(s), 8 0 2 C(Sd),

where �d+1 is the uniform measure on Sd ⇢ Rd+1.

Let f̂ denote the density of �#µ. By definition of push forward measure, we have:
Z

Sd\{sn}
 (�(s))f(s)d�d+1(s) =

Z

Sd\{sn}
 (�(s))dµ(s) =

Z

Rd

 (x)d�#µ(x) =

Z

Rd

 (x)f̂(x)dx, (49)

for all test functions  2 C0(Rd
) that decay to zero. In short, we usually write dµ = fd�d+1, and d�#µ = f̂dx, where dx

represents the Lebesgue measure in Rd.

Thus, SR(f) is defined as

SR(f)(t, ✓) = R(f̂)(t, ✓) =

Z

Rd

f̂(x)�(t� hx, ✓i) dx =

Z

H(t,✓)

f̂ dH(t, ✓), (50)

where dH(t, ✓) is the surface/line integral over the hyperplane/plane/line H(t, ✓).

Proposition F.4 Let f 2 L1
(Sd \ {sn}), and let s 2 Sd. Then,

k⇣s
1
kd�1 U1f(s) = SRf(t, ✓),

where
✓ =

s[1 : d]

ks[1 : d]k , t =
sd+1q
1� s2

d+1

.

Proof: For convenience, we can extend f to Sd by setting f(sn) = 0.

Without loss of generality, we suppose s = [cos ✓, 0, . . . , 0, sin ✓] where ✓ 2 (� 3

2
⇡, 1

2
⇡).

As before, let µ be the measure having density f and let f̂ denote the density of �#µ. Since � is invertible, it is
straightforward to verify that (��1

)#(�#)(µ) = µ, that is,
Z

Rd

 0(�
�1

(x))f̂(x)dx =

Z

Sd
 0(s)f(s)d�d+1(s), 8 0 2 C(Sd) (51)

In short, dµ = fd�d+1 and d�#µ = f̂dx.

Let S0 denote the unique great circle (meridian) that passes through the North Pole sn = [0, . . . , 0, 1], the South Pole
s0 = [0, . . . , 0,�1] and the point s. It is straightforward to verify

Sd =

[

ŝ2S0

⇣ ŝ
1
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and that for any distinct ŝ1, ŝ2 2 S0, ⇣ ŝ1
1
\ ⇣ ŝ2

1
= {sn}.

Similarly,
Rd

=

[

t̂2R
H(t̂, ✓)

and for any distinct t̂1, t̂2 2 R, H(t̂1, ✓) \H(t̂2, ✓) = ;.

Thus, we can “slice” and integrate in the following way:
Z

Sd
 0 d�d+1 =

Z

ŝ2S0

Z

⇣
ŝ

1

 0 d⇣
ŝ

1
dS0(ŝ), (52)

where d⇣ ŝ
1

denotes the surface/path integral over ⇣ ŝ
1

, and dS0 denotes the surface/path integral over S0.

Also, by using Proposition F.2, we can “slice” and integrate in the following way:
Z

Rd

 (x) dx =

Z

ŝ2R

Z

H(t(ŝ),✓(ŝ))

 dH(t(ŝ), ✓(ŝ)) dŝ, (53)

where for each ŝ 2 S0 we define ✓(ŝ) := ŝ[1:d]

kŝ[1:d]k
, t(ŝ) := ŝd+1p

1�ŝ
2
d+1

, and where dH(t(ŝ), ✓(ŝ)) denotes the surface/line

integral over H(t(ŝ), ✓(ŝ)), and dŝ denotes the integral over R = �(S0 \ {sn}). (Notice that if d = 2, (53) is nothing but
the Fubini-Tonelli expression

R
R2 �(z) dz =

R
R
R
R  (x, y) dx dy, where dz is the Lebesgue measure on R2 and dx, dy the

Lebesgue measure on R.)

Refer to Figure 9 for an illustrative visualization.

Figure 9. Representation of a unit sphere S2 in R3, featuring the North and South Poles (sn and s0 in blue). The sketch includes five great
circles passing through a point s: four intersecting sn and one meridian labeled as S0. The stereographic projection of these five great
circles is depicted as straight lines, which lie on the same plane. For the stereographic projection � we used formula (1). The four circles
passing through both sn and s project onto parallel lines. One such circle is highlighted in red and labeled as ⇣s1 , with its corresponding
projection also in red, labeled as H(t(s), ✓(s)). These four parallel lines are perpendicular to the line labeled as �(S0), representing the
stereographic projection of the meridian S0.

By using Lemma F.3 combined with identity (51), together with with (52) and (53), we have
Z

Rd

 0(�
�1

(x))f̂(x)dx

=R
ŝ2R

R
H(t(ŝ),✓(ŝ))  0��

�1
f̂ dH(t(ŝ),✓(ŝ)) dŝ

=

Z

Sd
 0(s)f(s)d�d+1(s)

=R
ŝ2S0

R
⇣
ŝ
1
 0 f d⇣

ŝ

1 dS0(ŝ)
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Since the above equality holds for all  0 2 C(Sd), by setting  0 ⌘ 1 we obtain

SRf(t, ✓) =

Z

H(t,✓)

f̂ dH(t, ✓) =

Z

⇣
s

1

f d⇣s
1
= k⇣s

1
kd�1 U1f(s)

and we complete the proof. ⇤

G. Related Work: Vertical Sliced Transform, Semi-Circle Transform, and Related Wasserstein
Distances

This section introduces the vertical sliced transform (Gindikin et al., 1994b), semi-circle transform (Groemer, 1998), and
the related optimal transport distances (Quellmalz et al., 2023).

G.1. Vertical Slice Transform and Vertical Sliced Wasserstein Distance

We first introduce the vertical slice transform technique introduced in (Quellmalz et al., 2023), which can only be defined in
S2 space. Next, we extend it into Sd for d � 2. Finally, we discuss the vertical slice of Wasserstein distance and its relation
to the classical slice of Wasserstein distance.

Parametrization in S2.

For each point s 2 S2, we can parameterize it as

s = [cos↵ sin�, sin↵ sin�, cos�], (54)

where ↵ 2 [0, 2⇡),� 2 [0,⇡].

When s is the north (or south) pole, i.e., s = [0, 0, 1] (or s = [0, 0,�1]), the above parameterization in particular is not
uniquely determined. In this case, we set ↵ = 0,� = 0 (or ↵ = 0,� = ⇡). Otherwise, ↵,� are uniquely determined.

In particular, ↵ is called the azimuth angle, denoted as ↵ = azi(s), and � is called the zenith angle, denoted as � = zen(s).

In summary, the following mapping is bijective:

� : ((0, 2⇡)⇥ (0,⇡)) [ ({0}⇥ {0,⇡})! S2

(↵,�) 7! �(↵,�) = s = [cos↵ sin�, sin↵ sin�, cos�]. (55)

Vertical Slice Transform and Vertical Sliced Wasserstein Distance.

The equator in S2 can be defined by

E := {�(↵, 0) = [cos↵, sin↵, 0] : ↵ 2 [0, 2⇡)}. (56)

Each ✓ = �(↵, 0) 2 E and t 2 [�1, 1] can determine a “vertical” circle

VS(↵, t) := VS(✓, t) := {s 2 S2 : h✓, si = t}, (57)

characterizing a circle centered at t✓ with radius
p
1� t2. Thus kVS(✓, t)k1 = 2⇡

p
1� t2.

Given f 2 L1(S2), the vertical slice transform V of f , denoted as Vf , is a L1 function defined on E ⇥ [�1, 1]:

Vf(✓, t) :=

8
><

>:

1

kVS(✓,t)k1

R
VS(✓,t)

f(s)dVS(✓, t)(s) = 1

2⇡
p
1�t2

R
S2 f(s)�(t� h✓, si)ds if t 2 (�1, 1)

f(✓) if t = 1

f(�✓) if t = �1
(58)

Its adjoint operator V⇤
: L1

(E ⇥ [�1, 1])! L1
(S2) has closed form:

V⇤g(s) =
1

2⇡

Z

E

g(✓, h✓, si)dE . (59)
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Thus, we can extend the vertical transform to any (positive Radon) measure as follows.

For each µ 2M+(S2), V(µ) is defined by:

Z

E⇥[�1,1]

 (✓, t)dVµ(✓, t) =
Z

S2
V⇤ (s)(s)dµ(s), 8 2 C0(E⇥ [�1, 1]). (60)

Note, V(µ) can be equivalently defined as
Z
 (✓, t)dV(µ)(✓, t) =

Z

E

Z
1

�1

 (✓, t)dV(µ)✓(t)d�E(✓) (61)

where �E is the uniformly probability measure defined on E and

V(µ)✓ = h✓, ·i#µ, 8✓ 2 E .

is the integration of Vµ with respect to �E .

In the discrete case, µ =
P

n

i=1
pi�xi

, the above definition becomes V(µ)✓ =
P

n

i=1
pi�h✓,xii

.

Given µ, ⌫ 2 P(S2), the vertical sliced Wasserstein distance is defined by

V SW p

p
(µ, ⌫) :=

Z

E

W p

p
(V(µ)✓,V(⌫)✓)d�E(✓) (62)

⇡ 1

N

NX

t=1

W p

p
(h✓, ·i#µ, h✓, ·i#⌫) (63)

where (63) is the Monte Carlo approximation and ✓1, . . . ✓N are uniformly selected from E .

By [Theorem 3.7, (Quellmalz et al., 2023)], the vertical transform (60) (or (61)) is injective. Thus, the above VSW problem
defines a metric.

Relation with Classical Radon Transform.

We refer to (5) and (24) for the classical Radon transform for a measure µ 2 P(R3
).

In addition, we have

R(µ)✓ = V(µ)✓ = h✓, ·i#µ, 8✓ 2 E ⇢ S2.

That is, the restricted transformed measure of µ under R and V coincide when ✓ 2 E .

Recall that the Sliced Wasserstein (SW) distance is defined by

SW p

p
(µ, ⌫) :=

Z

S2
W p

p
(R(µ)✓,R(⌫)✓)d�S2(✓) (64)

⇡ 1

N

NX

i=1

W p

p
(h✓, ·i#µ, h✓, ·i#⌫), (65)

where (65) is the Monte Carlo approximation of the SW problem and ✓1, . . . ✓N are uniformly sampled from S2.

Comparing (63) and (65), we observe that when ✓1, . . . ✓N are sampled from E , (63) and (65) coincide.

Generalization of Vertical Sliced Wasserstein in Sd.

It is natural to extend the vertical sliced transform given by (58), (60), (61) to Sd for d � 2.

Let
E = {s 2 Sd : sd+1 = 0},
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denote the equator.

Choose (✓, t) 2 E ⇥ [�1, 1], the d� 1 dimensional vertical sphere VS(✓, t) is defined as

VS(✓, t) := {s 2 Sd : h✓, si = t}.

Choose f 2 L1(Sd), Vf is defined by

Vf(✓, t) := 1

kEkd�1

Z

V S(✓,t)

f(s)dV S(✓, t) =
1

kEkd�1

Z

Sd
f(s)�(h✓, si � t)ds. (66)

It is straightforward to verify Vf 2 L1(E ⇥ [�1, 1]).

In addition, its adjoint operator V⇤ becomes

V⇤g(s) =
1

kEkd�1

Z

E

g(✓, h✓, si)d✓, 8g 2 L1(E ⇥ [�1, 1]). (67)

And similarly, for each µ 2M(Sd), vertical transformed measure Vµ can be defined by (60), or equivalently,
Z

E⇥[�1,1]

g(✓, t)dVµ(✓, t) =
Z

E

Z

[�1,1]

g(✓, t)dV(µ)✓(t)d�E(✓), (68)

where V(µ)✓ = h✓, ·i#µ is the integration of dVµ with respect to �E .

Thus, vertical sliced Wasserstein (62), (63) can be extended to the space Sd.

We provide additional results in Appendix I.2.

G.2. Semi-Circle Transform and Spherical Sliced Wasserstein Distance

We first introduce the semi-circle transform and then discuss its relation to spherical sliced Wasserstein (SSW).

The semi-circle can be defined by the following three equivalent formulations.

Formulation 1 (Quellmalz et al., 2023): In S2, we define

 (↵,�, �) :=

2

4
cos↵ � sin↵ 0

sin↵ cos↵ 0

0 0 1

3

5

2

4
cos� 0 � sin�
0 1 0

sin� 0 cos�

3

5

2

4
cos � � sin � 0

sin � cos � 0

0 0 1

3

5 . (69)

Choose s⇤ = �(↵⇤,�⇤
) (defined in (55)), ⇠ 2 [0, 2⇡), the semi-circle is defined by

SC(s⇤, ⇠) = {s 2 S2 : azi( (↵⇤,�⇤, 0)>s) = ⇠} [ {±�(↵⇤,�⇤
)}. (70)

Formulation 2 (Groemer, 1998):

In Sd, where d � 2, given u, v 2 Sd with u ? v, the semi-circle is defined by

SC(u, v) := {s 2 Sd : s ? u, hs, vi � 0}. (71)

Formulation 3 (Bonet et al., 2023c).

