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Abstract

Deep neural networks (DNNs) are increasingly integrated into LiDAR (Light Detec-

tion and Ranging)-based perception systems for autonomous vehicles (AVs), requiring

robust performance under adversarial conditions. One pressing concern is the challenge

posed by LiDAR spoofing attacks, where attackers inject fake objects into LiDAR data,

leading AVs to misinterpret their surroundings and make faulty decisions. Many cur-

rent defense algorithms predominantly depend on perception outputs, such as bounding

boxes. However, these outputs are intrinsically limited as they are generated by im-

perfect perception models that process a restricted set of points, acquired from the ego

vehicle’s specific viewpoint. The reliance on bounding boxes is a manifestation of this

fundamental constraint. To overcome these limitations, we propose a novel framework,

named ADoPT (Anomaly Detection based on Point-level Temporal consistency), which

quantitatively measures temporal consistency across consecutive frames and identifies

abnormal objects based on the coherency of point clusters. In our evaluation using the

nuScenes dataset, our algorithm effectively counters various LiDAR spoofing attacks,

achieving a low (< 10%) false positive ratio and high (> 85%) true positive ratio, out-

performing existing state-of-the-art defense methods, CARLO and 3D-TC2. Moreover,

ADoPT shows promising potential for accurate defense in diverse road environments.

1 Introduction
The growing incorporation of deep neural networks (DNNs) in LiDAR (Light Detection

and Ranging)-based perception for autonomous vehicles (AVs) calls for rigorous attention

to their robust performance. In light of this challenge, researchers are focused on develop-

ing and refining various defense technologies for potential attacks targeting AV perception

systems. One prominent research direction in this field involves the manipulation of LiDAR

point cloud data. Attackers can fabricate data by jamming and relaying original LiDAR sig-

nals [19, 32], emitting spurious LiDAR purses [13, 21, 22, 23], or exploiting vulnerabilities

in the DNN-based perception module [24, 25, 34], causing AVs to misinterpret their driving
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environment and make faulty decisions (e.g., emergency alarm activation, sudden breaking,

lane changing, etc).

Figure 1: Our ADoPT method outper-

forms existing methods [23, 35] with a

4.4 ∼ 10.5× lower false alarm rate and

1.7 ∼ 2× higher true alarm rate. The

ideal cases are represented by the red solid

lines with a false alarm rate of 0 and a

true alarm rate of 100. We used PointPil-

lars [9] for CARLO and 3D-TC2 (P) and

SECOND [33] for 3D-TC2 (S) for 3D ob-

ject detection. False alarms arise when be-

nign LiDAR frames are misidentified as at-

tacked, while true alarms occur when poi-

soned frames, created by injecting simulated

pedestrian points, are correctly recognized

as attacked. These results show existing de-

fenses often output a bounding box that does

not tightly fit the object or is false and strug-

gle to detect small fake objects.

Defense algorithms based on AV perception

outputs (i.e., bounding boxes) have been widely

studied. Figure 1 showcases two state-of-the-

art bounding box-based algorithms: (1) physical

principles-based approach (e.g. CARLO) [7, 23,

31], which detects attacks by leveraging phys-

ical principles governing authentic objects; and

(2) temporal consistency-based method (e.g. 3D-

TC2) [16, 30, 35], which focuses on motion con-

sistency across adjacent frames. While temporal

consistency offers an edge over physical princi-

ples, both are fundamentally limited by their de-

pendence on bounding boxes. Given the con-

straints of an ego vehicle’s viewpoint and the in-

herent inaccuracies of perception modules (espe-

cially for small and distant objects) [15, 36, 37],

relying on bounding boxes proves inadequate and

leads to inaccuracies in anomaly detection.

