
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Cloud-LoRa: Enabling Cloud Radio Access LoRa
Networks Using Reinforcement Learning Based

Bandwidth-Adaptive Compression
Muhammad Osama Shahid, Daniel Koch, Jayaram Raghuram, and

Bhuvana Krishnaswamy, University of Wisconsin-Madison; Krishna Chintalapudi,
Microsoft Research; Suman Banerjee, University of Wisconsin-Madison

https://www.usenix.org/conference/nsdi24/presentation/shahid

Cloud-LoRa: Enabling Cloud Radio Access LoRa Networks Using
Reinforcement Learning Based Bandwidth-Adaptive Compression

Muhammad Osama Shahid*1 Daniel Koch*1 Jayaram Raghuram1

Bhuvana Krishnaswamy1 Krishna Chintalapudi2 Suman Banerjee1

1University of Wisconsin-Madison 2Microsoft Research *Co-Primary authors

Abstract
The Cloud Radio Access Network (CRAN) architecture has

been proposed as a way of addressing the network through-

put and scalability challenges of large-scale LoRa networks.

CRANs can improve network throughput by coherently com-

bining signals, and scale to multiple channels by implement-

ing the receivers in the cloud. However, in remote LoRa de-

ployments, a CRAN’s demand for high-backhaul bandwidths

can be challenging to meet. Therefore, bandwidth-aware com-

pression of LoRa samples is needed to reap the benefits of

CRANs. We introduce Cloud-LoRa, the first practical CRAN

for LoRa, that can detect sub-noise LoRa signals and per-

form bandwidth-adaptive compression. To the best of our

knowledge, this is the first demonstration of CRAN for LoRa

operating in real-time. We deploy Cloud-LoRa in an agri-

cultural field over multiple days with USRP as the gateway.

A cellular backhaul hotspot is then used to stream the com-

pressed samples to a Microsoft Azure server. We demonstrate

SNR gains of over 6 dB using joint multi-gateway decoding

and over 2x throughput improvement using state-of-the-art

receivers, enabled by CRAN in real-world deployments.

1 Introduction

LoRa [1] is one of the most popular long-range, low-power

wide area network (LPWAN) technology for IoT applications

such as smart city [2, 3], smart agriculture [4, 5]. Operating in

the license-free ISM band, anyone can independently deploy

a LoRa LPWAN, where IoT devices make use of off-the-

shelf LoRa radios to transmit messages to a gateway. Like

most common wireless systems, a LoRa gateway performs

all physical layer processing such as receiving and decoding

transmissions. Often, gateways relay these decoded packets

to the cloud to enable cloud-based IoT applications.

The last decade has seen the emergence of a new wireless

architecture – a Cloud Radio Access Network (CRAN), where

the gateway continuously streams the raw received digitized

radio signals (I/Q samples) to a virtual gateway in the cloud

over a back-haul link for physical-layer processing (Fig. 1).

CRANs, applied to LoRa, offer three disruptive advantages.

• Joint Multi-Gateway Packet Decoding: Economic viability

of a LoRa deployment is often dictated by its range – a

long range necessitates fewer base-stations thereby reduc-

ing capital and operating costs. Weak signals from multiple

gateways, when combined constructively, boost the signal-

to-noise ratio (SNR) [6, 7], and in turn, extend the range.

These approaches require centralization to jointly process

the raw radio signals from multiple base-stations.

• Rapid Physical-Layer Innovation to Boost Capacity: A

major challenge in dense areas is capacity scaling, as

mushrooming uncoordinated LoRa deployments lead to

increased collisions [8]. Recently, several promising PHY-

layer demodulation techniques [9–16] have shown an order

of magnitude improvement in capacity. CRAN enables their

rapid deployment and A/B testing in the field, as virtual

software receivers can be deployed in the cloud.

• Elastic Scaling to Multiple Channels: As capacity needs

increase, traditional LoRa gateways need to be physically

upgraded to high-end gateways with parallel receiver chains

baked into their ASIC. CRAN gateways capture a wide

spectrum and allow for the potential to dynamically scale

the number of channels in the cloud depending on demand.

While researchers have demonstrated the potential of CRANs

to enable the deployment of new physical layer techniques [6,

17–19], to the best of our knowledge, there is no end-to-end

implementation of a LoRa CRAN till date where gateways

continuously stream radio samples to virtual receivers in the

cloud to be decoded in real-time. The key contribution of
this paper is Cloud-LoRa, the first end-to-end practically-
deployable LoRa CRAN for urban and rural deployments.
We demonstrate that Cloud-LoRa allows for the practical

deployment of real-time joint multi-gateway packet decoding

in the cloud with techniques such as Charm [6] and achieves

an SNR gain of over 6 dB. This gain could translate to a

doubling of the range. We also show that rapid deployment

of novel decoding techniques such as [9, 10, 12] offer a 2X
improvement in throughput as well as scaling to multiple

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1959

Fig. 1: An Illustration of CRAN and Cloud-LoRa

channels using per-channel virtual receivers in the cloud.