In Sd, choose U 2 V2(d) := {U 0 2 Rd⇥2
: (U 0

)
>U 0

= I2}, and let U? denote the perpendicular space of Range(U). In
addition, U can determine a great circle:

SU := {s 2 Rd+1
: UT s = 0} \ Sd.

The projection from Sd to SU admits the following closed form:

PU (s) = arg min
s02SU

dS(s, s
0
) =

UUT s

kUT sk , 8s 2 Sd \ U?. (72)
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The great circle SU can be regarded as a S1 circle, and we can use t 2 [0, 2⇡) to represent each point in SU . Thus, the above
projection mapping can be rewritten as s 7! U

T
s

kUT sk
. The new formulation induces the semi-circle:

SC(U, t) =
⇢
s 2 Sd :

UT s

kUT sk = t

�
[ U? (73)

When d = 2, the above three formulations of semi-circle are equivalent. When d � 2, the second and third formulations are
equivalent. For convenience, we select formulation 3.

Semi-Circle Transform. Given f 2 L1(Sd), we will introduce the semi-circle transform of f . Note, in (Quellmalz et al.,
2023; Hielscher et al., 2018), this transform is called the unnormalized semi-circle transform; in (Bonet et al., 2023c), this
transform is called the spherical Radon transform; and in (Groemer, 1998), it is called the hemispherical transform:

SC(f)(U, t) :=
Z

SC(U,t)

f(s)dSC(U, t). (74)

Similar to the Radon transform (5) and the vertical slice transform (60), the above definition can be extended into M(Sd).
The corresponding Wasserstein problem is the spherical sliced Wasserstein problem (Bonet et al., 2023a):

SSW (µ, ⌫) :=

Z

V2(d)

W p

p
(SC(µ)U ,SC(⌫)U )d�V2(d)

(U), (75)

where SC(µ)U is the integration of SC(µ) with respect to the uniformly measure �V2(d)
. In addition, with �V2(d)

� a.s., we
have

SC(µ)U =

✓
UT ·
kUT · k

◆

#

µ.

H. Distance Distortion
In Rd we consider the Euclidean distance and in Sd the great circle distance dSd(·, ·). While in Euclidean spaces the distance
between two points is the length of a straight segment between them, in the sphere, we measure the distance between two
points as the length of the shortest path that lies in the sphere and connects them. In particular, for two angles in the unit
circle ✓1, ✓2 2 [0, 2⇡)

dS1(✓1, ✓2) = min{|✓1 � ✓2|, 2⇡ � |✓1 � ✓2|}.
In general, the distance between s1, s2 2 Sd given by the arclength of the shortest path can be expressed as

dSd(s1, s2) := arccos(hs1, s2i).

We point out that in the stereographic projection, significant distortion can occur. For instance,

as dSd(s1, s2) �! 0, we might have k�(s1)� �(s2)k �! 1.

See Figure 10 for a visualization.

Figure 10. Illustration of the distortion phenomenon in one-dimensional space (d = 1) as a result of applying the stereographic projection
with formula (1). As the points s1 (blue) and s2 (red) are brought closer within the sphere (circle), their respective stereographic
projections, depicted as crosses, diverge from each other.
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In this section, we aim to construct an injective function h : Rd ! Rd such that the following holds:

kh(�(s1))� h(�(s2))k ⇡ dSd(s1, s2).

We define h1 : Rd ! Rd by

h1(x) := arccos(�sd+1)
x

kxk , where sd+1 =
kxk2 � 1

kxk2 + 1
. (76)

Proposition H.1 Let s, s1, s2 2 Sd \ {sn}, and let s0 = [0, . . . , 0,�1]T 2 Sd denote the South Pole. Consider � :

Sd \ {sn}! Rd the stereographic projection as in (46) with inverse (47), and also consider the function h1 : Rd ! Rd

defined by (76).

(1) h1(�(s)) = \(s, s0) s[1:d]

ks[1:d]k
, and thus kh1(�(s1)) � h1(�(s2))k  2⇡, where \(s, s0) = arccos(hs, s0i)2 [0,⇡]

denotes the angle between s and s0.

(2) If s1, s2, s0 are in the same great circle, denoted as S, let dS denote the circle distance in S, then

dSd(s1, s2) = dS(s1, s2) = min{kh1(�(s1))� h1(�(s2)k, 2⇡ � kh1(�(s1))� h1(�(s2)k} (77)

Proof:

(1) Note that

h1(�(s)) = arccos(�sd+1)
�(s)

k�(s)k = arccos(hs, s0i)
s[1 : d]

ks[1 : d]k = \(s, s0)
s[1 : d]

ks[1 : d]k| {z }
1

, 8s 2 Sd \ {sn} ⇢ Rd+1.

Thus, we have that
kh1(�(s1))� h1(�(s2))k  \(s1, s0) + \(s2, s0)  ⇡ + ⇡ = 2⇡.

(2) Without loss of generality, we suppose that the great circle S (meridian) is of the form

S =

⇢
s = [cos ✓, 0, . . . , 0, sin ✓] : ✓ 2 [�3

2
⇡,

1

2
⇡]

�

(where we go through the circle clockwise having �⇡/2 in the middle). Thus, we assume that S passes through
s0 = [0, . . . , 0,�1] = [cos(�⇡

2
), 0, . . . , 0, sin(�⇡

2
)], s1 = [cos ✓1, 0, . . . 0, sin ✓1], and s2 = [cos ✓2, 0, . . . , 0, sin ✓2]

in S \ {sn} with ✓1, ✓2 2 (� 3

2
⇡, 1

2
⇡). It follows that

h1(�(s1)) = \(s1, s0)
s1[1 : d]

ks1[1 : d]k = (✓1 +
⇡

2
)[1, 0, . . . , 0]

and similarly, h1(�(s2)) = (✓2 +
⇡

2
)[1, 0, . . . , 0]. Thus, the third term in (77) becomes

min{kh1(�(s1))� h1(�(s2))k, 2⇡ � kh1(�(s1))� h1(�(s2))k} = min{|✓1 � ✓2|, 2⇡ � |✓1 � ✓2|}.

For the first term in (77), we have

dSd(s1, s2) = arccos(cos ✓1 cos ✓2 + sin ✓1 sin ✓2) = arccos(cos(✓1 � ✓2)) = min{|✓1 � ✓2|, 2⇡ � |✓1 � ✓2|}.

For the second term, we have dS(s1, s2) = min(|✓1 � ✓2|, 2⇡ � |✓1 � ✓2|).
And we are done.

⇤
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Remark H.2 As a corollary from part 1 in Proposition H.1, we notice that h1 preserves angles with the vertex at the origin
in the projected space. (See angle � in Figure 13.)

In addition, when d = 2, we observe that h1(�) is similar to the Lambert azimuthal equal-area projection (Bradawl, 2003):

LP (s) =

s
2

1� s[3]
s[1 : 2]. (78)

The function LP projects points in S2 into R2, while preserving the area in S2, i.e.

kAk2 = kLP (A)k2.

Meanwhile, h1 � � aims to preserve distance.

In addition, if we write s = [cos↵ cos�, sin↵ cos�, sin�], then

h1(�(s)) = \(s, s0)
s[1 : 2]

ks[1 : 2]k

= (� +
⇡

2
)[cos↵, sin↵]

= � (� +
⇡

2
)[sin(↵� ⇡/2),� cos(↵� ⇡/2)]

| {z }
A

(79)

where A is exactly the azimuthal equidistant projection (Snyder, 1997) of s centered at south pole [0, 0,�1].

Thus, h1 � � and the azimuthal equidistance projection are equivalent.

Conjecture H.3 Let s, s1, s2 2 Sd \ {sn}, and let s0 = [0, 0, . . . ,�1]T 2 Sd denote the South Pole. Consider � :

Sd \ {sn}! Rd the stereographic projection as in (46) with inverse (47), and also consider the function h1 : Rd ! Rd

defined by (76). Let O(d+ 1) denote the set of all (d+ 1)⇥ (d+ 1) orthonormal matrices, then

dSd(s1, s2) = min
R2O(d+1)

min{kh1(�(Rs1))� h1(�(Rs2))k, 2⇡ � kh1(�(Rs1))� h1(�(Rs2))k}

= min
R2O(d+1)

kh1(�(Rs1))� h1(�(Rs2))k (80)

Numerically, we have shown that statement holds (see Figure 12). We will leave the theoretical proof for a future study.

Here we provide the intermediate results: Proposition H.4 and Proposition H.10.

Proposition H.4 Let s, s1, s2 2 Sd \ {sn}, and let s0 = [0, 0, . . . ,�1]T 2 Sd denote the South Pole. Consider � :

Sd \ {sn}! Rd the stereographic projection as in (46) with inverse (47), and also consider the function h1 : Rd ! Rd

defined by (76). There exists R⇤ 2 SO(d+ 1) such that

dSd(s1, s2) = min{kh1(�(R
⇤s1))� h1(�(R

⇤s2))k, 2⇡ � kh1(�(R
⇤s1))� h1(�(R

⇤s2))k}
� min

R2O(d+1)

min{kh1(�(Rs1))� h1(�(Rs2))k, 2⇡ � kh1(�(Rs1))� h1(�(Rs2))k}

Proof:

Choose s1, s2 2 Sd two different points. Let ⇣ denote the shortest path from s1 to s2.

Then ⇣ can be parametrized as a function. In particular, there exists a mapping ⇣ : [0, 1]! Sd, ⇣(0) = s1, ⇣(1) = s2, ⇣ is
differentiable, k⇣ 0(t)k is constant, and the range of ⇣ is exactly the shortest path. By definition of the great circle distance
dSd , it is exactly the length of ⇣. That is,

dSd(s1, s2) = |⇣| =
Z

1

0

p
(⇣ 0(t))2dt.
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Furthermore, ⇣ lies in a great circle, denoted as S.

Let s0
0
= ⇣(t0) denote the middle point between s1, s2 (for an appropriate t0 2 (0, 1)),

By the Gram-Schmidt algorithm, there exists R0 2 SO(d+ 1) such that R0s00 = s0 (for example, first set r1 = �s0
0
, then

construct orthonormal vectors r2, . . . , rd+1, and finally define the matrix R0 having rows r1, r2, . . . , rd+1).

It holds that
dSd(s1, s2) = dSd(R0s1, R0s2),

i.e., dSd is invariant under rotations and reflections.

Besides, note that R0s1, R0s2, R0s00 are in the same great circle. Thus, by using that dS2 in invariant under orthogonal
transformations and by using part (2) in Proposition H.1, we have

dSd(s1, s2) = dSd(R0s1, R0s2) = min{kh1(�(R0s1))� h1(�(R0s2))k, 2⇡ � kh1(�(R0s1))� h1(�(R0s2))k}
= kh1(�(R0s1))� h1(�(R0s2))k

where the last equality holds because s0 = R0s00 is a point between R0s1, R0s2.

In particular,

min
R2O(d+1)

min{kh1(�(Rs1))� h1(�(Rs2)k, 2⇡ � kh1(�(Rs1))� h1(�(Rs2)k}  dSd(s1, s2)

⇤
For the other direction, we first recall that dSd is invariant under orthogonal transformations:

dSd(s1, s2) = dSd(Rs1, Rs2) 8R 2 O(d+ 1).

In particular, every R0 2 O(d + 1) is a minimizer of: dSd(s1, s1) = dSd(R
0s1, R0s1) = infR2O(d+1) dSd(Rs1, Rs1). By

using part (2) in Proposition H.1 we have that for all R⇤ such that R⇤s1, R⇤s2, and R⇤s0 are in the same great circle it holds

dSd(s1, s2) = dSd(R
⇤s1, R

⇤s2) = min{kh1(�(R
⇤s1))� h1(�(R

⇤s2))k, 2⇡ � kh!(�(R
⇤s1))� h1(�(R

⇤s2))k} (81)

However, we want to minimize over all the possible orthogonal matrices. At this point, the proof is more involved, and to
prove this part we will need a series of auxiliary lemmas:

Lemma H.5 Given s1, s2 2 Sd, with (s1)d+1 = (s2)d+1 (i.e., s1 and s2 are in the same latitude), then

dSd(s1, s2)  min(2⇡ � kh(�(s1))� h1(�(s2))k, kh1(�(s1))� h1(�(s2))k).

Proof: Suppose (s1)d+1 = (s2)d+1 = sin↵ for some ↵ 2 [�⇡
2
, ⇡
2
). Let � = \(s1[1 : d], s2[1 : d]) 2 [0,⇡]. We have

dSd(s1, s2) = arccos(hs1[1 : d], s2[1 : d]i+ (s1)d+1(s2)d+1)

= arccos
�
cos

2
(↵) cos(�) + sin

2
(↵)

�

kh1(�(s1))� h1(�(s2))k =
p
kh1(�(s1)k2 + kh1(�(s2)k2 � 2kh1(�(s1))kkh1(�(s2))k cos(\(s1[1 : d], s2[1 : d]))

=

⇣
↵+

⇡

2

⌘p
2� 2 cos(�)

=

⇣
↵+

⇡

2

⌘
2 sin

✓
�

2

◆

Let

L(↵,�) = kh1(�(s1))� h1(�(s2))k � dSd(s1, s2)

= 2(↵+
⇡

2
) sin

✓
�

2

◆
� arccos

�
cos

2
(↵) cos(�) + sin

2
(↵)

�
(82)

39



Stereographic Spherical Sliced Wasserstein Distances

In hat follows we will show that
L(↵,�) � 0 if ↵ 2 [�⇡

2
,
⇡

2
), � 2 [0,⇡].