We introduce ADoPT (Anomaly Detection

based on Point-level Temporal consistency) to

build perception model-agnostic monitoring mod-

ules. Harnessing the rich and comprehensive in-

formation present in raw sensor data [4, 36], our

approach offers profound advantages in defend-

ing against LiDAR spoofing attacks [23, 31, 35],

bypassing the limitations of traditional percep-

tion models. While raw sensor data provides ex-

tensive information, implementing defense algo-

rithms (e.g. temporal consistency) based on raw sensor data is challenging. Our approach

emerges from our observation of the intuitive notion that an object consists of point clus-

ters with a specific degree of point intensity, moving coherently. This understanding enables

the measurement of temporal consistency at the point cloud level. Utilizing our temporal

consistency foundation, we present a two-stage approach to detect adversarial manipulations

in frames. Initially, our coherence-enhanced scene flow estimation predicts expected object

locations while maintaining coherency, even in the face of point injections, outperforming

conventional methods susceptible to anomalies. This robust estimation sets a firm foundation

for the subsequent phase: clustering-based anomaly detection. It contrasts point clusters be-

tween expected and observed point locations, with discrepancies between them highlighting

potential adversarial interventions.

ADoPT stands robust against both dense and sparse point injection LiDAR spoofing at-

tacks, achieving a commendable false positive ratio (FPR) of less than 10% and a true posi-

tive ratio (TPR) exceeding 85%, thereby surpassing existing defense mechanisms grounded

on perception output. Additionally, we highlight the effectiveness of our anomaly detec-

tion metric based on cluster coherency, showcasing its superiority over traditional methods

through comparative analysis.
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2 Related Work
Autonomous vehicle (AV) defense mechanisms against sensor data fabrication attacks are

broadly classified into physical principle-based and consistency-based methods.

Physical Principle-based Defense. These techniques leverage specific geometries or physical-

invariant properties, which attackers struggle to imitate when forging objects. CARLO [23]

employs free/occluded space or laser rays within a frustum space related to each detected

bounding box to distinguish between real and fake objects. Shadow-Catcher [7] utilizes

shadow region differences based on bounding box coordinates, and LOP [31] introduces the

concept of objectness by considering the point density and the distance from the LiDAR

sensor to the predicted objects. These approaches use specialized rules to assess an object’s

adherence to physical principles.

Consistency-based Defense. These methods emphasize temporal consistency and show

promising detection success rates for AV systems. They exploit the invariant nature of object

motion across consecutive frames. AdvIT [30] counters adversarial attacks on video frames,

where the attacker manipulates the distribution of points but preserves the appearance of the

original points, by estimating the optical flow of each pixel and measuring temporal consis-

tency. PercepGuard [16] utilizes spatio-temporal consistency for misclassification attacks,

where the attacker alters the labels of detected outputs on camera images (e.g., from car to

people), and verifies moving patterns of bounding boxes. 3D-TC2 [35] proposes a temporal

consistency check-based method to detect LiDAR spoofing attacks, converting LiDAR point

clouds into 2D images and comparing predicted motion to detected bounding boxes.

Limitations. Existing studies rely on perception modules, assuming their high accuracy.

However, raw sensor data processing using perception modules can result in false detec-

tions or information loss, especially for small objects like pedestrians and cyclists – critical

objects that autonomous vehicles must consider in making navigation decisions. Our work

introduces a novel paradigm for attack detection algorithms, using only raw sensor data to

achieve robust defense regardless of the object type. We detail the core components enabling

point-level anomaly detection in the following sections.

3 Background: Scene Flow Estimation
In the 3D point cloud domain, scene flow represents the 3D motion of each point across

consecutive frames. Accurate scene flow estimation is crucial for predicting user or AV

motion and estimating trajectories. However, real-world estimation remains challenging due

to temporal occlusion and dynamic, rigid object motions. Scene flow estimation has evolved

into two primary branches.

Offline Learning Methods. These approaches [14] use separate offline training processes

with annotated datasets. Scene flow estimation is formulated as a DNN model that receives

a pair of frames and outputs the optimal flow. DNN models offer customizability and high

capacity for flow representation, achieving high accuracy while addressing bad correspon-

dences. However, they face limitations such as requiring substantial data and ground truth

labels, which are difficult to obtain [2, 3]. Researchers generate labels using alternative

methods [20] or employ self-supervised learning [17, 29]. These methods may struggle with

input frames deviating from the training dataset due to low generalization capabilities [11].

Online Optimization Methods. These approaches do not require separate training pro-

cesses or datasets, instead formulating scene flow estimation as an optimization problem.