Cloud-LoRa comprises three key components: i) a CRAN
gateway that can be deployed on software-defined radios

(e.g., USRP and a NUC), ii) ACCIO, an online reinforce-

ment learning-based adaptive compression algorithm, and

iii) a cloud gateway with user-defined receivers. Cloud-LoRa
allows researchers to deploy their own physical layer demod-
ulators as containers at the cloud gateway (Figure 1).

Extreme Back-Haul Bandwidth Gap in a LoRa CRAN
A common challenge to every CRAN is the need to stream

a high volume of raw signals (I/Q samples) to the cloud.

Each 1 MHz of radio spectrum generates a continuous data

stream at 64 Mbps1 to the cloud. However, LoRa LPWANs

are intended for low-cost deployments and often, the only

backhaul available in several rural and remote deployments is

a cellular link offering as low as 500 kbps [20–22]. Therefore,

a viable LoRa CRAN must be capable of streaming samples

even on such low-bandwidth links to the cloud.

Detecting Sub-Noise LoRa signals buried in noise. At such

low backhaul bandwidths, channel activity detection to avoid

streaming noise signals to a cloud server is an integral compo-

nent of a CRAN gateway. A majority of the existing activity

detection methods rely on observing signal strength above a

fixed threshold [23]. Due to its spread-spectrum technology,

LoRa signals are received at sub-zero dB SNR, i.e., they are

buried in noise and hence signal strength-based thresholding

fails. Even recent works, such as SparSDR [24] that uses time-

frequency analysis for activity detection cannot distinguish

sub-noise LoRa from noise in real-time. SparSDR can detect

sub-noise signals at the cost of significantly higher false posi-

tives, a tradeoff that defeats the purpose of activity detection.

In this work, we develop an activity detection approach that

detects sub-noise LoRa signals in real-time across multiple

channels with relatively low false positives.

Adaptive Lossy Compression and Streaming. A key com-

ponent for any CRAN is compressing real-time streaming of

radio samples to the cloud. CRANs typically employ lossless

compression techniques since lossy compression degrades

the quality of the signal and adversely affects its decodability.

Further, it is hard to predict in advance at the gateway how

1Two 32-bits for each complex-valued sample at 1 Msamples/s

much “lossiness” will allow a specific part of the signal to be

decoded, since decodability of the signal depends on several

dynamic factors such as SNR of the received wireless signal,

the specific demodulation being used in the cloud etc.

As we evaluate in Section 5, state-of-the-art lossless com-

pression techniques provide up to 70% compression for LoRa

signals, depending on the SNR. At this compression, a single

500 kHz wide LoRa channel with 10% channel activity will

generate a 960 kbps stream – about twice greater than the

capacity of a rural cellular backhaul link of 500 kbps.

To address this challenge, we propose ACCIO, an online re-

inforcement learning (RL)-based wavelet compression that is

lossy and adaptive, to compress sub-noise LoRa transmissions.

ACCIO receives rewards (feedback) from a cloud receiver for

decoding successfully, and learns to employ the right level

of compression based on the available backhaul bandwidth

and SNR at the gateway. ACCIO uses TCP BBR [25] to reli-

ably deliver the lossy-compressed radio signals to the cloud.

The bandwidth estimates from BBR, signal SNR estimates,

and application buffer levels are then used by ACCIO’s RL

agent to dynamically set the appropriate level of compression.

The motivation behind using RL for adaptive compression is

discussed in detail in Section 3.2.

Open Source, Deployable Implementation. Our implemen-

tation of the Cloud-LoRa gateway performs channelization,

activity detection, and runs ACCIO in real-time. Its cloud

gateway runs on Azure and implements several recent LoRa
demodulators including CIC [12] and Charm [6]. To demon-

strate its practical viability, we deploy and test Cloud-LoRa

in an 8-channel CRAN in two scenarios: 1) a rural outdoor

setting with cellular backhaul, and 2) an urban outdoor set-

ting. We have open-sourced our framework2 with well-defined

APIs to plug-in new physical-layer demodulators, and allow

scalability with the number of channels. We hope that Cloud-

LoRa will encourage and enable future researchers to deploy

and compare novel physical-layer demodulators. The major

contributions of this paper are:

• We present Cloud-LoRa, the first practically-deployable end-

to-end LoRa CRAN solution. Our current implementation

streams and processes signals from up to 8 LoRa channels

in real-time to the cloud. We hope that researchers will be

2 https://github.com/UW-CONNECT/cloud-lora.git

1960 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fig. 2: Components of Cloud-LoRa : CRAN gateway (USRP) performs channelization, followed by activity detection at the

NUC. ACCIO then compresses active periods using the RL agent and streams to the cloud server. The cloud server decodes the

received packets and provides reward feedback to the ACCIO RL agent.

able to use Cloud-LoRa to deploy, test, and compare new

physical layer demodulators in the field.

• We propose a novel LoRa activity detection approach that

detects even sub-noise LoRa signals across multiple chan-

nels in real-time, without demodulating them.

• We propose ACCIO, a reinforcement learning-based adap-

tive compression technique that aims to maximize packet

decodability in the cloud CRAN receiver. ACCIO also com-

presses the active LoRa signals to meet the available back-

haul bandwidth and desired latency requirements.