First, if ↵ = �⇡
2

or � = 0, we have L = 0.

It remains to consider the case ↵ 2 (�⇡
2
, ⇡
2
), � 2 (0,⇡].

The procedure will be the following: We fix ↵ 2 (�⇡
2
, ⇡
2
) and consider the function L(↵, ·) on the variable �.

We have:
d

d�
L =

⇣
↵+

⇡

2

⌘
cos

✓
�

2

◆
+

� cos
2
(↵) sin(�)q

1� (cos2(↵) cos(�) + sin
2
(↵))2

(83)

We set d

d�
L = 0, and obtain

⇣
↵+

⇡

2

⌘2

cos
2

✓
�

2

◆
=

cos
4
(↵) sin2(�)

1� (cos2(↵) cos(�) + sin
2
(↵))2

(84)

Let A = cos(�) = 2 cos
2

⇣
�

2

⌘
� 1 = 1 � 2 sin

2
(
�

2
), B = cos

2
(↵) = sin

2
(↵0

) = 1 � sin
2
(↵), C = (↵ +

⇡

2
)
2
= (↵0

)
2,

where ↵0
= ↵+

⇡

2
2 (0,⇡). The above equation (84) becomes:

1

2
C(A+ 1) =

B2
(1�A2

)

1� (AB + 1�B)2

=
B2

(1�A)(1 +A)

1� (A2B2 + 2AB � 2AB2 + 1� 2B +B2)

=
B2

(1�A)(1 +A)

�A2B2 � 2AB + 2AB2 + 2B �B2

=
B(1�A)(1 +A)

�A2B � 2A+ 2AB + 2�B

thus, C(�A2B � 2A+ 2AB + 2�B) = 2B(1�A), or equivalently,

(�CB)A2
+ 2(BC � C +B)A+ (2C � 2B �BC) = 0 (85)

Denote by a = �CB, b = 2(BC � C +B), c = (2C � 2B �BC) the coefficients of the above quadratic expression (85)
as function of A: We have

�
2
= b2 � 4ac = 4(B � C)

2 � 0

and thus, we obtained real roots. Consider the following cases:

• Case 1: a = 0. Thus, B = 0 or C = 0, and so ↵ = �⇡/2, which was already analyzed.

• Case 2: a 6= 0. Since B,C � 0, we have that a < 0.

Besides, the two roots A1, A2 of (85) are given by

A1 =
BC + 2(B � C)

BC
and A2 = 1

Since A = cos(�) 2 (�1, 1) as � 2 (0,⇡), once we fix ↵, there exists at most one �⇤ such that d

d�
(↵,�⇤

)L = 0. In fact,
such �⇤ exists if and only if �1 < A1 < 1.

In addition, we have that
d

d�
L(↵, 0) = lim

�&0

d

d�
L = (↵+

⇡

2
) > 0

L(↵, 0) = 0

L(↵,⇡) =

(
0 if ↵ 2 (�⇡

2
, 0]

4↵ if ↵ 2 [0, ⇡
2
)
� 0

40



Stereographic Spherical Sliced Wasserstein Distances

We have the following:

If cos(�⇤
) = A1 2 (�1, 1), for some �⇤ 2 (0,⇡), we have d

d�
L(↵,�) � 0, 8� 2 [0,�⇤

], thus L(↵,�) is an increasing
function on [0,�⇤

]. Since L(↵, 0) > 0, we have L(↵,�) � 0 for all � 2 [0,�⇤
].

On (�⇤,⇡], dL

d�
6= 0. By the Intermediate Value Theorem, we have dL

d�
< 0. Thus, L is a decreasing function here. Since

L(↵,⇡) � 0, we have L(↵,�) � 0 on (�⇤,⇡].

If A1 /2 (�1, 1), there is no �⇤ 2 (0,⇡) such that d

d�
L(↵,�) = 0. Combining this with the fact d

d�
L(↵, 0) > 0, we have

d

d�
L(↵,�) > 0 on (0,⇡). Thus, L is an increasing function here, and thus L(↵,�) � 0.

Therefore, L � 0.

Through a similar process, one can show that

2⇡ � kh1(�(s1))� h1(�(s2))k � dSd(s1, s2) � 0

and thus we complete the proof. ⇤

Lemma H.6 In 3D, the function h1 � � : S2 \ {sn}! R2, where � defined by (46) and h1 by (14) with d = 2 has range
contained in the circle of radius ⇡ centered at the origin. Moreover, h1 � � maps circles parallel to the Equator to circles in
the plane centered at the origin. See Figure 11 for a visualization.

This can be generalized to the dimensions d > 2, where we consider the function h1 � � : Sd \ {sn} ! Rd, and in the
preceding statement we have to change the word “circle” by “sphere”. The Equator in Sd is the sub-sphere intersecting the
hyperplane in Rd+1 with equation xd+1 = 0.

Proof: This is a consequence of part 1 in Proposition H.1, that is, h1(�(s)) = \(s, s0) s[1:d]

ks[1:d]k
for every s 2 Sd \ {sn}, and

the fact that the stereographic projection � with formula given by (46) maps circles (resp., sub-spheres of dimension d� 1

in Rd+1) parallel to the Equator to circles (resp., spheres of dimension d� 1) in R2 (resp., Rd) -see Figure 8-.

Given a circle S↵ (sub-sphere) which is the intersection between the sphere Sd and the (hyper)plane xd+1 = sin(↵) for
some ↵ 2 [�⇡/2,⇡/2) (and so, �1  sin(↵) < 1), i.e.,

S↵ = Sd \
�
x 2 Rd+1

: xd+1 = sin(↵)
 
, (86)

we have that
\(s, s0) = \(s0, s0) = ↵+

⇡

2
8s, s0 2 S↵.

Thus, if for example we consider a representative s = [0, . . . , 0, cos(↵), sin(↵)] in S↵, we have that h1(�(s)) = \(s, s0) =
↵+

⇡

2
. In general,

h1(�(s
0
)) = (↵+

⇡

2
)

s0[1 : d]

ks0[1 : d]k 8s0 2 S↵.

Since the points of the form s
0
[1:d]

ks0[1:d]k belong to the unit “circle” in Rd, the function h1 � � maps the “circle” S↵ (which is
parallel to the Equator at height sin(↵)) to the “circle” centered at the origin with radius ↵+

⇡

2
:

h1(�(S↵)) =
n
x 2 Rd

: kxk = ↵+
⇡

2

o
.

In particular, we have the following:

• The Equator corresponds to ↵ = 0 and so

h1(�(Equator)) =
⇢
x 2 Rd

:

q
x2
1
+ · · ·+ x2

d
=
⇡

2

�
.

• The South Pole corresponds to ↵ = �⇡/2, i.e., s0 = [0, . . . , 0,�1] = [0, . . . , cos(�⇡/2), sin(�⇡/2)], and so
h1(�(s0)) = [0, . . . , 0] 2 Rd.
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Figure 11. Depiction of the map h1 � � : S2 \ {sn} ! R2. The domain is depicted on the left. Its image, on the right, is inside the open
disk of radius ⇡ centered at the origin. The Equator (black circle on the left) goes to the circle of radius ⇡/2 (black circle on the right).
The South Pole (black big dot on the left) goes to the origin of coordinates of the plane on the right (black dot). Dotted blue “Parallel” on
the left at negative height (in the South Hemisphere), goes to the small blue dotted circle on the right. Dotted red “Parallel” on the left at
positive height (in the North Hemisphere), goes to the big red dotted circle on the right. We recall that “parallels” are circles on the sphere
that are parallel to the Equator.

• For small numbers ✏ > 0 we have that the “circle” S✏ parallel to the Equator at height ⇡/2� ✏ defined by

S✏ = Sd \
n
x 2 Rd+1

: xd+1 =
⇡

2
� ✏

o

is sent to

h1(�(S
✏
)) =

⇢
x 2 Rd

:

q
x2
1
+ · · ·+ x2

d
= ⇡ � ✏

�
.

Thus, as ✏! 0 we obtain that the range of h1 � � is contained on the open sphere/circle in Rd of radius ⇡ centered at
the origin.

• “Circles” at positive height, i.e., S↵ as in (86) with 0  ↵ < ⇡/2, are sent through h1 � � to spheres/circles in Rd with
radius grater than ⇡/2 and smaller that ⇡ centered at the origin. “Circles” at at negative height, i.e., S↵ as in (86) with
�⇡/2  ↵ < 0, are sent through h1 � � to spheres/circles in Rd with radius between 0 and ⇡/2 centered at the origin.

⇤

Corollary H.7 Given two arbitrary points s1, s2 2 S2 \ {sn}, we have the following bounds

dSd(s1, s2)  ⇡ and kh1(�(s1))� h1(�(s2))k  2⇡.

Proof: In general dSd(s1, s2) is the minimum arc length between s1 and s2 taken among all possible paths on the sphere
connecting those points, and so it is at most ⇡. We recall that dSd(s1, s2) = arccos(hs1, s2i) 2 [0,⇡].

The other inequality is a consequence of Lemma H.6: The higher Ecudidean distance between points in a circle (sphere)
with diameter 2⇡ (radius ⇡) is, in fact, 2⇡. ⇤

The above results (identity (81), Lemma H.5 and Corollary H.7) suggest that given two points s1, s2 on the sphere we would
have that dSd(s1, s2)  kh1(�(s1))� h1(�(s2))k. This is shown experimentally in Figure 12. We will need some more
lemmas to then sketch the proof of this fact theoretically.
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Figure 12. Experimental results for the relation dS2(s1, s2)  dh(s1, s2) := min{kh1(�(s1)) � h1(�(s2))k, 2⇡ � kh1(�(s1)) �
h1(�(s2))k}. There were taken 1000 pairs (s1, s2) uniformly at random on the unit sphere in R3. Additionally, we calculate the
correlation between dS2(s1, s2) and dh(s1, s2), resulting in an average correlation coefficient of 0.83.

Lemma H.8 Consider s1, s2 2 Sd, with (s1)d+1  (s2)d+1, let s0
2

be the unique point such that

(s0
2
)d+1 = (s1)d+1 and \(s0

2
[1 : d], s2[1 : d]) = 0. (87)

Let � = \(s1[1 : d], s2[1 : d]) 2 [0,⇡], and let CH denote the angle between line segments
[h1(�(s1)), h1(�(s02))], [h1(�(s02)), h1(�(s2))]. Then,

CH =
�

2
+
⇡

2
(88)

Proof: We suggest the reader to look at Figure 13 for visualization purposes.

Consider CH the angle between line segments [h1(�(s1)), h1(�(s02))] and [h1(�(s2)), h1(�(s02))] in the projected space.
The way we have chosen s0

2
guarantees that the segment [0, h1(�(s02))] is contained in the segment [0, h1(�(s2))].

As an application of Lemma (H.6), we have that the segments [0, h1(�(s02))] and [0, h1(�(s1))] have the same length
as s0

2
and s1 are at the same latitude. Then, the triangle in the projected space with vertices the origin or coordinates

O = [0, . . . , 0] 2 Rd, s1 and s0
2

is isosceles. The angle of that triangle having vertex at O is

� = \(s1[1 : d], s2[1 : d]) = \(s1[1 : d], s2[1 : d]) = \(s1[1 : d], s0
2
[1 : d])

= \(�(s1),�(s02)) = \(h1(�(s1)), h1(�(s
0

2
))) (89)

and the other two angles are equal. Thus, since CH is adjacent to one of those two equal angles, and since the sum of the
internal angles of a triangle is 180, we have ⇡ = � + 2(⇡ � CH) or, equivalently, CH =

�

2
+

⇡

2
. ⇤

Lemma H.9 Consider s1, s2 2 Sd, with (s1)d+1  (s2)d+1, let s0
2

be the unique point satisfying (87). Let C 2
[0,⇡] denote the spherical angle between arc(s1, s02), arc(s0

2
, s2), and CH denote the angle between line segments

[h(�(s1)), h(�(s02)], [h1(�(s02)), h1(�(s2))]. Then,
C  CH . (90)

Proof: For better visualization and an easier way of parametrizing the points, we will work on the 3-dimensional space (see
Figure 14). Thus, assuming d = 2, by using spherical coordinates let ↵ 2 [�⇡/2,⇡/2], � = \(s1[1 : d], s2[1 : d]) 2 [0,⇡],
and ↵0 2 [↵, ⇡

2
) and, without loss of generality, let us parametrize

8
><

>:

s1 = [cos(↵), 0, sin(↵)]

s2 = [cos(↵0
) cos 2�, cos(↵0

) sin(�), sin(↵)]

s0
2
= [cos↵ cos 2�, cos(↵) sin(�), sin(↵)]

(91)
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If � = 0, s0
2
= s1, C = CH = 0 and there is nothing else to prove.

If � > 0, the angle C is characterized by

cos(C) =
hn120 , n22i
kn120kkn220k

,

where n120 is a vector normal (perpendicular) to the plane containing the vectors
#     »
Os1 and

#     »
Os0

2
, and n220 is a vector normal

to the plane containing the vectors
#     »
Os2 and

#     »
Os0

2
, where O denotes the origin of coordinates O = [0, . . . , 0] 2 Rd+1.