They demonstrate higher accuracy on out-of-distribution point cloud frames, which fall out-

side the training dataset used by offline learning-based methods, making them more suitable

for real-world situations.
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D.PED D.CYL

D.CAR S.CAR

Figure 2: Examples of Injected Points. D.PED, D.CYL, and D.CAR

are fake objects created by dense point injection attacks, mimicking a

pedestrian, cyclist, and car, respectively. S.CAR results from a sparse

point injection attack imitating a car. AVs recognize these objects as

real (green bounding box). Red points are within the bounding box,

while gray points are outside, suggesting that bounding boxes may

not always adequately fit objects.

Classic methods, such as Iterative Closest Point (ICP) [1], initialize flow vectors for the

point within the point cloud frame, solving optimization problems to find the optimal flow

vectors that represent the discrepancy of two input frames at runtime. Recent studies have

proposed various solutions with high generalizability by formulating scene flow estimation

in diverse ways, such as multi-layer perceptron (MLP) [11, 12], graph Laplacian [20], or

Bayesian inference [8]. Among these methodologies, NSFP [11] introduced an advanced

method by changing flow representation from displacement vectors to an MLP-based model.

With this MLP-formed flow, they solve the optimization problem and find the optimal flow

at runtime while iteratively adjusting the MLP parameters like DNN training.

4 Threat Model
We investigate two spoofing attacks: dense and sparse point injection. Dense point injection

attacks inject up to 200 points and achieve a high Attack Success Rate (ASR) of 96%-97%,

producing a visually recognizable fake object. 3D-TC2 [35] is designed to counter this attack

and serves as our evaluation baseline. Conversely, sparse point injection attacks [23] inject

up to 64 points, rendering the fake object difficult to visually identify, with an ASR of less

than 21%. CARLO [23] is a proposed defense method to combat this sparse injection attack,

used as our evaluation baseline. Figure 2 displays examples of spoofed objects.

5 ADoPT Methodology
In this section, we introduce ADoPT, a solution for point-level anomaly detection devised to

enhance the resilience of object detection systems. Leveraging the observation that injected

points demonstrate poor temporal consistency — appearing inconsistently within the point

cloud frame over time — ADoPT utilizes scene flow estimation to quantify objects’ temporal

consistency, thereby facilitating the detection of point injection attacks. Figure 3 illustrates

overall ADoPT architecture, where F1,F2, ...,FL are sequential historical LiDAR point cloud

frames, and FL+1 is the subsequent incoming frame. Initially, ADoPT generates a synthe-

sis of preceding frames by aligning all points from the historical frames using scene flow

estimation (Sec. 5.1). This synthesized representation is then compared with the incoming

frame to identify points that showcase inadequate temporal alignment, earmarking them as

potential injections from attackers (Sec. 5.2). Furthermore, we outline several techniques to

mitigate runtime overhead, thereby making ADoPT a viable solution when implemented in

AV systems (Sec. 5.3).

5.1 Coherence-Enhanced Scene Flow Estimation
For quantification of temporal consistency, central to ADoPT is the process of aligning points

captured at different timestamps and combining them into a single frame. Scene flow esti-

mation (SFE) is crucial for aligning point cloud frames by calculating optimal point dis-

placement [1, 10]. For generalizability to various road environments and different injected
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Scene Flow Estimation

(Sec. 5.1)

L+1

Figure 3: ADoPT Architecture.

objects, we employ an MLP-formed neural prior to represent scene flow and optimize the

MLP parameters at runtime for a pair of point cloud frames (F1, F2), inspired by NSFP [11].

SFE serves a dual purpose: it aligns points in historical frames and juxtaposes the re-

sulting synthesized frame with newly arriving one. However, ensuring precise scene flow

becomes challenging without confirmed temporal consistency. In the presence of a LiDAR

spoofing attack, conventional methods frequently falter, predicated on the assumption of

consistent object appearances across frames. This vulnerability arises because this assump-

tion can be violated through the continued use of SFE over a series of frames, or through the

introduction of spurious objects. Repeatedly deploying SFE may amplify errors, leading to

a dispersion effect in the synthesis. Additionally, the presence of fabricated points in recent

frames hampers the precise functioning of SFE, creating erroneous point correspondences

between synthesized and fake points.

