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Abstract

Deep neural networks (DNN5s) are increasingly integrated into LiDAR (Light Detec-
tion and Ranging)-based perception systems for autonomous vehicles (AVs), requiring
robust performance under adversarial conditions. One pressing concern is the challenge
posed by LiDAR spoofing attacks, where attackers inject fake objects into LiDAR data,
leading AVs to misinterpret their surroundings and make faulty decisions. Many cur-
rent defense algorithms predominantly depend on perception outputs, such as bounding
boxes. However, these outputs are intrinsically limited as they are generated by im-
perfect perception models that process a restricted set of points, acquired from the ego
vehicle’s specific viewpoint. The reliance on bounding boxes is a manifestation of this
fundamental constraint. To overcome these limitations, we propose a novel framework,
named ADoPT (Anomaly Detection based on Point-level Temporal consistency), which
quantitatively measures temporal consistency across consecutive frames and identifies
abnormal objects based on the coherency of point clusters. In our evaluation using the
nuScenes dataset, our algorithm effectively counters various LiDAR spoofing attacks,
achieving a low (< 10%) false positive ratio and high (> 85%) true positive ratio, out-
performing existing state-of-the-art defense methods, CARLO and 3D-TC2. Moreover,
ADoPT shows promising potential for accurate defense in diverse road environments.

1 Introduction

The growing incorporation of deep neural networks (DNNs) in LiDAR (Light Detection
and Ranging)-based perception for autonomous vehicles (AVs) calls for rigorous attention
to their robust performance. In light of this challenge, researchers are focused on develop-
ing and refining various defense technologies for potential attacks targeting AV perception
systems. One prominent research direction in this field involves the manipulation of LiDAR
point cloud data. Attackers can fabricate data by jamming and relaying original LiDAR sig-
nals [19, 32], emitting spurious LiDAR purses [13, 21, 22, 23], or exploiting vulnerabilities
in the DNN-based perception module [24, 25, 34], causing AVs to misinterpret their driving
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environment and make faulty decisions (e.g., emergency alarm activation, sudden breaking,
lane changing, etc).

Defense algorithms based on AV perception 100
outputs (i.e., bounding boxes) have been widely

studied. Figure 1 showcases two state-of-the- g 75
art bounding box-based algorithms: (1) physical @ 50
principles-based approach (e.g. CARLO) [7, 23, & 25

31], which detects attacks by leveraging phys-

ical principles governing authentic objects; and 0 O @ 8¢ O & o¢
(2) temporal consistency-based method (e.g. 3D- & ’SO' {\c')' S ’SO' {\O' o
TC2) [16, 30, 35], which focuses on motion con- Y Y
sistency across adjacent frames. While temporal (a) False Alarm  (b) True Alarm

consistency offers an edge over physical princi-

ples, both are fundamentally limited by their de- Figure 1:  Our ADoPT method outper-
pendence on bounding boxes. Given the con- forms existing methods [23, 35] with a
straints of an ego vehicle’s viewpoint and the in- 44 ~ 10-3x lower false alarm rate and
herent inaccuracies of perception modules (espe- 1 7 ~ 2 higher true alarm rate. Tl,le
cially for small and distant objects) [15, 36, 37], ideal cases are represented by the red solid

. . . lines with a false alarm rate of O and a
relying on bounding boxes proves inadequate and .\ 100 oo 06 100, We used PointPil-

leads to inaccuracies in anomaly detection. lars [9] for CARLO and 3D-TC2 (P) and
We introduce ADoPT (Anomaly Detection SECOND [33] for 3D-TC2 (S) for 3D ob-
based on Point-level Temporal consistency) to Ject detection. False alarms arise when be-
build perception model-agnostic monitoring mod- mg}‘: IEID‘A}‘E frames lare mlsmemlﬁﬁd as at-
ules. Harnessing the rich and comprehensive in- icn; %rzvméf gz:tj dal:misn'(lccct?ri Zi;?ﬂ:t(e):;
formation present in raw sensor data [4, 36], our . . Y1y £ .
. pedestrian points, are correctly recognized
approach offers profound advantages in defend-

: . ; as attacked. These results show existing de-
ing against LIDAR spoofing attacks [23, 31, 35], fenses often output a bounding box that does

bypassing the limitations of traditional percep- not tightly fit the object or is false and strug-
tion models. While raw sensor data provides ex- gle to detect small fake objects.