Since arccos(·) is a decreasing function, want to show that

cos(C) � cos(CH). (92)

By using the parametrizations in (91), we can compute
8
>><

>>:

n220 = [sin(�),� cos(�), 0] kn220k = 1

n120 = [sin(↵) sin(�), sin(↵)(1� cos(�)), cos(↵) sin(�)] kn120k =
q
sin

2
(�) + sin

2
(↵)(1� cos(�))2

hn120 , n220i = sin(↵)(1� cos(�))

Thus,

cos(C) =
sin(↵)(1� cos(�))q

sin
2
(�) + sin

2
(↵)(1� cos(�))2

(93)

Notice that in the special case where ↵ 2 [0,⇡/2], that is, (s1)d+1 � 0, and so both s1, s2 are in the same “positive
hemisphere” (as in Figure 14), we have that sin(↵) � 0, so, cos(C) � 0, and therefore 0  C  ⇡/2. Thus, in this
particular case,

C  ⇡/2  CH if 0  ↵ <
⇡

2
. (94)

(See Figure 14 for a visualization of this case.)

In general, by using (93) and (88), the inequality (92) reads as

cos(C) =
sin(↵)(1� cos(�))q

sin
2
(�) + sin

2
(↵)(1� cos(�))2

� cos

✓
�

2
+
⇡

2

◆
= � sin

✓
�

2

◆

By algebraic manipulations and by using trigonometric identities (92) holds if and only if

sin

✓
�

2

◆
0

BB@1 +

sin(↵) sin
⇣
�

2

⌘

r
cos2

⇣
�

2

⌘
+ sin

2
(↵) sin2

⇣
�

2

⌘

1

CCA � 0 if 0  �  ⇡, �⇡
2
 ↵  ⇡

2
(95)

Let us rewrite the inequality in (95) (by using that sin(�/2) � 0 in our range) as

� sin(↵) 

s

cos2

✓
�

2

◆
+ sin

2
(↵) sin2

✓
�

2

◆
(96)

The parameter ↵ is constraint to the interval [�⇡/2,⇡/2). We have already proved that for ↵ � 0 everything works (see
(94)). Thus, let us suppose that ↵ < 0: In this case, sin(↵) < 0 and so, both sides in (96) are positive. Therefore, it is
equivalent to show that sin2(↵)  cos

2

⇣
�

2

⌘
+ sin

2
(↵) sin2

⇣
�

2

⌘
or, equivalently, that sin2(↵)  1, which is always true.

⇤
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Figure 13. On top we have the sphere in the 3-dimensional space. Three points s1, s2, s02 are considered on the sphere. The point
s
0
2 satisfies (87), that is, s02, s1 are at the same latitude, and s

0
2, s2 are in the same meridian (and among the points that satisfy these

two conditions always choose the s
0
2 which is “closer” to s2). The corresponding projections �(s1), �(s2), �(s02) are plotted on the

2-dimensional plane. The circle on the sphere parallel to the Equator that passes through s1 and s
0
2 and its projected circle by � are

depicted in blue. The circle on the sphere that passes through s2, s02, and the poles (meridian) and its projection by � (which is a line) are
depicted in red. Similarly, the circle on the sphere that passes through s1, and the poles (meridian) and its projection by � (which is a line)
are depicted in green. On the bottom, we sketch the image by h1 of the projected space. The angles � given by (89), C (spherical angle
between the arcs arc(s1, s02), arc(s02, s2)), and CH (defined by the line segments [�(s1),�(s02)] and [�(s2),�(s

0
2)] or, equivalently, by the

segments [h1(�(s1)), h1(�(s
0
2))] and [h1(�(s2)), h1(�(s

0
2))]) are depicted. When applying the function h1 after �, it preserves angles

with vertex at the origin in the projected space, preserves the lines that pass through the origin (red and green lines), maps circles centered
at the origin to circles centered at the origin (blue arc). Roughly speaking, the effect of h1 is that it “compresses” the projected plane.

Figure 14. Given two arbitrary points s1, s2 2 S2 ⇢ R3 in the “positive” hemisphere. The point s01 is plotted such that it has the same
latitude as s1 and it is in the same meridian as s2. The angle C is depicted as the angle between the two planes containing the arcs
arc(s1, s

0
2) and arc(s2, s

0
2). A spherical triangle connecting the points s1, s02, s2 is depicted in black.

Proposition H.10 Let s, s1, s2 2 Sd \ {sn}, and let s0 = [0, 0, . . . ,�1]T 2 Sd denote the South Pole. Consider
� : Sd \ {sn}! Rd the stereographic projection as in (46) with inverse (47), and also consider the function h1 : Rd ! Rd
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defined by (76). Then

dSd(s1, s2)  min
R2O(d+1)

kh1(�(Rs1))� h1(�(Rs2))k+ ✏(s1, s2)

where ✏(s1, s2)! 0 as dSd(s1, s2)! 0.

Proof:

Let s1, s2 in Sd. Assume, without loss of generality, that with (s2)d+1 � (s1)d+1.

Define s0
2

as in Lemma H.9: That is, such that (s0
2
)d+1 = (s1)d+1 (same latitude) and s0

2
, s2, s0 are in the same great circle

(same meridian). Since there are two possible choices for s0
2
, choose it not only such that (s0

2
)d+1 = (s1)d+1 but also such

that \(s0
2
[1 : d], s2[1 : d]) = 0. (This means we always choose the s0

2
which is “closer” to s2.)

Let C be the spherical angle angle between the arcs arc(s1, s02) and arc(s2, s02) given by the smallest portions of the great
circles connecting the corresponding points s1 with s0

2
and s2 with s0

2
, with vertex the origin of coordinates [0, . . . , 0] 2 Rd+1.

We recall that the angle C is measured by the angle between the planes containing those two arcs.

See Figure 14 for a visualization in R3.

A spherical triangle on the surface of the unit sphere is defined by the great circles connecting three points on the sphere, in
our case consider s1, s2, s02. The spherical law of cosines reads as follows:

cos(dSd(s1, s2)) = cos(dSd(s1, s
0

2
)) cos(dSd(s2, s

0

2
)) + sin(dSd(s1, s

0

2
)) sin(dSd(s2, s

0

2
)) cos(C).

As a consequence, by using Taylor expansions,

dSd(s1, s2)
2
= dSd(s1, s

0

2
)
2
+ dSd(s2, s

0

2
)
2 � 2dSd(s1, s

0

2
)dSd(s2, s

0

2
) cos(C)

+O(d4Sd(s1, s2)) +O(d4Sd(s1, s
0

2
)) +O(d4Sd(s2, s

0

2
))

Thus, for “small” spherical triangles, i.e., when the lengths dSd(s1, s2), dSd(s1, s02), dSd(s2, s02) are small, we can use the
“planar” approximation

dSd(s1, s2)
2 ⇡ dSd(s1, s

0

2
)
2
+ dSd(s2, s

0

2
)
2 � 2dSd(s1, s

0

2
)dSd(s2, s

0

2
) cos(C).

Now, as in the above lemmas, consider CH the angle between line segments [h1(�(s1)), h1(�(s02))] and [h(�(s2)), h(�(s02))]
in the projected space.

By Lemma H.5 and by using C  CH together with fact that cos is a decreasing function on [0,⇡], we have:

d2Sd(s1, s
0

2
) + d2Sd(s2, s

0

2
)� 2dSd(s1, s

0

2
)dSd(s2, s

0

2
) cos(C)  kh1(�(s1))� h1(�(s

0

2
))k2 + kh1(�(s2))� h1(�(s

0

2
))k2

� 2kh1(�(s1))� h1(�(s
0

2
))kkh1(�(s2))� h1(�(s

0

2
))k cos(CH)

= kh1(�(s1))� h1(�(s2))k2

where in the last step we used the classical law of cosines.

Therefore, by using the approximation given by the spherical law of cosines (assuming dSd(s1, s2) small), we obtain

dSd(s1, s2)  kh1(�(s1))� h1(�(s2))k.

In particular,
dSd(s1, s2) = dSd(Rs1, Rs2)  kh1(�(Rs1))� h1(�(Rs2))k 8R 2 O(d+ 1)

and so
dSd(s1, s2)  min

R2O(d+1)

kh1(�(Rs1))� h1(�(Rs2))k.

⇤
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H.1. Neural Network-Based Embedding

While any choice for h which maintains injectivity will ensure S3WH,p remains a valid metric in Pp(Sd), the particular
choice for h is significant in ensuring that the transportation cost in the embedding space resembles the spherical distance.
As discussed in Section 3.3, as an alternative to the proposed analytic function h1(·) (as given in Eq. (14)), we may consider
training a neural network to obtain a nearly-isometric Euclidean embedding and correct for the distance distortion caused by
stereographic projection.

Here, we consider the injective function defined by hNN (x) := [hT

1
(x)/C, ⇢T (x)]T where ⇢ : R2 ! R3 is a neural network,

and C � 2⇡ a constant. We parameterize ⇢ using a multi-layer perceptron (MLP) with two hidden layers, each consisting of
128 neurons, and train ⇢ by minimizing

L(⇢) = Es,s0
⇥
(arccos(hs, s0i)� kh(�(s))� h(�(s0))k)2

⇤
, (97)

where s and s0 are sampled according to the uniform distribution in the sphere Sd ⇢ Rd+1, i.e., (s, s0) ⇠ �d+1 ⇥ �d+1. As
shown in Figure 2, this choice for h can yield a nearly-isometric embedding.

We then conduct two different gradient flow experiments to study the distinct behaviors of h1(·) and hNN (·). The
visualizations demonstrating these gradient flows can be found at the following GitHub URL. We observe that the use
of hNN (·) provides more “geodesic-like” paths for the particles as compared to h1(·), though the final outcomes are
comparable.

We note that in our experiments, we primarily use only the analytic h1 for its computational efficiency as opposed to
the neural network-based learnable function hNN . Specifically, in our experiments, the proposed distances are used in
gradient-based optimization frameworks where the distance is computed in each iteration of (stochastic) gradient descent.
Utilizing hNN in these optimization applications increases the computational cost of calculating the distance. More precisely,
the computational cost would have the following components: 1) stereographic projection, 2) evaluation of hNN , and 3)
slicing, with a neural network becoming the computational bottleneck in the evaluation of hNN .

I. Numerical Experiments
In this section, we aim to demonstrate our proposed S3W as an efficient metric suitable for various Machine Learning tasks.
In I.2, we show that S3W and its variants provide a high-speed alternative for SSW as an effective loss for gradient-based
optimization on the spherical manifold. In I.4, we study the evolution of our proposed distances w.r.t. varying parameters.
In I.5, we discuss the computational efficiency of our method via runtime study. I.6, I.7, I.8, I.9 provide experiments in
practical ML settings. Throughout our experiments, we use h(x) = h1(x) := arccos

⇣
kxk

2
�1

kxk2+1

⌘
x

kxk
.

I.1. Additional Algorithmic and Implementation Details

Let {↵i, xi}Mi=1
⇠ µ̂ and {�j , yj}Nj=1

⇠ ⌫̂ be iid samples from the empirical measures µ̂ and ⌫̂, respectively, where
P

M

i=1
↵i = 1 and

P
N

j=1
�j = 1. We provide below a general formulation for computing S3Wp between µ̂ and ⌫̂. We then

define the procedure to compute RI-S3Wp and ARI-S3Wp. By abuse of notation, we denote these Algorithms as S3W ,
RI-S3W , and ARI-S3W , respectively.
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I.1.1. ALTERNATIVE IMPLEMENTATION TO COMPUTE S3Wp

Algorithm 2 Stereographic Spherical Sliced-Wasserstein (S3W )

Input: {↵i, xi}Mi=1
⇠ µ̂, {�j , yj}Nj=1

⇠ ⌫̂, L projections, p-th order, ✏
Initialize: h (injective map), {✓l}Ll=1

(projection directions)
Initialize d = 0

Calculate {ui = h(�✏(xi))}Mi=1
and {vj = h(�✏(yj))}Nj=1

for ` = 1 to L do
Project onto ✓l: ul

i
= hui, ✓li and vl

j
= hvj , ✓li

Sort {ul

i
}, {vl

j
}, s.t ul

⇡l[i]
 ul

⇡l[i+1]
, vl
⇡
0
l
[j]
 vl

⇡
0
l
[j+1]

Compute the (weighted) CDFs {ũl

i
= F̃ul(ul

⇡l[i]
)}M

i=1
, {ṽl

j
= F̃vl(vl

⇡l[j]
)}N

j=1

Merge and sort the {ũl

i
}i and {ṽl

j
}j into {zl

k
}M+N

k=1
where zl

k
 zl

k+1

For each zl
k
, compute F̃�1

ul (zl
k
) and F̃�1

vl (zl
k
) by setting F̃�1

ul (zl
k
) to the value of ul

i
such that F̃ul(ul

i
) is nearest to zl

k
.