Figure 4: As the number of iterations in-

creases, the two loss values converge har-

moniously without impeding each other’s

individual convergence.

To counteract these challenges, we have con-

ceptualized temporal consistency by viewing

objects as cohesive point clusters with inherent

intensity. Recognizing this coherence, we intro-

duce a loss function that enhances the coherence

between the motion flows of points belonging to

each cluster (i.e., part of an object). Here, we

use a clustering method, DBSCAN [5], a well-

established spatial clustering algorithm, to ver-

ify if two given points are part of the same clus-

ter. By defining the following loss term, we can

enforce neighboring points to move coherently:

Lcoherence(F1) =
1

N2 ∑
pi,p j∈F1

(M(pi, p j) ·w(pi, p j) · || f l(pi)− f l(p j)||2)

where M(pi, p j) is a binary clustering mask indicating whether any two points in F1, pi
and p j, belong to the same cluster. Concurrently, w(pi, p j) is the weight value between

these points, formulated to foster more coherent movement between closer points by being

influenced by the distance between them. f l(pi) is a 3-dimensional flow vector that indicates

the displacement of point pi along the x, y, and z axes. N denotes the number of points

included in valid clusters (i.e., non-outlier points) as identified through DBSCAN.

Consequently, our final loss function is defined by a combination of the Chamfer Dis-

tance (CD) [6] and coherence loss, enabling us to find the optimal scene flow that represents

the point motions between F1 and F2 while preventing any point from deviating from its

original cluster.
L = αLcham f er(F1,F2)+βLcoherence(F1)

Here, Lcham f er(F1,F2) is the CD value, the most popular distance metric for two point cloud

sets, which is defined as:

Lcham f er(F1,F2) = ∑
pi∈F1

min
q j∈F2

||pi −q j||22 + ∑
q j∈F2

min
pi∈F1

||pi −q j||22
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Figure 5: Synthesis Generation Procedure. Given historical frame length L, a new LiDAR

frame enters the system for Scene Flow Estimation (SFE). The estimated flow propagates

through Scene Flow Approximation (SFA) to upper cells. The top right figure shows the

actual input frame FL, and the bottom right displays the generated synthesis with clear and

dense object shapes (three cars, the rightmost one is obscured behind a tree).

where pi and q j represent individual points in F1 and F2 respectively. Figure 4 showcases the

functioning of our proposed loss function during the online optimization process, emphasiz-

ing the harmonious convergence of the two loss terms.

5.2 Cluster-based Consistency Measurement
Implementing the proposed SFE method produces a warped synthesis by predicting the ap-

pearance of individual points at the moment each incoming frame arrives. A pivotal stage

in ADoPT is the temporal consistency measurement between the resulting synthesis and the

incoming frame. However, results obtained using conventional distance metrics (e.g., Cham-

fer Distance), often lead to substantial variances, thereby making the discrimination process

markedly challenging. This fluctuation is predominantly driven by the differing number of

points in individual frames, a variable greatly affected by the intricacies of various road

scenarios. Moreover, the unpredictable changes introduced by attackers, affecting both the

location and the number of points, deem traditional handcrafted schemes inadequate. This

necessitates a suitably designed metric.

Our approach employs a cluster-based metric based on the understanding that objects nat-

urally form groups of point clusters. Recognizing the potential in the overlapping character-

istic of the synthesis and incoming frame provides a strategy for assessing their consistency.

To foster this strategy, we first meld the warped synthesis with the incoming frame, distinctly

marking each point to denote whether it originates from the synthesis or the incoming frame.

This meticulous categorization aids in identifying areas of inadequate temporal alignment,

enabling reliable detection of fabricated objects. Subsequently, ADoPT uses DBSCAN to

identify local clusters, effectively discarding outliers, and then removes clusters that contain

synthesis points, a process which verifies the presence of genuine objects consistent with

historical objects. In benign scenarios, this tactic results in a complete absence of clusters, a

testament to the adequate temporal alignment across frames. However, in poisoned scenar-

ios, clusters exclusively formed of incoming frame points remain, serving as indicators of

fabricated objects. Illustrative examples are shown in Appendix A.