tensive information, implementing defense algo-

rithms (e.g. temporal consistency) based on raw sensor data is challenging. Our approach
emerges from our observation of the intuitive notion that an object consists of point clus-
ters with a specific degree of point intensity, moving coherently. This understanding enables
the measurement of temporal consistency at the point cloud level. Utilizing our temporal
consistency foundation, we present a two-stage approach to detect adversarial manipulations
in frames. Initially, our coherence-enhanced scene flow estimation predicts expected object
locations while maintaining coherency, even in the face of point injections, outperforming
conventional methods susceptible to anomalies. This robust estimation sets a firm foundation
for the subsequent phase: clustering-based anomaly detection. It contrasts point clusters be-
tween expected and observed point locations, with discrepancies between them highlighting
potential adversarial interventions.

ADOPT stands robust against both dense and sparse point injection LiDAR spoofing at-
tacks, achieving a commendable false positive ratio (FPR) of less than 10% and a true posi-
tive ratio (TPR) exceeding 85%, thereby surpassing existing defense mechanisms grounded
on perception output. Additionally, we highlight the effectiveness of our anomaly detec-
tion metric based on cluster coherency, showcasing its superiority over traditional methods
through comparative analysis.
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2 Related Work

Autonomous vehicle (AV) defense mechanisms against sensor data fabrication attacks are
broadly classified into physical principle-based and consistency-based methods.

Physical Principle-based Defense. These techniques leverage specific geometries or physical-
invariant properties, which attackers struggle to imitate when forging objects. CARLO [23]
employs free/occluded space or laser rays within a frustum space related to each detected
bounding box to distinguish between real and fake objects. Shadow-Catcher [7] utilizes
shadow region differences based on bounding box coordinates, and LOP [31] introduces the
concept of objectness by considering the point density and the distance from the LiDAR
sensor to the predicted objects. These approaches use specialized rules to assess an object’s
adherence to physical principles.

Consistency-based Defense. These methods emphasize temporal consistency and show
promising detection success rates for AV systems. They exploit the invariant nature of object
motion across consecutive frames. AdvIT [30] counters adversarial attacks on video frames,
where the attacker manipulates the distribution of points but preserves the appearance of the
original points, by estimating the optical flow of each pixel and measuring temporal consis-
tency. PercepGuard [16] utilizes spatio-temporal consistency for misclassification attacks,
where the attacker alters the labels of detected outputs on camera images (e.g., from car to
people), and verifies moving patterns of bounding boxes. 3D-TC2 [35] proposes a temporal
consistency check-based method to detect LIDAR spoofing attacks, converting LiDAR point
clouds into 2D images and comparing predicted motion to detected bounding boxes.
Limitations. Existing studies rely on perception modules, assuming their high accuracy.
However, raw sensor data processing using perception modules can result in false detec-
tions or information loss, especially for small objects like pedestrians and cyclists — critical
objects that autonomous vehicles must consider in making navigation decisions. Our work
introduces a novel paradigm for attack detection algorithms, using only raw sensor data to
achieve robust defense regardless of the object type. We detail the core components enabling
point-level anomaly detection in the following sections.

3 Background: Scene Flow Estimation

In the 3D point cloud domain, scene flow represents the 3D motion of each point across
consecutive frames. Accurate scene flow estimation is crucial for predicting user or AV
motion and estimating trajectories. However, real-world estimation remains challenging due
to temporal occlusion and dynamic, rigid object motions. Scene flow estimation has evolved
into two primary branches.

Offline Learning Methods. These approaches [14] use separate offline training processes
with annotated datasets. Scene flow estimation is formulated as a DNN model that receives
a pair of frames and outputs the optimal flow. DNN models offer customizability and high
capacity for flow representation, achieving high accuracy while addressing bad correspon-
dences. However, they face limitations such as requiring substantial data and ground truth
labels, which are difficult to obtain [2, 3]. Researchers generate labels using alternative
methods [20] or employ self-supervised learning [17, 29]. These methods may struggle with
input frames deviating from the training dataset due to low generalization capabilities [11].
Online Optimization Methods. These approaches do not require separate training pro-
cesses or datasets, instead formulating scene flow estimation as an optimization problem.
They demonstrate higher accuracy on out-of-distribution point cloud frames, which fall out-
side the training dataset used by offline learning-based methods, making them more suitable
for real-world situations.
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Figure 2: Examples of Injected Points. D.PED, D.CYL, and D.CAR
are fake objects created by dense point injection attacks, mimicking a
pedestrian, cyclist, and car, respectively. S.CAR results from a sparse
point injection attack imitating a car. AVs recognize these objects as
real (green bounding box). Red points are within the bounding box,
while gray points are outside, suggesting that bounding boxes may
not always adequately fit objects.