• We provide an open-sourced implementation of Cloud-

LoRa including CRAN gateway (on USRP), ACCIO, and

several LoRa receivers as Dockerized containers.

• We demonstrate Cloud-LoRa through rural field deploy-

ments and by testing other recently published techniques [6,

12]. We show an SNR gain of over 6dB when signals from

multiple gateways were jointly decoded in the cloud. We

see a 2X boost in network throughput using novel physical-

layer innovations deployed in the cloud. We process up to 8

LoRa channels in real-time, further improving throughput.

We attest that this work complies with the applicable ethical

standards of our home institution.

2 Background and Motivation

LoRa Modulation-DeModulation: LoRa uses Chirp Spread

Spectrum (CSS) modulation, a spread-spectrum technology

that enables LoRa to operate at sub-zero dB SNR due to

its resilience to noise and interference. The spreading factor

(SF), which defines the number of bits per symbol, along with

the RF bandwidth of a LoRa channel (BW) determine the

symbol duration, datarate, energy consumption, and range

of communication. As the SF increases, the range will also

increase, but at the cost of reduced datarate. As SF and BW

are predetermined for a transmitter, a LoRa receiver searches

for preambles of a single SF and BW to detect the start of a

packet. LoRa demodulates by dechirping the received signal,

which enables it to receive sub-noise signals [26].

Variable Backhaul Bandwidths: While access to broadband

connectivity has been expanding, available bandwidths still

vary vastly across the country [22, 27]. FCC 2020 reports on

broadband access determined that potentially over 50% of

rural Americans lack broadband access [20, 28] of 25 Mbps

download/3 Mbps upload speeds. Broadband speeds lower

than 1 Mbps have been identified as a bottleneck for the adop-

tion of precision agriculture [21, 29, 30]. Additionally, signif-

icant variability in data-rates can be expected over wireless

links even in urban areas due to changes in load, environment,

service providers, among other factors [31, 32].

Recent works on CRAN-based LoRa: The benefits of

CRAN-based LoRa have been identified in recent works such

as Charm [6], Nephalai [19], and OPR [7]. Charm and OPR

demonstrate that the range of communication can be improved

by coherently combining signals using CRANs. Nephalai

proposes a static compression technique using compressed

sensing [33] to stream multiple LoRa channels to the cloud

to improve the network throughput. More generally, physical-

layer-agnostic CRAN for IoT has been proposed in works

such as SparSDR [24] and CharIoT [34]. While these existing

works have identified and demonstrated the benefits of CRAN,

dynamic compression that adapts to the signal characteristics

and meets the variable backhaul bandwidths of LoRa gate-

ways remains an open challenge. We propose an RL-based

adaptive compression to address this challenge.

3 Proposed System - Cloud LoRa

Towards a practical, real-time LoRa CRAN, our Cloud-LoRa

framework consists of three components, illustrated in Fig. 2:

1. CRAN gateway : a software defined radio (SDR) gateway

that continuously streams samples from a wideband spec-

trum. The gateway performs channelization to filter LoRa

channels and detects activity in each individual channel.

The activity detection module at the gateway is designed

to detect even sub-noise LoRa signals, and stream only

those signals corresponding to active LoRa transmissions.

2. ACCIO (green blocks in Figure 2) : the active LoRa trans-

missions need further compression. We propose ACCIO,

an online RL-based compression algorithm that adaptively

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1961

predicts the compression threshold for each active period.

ACCIO’s goal is to maximize the total packets decoded in

the cloud gateway, while meeting the backhaul-bandwidth

and latency constraints.

3. Cloud Server : we implement standard LoRa as well as

user-defined LoRa receivers in a Microsoft Azure cloud

server as Docker containers. The cloud server reconstructs

the compressed samples, which are then demodulated and

decoded. The number of packets decoded per active period

is sent as reward feedback to ACCIO’s RL agent.

3.1 CRAN Gateway
LoRa transmitters typically have a low duty-cycle to conserve

their battery. As a result, a majority of the samples captured

at a CRAN gateway are noise. Since it is wasteful to transport

noise to the cloud, activity detection is critical in CRAN.

Multi-Channel Filter. The gateway performs channelization

to filter an individual channel from the wideband spectrum

before detecting activity. We first convert each channel to

baseband and then apply a 4th-order IIR Elliptical filter (Fig-

ure. 2) [35]. This light-weight filter both suppresses other

channels by 100 dB and offers a small transition band, ensur-

ing minimal cross-channel leakage and real-time operation.

Sub-Noise LoRa Activity Detection. Activity detection is

typically performed using energy-based approaches such as

carrier sensing, which fail to distinguish low-SNR LoRa sig-

nals from noise [24]. At received SNRs below 0dB, the energy

of LoRa samples becomes comparable to that of noise.

A standard LoRa receiver performs dechirping followed

by Fast Fourier Transform (FFT) to accumulate energy in

a single frequency, in-turn distinguishing noise from LoRa

samples [26, 36]. However, dechirping is specific to a spread-

ing factor (SF). Current multi-channel LoRa gateways have a

dedicated RF front-end for each SF. A naive sub-noise LoRa

activity detection is to dechirp the received samples with each

possible SF (7 through 12), and then perform energy-based

detection. This is computationally intensive and requires 6×
more multiplications than a single demodulator. Therefore, an

SF-agnostic activity detection is desirable for LoRa CRAN.