5.3 Additional Components for Runtime Overhead Reduction
Synthesis Generation on Historical Frames. To achieve our goal of identifying anomalous

objects, ADoPT needs to differentiate between suddenly appearing normal objects and ma-

liciously placed objects. ADoPT synthesizes past frames by warping them to the time of the
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last historical frame FL using SFE, inspired by point cloud densification techniques [11, 27].

However, these methods are computationally intensive, and generating synthesis may take

up to O(NL2) time, assuming latency in solving optimization problems is N, and we use L
historical frames. For instance, with a 0.1-second latency and 10 historical frames, it would

take 10 seconds to process all the scene flow estimations, which is impractical and cannot be

concealed through parallelization.

To reduce computational complexity, ADoPT approximates scene flow instead of solving

optimization problems. The estimated scene flow is propagated to its preceding frames,

facilitating a single estimation of the scene flow at each timestamp. As LiDAR senses a

varying number of points, voxelization is utilized to identify corresponding points in order

to propagate the most recent scene flow into past frames. This process involves mapping

voxel indices between frames to integrate the corresponding voxel’s scene flow with the

target point. In instances where there are no mapped points, the target voxel’s scene flow

is computed by taking the average of the adjacent voxels’ scene flows, a strategy depicted

in Figure 5. This substantially reduces the time complexity of computation-intensive SFE

processes from L2 to L, saving time and enabling parallelization with the SFE process.

Voxel Downsampling. In ADoPT, the total latency is primarily influenced by the number of

points. To optimize the system, minimizing latency without significant TPR loss and FPR

gain, we reduce the number of points via voxelization. This approach’s efficacy is detailed

in Sec. 6.1, where we illustrate the interplay between voxel grid size, total latency, and the

accuracy of attack detection. This highlights the critical role of selecting the optimal voxel

grid size to balance system accuracy with timely execution.

6 Evaluation
In this section, we evaluate ADoPT under different attack scenarios. Additionally, we com-

pare our proposed algorithm with two widely-used defense methods for LiDAR spoofing

attacks, CARLO and 3D-TC2. All experiments are conducted on a server equipped with two

Intel Xeon 4110 CPUs and one NVIDIA RTX 2080 GPU.

Dataset. Our evaluations are performed on the nuScenes dataset [2], a large-scale au-

tonomous driving dataset collected from vehicles equipped with a 32-beam LiDAR system.

The nuScenes dataset is divided into two subsets: v1.0-mini (comprising 10 scenes) and

v1.0-trainval (comprising 350 scenes). Each scene is 20 seconds long and annotated at a

frequency of 2 Hz.

Attack Scenarios. The poisoned dataset utilized in the dense point injection attack is

sourced from the authors of 3D-TC2, who leveraged the v1.0-mini dataset. In this attack,

spoofed data points that represent vehicles, cyclists, and pedestrians are introduced system-

atically. Concurrently, in addressing the sparse point injection attack, we generated 355

poisoned frames using the validation set of the v1.0-trainval dataset, which consists of 150

scenes, adhering to the approach presented in CARLO. Given the intrinsic sparsity charac-

teristic of this attack, only spoofed points representative of vehicles are introduced.

Parameter Setting. We opt for a multi-layer perceptron (MLP) architecture composed of

six layers and 128 hidden units, a configuration empirically determined to yield the highest

accuracy while maintaining a low latency on our dataset. Figure 4 shows loss convergence

after 30 iterations, influencing our choice of a 30-iteration count. For training, we use a

fixed learning rate of 0.0008, empirically derived for optimum performance and convergence

potential. In defining our loss function, we attribute values of 1 and 2 to variables α and β ,

respectively, and the weights between the points, w(pi, p j), are all set equally to 1. The

DBSCAN procedure relies heavily on two critical thresholds: the minimal distance between
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Table 1: Comparison of Defense Methods. A lower false positive rate (FP) and a higher true

positive rate (TP) indicate a more accurate attack detection.