Proceed similarly for F̃�1

vl (zl
k
).

d` =
P

M+N

k=1

���F̃�1

ul (zl
k
)� F̃�1

vl (zl
k
)

���
p

(zl
k
� zl

k�1
)

Update total distance: d = d+ 1

L
d`

end for
Return S3Wp(µ̂, ⌫̂) ⇡ d

1
p

I.1.2. IMPLEMENTATION TO COMPUTE THE RI -S3Wp

Algorithm 3 Rotationally Invariant S3W (RI-S3W )

Input: {↵i, xi}Mi=1
⇠ µ̂, {�j , yj}Nj=1

⇠ ⌫̂, L projections, p-th order, ✏, NR rotations
Sample {Rr}NR

r=1
2 SO(d+ 1)

Initialize d = 0

for r = 1 to NR do
Apply rotation Rr to obtain Xr = {↵iRr(xi)}Mi=1

and Yr = {�jRr(yj)}Nj=1

Use Algorithm 2 for inputs Xr, Yr to compute dr
Update total distance: d = d+ 1

NR

dr
end for
Return RI-S3Wp(µ̂, ⌫̂) ⇡ d

I.1.3. IMPLEMENTATION TO COMPUTE THE ARI -S3Wp

Although RI-S3W is highly parallelizable via batch matrix multiplication, generating random rotation matrices can still
be computationally expensive. That is especially true for high-dimensional data and training setups with small batch size
where RI-S3W gets called repeatedly. One way to mitigate this issue is by pregenerating a batch of N rotation matrices,
{Ri}Ni=1

⇢ SO(d + 1), and subsample from this batch to amortize the generation cost. We introduce the Amortized
Rotationally Invariant S3W (ARI-S3W ) as algorithm 4. This process can be made seamless by managing the rotation
matrices in a stateful manner. That is, we maintain a Rotation manager class with static variables to ensure that once a
set of matrices is generated, they can be efficiently reused. We describe the abstract procedure to compute ARI-S3W in
Algorithm 4.

48



Stereographic Spherical Sliced Wasserstein Distances

Algorithm 4 Amortized Rotationally Invariant S3W (ARI-S3W )

Input: {↵i, xi}Mi=1
⇠ µ̂, {�j , yj}Nj=1

⇠ ⌫̂, L projections, p-th order, pool size Ntotal, NR rotations, pregenerated rotations
R = {Rk}Ntotal

k=1
⇢ SO(d+ 1) where Ntotal � NR

Initialize d = 0

Randomly subsample NR rotations R̃ = {R̃r ⇠ R}NR

r=1

for each r in NR do
Apply R̃r to obtain Xr = {↵iR̃r(xi)}Mi=1

and Yr = {�jR̃r(yj)}Nj=1

Use Algorithm 2 where inputs are {R̃r(xr

i
)}N

i=1
and {R̃r(yrj )}Nj=1

to compute dr
Update total distance: d = d+ 1

NR

dr
end for
Return ARI-S3Wp(µ̂, ⌫̂) ⇡ d

I.2. Study: Gradient Flow on the Sphere

I.2.1. BACKGROUND OVERVIEW

The von Mises-Fisher Distribution is a generalization of a Gaussian from Rd to Sd. Its parametric form can be characterized
by the mean direction µ 2 Sd and the concentration parameter  > 0. That is

f(x;µ,) = Cd() exp(µ
Tx) (98)

where Cd() =

d/2�1

(2⇡)d/2Id/2�1()
is the normalization constant. In our experiment setting, we mostly work with d = 2. The

pdf is

f(x;µ,) =


4⇡ sinh()
exp(µTx). (99)

Gradient descent on the sphere The sphere Sd is a Riemannian manifold where Euclidean geometry holds only locally.
This local linearization is sufficient to adapt gradient descent to follow geodesic paths, which replace straight lines in
Euclidean space. For a function f : Rm ! R, the classical Euclidean gradient update rule is given by

xt+1 = xt � �rEucf(xt), (100)

where rEucf(xt) denotes the Euclidean gradient at xt, and from now on we simply write rf(xt). On manifolds, where
straight lines are generalized to geodesic curves, we replace rf(xt) with the Riemannian gradient rRiemannianf(x) =

rf(x)� hrf(x), xix where h·, ·i denotes the inner product. While this gives local linearized direction, it does not specify
how to move along the manifold itself. To address this, one could use a retraction4. When that retraction is normalization,
the update rule becomes

xt+1 = Retrxt
(��rRiemannianf(xt))

=
xt � � (rf(xt)� hrf(xt), xtixt)

kxt � � (rf(xt)� hrf(xt), xtixt)k
.

(101)

If we use rf(xt) instead of rRiemannianf(xt), then we have the familiar Projected Gradient Descent. Another option for
retraction is using the exponential map (see Eq. (111)) to project rRiemannianf(xt) from the tangent space TxRd back onto
the manifold along the geodesic. The gradient update is

4a mapping that approximates geodesics and projects the updated point in the tangent space back onto the manifold.
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xt+1 = exp
xt

(��rRiemannianf(xt))

= cos (|��(rf(xt)� hrf(xt), xtixt)|)xt

+ sin (|��(rf(xt)� hrf(xt), xtixt)|)⇥
��(rf(xt)� hrf(xt), xtixt)

|��(rf(xt)� hrf(xt), xtixt)|
.

(102)

This variant is Riemannian Gradient Descent (Absil et al., 2008). For simplicity, we use Projected Gradient Descent in our
gradient-based optimization, similar to (Bonet et al., 2023a).

I.2.2. EXPERIMENT: LEARNING A MIXTURE OF 12 VON MISES-FISHER DISTRIBUTIONS

Assuming we only have access to the target measure via its samples {yj 2 ⌫̂m}M
j=1

Our objective is to iteratively minimize
argmin

µ
d(µ̂i, ⌫̂mi

). The Projected Gradient Descent algorithm for S3W gives the following update rule

x0

i,k+1
= xi,k � �rxi,k

S3Wp

p
(µ̂k, ⌫̂mi

), (103)

xi,k+1 =
x0

i,k+1

kx0

i,k+1
k2

, (104)

where � denotes the learning rate, i indexes the mini-batches, and k the gradient step.

Implementation We consider a mixture of 12 vMFs as our target on S2, with each vMF centered on the vertices of an
icosahedron determined by the golden ratio � = (1 +

p
5)/2. We assume access to 2400 samples from the mixture (200

per vMF), each with  = 50, and set batch sizes to |mi| = {200, 2400}. We fix the number of projecions to 1000 for all
distances. We optimize over 500 gradient steps using the Adam Optimizer (Kingma & Ba, 2014) (learning rate of � = 0.01
for full-batch and 0.001 for mini-batch) for 10 in dependent runs. We report both qualitative and quantitative results (NLL,
W2); the latter comes with mean and standard deviation.

Full-batch Results In addition to the numerical results provided in the main paper (refer to Figure 4), we provide the
Molleweide projections in Figure 16 to show that all distances work comparatively well to learn the target distribution. In
this setting, we also include the evaluation of the vertical sliced Wasserstein (VSW) distance (Quellmalz et al., 2023) in
Figure 16 and Table 4 (see Section G.1).

Mini-batch results We provide below our mini-batch results for all distances. In addition to the numerical results reported
in Figure 4, we also show the Mollweide projections for the learned distributions as well as particle scatter-plots at
epochs {0, 100, 300, 500}. In Table 4, S3W shows the fastest runtime for both full-batch and mini-batch optimization.
It is almost an order of magnitude faster than SSW . RI-S3W (1) adds negligible computational overhead to S3W
with the single added rotation but performs almost on par with SSW. RI-S3W (5) and RI-S3W (10) are both high-
performing candidates, exceeding SSW albeit with some additional runtime compared to S3W . ARI-S3W (30/1000)
shows significant performance gain while being almost as fast as S3W . We remark that the smaller the batch size, the more
frequently the distance function gets called, the bigger advantage ARI-S3W will have over RI-S3W since the rotation
generation cost gets amortized over a large number of function calls and becomes negligible.

Both RI-S3W and ARI-S3W can achieve additional efficiency with rotation scheduler. In particular, one could start from
few rotations and gradually (i.e. linearly) increase the number of rotations over time for fine-tuning. We provide additional
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visualization and numerical results for RI-S3W and ARI-S3W with a linear schedule from 1 to 30 rotations over 500
epochs. We observe that ARI-S3W (1-30) outperforms ARI-S3W (30) while being twice as fast.

(a) SSW (b) S3W (c) RI-S3W (1) (d) RI-S3W (5)

(e) RI-S3W (10) (f) ARI-S3W (30) (g) RI-S3W (1-30) (h) ARI-S3W (1-30)

Figure 15. The Mollweide projections for mini-batch projected gradient descent. ARI-S3W has pool size of 1000. RI-S3W (1-30) and
ARI-S3W (1-30) denote RI-S3W and ARI-S3W with linear NR schedule from 1 to 30 over 500 epochs

(a) SSW (b) S3W (c) RI-S3W (1) (d) RI-S3W (5)

(e) RI-S3W (10) (f) ARI-S3W (30) (g) RI-S3W (1-30) (h) ARI-S3W (1-30)

(i) V SW (j) SW

Figure 16. The Mollweide projections for full-batch projected gradient descent. ARI-S3W has pool size of 1000. RI-S3W (1-30) and
ARI-S3W (1-30) denote RI-S3W and ARI-S3W with linear NR scheduled from 1 to 30 over 500 epochs.

Table 4. Comparison between different distances as loss for gradient flows.
Distance Runtime (s) # NLL # log(W2) #

Mini-batch

SSW 46.10 ± 0.28 -284.61 ± 8.44 -1.19 ± 0.05
S3W 5.16 ± 0.62 -205.13 ± 17.56 -1.17 ± 0.055
RI-S3W (1) 5.50 ± 0.96 -254.54 ± 9.39 -1.18 ± 0.06
RI-S3W (5) 8.62 ± 0.94 -305.15 ± 11.79 -1.22 ± 0.05
RI-S3W (10) 8.75 ± 0.61 -320.74 ± 8.34 -2.80 ± 0.12
ARI-S3W (30/1000) 6.75 ± 0.12 -343.71 ± 2.45 -3.02 ± 0.17
RI-S3W (1-30) 7.67 ± 0.10 -322.35 ± 7.69 -2.96 ± 0.20
ARI-S3W (1-30/1000) 4.38 ± 0.19 -264.55 ± 13.31 -2.84 ± 0.15

Full-batch SW 0.64 ± 0.1 -4891.85 ± 3.59 -4.70 ± 0.22
V SW 0.66 ± 0.01 -4858.75 ± 6.37 -2.32 ± 0.08
RI-S3W (1-30) 26.90 ± 0.13 -5003.21 ± 1.88 -6.68 ± 0.06
ARI-S3W (1-30/1000) 23.78 ± 0.36 -5048.43 ± 6.16 -5.40 ± 0.03
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Figure 17. Particle Evolution for mini-batch projected gradient descent.
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I.3. Study: Stability of Metrics w.r.t. ✏-cap

While in theory, one only needs to exclude the “north pole” from the stereographic projection (SP) operation, the image of
points near the north pole under SP can be made arbitrarily large in norm. Numerically, this may result in overflows and
make the optimization in our ML applications unstable. Hence, we fix an ✏-cap for SP which ensures the norm of projected
samples are bounded; in particular, any point such that xd+1 > 1� ✏ is first mapped to the circle xd+1 = 1� ✏ prior to the
SP operation.

In this section, we provide additional analysis of the effect of this ✏-cap on the proposed metrics. We generate two vMFs
(target at the North pole and source at the South pole) with  = 50 and N = 2048 samples each. We then compute each of
the proposed metrics between the source and target distributions as a function of ✏. We visualize the results over 100 runs
for each metric in Figure 18. We note that it is expected for the behavior of S3W to differ from RI-S3W and ARI-S3W .
Importantly, we observe that all of the proposed methods are stable for a wide range of values for ✏. We observe no notable
difference when we vary the number of projections L 2 {128, 512}.

Figure 18. Stability of each metric w.r.t. ✏. Here, we use N = 2048 samples of each distribution and fix L = 128 projections.

I.4. Study: Evolution of the S3W Distance

I.4.1. EXPERIMENT: EVOLUTION OF METRICS W.R.T. ITERATION AND RUNTIME

Implementation In this experiment, we aim to compare the evolution of different distances when used as a loss for gradient
optimization. We randomly initialize a uniform source distribution µ̂ ⇠ Unif(S2) of 2400 samples. The objective is to learn
a mixture ⌫̂ of 12 vMFs similar to Section 5.1, also consisting of 2400 samples. We use the Adam optimizer for projected
gradient descent (see Section I.2) with a learning rate of � = 0.01 for all distances. The SSW baseline (Bonet et al., 2023a)
will have an additional run with learning rate �0 = 0.05.

Results Figure 4 (in the main paper) shows comparative performance for: SSW, S3W , RI-S3W (1 random rotation),
RI-S3W (5 random rotations), ARI-S3W (30 random rotations, pool size of 1000). We show the evolution of the log(W2)

loss w.r.t. the cumulative runtime. We observe that at learning rate of 0.01, SSW evolves nicely and starts converging
around epoch 500, which is similar in performance with RI-S3W (1) and RI-S3W (5), albeit an order of magnitude slower.
For a learning rate of 0.05, SSW begins to display alternating behaviors but converges similarly to the case where learning
rate is 0.01. S3W is the fastest but slightly underperform other distances. ARI-S3W (30) converges to the lowest loss and
twice at fast as SSW for both learning rates.