We propose an SF-agnostic LoRa activity detection algo-
rithm to detect sub-noise LoRa signals at the CRAN gateway.

Our activity detection leverages two properties of LoRa: 1).
Two LoRa signals of different SFs are Pseudo-orthogonal

(more in Appendix.A.1). e.g., dechirping an SF7 signal with

SF8 downchirp would result in pseudo-random noise. 2) For

a given bandwidth, the downchirp of one SF is a time-scaled

function of the downchirp of another SF. Based on these prop-

erties, we design superDC, a custom downchirp, that can
dechirp and hence detect the activity of more than one SF by
superimposing downchirps of multiple SFs.

The CRAN gateway continuously dechirps an array of

samples with the superDC, followed by an FFT. An active
LoRa transmission results in a sharp peak above the noise

Fig. 3: FFT of signal dechirped with superDC

floor in the FFT, triggering activity detection at the gateway.
For instance, a superDC that superimposes SF7, SF8, and SF9

downchirps detects an activity only if the active signals are in

SF7 through SF9. Since an SF9 downchirp is 4× as long as

that of SF7, and 2× as that of SF8, we construct the superDC

by superposing one SF9 downchirp with two consecutive SF8

and four consecutive SF7 downchirps (more in Appendix.A).

Figure 3 shows the FFT of a signal containing SF7 and SF9

chirps, each with 10 dB SNR, dechirped with this superDC.

We observe four SF7 peaks and one SF9 peak since the su-

perDC includes four SF7 and one SF9 downchirps.

The active LoRa signals that can be detected by the

superDC are determined by the superposed downchirps,

which in turn determine the length of the superDC. A su-

perDC to detect all SFs (7 to 12) must accommodate at least

one SF12, two SF11, four SF10, eight SF9, sixteen SF8, and

thirty-two SF7 downchirps. In this case, the FFT peak-gain

(ratio of the maximum peak in an FFT window to its noise

floor 3) of an SF7 symbol is 32 times lesser than that of an

SF12 symbol. Hence, low-SNR SF7 symbols could go un-

detected. On the other hand, using narrower windows would

lead to missing higher SF symbols. To combat this challenge,

we design two superDCs: superDClow to detect symbols with

SF 7 through 9 and superDChigh to detect symbols with SF

10 through 12. The former can be defined in time domain as

superDClow(t) =
3

∑
m=0

C(t −mTSF7, 7)

+
1

∑
m=0

C(t −mTSF8, 8) + C(t, 9), 0 ≤ t ≤ TSF9, (1)

where TSF =
2SF

BW
and C(t, i) is the downchirp of SFi. We can

similarly define superDChigh. By choosing two groups of SF,

we minimize the impact of excessive window sizes, while still

maintaining SF-agnostic detection. The received samples are

dechirped using both superDClow and superDChigh to detect

activity. As we demonstrate in our evaluation, the two groups

of superDC signals can detect all LoRa activity in real-time.

As the SNR of the received samples decreases, the peak-

gain of the received signal dechirped with a superDC signal

3We maintain a running estimate of the noise floor to confer resilience

against temporal variations.

1962 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

also decreases. This could result in spurious samples trig-

gering activity detection. To reduce such false positives, the

gateway signals activity in the channel whenever a minimum

of 3 consecutive peak-gains, which correspond to 12 symbols

of the smallest SF (i.e., SF7 or SF10), are observed to be

higher than a threshold (average peak gain for noise signal).

We push such an active period’s I/Q samples to the Packet
Queue for compression and transport to the cloud server.

In summary, dechirping received samples using our custom-

designed superDCs (superDClow and superDChigh) provides

the processing gain needed to detect LoRa activity even when

the received signals are much below zero dB SNR. The pro-

posed activity detection is agnostic to the SF of the transmitter,

making it a general-purpose front-end, with only 2× multi-

plications of a single LoRa demodulator, as opposed to the

state-of-the-art gateways that incur 6× multiplications.

3.2 ACCIO : Reinforcement Learning-based
Adaptive Compression

While activity detection reduces the volume of noise samples

streamed, when the network traffic increases, even active pe-

riod samples can be too high for some backhaul bandwidths

to support. Even with perfect activity detection, the required

bandwidths for 64 channels with ≈ 10% channel occupancy

is over 200 Mbps. Nephalai [19], a recent work on LoRa

CRAN, utilizes downsampling and compressive sensing for

compression. But, novel demodulators leverage oversampling

to resolve packet collisions [9, 11–13], and hence compres-

sion without downsampling is necessary. Moreover, LoRa’s

chirp spread-spectrum (CSS) modulation renders dictionary-

based lossless compression methods ineffective. We propose

ACCIO , a light-weight RL-based adaptive compression al-

gorithm that works on top of a Discrete Wavelet Transform

(DWT)-based lossy compression scheme in order to maximize

the number of packets decoded at the cloud server, without

exceeding the backhaul bandwidth and latency constraints.