Classic methods, such as Iterative Closest Point (ICP) [1], initialize flow vectors for the
point within the point cloud frame, solving optimization problems to find the optimal flow
vectors that represent the discrepancy of two input frames at runtime. Recent studies have
proposed various solutions with high generalizability by formulating scene flow estimation
in diverse ways, such as multi-layer perceptron (MLP) [11, 12], graph Laplacian [20], or
Bayesian inference [8]. Among these methodologies, NSFP [11] introduced an advanced
method by changing flow representation from displacement vectors to an MLP-based model.
With this MLP-formed flow, they solve the optimization problem and find the optimal flow
at runtime while iteratively adjusting the MLP parameters like DNN training.

4 Threat Model

We investigate two spoofing attacks: dense and sparse point injection. Dense point injection
attacks inject up to 200 points and achieve a high Attack Success Rate (ASR) of 96%-97%,
producing a visually recognizable fake object. 3D-TC2 [35] is designed to counter this attack
and serves as our evaluation baseline. Conversely, sparse point injection attacks [23] inject
up to 64 points, rendering the fake object difficult to visually identify, with an ASR of less
than 21%. CARLO [23] is a proposed defense method to combat this sparse injection attack,
used as our evaluation baseline. Figure 2 displays examples of spoofed objects.

S ADoPT Methodology

In this section, we introduce ADoP T, a solution for point-level anomaly detection devised to
enhance the resilience of object detection systems. Leveraging the observation that injected
points demonstrate poor temporal consistency — appearing inconsistently within the point
cloud frame over time — ADoPT utilizes scene flow estimation to quantify objects’ temporal
consistency, thereby facilitating the detection of point injection attacks. Figure 3 illustrates
overall ADoPT architecture, where F, F>, ..., Fy are sequential historical LIDAR point cloud
frames, and F7 . is the subsequent incoming frame. Initially, ADoPT generates a synthe-
sis of preceding frames by aligning all points from the historical frames using scene flow
estimation (Sec. 5.1). This synthesized representation is then compared with the incoming
frame to identify points that showcase inadequate temporal alignment, earmarking them as
potential injections from attackers (Sec. 5.2). Furthermore, we outline several techniques to
mitigate runtime overhead, thereby making ADoPT a viable solution when implemented in
AV systems (Sec. 5.3).

5.1 Coherence-Enhanced Scene Flow Estimation

For quantification of temporal consistency, central to ADoPT is the process of aligning points
captured at different timestamps and combining them into a single frame. Scene flow esti-
mation (SFE) is crucial for aligning point cloud frames by calculating optimal point dis-
placement [1, 10]. For generalizability to various road environments and different injected
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Figure 3: ADoPT Architecture.

objects, we employ an MLP-formed neural prior to represent scene flow and optimize the
MLP parameters at runtime for a pair of point cloud frames (Fi, F>), inspired by NSFP [11].
SFE serves a dual purpose: it aligns points in historical frames and juxtaposes the re-
sulting synthesized frame with newly arriving one. However, ensuring precise scene flow
becomes challenging without confirmed temporal consistency. In the presence of a LIDAR
spoofing attack, conventional methods frequently falter, predicated on the assumption of
consistent object appearances across frames. This vulnerability arises because this assump-
tion can be violated through the continued use of SFE over a series of frames, or through the
introduction of spurious objects. Repeatedly deploying SFE may amplify errors, leading to
a dispersion effect in the synthesis. Additionally, the presence of fabricated points in recent
frames hampers the precise functioning of SFE, creating erroneous point correspondences
between synthesized and fake points. 0.120 0.25

To counteract these challenges, we havecon- g .~ I Chamfer 0208
ceptualized temporal consistency by viewing § =~ Colierence jf §
objects as cohesive point clusters with inherent 3 %*%° 0158
intensity. Recognizing this coherence, we intro- g 0.112 0109
duce a loss function that enhances the coherence & 0110 0.05%
between the motion flows of points belonging to S ©

. . 0.107 0.00
each cluster (i.e., part of an object). Here, we 0 25 50 75 100
use a clustering method, DBSCAN [5], a well- Iteration

established spatial clustering algorithm, to ver- Figure 4: As the number of iterations in-
ify if two given points are part of the same clus- creases, the two loss values converge har-
ter. By defining the following loss term, we can moniously without impeding each other’s
enforce neighboring points to move coherently:  individual convergence.