53



Stereographic Spherical Sliced Wasserstein Distances

I.4.2. EXPERIMENT: EVOLUTION OF METRICS W.R.T.  FOR VARYING DIMENSIONS

(a) KL(vMF(µ,)kvMF(·, 0)) (b) SSW2(vMF(µ,)kvMF(·, 0))

(c) S3W2(vMF(µ,)kvMF(·, 0)) (d) RI-S3W2(vMF(µ,)kvMF(·, 0)) (e) ARI-S3W2(vMF(µ,)kvMF(·, 0))

Figure 19. Evolution between vMF(µ,) and vMF(·, 0) w.r.t.  for varying dimension. We use L = 200 projections for all sliced metrics,
NR = 100 rotations for RI-S3W and ARI-S3W , and pool size of 1000 for ARI-S3W . Each distribution has 500 samples. For each
 2 {1, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 250} we average each metric over 10 iterations.

We illustrate in Figure 19 the evolution of KL divergence, SSW , S3W , RI-S3W , and ARI-S3W between vMF(µ,)
and vMF(·, 0) w.r.t.  for varying dimension. Just as (Bonet et al., 2023a) found that SSW gets lower with the dimension
contrary to KL divergence, we find that S3W , RI-S3W , and ARI-S3W follow a similar trend.

Here we use the analytic form for the KL divergence between the von Mises-Fisher distribution and the uniform distribution
on Sd as derived in (Davidson et al., 2018; Xu & Durrett, 2018):

KL
�
vMF(µ,)||vMF(·, 0)

�
= 

I(d+1)/2()

I(d+1)/2�1()
+

✓
d+ 1

2
� 1

◆
log � d+ 1

2
log(2⇡)� log I(d+1)/2�1()

+
d+ 1

2
log ⇡ + log 2� log�

✓
d+ 1

2

◆
,

(105)

where Iv(·) is the modified Bessel function of the first kind with order v, and �(·) is the gamma function.

I.4.3. EXPERIMENT: EVOLUTION OF METRICS BETWEEN ROTATED VON MISES-FISHER DISTRIBUTIONS

Similar to (Bonet et al., 2023a), we also compare the evolution of SSW , S3W , RI-S3W , and ARI-S3W between
a fixed vMF distribution and the rotation of this distribution along a great circle. That is, we compute each metric
between vMF(µ0,0) and vMF((cos ✓, sin ✓, 0, . . . ),0) for ✓ 2 {k⇡

6
}12
k=0

, where µ0 = (1, 0, 0, . . . ) and 0 = 10. We
observe similar behavior between all metrics, with each distance being maximal between vMF(µ0,0) and vMF(�µ0,0)
(corresponding to ✓ = ⇡).
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(a) SSW (b) S3W

(c) RI-S3W (d) ARI-S3W

Figure 20. Evolution between vMF distributions on Sd�1. Here we use L = 200 projections for all metrics, NR = 100 rotations for
RI-S3W and ARI-S3W , and a pool size of 1000 for ARI-S3W . We average each metric over 100 iterations and use 500 samples for
each distribution.

I.4.4. EXPERIMENT: EVOLUTION OF S3W W.R.T. NUMBER OF SLICES AND NUMBER OF ROTATIONS

We perform several experiments to understand how S3W , RI-S3W , and ARI-S3W evolve w.r.t. the number of slices
used, the number of random rotations used, and the pool size used, respectively. In each of the following experiments, we
measure the distance between a source uniform distribution vMF(·, 0) and a target von Mises-Fisher distribution vMF(µ,),
where we sample 500 points from each distribution.

Figure 21 demonstrates that beyond L = 100 projections, variance becomes negligible across different dimensions and
values of . Figure 22 demonstrates that RI-S3W is generally stable for R = 10 rotations across varying dimensions and .
Finally, Figure 23 demonstrates that variance is stable beyond a pool size of 20. In all plots, we average the metric over 20
iterations.

Figure 21. Evolution of S3W between the source and target vMFs w.r.t. number of projections used. For the plot on the left,
we fix  = 10 for the target distribution, and for the plot on the right we use d = 3.
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Figure 22. Evolution of RI-S3W between the source and target vMFs w.r.t. number of rotations used. We fix L = 10

projections. For the plot on the left, we fix  = 10 for the target distribution, and for the plot on the right we use d = 3.

Figure 23. Evolution of ARI-S3W between the source and target vMFs w.r.t. pool size used. We fix L = 10 projections
and NR = 10 rotations. For the plot on the left, we fix  = 10 for the target distribution, and for the plot on the right we
use d = 3.

I.4.5. EXPERIMENT: SAMPLE COMPLEXITY OF METRICS

We perform a series of experiments to better understand the sample complexity of S3W , RI-S3W , and ARI-S3W . In
application, since we employ empirical probability measures to approximate their continuous versions, we seek to understand
how each of the proposed metrics evolves as we vary the number of supports in the empirical distributions.

In each of the following experiments, we measured the proposed distances between N samples from two von Mises-Fisher
distributions, centered at the north and south pole of Sd with  = 10. We compute the distance as a function of the number
of samples for d 2 {3, 10, 50, 100, 500, 1000}, repeating each computation over 50 iterations. The resulting average and
standard deviation are visualized in Figure 24.
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(a) S3W (b) RI-S3W (c) ARI-S3W2

Figure 24. Sample complexity of S3W , RI-S3W , and ARI-S3W . Distances are computed between two vMF distributions on Sd. We
use L = 1000 projections for all metrics, NR = 10 rotations for RI-S3W and ARI-S3W , and a pool size of 100 for ARI-S3W . Each
distance is measured over 50 iterations.

I.5. Study: Runtime Analysis

In this section, we provide additional runtime analysis of the proposed method w.r.t. varying parameters. Figure 25 illustrates
a comparative analysis of the runtime for calculating S3W and RI-S3W as we vary the number of projections, samples,
and rotations, across different dimensions d of the data. In each of these experiments, we measure the distance between a
source uniform distribution vMF(·, 0) and a target von Mises-Fisher distribution vMF(µ, 10). The figure indicates a linear
or quasi-linear relationship between the runtime and each parameter. Moreover, in Figure 26 we illustrate the time required
to generate a pool of rotation matrices in SO(d+ 1) as we vary the size of the pool and the dimension d. As expected, the
runtime is linear in the size of rotation pool.

(a) (b) (c)

Figure 25. Runtime w.r.t. varying number of projections, samples, and rotations, respectively. In 25a, 25c we use N = 500

samples of each distribution; in 25b,25c we fix L = 100 projections; and in 25a,25b we do not use any rotations.

Figure 26. Runtime to generate pool of rotation matrices of varying sizes and dimension.
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I.6. Task: Density Estimation with Normalizing Flows

I.6.1. BACKGROUND OVERVIEW

Normalizing Flows offers a framework for constructing complex probability distributions from simple ones through
invertible transformations. It works by restricting the model class such that the likelihood function can be evaluated via
simple sampling. Suppose we have access to the samples {xi ⇠ µ}n

i=1
where µ is our target distribution. Let pZ be a base

distribution over the latent z (i.e. a Gaussian). We aim to find an invertible transformation T such that the pushforward
T#pµ = pZ . Then, the density pµ can be obtained through the change of variable formula

pµ(x) = pZ(T (x))| det JT (x)|�1, (106)

where |detJT (x)| denotes the determinant of the Jacobian of T at x.

More concretely, consider the dataset Dtrain = {x1, ..., xn} sampled i.i.d from the empirical measure µ̂ =
1

n

P
n

i=1
�xi

where �xi
is the Dirac delta at xi. The log likelihood for training the neural network is given by

log p(Dtrain|w) =
nX

i=1

log pX(xi|w) =
nX

i=1

{log pZ(T (xi))� log | det J(xi)|} (107)

Here, T�1 represents the inverse transformation of T , and | det J(xi)| is the determinant of the Jacobian of T�1 at xi.

Real NVP and Stereographic Projection-based Normalizing Flows with Real NVP:

Real NVP (Real-valued Non-Volume Preserving) (Dinh et al., 2016) uses a series of invertible layers to transform the base
distribution into a more complex one. Each layer, known as a coupling layer, is designed such that its Jacobian is easy to
compute. Specifically, given an input vector x 2 Rm, the coupling layer splits it into two parts x1 2 Rm1 and x2 2 Rm2

such that m1 +m2 = m. The transformation applied to x2 is then conditioned on x1 and defined by

x0

2
= exp(s(x1))� x2 + t(x1), (108)

where s : Rm1 ! Rm2 and t : Rm1 ! Rm2 are scale and translation functions realized through neural networks. The
operation � denotes the Hadamard product. The key advantage of Real NVP is the traceability of both its inverse and the
Jacobian determinant, that is

log | det JT (x)| =
X

s(x1) (109)

which makes it a good candidate for high-dimensional density estimation.

To generalize to Sd, (Gemici et al., 2016) proposes using a transformation T composed of a stereographic projection �
(see section 2) followed by a real NVP flow f , denoted as T = f � �. The log density of the target distribution under this
transformation is given by

log p(x) = log pZ(z) + log | det Jf (z)|�
1

2
log | det(JT��1J��1(�(x)))|, (110)

where pZ is the density of a prior on Rd, typically a standard Gaussian, and Jf (z) is the Jacobian of the Real NVP flow.
The log det term accounts for the change in volume due to the stereographic projection � and its inverse ��1.

Exponential Map and Exponential Map Normalizing Flows:

Exponential maps serve as a tool for mapping data residing on curved spaces. In essence, it maps a vector in the tangent
space of a point on a manifold M to the manifold itself. Specifically, for a point x 2 M and a tangent vector vx, the
exponential map exp

x
(v) traces a geodesic (i.e. shortest path) on M. For the spherical manifold Sd, it is given by
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exp
x
(v) = x cos(|v|) + v

|v| sin(|v|). (111)

Inspired by this, (Rezende et al., 2020) introduces the exponential map normalizing flows, which ensures that the construction
of transformations happens directly on the manifold, avoiding the need for intermediate, non-diffeomorphic set mappings to
Euclidean spaces (i.e. via the Stereographic projection). In this frame work, the transformation T is defined by applying the
exponential map to the projected gradient of a scalar field �(x), that is

T (x) = exp
x
(Proj

x
(r�(x))) (112)

where Proj
x

projects r�(x) onto the tangent space at x, TxSd. The scalar field �(x) is a convex combination of simple
functions:

�(x) =
KX

i=1

↵i�ie
�i(x

T
µi�1), (113)

with constraints ↵i � 0,
P

K

i=1
↵i  1, each �i > 0, and µi 2 Sd. The density update is then computed as

p(T (x)) =
⇡(x)p

det(E(x)TJT (x)TJT (x)E(x))
, (114)

where JT (x) is the Jacobian of T at x, and E(x) forms an orthonormal basis of TxSd.

I.6.2. EXPERIMENT: ESTIMATING DENSITY ON THE EARTH DATASETS

Table 5. Details of Earth datasets.
Earthquake Flood Fire

Train 4284 3412 8966
Test 1836 1463 3843
Total 6120 4875 12809

Our main focus is on S2 for the purpose of demonstration and visualization.
Similar to (Bonet et al., 2023a), we use the three datasets introduced by (Mathieu
& Nickel, 2020), representing the earth’s surface as a perfect spherical manifold:
volcano eruptions (NOAA, 2020), earthquakes (NOAA, 2020), and floods
(Brakenridge, 2017). Our objective is to learn a normalizing flows model
capable of reporting exact density at any point on the sphere, so that we can
predict the likelihood of future events based on past data. ‘

Figure 27. Ground truth as estimated with KDE (bandwidth 0.1) using test data (quakes, flood, fires, respectively). Densities are on a
scale of 0 to 1.

Specifically, we demonstrate two approaches for training a normalizing flow model on spherical data. The first of which
follows (Gemici et al., 2016), stereographically projecting the data from S2 onto R2 and then training a Real NVP model on
R2. The second utilizes spherical exponential maps (Rezende et al., 2020) to train a normalizing flow natively on S2, using
both SW and SSW (Bonet et al., 2023a) as baseline losses and comparing with our proposed S3W.

Implementation For exponential map normalizing flows, we construct the model using 48 radial blocks, each consisting
of 100 components, totaling 24000 trainable parameters, similar to (Bonet et al., 2023a). Each block in the flow applies a
transformation defined by a potential function V . The model projects the gradient of the potential function onto the sphere’s
tangent space and then maps it back to the sphere using the spherical exponential map.

For Stereographic Projection-based normalizing flows (Stereo-NF), we first project the manifold S2 onto R2 using the
stereographic projection. Then, we train a Real NVP model, consisting of 10 Real NVP blocks with scaling and translation
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parameterized by an MLP (10 layers of 25 neurons each, LeakyReLU
0.2

(·) activation). This setup follow (Bonet et al.,
2023a) and has 27520 parameters. We train the models for 20000 epochs each using full batch gradient descent via the
Adam optimizer. For exponential map NF, we use the learning rate of 0.1 for SSW and SW as in the original setup and
0.05 for our S3W and its variants. For Stereo-NF, we use a learning rate of 0.001.