Lossy Active-Period Compression. We propose to utilize

the Discrete Wavelet Transform (DWT) [37] as our lossy com-

pression scheme for oversampled active LoRa signals. DWT,

being a multi-resolution time-frequency analysis, is a suit-

able compression tool for CSS modulation which uses both

time and frequency for modulation. Each DWT coefficient

represents the energy of the received signal corresponding to

a particular frequency (level) and time (shift). Also, DWT’s

linear complexity (O(N), where N is the length of the signal)

makes it light-weight, allowing it to compress in real-time.

More background on DWT is presented in Appendix B.

We compress active LoRa signals by first applying DWT

to the signals, and then retaining only those DWT coeffi-

cients with magnitude greater than a threshold Cthresh. The

compressed signals can be reconstructed if sufficient energy

is retained in the DWT coefficients. As we increase Cthresh,

we retain fewer coefficients and compress more; but the en-

Policy Network

Network and
Signal

characteristics
(State)

Reward
(feedback from Server)

Sample
action
from

policy

DWT
threshold

Fig. 4: Overview of the RL algorithm of ACCIO

ergy of the signal (coefficients) retained will decrease, leading

to lossy compression. Determining the optimum threshold

that ensures reliable reconstruction of signals at the receiver

(cloud server), while maintaining a compression to match the

network bandwidth is a challenging problem.

Bandwidth-Adaptive Compression. The optimal compres-

sion threshold of DWT coefficients has a non-linear depen-

dence on three factors: i) the SNR of samples at the gateway,

ii) the backhaul network conditions, and iii) the LoRa de-

modulator at the cloud. Current compression approaches are

static [19, 24] and do not adapt to these factors. Therefore,

an adaptive compression that can learn this dependence is

required. While DWT provides an effective way to compress

based on the time-frequency characteristics of the signals,

we still need a method to determine the appropriate amount

of compression based on the backhaul network conditions

(which are usually non-stationary). To address this, we pro-

pose an RL-based (DWT) threshold prediction algorithm that

adaptively selects the level of compression for any given ac-

tive period, with the goal of maximizing the cumulative num-

ber of packets decoded at the cloud server.

Choice of RL.
While supervised learning methods (particularly DNNs)

are effective at modeling non-linear dependencies between the

input and the target, they are designed for an offline scenario

where the data distribution is not changing over time [38].

This makes them less effective when the network traffic and

conditions (e.g., duty cycle, SNR, and the number of channels)

are non-stationary, and also when there is lack of visibility into

demodulator design used at the cloud receiver. Reinforcement

learning is particularly well suited for this scenario since by

design it learns an agent or policy in an unknown, dynamic

environment such that the agent can perform a sequence of

actions with the goal of maximizing its cumulative reward

feedback [39]. In our setting, the agent performs the task of

adaptively selecting the DWT threshold for each active period

(based on various signal and network characteristics), with

the goal of maximizing the total number of packets decoded

at the cloud receiver over a transmission interval. Moreover,

our choice of an online policy gradient-based RL algorithm

does not require pretraining on a large collection of offline

data from the target (or a similar) environment. It can start

learning the compression policy from scratch based on data

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1963

Fig. 5: Components of the reward function : (a) udec(s,a), (b) uband(s,a), (c) ulat(s,a).

from the target environment, and still learn a good stable

policy (see § 5.6). Hence, it can be applied to a wide variety

of applications and deployments.

An RL agent at the gateway learns to take sequential ac-

tions based on the current state of the environment such that

its cumulative-discounted rewards received from the environ-

ment over multiple time-episodes is maximized (more back-

ground in Appen. D). Crucial to the success of an RL agent

are the design of the state variables and the reward function.

Based on a careful study and evaluation, we propose suitable
state variables and a reward function that enable the agent
to adaptively predict the (DWT) threshold in order to achieve
high decodability under varying signal and backhaul condi-
tions. A unique challenge to the design of the reward function

in this setting is the lack of perfect ground truth for providing

the reward signal. In a typical RL system, the environment

would have ground truth for providing the reward. This occurs

because some of the transmitted active periods could be false

positives (without actual packets), and it is unknown to the

server whether a received active period is a false positive or

not. We address this in the design of our reward function.

We focus on the Policy Gradient class of RL methods [40,

41], whose goal is to directly learn an optimal policy function

that is parameterized by a neural network. Specifically, we

use the Proximal Policy Optimization (PPO) method with

clipped objective [42] for online training of the RL agent.

PPO is widely adopted as a state-of-the-art online policy-

gradient method due to its better computational and sample

efficiency, and stable policy function updates. We next discuss

the components of our RL algorithm.

Action. The action of the RL agent a corresponds to select-

ing the DWT threshold Cthresh. In principle, the threshold

is continuous-valued. However, we simplify the design by

choosing a discrete set of eight threshold levels. Specifically,

if a ∈ {0,1, · · · ,7} is the action taken, then Cthresh = 5davg a ,

where davg is the average DWT coefficient value over the

current active period. (The factor 5 is chosen to cover a wider

range of thresholds.). Our action space is discrete and the pol-

icy function πθθθ(a |s) will be a conditional probability mass

function that sums to 1 over all the actions.