Lcaherence(Fl) = ﬁ Z (M(pi,pj) 'W(pi,pj) : ||fl(pt) _fl(pj)Hz)
pi:pjEF

where M(p;,p;) is a binary clustering mask indicating whether any two points in Fj, p;
and p;, belong to the same cluster. Concurrently, w(p;,p;) is the weight value between
these points, formulated to foster more coherent movement between closer points by being
influenced by the distance between them. fI(p;) is a 3-dimensional flow vector that indicates
the displacement of point p; along the x, y, and z axes. N denotes the number of points
included in valid clusters (i.e., non-outlier points) as identified through DBSCAN.

Consequently, our final loss function is defined by a combination of the Chamfer Dis-
tance (CD) [6] and coherence loss, enabling us to find the optimal scene flow that represents
the point motions between F| and F, while preventing any point from deviating from its
original cluster.

L= aLchamfer(Fl ’ FZ) + ﬁLcoherence(Fl)

Here, Lepamfer(F1,F2) is the CD value, the most popular distance metric for two point cloud
sets, which is defined as:

L. F.F)= min ||p; —qi||?+ min ||p; — q;||?
Lhamfer( 1,F) p;lqjernpl quZ q].;pzl’iEFall ‘IJHZ
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Figure 5: Synthesis Generation Procedure. Given historical frame length L, a new LiDAR
frame enters the system for Scene Flow Estimation (SFE). The estimated flow propagates
through Scene Flow Approximation (SFA) to upper cells. The top right figure shows the
actual input frame Fj, and the bottom right displays the generated synthesis with clear and
dense object shapes (three cars, the rightmost one is obscured behind a tree).

where p; and g; represent individual points in /1 and F; respectively. Figure 4 showcases the
functioning of our proposed loss function during the online optimization process, emphasiz-
ing the harmonious convergence of the two loss terms.

5.2 Cluster-based Consistency Measurement

Implementing the proposed SFE method produces a warped synthesis by predicting the ap-
pearance of individual points at the moment each incoming frame arrives. A pivotal stage
in ADoPT is the temporal consistency measurement between the resulting synthesis and the
incoming frame. However, results obtained using conventional distance metrics (e.g., Cham-
fer Distance), often lead to substantial variances, thereby making the discrimination process
markedly challenging. This fluctuation is predominantly driven by the differing number of
points in individual frames, a variable greatly affected by the intricacies of various road
scenarios. Moreover, the unpredictable changes introduced by attackers, affecting both the
location and the number of points, deem traditional handcrafted schemes inadequate. This
necessitates a suitably designed metric.

Our approach employs a cluster-based metric based on the understanding that objects nat-
urally form groups of point clusters. Recognizing the potential in the overlapping character-
istic of the synthesis and incoming frame provides a strategy for assessing their consistency.
To foster this strategy, we first meld the warped synthesis with the incoming frame, distinctly
marking each point to denote whether it originates from the synthesis or the incoming frame.
This meticulous categorization aids in identifying areas of inadequate temporal alignment,
enabling reliable detection of fabricated objects. Subsequently, ADoPT uses DBSCAN to
identify local clusters, effectively discarding outliers, and then removes clusters that contain
synthesis points, a process which verifies the presence of genuine objects consistent with
historical objects. In benign scenarios, this tactic results in a complete absence of clusters, a
testament to the adequate temporal alignment across frames. However, in poisoned scenar-
ios, clusters exclusively formed of incoming frame points remain, serving as indicators of
fabricated objects. Illustrative examples are shown in Appendix A.