Results Figure 33 provides density maps of events (quakes, flood, fire from left to right), with the color scale representing the
relative density on a scale from 0 to 1. We note that this normalization scheme does not change the underlying distribution
but allows for an interpretable visualization, showing the relative differences in densities on a fixed scale. We observe that
our proposed S3W and its variants put relative density mass more accurately.

Table 3 provides the Negative Log-likelihood values for different distances. Despite having a higher parameter count, the
increase in model complexity does not necessarily translate to better performance. This shows that estimating density
natively on the sphere is superior for spherical data per this metric.
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Figure 28. Stereo + RealNVP

Figure 29. Sliced-Wasserstein (SW )

Figure 30. Spherical Sliced-Wasserstein (SSW ) (Bonet et al., 2023a)

Figure 31. Stereographic Spherical Sliced-Wasserstein (S3W )

Figure 32. Rotation Invatiant S3W (RI-S3W ) with 1 random rotation

Figure 33. Amortized Rotation Invatiant S3W (ARI-S3W ) with 50 random rotations, pool size of 1000
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I.7. Task: Self-Supervised Representation Learning on the Sphere

The self-supervised learning (SSL) paradigm derives learning signals from its own training data without explicit labeling.
Among various SSL approaches, contrastive learning-based methods have gained significant popularity due to their
effectiveness. Previous works have found that constraining feature vectors to the hypersphere (i.e., having unit norm)
offers additional benefits (Caron et al., 2020; Wu et al., 2018). In what follows, we provide a brief overview of (spherical)
contrastive learning – currently one of the most potent approaches in SSL – and then outline the details of our experiment in
Section I.7.2.

I.7.1. BACKGROUND OVERVIEW

Contrastive Learning with InfoNCE in the SSL paradigm is fundamentally about distinguishing between similar (positive)
and dissimilar (negative) pairs of data points. The objective is to minimize the distance between embeddings of similar data
points while maximizing the distance between embeddings of dissimilar points. Let pdata(·) be the data distribution over Rm

and ppos(·, ·) the distribution of positive pairs over Rm ⇥ Rm. Assuming symmetry, i.e., 8x, y : ppos(x, y) = ppos(y, x),
and that the marginal distribution matches the data distribution, i.e., 8x :

R
ppos(x, y)dy = pdata(x), the popular InfoNCE

(Oord et al., 2018) objective can be described as

Lcontrastive = �E(x, y) ⇠ ppos

"
log

exp(sim(f(x), f(y))/⌧)P
k2Neg(x) exp(sim(f(x), f(xk))/⌧)

#
, (115)

where f(x) and f(y) denote the embedding of the positive pairs, sim(·, ·) a similarity measure between two embeddings
(e.g., the dot product), ⌧ the temperature, and Neg(x) the set of negative samples for x.

Spherical Contrastive Loss as Alignment and Uniformity:

(Wang & Isola, 2020) provides valuable insights into the mechanics of contrastive learning by decomposing the contrastive
loss into two components

Lalign(f ;↵) = �E(x,y)⇠ppos

⇥
kf(x)� f(y)k2

↵

⇤
, ↵ > 0. (116)

and
Luniform(f ; t) = logEx,y i.i.d.⇠pdata

⇥
exp(�tkf(x)� f(y)k2

2
)
⇤
, t > 0. (117)

The overall objective is therefore
Lcontrastive(f ;↵,�) = ↵Lalign + �Luniform (118)

where ↵,� denotes the component weight for Lalign and Luniform, respectively. The alignment component Lalign forces
positive spherical views to be similar. The uniformity component Luniformity encourages all spherical views to be spread out
(i.e. uniformly distributed) on the hypersphere, which prevents representation collapse.

I.7.2. EXPERIMENT: S3W -BASED UNIFORMITY LOSS

To demonstrate the efficacy of our proposed S3W in SSL, we follow the same setup as described in (Bonet et al., 2023a).
Specifically, they propose to replace the Gaussian kernel in Luniform, which operates on pairwise instances, with the
distributional distance SSW, and optimize the following objective

LSSW-SSL =
1

n

nX

i=1

kzA
i
� zB

i
k2
2

| {z }
Alignment loss

+
�

2

�
SSW 2

2
(zA, ⌫) + SSW 2

2
(zB , ⌫)| {z }

Uniformity loss

�
, (119)

where zA, zB 2 Rn⇥(d+1) are the spherical representations of two views (i.e. augmentation) of the same images, ⌫ =

Unif(Sd) is the uniform distribution on the hypersphere and � > 0 is the regularization coefficient. They achieved comparable
performance with (Wang & Isola, 2020; Chen et al., 2020) while benefiting from the subquadratic O(Ln(d+ log n)).

62



Stereographic Spherical Sliced Wasserstein Distances

(a) Supervised (b) SimCLR (Chen et al., 2020) (c) (Wang & Isola, 2020)

(d) SW (e) SSW (f) S3W

(g) RI-S3W (h) ARI-S3W

Figure 34. Evolution between the source and target vMFs, 500 samples each. For all sliced-Wasserstein variants, we use 200 projections,
and for RI-S3W, we use 100 random rotations.

We will demonstrate the effectiveness of S3W in terms of performance and runtime by modifying Eq. (119) and instead
optimize

LS3W-SSL =
1

n

nX

i=1

kzA
i
� zB

i
k2
2
+
�

2

�
S3W2(z

A, ⌫) + S3W2(z
B , ⌫)

�
. (120)

We use analogous objectives for RI-S3W and ARI-S3W .

Implementation Similar to (Bonet et al., 2023a), we use a pretrained ResNet18 encoder (He et al., 2016) on CIFAR-10
(Krizhevsky, 2009) with 1024 dimensional penultimate features, projected and `2�normalized to be unit vectors on Sd.
The models are pretrained for 200 epochs with minibatch SGD (momentum 0.9, weight decay 0.001, initial learning rate
0.05). We select the batch size to be 512 samples and use the standard random augmentation set consisting of random crop,
horizontal flipping, color jittering, and gray scale transformation, as done in (Bonet et al., 2023a; Wang & Isola, 2020).

For evaluation, we fit a linear classifier on the pretrained representations and report the test accuracy. We report the accuracy
both when this linear classifier is fit on the encoded feature representations and when it is fit on the projected features in Sd.
We train this linear layer for 100 epochs with the Adam optimizer (learning rate 0.001, weight decay of 0.2 at epochs 60
and 80). For comparison, we also test the hypersphere method in (Wang & Isola, 2020) and SimCLR (Chen et al., 2020) to
aid in evaluating the results. We also train a fully supervised model by training the encoder and linear classifier jointly with
cross entropy loss, in order to serve as a baseline for performance comparison.

We use L = 200 projections for all sliced distances, NR = 5 rotations for RI-S3W and ARI-S3W , and a pool size of 100
for ARI-S3W . We first perform a series of experiments with d = 9. In this setting, we let the regularization coefficient
� = 0.5 for S3W , RI-S3W , and ARI-S3W ; � = 20.0 for SSW ; and � = 1.0 for SW . These results are found in the
main paper Table 1. We also perform a series of experiments with d = 2 in order to visualize the quality of the learned
representations. In this setting, we instead use a regularization coefficient of � = 0.1 for S3W , RI-S3W , and ARI-S3W .
These visualizations for all the considered methods are provided in Figure 34.
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I.8. Task: Sliced-Wasserstein Variational Inference on the Sphere

I.8.1. BACKGROUND OVERVIEW

Variational Inference turns the Bayesian inference problem into a variational one, benefiting from the rich optimization
literature and reduced computational costs. The usual goal is to approximate an unnormalized distribution by minimizing
the KL divergence between a tractable density and the true posterior. Formally, let p(·|x) denote the target posterior and and
q 2 Q the approximate posterior from a family of tractable distributions. The standard objective is to minimize

min
q2Q

KL(q||p(·|x)) =
Z

q(Z) log

✓
q(Z)

p(Z|x)

◆
dZ = Eq[log

✓
q(Z)

p(Z|x)

◆
]. (121)

Sliced-Wasserstein Variational Inference (on the sphere): The non-metric nature of KL, namely its asymmetry and
failure to satisfy the triangle inequality, can result in undesirable behaviors. As an alternative, (Yi & Liu, 2022) introduces
the sliced Wasserstein variational inference, optimized via MCMC without optimization or requiring a tractable Q family.
Hence, this can be armortized with deep neural networks. In spherical data contexts, (Bonet et al., 2023a) recommends
replacing SW with SSW and employs the Geodesic Langevin Algorithm (GLA) (see I.8.1).

To perform SWVI, we first select a sampler q✓ for the sphere. At each iteration k, we draw a batch of N samples {zi
0
}N
i=1

from
q✓. These samples are then propagated using ` MCMC steps on the sphere to obtain a new set of samples {zj

`
}N
j=1

. The
updates are constrained to the sphere by employing the exponential map exp

xk
or normalization of the projection onto the

tangent space Proj
xk

at each point xk 2 Sd. We then compute sliced Wasserstein distance (i.e. SSW, S3W) between the
empirical µ̂0 and µ̂`, which is then used to compute gradients w.r.t. ✓.

Unadjusted Langevin Algorithm (ULA) is used to sample from a probability distribution with density proportional to
e�V (x) where V (x) is a potential function (i.e. log density) and x 2 Rd. The update rule simply combines a deterministic
gradient step with a stochastic noise term. That is

xt+1 = xt � �rV (xt) +
p

2�Z, Z ⇠ N (0, I) (122)

Geodesic Langevin Algorithm (GLA) (Wang et al., 2020) adapts ULA to a Riemannian manifold like Sd by modifying the
update rule to respect the manifold structure. Similar to I.2.1, we first replace the Euclidean gradient with the Riemannian
gradient, as follows

xt+1 = Retrxt

⇣
��rRiemannianV (xt) +

p
2�Z

⌘
, Z ⇠ N (0, I), (123)

Here, Retrxt
is a retraction. If we select Retrxt

= exp
xt

(see Eq. (111)) then we arrive at the Geodesic Langevin Algorithm
(GLA) whose update rule is simply

xt+1 = exp
xt

⇣
��rRiemannianV (xt) +

p
2�Z

⌘
, Z ⇠ N (0, I) (124)

where rRiemannianV (xt) = rV (xt)� hrV (xt), xtixt.

In our experiments, since Sd has constant curvature and the step size is small, we use normalization as the retraction for
simplicity. The update rule is hence given by:

xt+1 =
x̃t+1

kx̃t+1k
, where x̃t+1 = xt � �rRiemannianV (xt) +

p
2�Z, (125)

where Z ⇠ N (0, I) is the Gaussian noise term. Putting it all together, we arrive at

xt+1 =
xt � � (rV (xt)� hrV (xt), xtixt) +

p
2�Z��xt � � (rV (xt)� hrV (xt), xtixt) +
p
2�Z

�� . (126)
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Power Spherical Distribution (De Cao & Aziz, 2020) provides a parametric alternative to vMFs (refer to H2). It
demonstrates greater stability and has a univariate marginal with a closed-form expression for both its CDF and its inverse.
This enables fast and efficient sampling, in contrast to the vMF, which depends on rejection sampling. The PDF of the
Power Spherical is defined as

pX(x)(x;µ,) / (1 + µ>x), (127)

where µ 2 Sd,  > 0, for all x 2 Sd. We sample by drawing Z ⇠ Beta(d�1

2
+ , d�1

2
) and v ⇠ Unif(Sd�1

). These
samples are then used to construct T = 2Z � 1 and subsequently a vector Y = [T, v>

p
1� T 2]

>. The final sample is
obtained by applying a Householder5 reflection about the mean direction µ to Y .

Effective Sample Size (ESS) estimates the equivalent number of independent samples that would provide the same amount
of information as the correlated samples generated by an MCMC process (Doucet et al., 2001). For a chain of n samples,
the autocorrelation at lag6 t (t � 0) is given by

⇢t =
1

�2

Z
(✓(n)� µ)(✓(n+ t)� µ)p(✓)d✓. (128)

The ESS is then calculated from the total number of samples, N , adjusted for the sum of autocorrelation at all lags

ESS =
N

1 + 2
P

1

t=1
⇢t

(129)

Direct calculation for the ESS is often impractical. (Rezende et al., 2020) proposes estimating it using importance sampling
weights ws. That is

ESS =
VarUnif (e��u(X)

)

Varq

⇣
e��u(X)

q⌘(X)

⌘ ⇡

⇣P
S

s=1
ws

⌘2

P
S

s=1
w2

s

, (130)

where ws = e��u(xs)/q⌘(xs). Here, in the context of normalizing flows (see experiments I.8.2, I.8.3), it is reported as a
percentage of the sample size. If the ESS can be estimated reliably, then higher ESS means the flow matches the target better.

I.8.2. EXPERIMENT 1: LEARNING A POWER SPHERICAL DISTRIBUTION

Implementation Following the setup described in (Bonet et al., 2023a), we set initial Power Spherical parameters µ =

(1, 1, 1) and  = 0.1 for source,µ = (0, 1, 0) and  = 10 for target. We perform 2000 Riemannian Gradient Descent (Absil
et al., 2008) steps and then 20 steps of GLA (step size 0.001) with 1000 projections (learning rate 2). We select K = 2000

steps with N = 500 particles.