States. We provide the RL agent with a state vector s that

broadly consists of the network (pipeline) characteristics and

the signal characteristics from the recent active periods. The

state variables based on the network are functions of the

State variable Description

norm_pkt_len (AP size in samples) / (sampling rate); AP - Active period

mag_time (AP magnitude in the time domain) / (noise magnitude)

dcmp_avg Average value of the first-level decomposition DWT coefficients

PG_hist A 4-bin histogram of the peak gain values

BW_obs log(BW_btl / 50,000,000); BW_btl - estimated bottleneck bandwidth

BW_ratio (#bits sent to cloud in the last 10s) /
∫

BW_btl over the last 10s

BW_ratio_5 (#bits sent to cloud over last 5 AP) /
∫

BW_btl over last 5 AP

BW_ratio_10 (#bits sent to cloud over last 10 AP) /
∫

BW_btl over last 5 AP

buffer_size Fraction of the packet queue filled with AP

Table 1: State variables used by ACCIO . The first four states

capture LoRa characteristics and the rest capture the network.∫
BW_btl is computed as a Riemann sum over time period.

estimated bandwidth and the current fraction of the packet

buffer that is filled. The state variables based on the signal

characteristics include the normalized packet length, the ratio

of signal-to-noise magnitude in the time domain, and a his-

togram of the peak-gain values of the active period. The full

list of states with a description is given in Table 1.

Reward Function. A well-designed reward function is a cru-

cial part of the RL design. As discussed earlier, the goal of

ACCIO is to compress the LoRa signals in the active peri-

ods such that it maximizes the number of packets correctly

decoded, while also meeting the bandwidth and latency con-

straints. We design the reward function as a sum of four terms:

i) a positive reward term udec(s,a) that is a weighted count

of the number of packets decoded correctly (Fig. 5 a); ii) a

negative penalty term uband(s,a) that strongly discourages the

bandwidth utilized from getting very close to the available

bandwidth (Fig. 5 b); iii) a negative penalty term ulat(s,a)
that strongly discourages the overall latency (from client-side

processing and network delays) from getting very close to

a preset limit (e.g., 2 seconds) (Fig. 5 c); and iv) a strong

negative penalty uover(s,a) (equal to −10) that prevents the

packet queue from filling up close to its limit (dictated by the

hardware). The last penalty term uover(s,a) is applied preemp-

tively at the client side whenever an action of the RL agent

could potentially lead to a transmission that will cause buffer

overflow and/or exceed the acceptable transmission time. The

overall reward function is given by,

r(s,a) = udec(s,a) − uband(s,a) − ulat(s,a) − uover(s,a),

The reward terms are discussed formally in Appen. C. De-

tails of our PPO implementation is given in Sec. 4, and more

background on the PPO algorithm is given in Appen. D.

False Positives & Reward Feedback. The cloud server does

1964 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

not know the ground truth about LoRa packets, i.e., a trans-

mitted active period could just be noise (false positive). More-

over, in a low-duty-cycle network, the cloud receiver may

decode only a small number of packets relative to the total

number of active periods. Therefore, the RL agent could learn

to compress more since there is a higher chance of incurring

penalties from overshooting BW and/or latency limits, while

the positive rewards for decoding the occasional packets are

small. This could drastically increase the overall learning time

necessary for the RL to reach an optimal policy. To address

this, in the reward term udec(s,a), we weight the number of

packets decoded by the inverse of the true positive rate, which

is estimated as the fraction of LoRa packets decoded correctly

over the last 100 detected active periods.

3.3 CRAN Cloud Server
The active LoRa signals compressed using ACCIO are

streamed to the cloud server using a reliable TCP connec-

tion. Each compressed active period is packetized with meta-

data such as gateway ID, time-stamp at the gateway, length

of the active period, sampling rate, channel number, number

of DWT levels, among others. The cloud server in our archi-

tecture receives the packet, reads the metadata, and performs

inverse DWT to reconstruct the signal. It is then input to user-

defined LoRa receivers, implemented as Docker containers in

the cloud. We separate the LoRa demodulator and decoder so

that a custom LoRa demodulator can be deployed by simply

updating the demodulator, while retaining the rest of the cloud

implementation. The number of decoded packets is sent back

to the CRAN gateway as a reward (component) to ACCIO ,

which then uses the reward to update its RL policy.

Two key objectives of our cloud-server design are i) scal-

ability and ii) ease of deployment of user-defined LoRa re-

ceivers. To address scalability, we deploy parallel Docker

containers per consumer. As the network scales, the cloud

server increases the number of consumers to keep up. To

facilitate user-defined LoRa receivers, we include a multi-

plexer that receives compressed signals and routes them to

consumer containers based on their metadata. The link be-

tween the multiplexer and the consumers is simply a set of

sockets, where each consumer listens on a unique port. The

consumer is unaware of the compression and reconstruction.

A configuration file maintains the global mappings of the

(base-station, channel) pairs to ports. Note that users can map

multiple base stations to the same ports to easily apply coher-

ent combining such as Charm [6] atop our implementation.

Each Cloud-LoRa packet contains time-stamps for coarse

time synchronization between the base stations.