5.3 Additional Components for Runtime Overhead Reduction

Synthesis Generation on Historical Frames. To achieve our goal of identifying anomalous
objects, ADoPT needs to differentiate between suddenly appearing normal objects and ma-
liciously placed objects. ADoPT synthesizes past frames by warping them to the time of the



CHO ET AL.: TOWARDS ATTACK-RESILIENT AND ROBUST PERCEPTION SYSTEMS 7

last historical frame F7, using SFE, inspired by point cloud densification techniques [11, 27].
However, these methods are computationally intensive, and generating synthesis may take
up to O(NL?) time, assuming latency in solving optimization problems is N, and we use L
historical frames. For instance, with a 0.1-second latency and 10 historical frames, it would
take 10 seconds to process all the scene flow estimations, which is impractical and cannot be
concealed through parallelization.

To reduce computational complexity, ADoP T approximates scene flow instead of solving
optimization problems. The estimated scene flow is propagated to its preceding frames,
facilitating a single estimation of the scene flow at each timestamp. As LiDAR senses a
varying number of points, voxelization is utilized to identify corresponding points in order
to propagate the most recent scene flow into past frames. This process involves mapping
voxel indices between frames to integrate the corresponding voxel’s scene flow with the
target point. In instances where there are no mapped points, the target voxel’s scene flow
is computed by taking the average of the adjacent voxels’ scene flows, a strategy depicted
in Figure 5. This substantially reduces the time complexity of computation-intensive SFE
processes from L? to L, saving time and enabling parallelization with the SFE process.
Voxel Downsampling. In ADoP T, the total latency is primarily influenced by the number of
points. To optimize the system, minimizing latency without significant TPR loss and FPR
gain, we reduce the number of points via voxelization. This approach’s efficacy is detailed
in Sec. 6.1, where we illustrate the interplay between voxel grid size, total latency, and the
accuracy of attack detection. This highlights the critical role of selecting the optimal voxel
grid size to balance system accuracy with timely execution.

6 Evaluation

In this section, we evaluate ADoPT under different attack scenarios. Additionally, we com-
pare our proposed algorithm with two widely-used defense methods for LiDAR spoofing
attacks, CARLO and 3D-TC2. All experiments are conducted on a server equipped with two
Intel Xeon 4110 CPUs and one NVIDIA RTX 2080 GPU.

Dataset. Our evaluations are performed on the nuScenes dataset [2], a large-scale au-
tonomous driving dataset collected from vehicles equipped with a 32-beam LiDAR system.
The nuScenes dataset is divided into two subsets: v1.0-mini (comprising 10 scenes) and
v1.0-trainval (comprising 350 scenes). Each scene is 20 seconds long and annotated at a
frequency of 2 Hz.

Attack Scenarios. The poisoned dataset utilized in the dense point injection attack is
sourced from the authors of 3D-TC2, who leveraged the v1.0-mini dataset. In this attack,
spoofed data points that represent vehicles, cyclists, and pedestrians are introduced system-
atically. Concurrently, in addressing the sparse point injection attack, we generated 355
poisoned frames using the validation set of the v1.0-trainval dataset, which consists of 150
scenes, adhering to the approach presented in CARLO. Given the intrinsic sparsity charac-
teristic of this attack, only spoofed points representative of vehicles are introduced.
Parameter Setting. We opt for a multi-layer perceptron (MLP) architecture composed of
six layers and 128 hidden units, a configuration empirically determined to yield the highest
accuracy while maintaining a low latency on our dataset. Figure 4 shows loss convergence
after 30 iterations, influencing our choice of a 30-iteration count. For training, we use a
fixed learning rate of 0.0008, empirically derived for optimum performance and convergence
potential. In defining our loss function, we attribute values of 1 and 2 to variables o and 3,
respectively, and the weights between the points, w(p;,p;), are all set equally to 1. The
DBSCAN procedure relies heavily on two critical thresholds: the minimal distance between
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Table 1: Comparison of Defense Methods. A lower false positive rate (FP) and a higher true
positive rate (TP) indicate a more accurate attack detection.