We report runtimes and parameter convergence behaviors for all the distances. Although they all converge similarly, the
runtimes differ drastically. For SSW, we report an average of 215.5 seconds over 5 independent runs. For S3W , RI-S3W
(1), RI-S3W (5), RI-S3W (10), ARI-S3W (10 rotations, pool size 1000), they are 55.3, 57.3, 63.6, 73.1, 63.04 seconds
, respectively.

Results
5a linear operation H(v) = v � 2u(u

>
v) reflecting v across the hyperplane perpendicular to u.

6the number of time steps separating sequential data points in a time series, used for measuring temporal correlation.
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(a) SSW

(b) S3W

(c) RI-S3W (1)

(d) RI-S3W (5)

(e) RI-S3W (5)

(f) RI-S3W (10)

Figure 35. Learning a mixture of 4 von Mises-Fisher distributions. To obtain the Mollweide projections, we perform Kernel
Density Estimation with the Scott adaptive bandwidth.
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I.8.3. EXPERIMENT 2: LEARNING A MIXTURE OF 4 VON MISES-FISHER DISTRIBUTIONS

Implementation We perform the Geodesic Langevin Algorithm (GLA) (see I.8.1) to generate samples that track the target
distribution and used to guide our variational model, which is an exponential map normalizing flows fµT

(x;Texp) (N = 6

blocks, 5 components). The objective of fµT
is to transform uniform noise on the sphere into a close approximation

of the target, which is a mixture of 4 von Mises-Fisher distributions. The parametric target has the mean directions
µ1 = (1.5, 0.7 +

⇡

2
), µ2 = (1.0,�1.0 +

⇡

2
), µ3 = (5.0, 0.6 +

⇡

2
), µ4 = (4.0,�0.7 +

⇡

2
) and uniform concentration

parameters  = 10, equally weighted. The optimization is run for 10000 iterations with 20 GLA steps each, using the Adam
optimizer (learning rate of 0.01, matching the baseline).

Results Figure 36 demonstrates the qualitative results for our experiments. While all models are capable of closely matching
the target, it appears that ARI-S3W (30), RI-S3W (10), RI-S3W (5) outperform RI-S3W (1) , which fares better than
SSW and S3W .

(a) Target Density (b) Target Empirical (c) SSW (d) S3W

(e) RI-S3W (1 rotation) (f) RI-S3W (5 rotations) (g) RI-S3W (10 rotations) (h) ARI-S3W (30 rotations)

Figure 36. Learning a mixture of 4 von Mises-Fisher distributions. To obtain the Mollweide projections, we
perform KDE with the Scott adaptive bandwidth. For ARI-S3W , we use pool size of 1000.

(a) (b)

Figure 37. Evolution between the source and target vMFs, 500 samples each. For all sliced-Wasserstein variants, we use 200 projections,
and for ARI-S3W , we use the pool size of 1000 random rotations.

To compare the performance of the different distances more rigorously, we use the KL Divergence and the Effective Sample
Size (ESS, see I.8.1), similar to (Bonet et al., 2023a). We perform 10 runs per distance, and also add ARI-S3W (50) for
comparison. Figure 37 shows the convergence trend across different distances. The KL Divergence plot shows most models
(with different distances) similarly and rapidly converge to approximating the target distribution. S3W performs slightly
worse than the rest while SSW is on par with other variants of S3W , in contrast to our qualitative finding based on figure
36. The ESS plot demonstrates sampling efficacy. Again, similar trend is observed, with S3W slightly underperforming
other distances. We note that greater ESS values signal more independence among drawn samples.

Additionally, we tried the learning rate of 0.001 (not shown) for all distances and observed a slightly different trend. SSW
still outperforms S3W and is on par with RI-S3W (1), while underperforming the rest by a small margin.
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I.9. Task: Generative Modeling with Sliced-Wasserstein Autoencoder (SWAE)

Autoencoders (AEs) map an input x 2 Rd back to itself through an intermediate latent space and play a central role in
discovering low-dimensional representations useful for downstream tasks. Deterministic AEs focus on point estimates in the
latent space, while their probabilistic counterparts extend this concept to probability distributions. A common requirement
for both is regularization to avoid the trivial solutions. SWAEs (Kolouri et al., 2016b), a type of probabilistic AE, offer a
simple yet effective approach to regularizing the latent space. In this section, we show the effectiveness of our proposed
S3W method when the SWAE latents are constrained to the unit sphere.

I.9.1. EXPERIMENT: S3W -BASED LATENT REGULARIZATION LOSS

Algorithm 5 S3W-AE
Require: Reg. coefficient �, L projections, encoder f✓, decoder g⌘ , dimension d of the hypersphere.

while f✓ and g⌘ have not converged do
Sample x1, ..., xM from the training set (i.e., pX ).
Encode the samples: z1, ..., zM  f✓(x1), ..., f✓(xM ).
Normalize encoded samples to Sd: ẑ1, ..., ẑM  Normalize(z1, ..., zM ).
Sample z̃1, ..., z̃M from qZ and normalize to Sd.
Use algorithm 1 or its variants to calculate L(l)

S3W({z̃m}, {ẑm}).
Compute L̂S3W =

1

L

P
L

l=1
L(l)

S3W.
Update ✓ and ⌘ by gradient descending

L̂ =

MX

m=1

c(xm, g⌘(ẑm)) + � · L̂S3W

end while

We perform experiments with both MNIST and CIFAR-10. The details of the architectures used in our experiments can be
found in Table 7. In all experiments, we train the networks with the Adam optimizer (learning rate of 10�3) with a batch
size of 500 over 100 epochs. The procedure is described in Algorithm 5.

For all experiments, we use the standard binary cross entropy (BCE) loss as our reconstruction loss, with a tradeoff parameter
�. For CIFAR-10, we use � = 10

�3 for SW , S3W , RI-S3W , and ARI-S3W , and � = 10 for SSW . We use L = 100

projections for all sliced methods, NR = 5 rotations, and a pool size of 100 random rotations. Moreover, we use a vMF
mixture with 10 components for the latent prior. These results are given in Table 2.

For MNIST, we provide a comprehensive evaluation of the considered methods as we vary the regularization parameter
�. These results can be found in Table 8. In these experiments, we once again use L = 100 projections for all sliced
methods and a pool size of 100 for ARI-S3W . Here, we use the uniform distribution Unif(S2) as our latent prior. Lastly,
we repeat a set of experiments for each distance using the MNIST dataset and compare the Fréchet Inception Distance (FID)
(Heusel et al., 2017) of each resulting model in Table 6. We compute the FID using 10000 samples and report the mean and
standard deviation over 5 independent runs. Moreover, we visualize samples generated by each model in Figure 39. For
these experiments, we again use L = 100 projections for all methods and a pool size of 100 for ARI-S3W , as well as a
uniform prior on S2. We use � = 10

�3 for all models for fair comparison.

Table 6. FID scores for SWAE models.
Method FID #
SW 74.2301 ± 2.7727
SSW 75.0354 ± 2.8609
S3W 75.0717 ± 2.6026
RI-S3W (1) 73.5115 ± 3.4937
RI-S3W (10) 70.2262 ± 3.4730
ARI-S3W (30) 69.5562 ± 1.5386
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(a) Autoencoder (� = 1) (b) SW (� = 1000)

(c) SSW (� = 1000) (d) S3W (� = 1)

(e) RI-S3W (1 rotations, � = 1) (f) RI-S3W (10 rotations, � = 1)

(g) ARI-S3W (10 rotations, pool size of 100, � = 1) (h) ARI-S3W (30 rotations, pool size of 100, � = 1)

Figure 38. Latent space visualization (MNIST)

(a) SW (b) SSW (c) S3W

(d) RI-S3W (1) (e) RI-S3W (10) (f) ARI-S3W (30)

Figure 39. Samples generated by SWAE models with a uniform prior on S2.
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Dataset Encoder Decoder

M
N

IS
T

x 2 R28⇥28 ! Conv2d32 ! ReLU s 2 S2 ! FC512 ! FC512 ! ReLU

! Conv2d32 ! ReLU ! Reshape(128⇥ 2⇥ 2)

! Conv2d64 ! ReLU ! Conv2dT128 ! ReLU

! Conv2d64 ! ReLU ! Conv2dT64 ! ReLU

! Conv2d128 ! ReLU ! Conv2dT64 ! ReLU

! Conv2d128 ! Conv2dT32 ! ReLU

! Flatten! FC512 ! ReLU ! Conv2dT32 ! ReLU

! FC3 ! `2 normalization! s 2 S2 ! Conv2dT1 ! Sigmoid

C
IF

A
R

-1
0

x 2 R3⇥32⇥32 ! Conv2d32 ! ReLU s 2 S2 ! FC512 ! FC2048 ! ReLU

! Conv2d32 ! ReLU ! Reshape(128⇥ 4⇥ 4)

! Conv2d64 ! ReLU ! Conv2dT128 ! ReLU

! Conv2d64 ! ReLU ! Conv2dT64 ! ReLU

! Conv2d128 ! ReLU ! Conv2dT64 ! ReLU

! Conv2d128 ! Conv2dT32 ! ReLU

! Flatten! FC512 ! ReLU ! Conv2dT32 ! ReLU

! FC3 ! `2 normalization! s 2 S2 ! Conv2dT3 ! Sigmoid

Table 7. Architecture of the Encoder and Decoder for MNIST and CIFAR datasets
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Table 8. SWAE with different regularizations on the MNIST dataset with uniform prior for d = 2. Here we
compare among the Sliced Wasserstein (SW ), Spherical Sliced Wasserstein (SSW ) (Bonet et al., 2023a),
S3W , RI-S3W (1 rotation), RI-S3W (10 rotations), ARI-S3W (10 rotations), ARI-S3W (30 rotations,
pool size of 100). The metrics are log10(W2) and Cross Entropy (CE). For SSW , we include a wide range
of regularization parameter � = {0.001, 0.01, 0.1, 1, 10, 100, 1000} for thorough comparison. For other
methods, we include either � = {0.001, 0.01, 0.1, 1} or � = {1, 10, 100, 1000}.
Method � log(W2) # CE # Time(s/ep.)
Supervised AE 1 �1.8438± 0.1667 0.1585± 0.0018 5.2500± 0.0502

SW

1 �1.1294± 0.0102 0.1619± 0.0608 5.2113± 0.1191

10 �1.1827± 0.0096 0.1652± 0.0631 5.4121± 0.9013

100 �1.6033± 0.0148 0.1641± 0.0631 5.7512± 0.3019

1000 �1.7856± 0.0296 0.1725± 0.0668 6.1400± 0.4853

SSW

0.001 �0.7585± 0.0020 0.1620± 0.0615 16.1380± 1.2041

0.01 �0.8523± 0.0097 0.1619± 0.0623 14.4800± 1.4353

0.1 �0.8555± 0.0119 0.1609± 0.0610 12.4125± 0.0844

1 �0.9393± 0.0123 0.1681± 0.0647 12.1478± 1.462

10 �0.9168± 0.0099 0.1603± 0.0604 13.3211± 0.2393

100 �1.1430± 0.0119 0.1598± 0.0608 12.3703± 0.2108

1000 �1.3658± 0.0198 0.1624± 0.0616 12.9221± 0.1441

S3W

0.001 �1.4883± 0.0298 0.1649± 0.0634 6.0980± 0.1298

0.01 �1.6289± 0.0230 0.2013± 0.0706 6.1580± 0.0264

0.1 �1.7331± 0.0543 0.2262± 0.0643 6.1620± 0.0117

1 �1.7446± 0.0403 0.2188± 0.0669 6.1400± 0.0303

RI-S3W (1)

0.001 �1.4061± 0.0098 0.1648± 0.0624 5.8920± 0.0546

0.01 �1.6955± 0.0422 0.1655± 0.0422 5.9120± 0.0286

0.1 �1.8754± 0.0384 0.2097± 0.0721 5.8780± 0.0293

1 �1.8308± 0.0618 0.2315± 0.0699 5.9100± 0.0460

RI-S3W (10)

0.001 �1.6410± 0.0205 0.1599± 0.0613 5.7860± 0.4198

0.01 �1.6724± 0.0256 0.1642± 0.0644 5.9725± 0.0286

0.1 �1.7934± 0.0401 0.1784± 0.0679 5.9900± 0.0374

1 �1.7332± 0.0437 0.2178± 0.0718 6.0040± 0.0162

ARI-S3W (10)

0.001 �1.5523± 0.0347 0.1649± 0.0638 6.2960± 0.0372

0.01 �1.5835± 0.0311 0.1572± 0.0018 6.3120± 0.0271

0.1 �1.6448± 0.0381 0.2141± 0.0698 6.3240± 0.0242

1 �1.7876± 0.0586 0.2273± 0.0688 6.1980± 0.0970

ARI-S3W (30)

0.001 �1.6453± 0.0154 0.1952± 0.0176 5.9540± 0.5100

0.01 �1.6290± 0.0126 0.1756± 0.0647 6.1600± 0.0253

0.1 �1.7889± 0.0458 0.2305± 0.0631 6.1625± 0.0286

1 �1.8890± 0.0506 0.2263± 0.0637 6.1840± 0.0185
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