Dense Point Injection Sparse Point Injection

FP ↓ TP (D.CAR) ↑ TP (D.CYL) ↑ TP (D.PED) ↑ FP ↓ TP (S.CAR) ↑
CARLO [23] 47.2 48.0 49.4 48.0 47.9 54.4

3D-TC2 (PP) [35] 20.7 98.6 95.0 56.9 16.6 53.5

3D-TC2 (SEC) [35] 19.6 98.3 45.8 47.5 16.3 84.2

ADoPT 4.5 97.2 98.3 95.2 9.3 85.4

Figure 6: Comparison of Anomaly Detection Metrics: (a) Chamfer Distance, (b) Density-

based Chamfer Distance, and (c) Our Proposed Cluster-based Metric. The x-axis represents

the distance values, and the y-axis indicates the number of frames corresponding to each

value. Our approach allows for establishing a threshold for attack detection, unlike conven-

tional metrics. The difference between the average distance values for benign and poisoned

cases supports this claim: (a) benign: 0.11, poisoned: 0.13, (b) benign: 0.47, poisoned: 0.47,

(c) benign: 4.31, poisoned: 35.34. In this work, we set our threshold to 15.

the nearest points and the minimal count of points necessary to form a valid cluster. Carefully

optimizing for FPR and TPR, we established thresholds of at least 17 points and a 0.25

distance parameter for dense point attacks, and a minimum of 9 points with a 0.75 distance

threshold for sparse point attacks. Detailed insights into the threshold determination process

are elaborated in Appendix B.

6.1 Experimental Results
Effect of ADoPT. To substantiate the effectiveness of ADoPT, we benchmark its perfor-

mance against baseline methods under dense and sparse point injection attack scenarios (see

Table 1). In this evaluation, we focus on two pivotal metrics: the false positive rate (FPR),

denoting the incorrect identification of benign frames as attacked, and the true positive rate

(TPR), reflecting the correct detection of poisoned frames. Our method manifests a low FPR,

evincing its efficacy in curtailing false alarms during the detection of spoofing attacks. We

match the baseline accuracy on relatively large objects such as D.CAR, while substantially

exceeding it when it comes to smaller objects, notably achieving TPRs of 98.3% and 95.2%

for cyclists and pedestrians, respectively. These statistics underline ADoPT’s superior ability

to pinpoint small spoofed objects. Consequently, ADoPT demonstrates marked supremacy

in identifying LiDAR spoofing attacks across different object types and attack scenarios.

Clustering-based Metric for Anomaly Detection. In considering alternative design ap-

proaches for consistency measurement, we acknowledge the potential utility of established

distance metrics. Among the prevalent metrics for evaluating point cloud similarity are CD

and Earth Mover’s Distance (EMD) [6]. Despite its utility, EMD’s computational demands
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deem it unfit for attack detection. To this end, our analysis leverages the Density-based

Chamfer Distance (DCD) [28], a novel metric that synergizes the strengths of CD and EMD,

promising enhanced accuracy.

As illustrated in Figure 6, both CD and DCD exhibit substantial fluctuations according

to road configurations, with object count and road environment serving as prominent influ-

encing factors. This variability creates a challenging environment for establishing the ideal

thresholds to distinguish between benign and poisoned frames. In contrast, our clustering-

based metric enables threshold determination for attack decisions, making it the most rea-

sonable metric for our situations.

(a) LInitial (c) L(b) L     +  Lcoh dcdcdcd

Figure 7: Ablations with/without Coherence Loss. We

examine the alignment of two point cloud sets (red

and blue points) by comparing the warped blue points

(obtained by adding the estimated scene flow) to the

red points. The first image denotes their initial sta-

tus, and the car (circled in red) indicates a fake object.

(a) shows results using only CD without coherence loss;

(b) displays outcomes of our proposed method using

both CD and coherence loss. We also explore replac-

ing our loss with DCD in (d). This comparison reveals

that fake points hinder SFE, seemingly drawing the red

points towards them, highlighting the necessity of our

coherence-enhancing loss under adversarial settings.

Ablation Study. We conducted

an ablation study to assess the

impact of including or exclud-

ing the coherence loss term, as

well as employing DCD. Fur-

ther details can be found in Fig-

ure 7. Utilizing DCD as our

loss function in dense point in-

jection attack scenarios yielded a

4.6% FPR and TPRs of 94.8%,

92.9%, and 94.0% for D.CAR,

D.CYL, and D.PED, respectively.