Dense Point Injection Sparse Point Injection
Fp| TP (D.CAR)T TP(D.CYL)T TP(D.PED)T FPJ] TP (S.CAR)?T
CARLO [23] 47.2 48.0 494 48.0 479 544
3D-TC2 (PP) [35] 20.7 98.6 95.0 56.9 16.6 535
3D-TC2 (SEC) [35] 19.6 98.3 45.8 47.5 16.3 84.2
ADOPT 4.5 97.2 98.3 95.2 9.3 85.4
30 40 7
I ‘ B Benign I Benign | ] mmm Benign
?20 i Poisoned 30 Poisoned 200 i Poisoned
g I |||| i Threshold
s il R i
£10) L 10 100/ | !
Ik I :
L ¥ 1 bl
0 0.1 0.2 0.3 0 0.4 0.5 0 0 50 100
Distance Distance Distance
(a) Chamfer Distance (CD) (b) Density-based CD (DCD) (c) Ours

Figure 6: Comparison of Anomaly Detection Metrics: (a) Chamfer Distance, (b) Density-
based Chamfer Distance, and (c) Our Proposed Cluster-based Metric. The x-axis represents
the distance values, and the y-axis indicates the number of frames corresponding to each
value. Our approach allows for establishing a threshold for attack detection, unlike conven-
tional metrics. The difference between the average distance values for benign and poisoned
cases supports this claim: (a) benign: 0.11, poisoned: 0.13, (b) benign: 0.47, poisoned: 0.47,
(c) benign: 4.31, poisoned: 35.34. In this work, we set our threshold to 15.

the nearest points and the minimal count of points necessary to form a valid cluster. Carefully
optimizing for FPR and TPR, we established thresholds of at least 17 points and a 0.25
distance parameter for dense point attacks, and a minimum of 9 points with a 0.75 distance
threshold for sparse point attacks. Detailed insights into the threshold determination process
are elaborated in Appendix B.

6.1 Experimental Results

Effect of ADoPT. To substantiate the effectiveness of ADoPT, we benchmark its perfor-
mance against baseline methods under dense and sparse point injection attack scenarios (see
Table 1). In this evaluation, we focus on two pivotal metrics: the false positive rate (FPR),
denoting the incorrect identification of benign frames as attacked, and the true positive rate
(TPR), reflecting the correct detection of poisoned frames. Our method manifests a low FPR,
evincing its efficacy in curtailing false alarms during the detection of spoofing attacks. We
match the baseline accuracy on relatively large objects such as D.CAR, while substantially
exceeding it when it comes to smaller objects, notably achieving TPRs of 98.3% and 95.2%
for cyclists and pedestrians, respectively. These statistics underline ADoP T’s superior ability
to pinpoint small spoofed objects. Consequently, ADoPT demonstrates marked supremacy
in identifying LiDAR spoofing attacks across different object types and attack scenarios.

Clustering-based Metric for Anomaly Detection. In considering alternative design ap-
proaches for consistency measurement, we acknowledge the potential utility of established
distance metrics. Among the prevalent metrics for evaluating point cloud similarity are CD
and Earth Mover’s Distance (EMD) [6]. Despite its utility, EMD’s computational demands
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deem it unfit for attack detection. To this end, our analysis leverages the Density-based
Chamfer Distance (DCD) [28], a novel metric that synergizes the strengths of CD and EMD,
promising enhanced accuracy.

As illustrated in Figure 6, both CD and DCD exhibit substantial fluctuations according
to road configurations, with object count and road environment serving as prominent influ-
encing factors. This variability creates a challenging environment for establishing the ideal
thresholds to distinguish between benign and poisoned frames. In contrast, our clustering-
based metric enables threshold determination for attack decisions, making it the most rea-

sonable metric for our situations.

Ablation Study. We conducted
an ablation study to assess the
impact of including or exclud-
ing the coherence loss term, as
well as employing DCD. Fur-
ther details can be found in Fig-
ure 7. Utilizing DCD as our
loss function in dense point in-
jection attack scenarios yielded a
4.6% FPR and TPRs of 94.8%,
92.9%, and 94.0% for D.CAR,
D.CYL, and D.PED, respectively.
These findings, exhibiting stable
FPR and decreased TPRs, sup-
port the idea that the injected fake
points compromise accurate SFE,
emphasizing the effectiveness of
the coherence-enhanced SFE.
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Figure 7: Ablations with/without Coherence Loss. We
examine the alignment of two point cloud sets (red
and blue points) by comparing the warped blue points
(obtained by adding the estimated scene flow) to the
red points. The first image denotes their initial sta-
tus, and the car (circled in red) indicates a fake object.
(a) shows results using only CD without coherence loss;
(b) displays outcomes of our proposed method using
both CD and coherence loss. We also explore replac-
ing our loss with DCD in (d). This comparison reveals
that fake points hinder SFE, seemingly drawing the red
points towards them, highlighting the necessity of our
coherence-enhancing loss under adversarial settings.