4 Implementation

We describe in detail our end-to-end implementation of the

three components of Cloud-LoRa : 1) SDR as CRAN gateway

2) ACCIO , the RL-based compression, 3) the cloud server.

CRAN Gateway - Activity Detection. We use a USRP

B200 [43] as the CRAN gateway to capture a 2 MHz spec-

trum that includes 8 LoRa channels (125 kHz bandwidth and

75 kHz guard band, as per LoRaWAN specs). Channelization

is performed using eight parallel 4th-order elliptical low-pass

filters. Each filtered channel is input to the activity detection

module implemented using Python. We use superDClow and

superDChigh to detect active periods of SF7 to SF9 and SF10

to SF12 respectively. We advance the superDC windows ev-

ery 1/3-rd of the lengths of respective window samples, to

ensure alignment with higher SFs.

CRAN Gateway - ACCIO The adaptive compression of

ACCIO is implemented on a client laptop. On detecting ac-

tive periods in each channel, the corresponding I/Q samples

are pushed to the Application Packet Queue. The RL agent

pops the oldest active period and extracts the state variables

from the current network and the active period’s coefficients.

Table 1 lists the state variables used by the RL agent.

The RL agent was trained using the PPO algorithm [42],

whose implementation is provided in the Keras and Tensor-

Flow libraries [44]. Both the policy function and the value (or

advantage) function in our PPO-based agent are realized using

a fully-connected neural network with two hidden layers of

sizes 48 and 32 respectively. This small network enables light-

weight training and action determination, while maintaining

sufficient complexity for complex approximations. The out-

put layer of the policy network uses the Softmax activation

to return probabilities over the set of actions. We set the dis-

count factor of the cumulative rewards to γ = 0.9. We use

the variant of PPO with a clipped objective, and set the clip

ratio ε to 0.2. Optimization is based on the stochastic gradient

descent method Adam [45], whose learning rate for the policy

network and value-estimation network are set respectively

to 0.00025 and 0.009. The episode length was defined as 50

active periods, i.e., the agent performs online training, and

after every 50 active periods, rewards are returned from the

server. To maintain strict reward ordering, each active period

(once popped from the application packet queue) is given an

ID counter. The active period statistics are then cached and

re-ordered after the decoding information is returned. As our

implementation is run online, this re-ordering and training

process runs in a background daemon.

The RL agent chooses an action that determines the com-

pression threshold Cthresh, and DWT coefficients with mag-

nitude < Cthresh are set to zero. We further compress the

DWT coefficients using Lz4 (preferred over Gzip due to its

faster compression). The compressed coefficients are packe-

tized with metadata and sent through TCP to the cloud server.

Packet metadata includes the SDR gateway’s ID, the active

period’s ID, the channel it was received on, sampling rate,

time the active period was received at the client, as well as

other useful information such as the data-section size and its

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1965

(a) (b)

Fig. 6: (a) RURAL : Outdoor rural deployment where LoRa Tx (yellow circles) transmit to a USRP B200 (red triangle), which is

then connected to a client running ACCIO that streams to Azure server through cellular hotspot in real-time.

(b) URBAN : LoRa Tx transmit to a USRP which stores the received samples in a local file.

DWT level sizes (needed for Inverse DWT).

We utilize BBR as the TCP variant; it provides the esti-

mated network bandwidth to the client. We use the socket

statistics tool to obtain the bottleneck bandwidth, delivery

rate estimated by BBR, and the link’s average round-trip time.

The bottleneck bandwidth is a key state used by the RL agent

to determine a compression threshold.

LoRa receiver at the Cloud Server. The cloud server is im-

plemented in Microsoft Azure as Docker Containers [46],

demodulating packets and sending rewards back in real-

time(Cloud-LoRa is amenable to deployment on other cloud

providers as well.) Our server utilized 8 Docker containers,

each reading on unique ports corresponding to each LoRa

channel. The Docker containers were booted using Docker

Compose [47] and each container was running on an Azure

VM. The first module of the cloud server is a multiplexer that

decompresses the received samples: it first performs the in-

verse of Lz4, reads the metadata, and then decompresses using

Inverse DWT. Using the metadata, the multiplexer routes the

decompressed DWT coefficients to the corresponding user-

defined consumer (demodulator). In other words, the multi-

plexer is responsible for reconstructing the active periods and

placing them in the queue of the appropriate consumer based

on the metadata of the received TCP packets. The consumers

are Docker containers that take the reconstructed active period

samples as input, and run the user-defined LoRa demodulator

algorithm that outputs symbols, followed by the LoRa de-

coder that outputs bits. The number of packets decoded per

active period, weighted by the inverse-true-positive-rate is

used by the RL agent as a reward component in the feedback

channel back to the corresponding CRAN gateway.

5 Evaluation

We have deployed the first LoRa CRAN operating in real-

time, in two practical outdoor deployments/scenarios. In RU-

RAL(Fig 6(a)), we deployed eight LoRa transmitters in an

agricultural farm. Here, we use a cellular backhaul, whose

bandwidth varies with time; the backhaul bandwidth is the

bottleneck in the network. We show the real-time operation

of Cloud-LoRa in this scenario averaged across multiple days.