These findings, exhibiting stable

FPR and decreased TPRs, sup-

port the idea that the injected fake

points compromise accurate SFE,

emphasizing the effectiveness of

the coherence-enhanced SFE.

Figure 8: Attack Detection

Accuracy Changes in Relation

to Historical Length

Impact of Historical Frame Length. Historical frames

help distinguish sudden appearances of valid and fake

points by correlating them with previously observed points.

We utilize 10 historical frames at a 10 Hz frequency to align

with 3D-TC, allowing for a fair comparison of the effects of

using raw data vs. using detection output. Testing with var-

ious frame lengths produces nearly consistent results from

lengths of 2 to 15, but shows a decline thereafter (Figure 8).

6.2 Limitation & Analysis
Runtime Overhead. In ADoPT, the primary contributor to total latency is SFE latency,

significantly influenced by the voxel shape. As illustrated in Figure 9, ADoPT currently

experiences a considerable latency of 2.1 seconds. Nonetheless, we have the capacity to

diminish this to a mere 0.7 seconds, sustaining a robust attack detection accuracy at roughly

87% of the initial accuracy. This indicates a marked enhancement in speed without a critical

sacrifice in detection capability. To further hasten this process, we envision incorporating

mixed-precision training techniques [18], utilizing a 16-bit (or lower) numerical format for

MLP parameters. We also aim to reduce runtime overhead through the pre-training of the

MLP model, coupled with the application of test-time training [26], a strategy for quick

convergence and adaptability to various incoming frames.
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Figure 9: Impact of Voxel Shape

on Attack Detection Accuracy and

Time. We use a cubic-shaped voxel,

and the value of the x-axis represents

the length of one side of the voxel.

Failure Cases. As we employ the spatial clustering

method for attack detection, most failure cases arise

when spoofed objects are attached to benign road

objects. Although classified as false negatives, the

spoofed object is identified as part of the benign ob-

ject it is attached to; thus, it does not significantly

affect existing navigation decisions or trigger numer-

ous sudden alarms. Refer to Appendix C for point

cloud data illustrating a failure situation.

Analysis on Impact per Component on Perfor-
mance. ADoPT’s performance is contingent upon

the accuracy of both SFE and DBSCAN. However,

thanks to its structural advantage, it is able to main-

tain effective responsiveness even when there is a decrease in the accuracy of either of these

elements. Let’s explore this further: Firstly, low SFE accuracy can lead to flawed synthe-

sis and clustering owing to inaccuracies in frame warping, thereby generating false positive

errors. This issue is often caused by shifts in input data distribution and occlusion. How-

ever, our coherence-enhanced SFE, grounded in an online optimization solving detailed in

Section 5.1, effectively counters this shift issue, helping to avoid low SFE accuracy and as-

sociated false positive errors. Secondly, despite adequate SFE, poor clustering accuracy can

occur when real objects come too close to each other or when fake objects attach to real ones,

resulting in merged object clusters and either false positive or negative errors. To mitigate

this, we leverage extended historical frames to foster a broader understanding of the context,

which aids in discerning the real objects from the fake ones more accurately. It is important

to note that false negatives generally do not significantly impair navigation or trigger false

alarms since a real object is indeed present, as discussed in the Failure Cases section. Lastly,

when both SFE and clustering accuracy are satisfactory, ADoPTefficiently identifies attacks

in the majority of cases, as evidenced by the data presented in Table 1.

On the other hand, while ADoPT operates independently of LiDAR object detection,

immediate elimination of fake objects can enhance AV perception accuracy by reducing

falsely detected instances.

7 Conclusion
We present the ADoPT framework, designed to detect LiDAR spoofing attacks on AVs by

measuring temporal consistency at the point cloud level. ADoPT surpasses existing methods,

delivering lower false positive rates and higher true positive rates. While currently focused on

single-frame fake object injection attacks, ADoPT has the potential to address LiDAR spoof-

ing attacks spanning consecutive frames by promptly eliminating detected spoofed points,

converting them into benign frames, and continuously identifying spoofed objects in subse-

quent incoming frames. In the future, we aim to evolve ADoPT to counter diverse LiDAR

data manipulation attacks (e.g., object removal attacks), thereby enhancing the robustness of

perception modules in AVs.
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