Initial

Impact of Historical Frame Length. Historical frames g
help distinguish sudden appearances of valid and fake & o \
points by correlating them with previously observed points.

We utilize 10 historical frames at a 10 Hz frequency to align 93

with 3D-TC, allowing for a fair comparison of the effects of 90

using raw data vs. using detection output. Testing with var- 10 20
ious frame lengths produces nearly consistent results from Historical Frame Length (L)

lengths of 2 to 15, but shows a decline thereafter (Figure 8). Figure 8: Attack Detection
Accuracy Changes in Relation

to Historical Length

TP (D.PED) (

6.2 Limitation & Analysis

Runtime Overhead. In ADoPT, the primary contributor to total latency is SFE latency,
significantly influenced by the voxel shape. As illustrated in Figure 9, ADoPT currently
experiences a considerable latency of 2.1 seconds. Nonetheless, we have the capacity to
diminish this to a mere 0.7 seconds, sustaining a robust attack detection accuracy at roughly
87% of the initial accuracy. This indicates a marked enhancement in speed without a critical
sacrifice in detection capability. To further hasten this process, we envision incorporating
mixed-precision training techniques [18], utilizing a 16-bit (or lower) numerical format for
MLP parameters. We also aim to reduce runtime overhead through the pre-training of the
MLP model, coupled with the application of test-time training [26], a strategy for quick
convergence and adaptability to various incoming frames.
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Failure Cases. As we employ the spatial clustering 100

. . . —_ —e— Accuracy 2.0
method for attack detection, most failure cases arise 2 e Time 3
when spoofed objects are attached to benign road 3 °° y) 158
objects. Although classified as false negatives, the £ g
spoofed object is identified as part of the benign ob- 9% o 1oF
ject it is attached to; thus, it does not significantly

0.05 0.10 0.15 0.20 0.25

affect existing navigation decisions or trigger numer- Voxel Shape

ous sudden alarms. Refer to Appendix C for point
cloud data illustrating a failure situation.
Analysis on Impact per Component on Perfor-
mance. ADoPT’s performance is contingent upon X
the accuracy of both SFE and DBSCAN. However, and the value of the x-axis represents
thanks to its structural advantage, it is able to main- the length of one side of the voxel.
tain effective responsiveness even when there is a decrease in the accuracy of either of these
elements. Let’s explore this further: Firstly, low SFE accuracy can lead to flawed synthe-
sis and clustering owing to inaccuracies in frame warping, thereby generating false positive
errors. This issue is often caused by shifts in input data distribution and occlusion. How-
ever, our coherence-enhanced SFE, grounded in an online optimization solving detailed in
Section 5.1, effectively counters this shift issue, helping to avoid low SFE accuracy and as-
sociated false positive errors. Secondly, despite adequate SFE, poor clustering accuracy can
occur when real objects come too close to each other or when fake objects attach to real ones,
resulting in merged object clusters and either false positive or negative errors. To mitigate
this, we leverage extended historical frames to foster a broader understanding of the context,
which aids in discerning the real objects from the fake ones more accurately. It is important
to note that false negatives generally do not significantly impair navigation or trigger false
alarms since a real object is indeed present, as discussed in the Failure Cases section. Lastly,
when both SFE and clustering accuracy are satisfactory, ADoP Tefficiently identifies attacks
in the majority of cases, as evidenced by the data presented in Table 1.

On the other hand, while ADoPT operates independently of LiDAR object detection,
immediate elimination of fake objects can enhance AV perception accuracy by reducing
falsely detected instances.

7 Conclusion

We present the ADoPT framework, designed to detect LiDAR spoofing attacks on AVs by
measuring temporal consistency at the point cloud level. ADoPT surpasses existing methods,
delivering lower false positive rates and higher true positive rates. While currently focused on
single-frame fake object injection attacks, ADoPT has the potential to address LiDAR spoof-
ing attacks spanning consecutive frames by promptly eliminating detected spoofed points,
converting them into benign frames, and continuously identifying spoofed objects in subse-
quent incoming frames. In the future, we aim to evolve ADoPT to counter diverse LiDAR
data manipulation attacks (e.g., object removal attacks), thereby enhancing the robustness of
perception modules in AVs.
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Figure 9: Impact of Voxel Shape
on Attack Detection Accuracy and
Time. We use a cubic-shaped voxel,
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