URBAN(Fig 6(b)) shows an urban deployment where the

backhaul does not pose a limitation in bandwidth. We leverage

this scenario to perform controlled experiments, evaluate the

micro-benchmarks and perform an ablation study. Towards

evaluating Cloud-LoRa , we answer the following questions.

1. How well does Cloud-LoRa perform in rural settings with

impoverished cellular backhaul?

2. Can Cloud-LoRa enable real-time joint decoding of LoRa

packets from multiple gateways in the cloud to improve

coverage or capacity?

3. Can Cloud-LoRa enable rapid deployment of recently de-

veloped state-of-the-art LoRa demodulators?

4. Can Cloud-LoRa scale elastically to provision for network

capacity by increasing the number of channels?

5. How does ACCIO adapt in real-time to changing backhaul

bandwidth, network latency, and channel quality?

6. How does ACCIO’s adaptive compression respond to vary-

ing backhaul network latency, and how well does it adapt

to bandwidth variations?

5.1 Real-world Deployment Settings
We describe our rural and urban deployments in detail below.

RURAL : Rural deployment scenario. As shown in

Fig. 6(a), our deployment includes 8 LoRa transmitters (yel-

low circles) that broadcast data from humidity sensors to

a CRAN gateway (red triangle). Each transmitter operates

in a dedicated 125 kHz BW LoRa channel and chooses a

random SF and packet length to emulate rate adaptation in

LoRaWAN networks while actively transmits 10% of the time.

Our CRAN gateway receives over 902.2 MHz to 904.2 MHz

and receives samples over 8 different LoRa channels one for

each transmitter. It uses a Netgear cellular mobile hotspot

as backhaul to a CRAN cloud server in Microsoft Azure

(Fig. 6(a)). The backhaul bandwidths achieved by the cellu-

lar hotspot varied over a wide range: 1 Mbps to 15 Mbps at

different locations and times. As shown in Fig. 6(a), Cloud-

LoRa streams samples to the cloud server in real-time, using

ACCIO to learn and adapt to the varying available bandwidth.

The transmitters were left in the field over 2 days with a total

of ≈470000 packets transmitted. The CRAN gateway did not

1966 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fig. 7: (a) : Cloud-LoRa throughput performance across 8 parallel LoRa channels, averaged over multiple days in RURAL

scenario. (b) Corresponding compression performance. (c) Ablation study on Compression.

have any pre-trained model for ACCIO to use; instead, the

RL agent learned from scratch and adapted in real-time.

URBAN: Urban deployment used for Ablation Study. We

deploy 9 off-the-shelf LoRa transmitters, each operating in a

different channel in an urban, outdoor setting (Figure 6(b)).

The transmitters were deployed over an area of 2.5 km x 1 km.

The CRAN gateway receives the samples from all the trans-

mitter over a wide bandwidth and stores them locally with

time stamps to enable replay. The stored samples are then

replayed in real-time to the cloud server to emulate real-time

streaming. We connect the USRP to the cloud server via a

router. This activity is to ensure consistency across multiple

microbenchmark experiments that run with different param-

eters. This setup allows us to simulate different backhaul

bandwidths and latencies to the cloud by using Linux Traffic

Control (TC) [48] at the router, a tool for shaping traffic. We

perform controlled, comparative, and ablation studies using

this deployment by varying various factors such as backhaul

bandwidths(Sec. 5.6), LoRa channel quality(Sec. 5.7), net-

work load(Sec. 5.5), backhaul latency(Sec. 5.7), and others.

Backhaul Compression Baselines compared. We imple-

ment and compare the compression and throughput perfor-

mance of Cloud-LoRa against five baselines: 1) Standard
LoRa – a LoRa gateway that demodulates each packet at the

gateway i.e., without CRAN; 2) CRAN with No compres-
sion; 3) Nephalai [19], which proposes a compressed-sensing-

based static compression; 4) SparSDR [24] – a sparsity-aware

compression which is agnostic to the PHY-layer technology;

and 5) Rate-limiting Oracle. This oracle provides a theoreti-

cal upper bound on the throughput and compression perfor-

mance. We assume that the oracle has a global view of the

incoming traffic and bottleneck bandwidth, is not limited by

computational resources, performs perfect activity detection

with zero false positives and, is able to compress the active

periods exactly to meet the available bandwidth.

5.2 Performance in a Rural, Bandwidth-
Constrained Deployment

In RURAL we repeated the deployment over three separate

8hr sessions. In each session, the cellular hotspot was placed at

roughly the same location (within a 2m radius). Despite using

roughly the same location for the hotspot, we found signifi-

cant variation in the backhaul bandwidth ranges in these three

sessions. Arranging the sessions in increasing average back-

haul bandwidth, the ranges were 1.7-2.7Mbps, 5-6Mbps and

10-16Mbps. The distribution of the received SNR collected

over all 24hrs from all the transmitters (≈470000 packets)

are shown in Fig. 8. As seen from Fig. 8, there is a wide vari-

ation in received SNRs at the gateway from -15dB to 30dB.

ACCIO continuously learns and adapts its compression to

meet the available cellular backhaul bandwidths (Fig. 6(a))

and simultaneously streams 8 channels. We plot the average

LoRa throughput over all 8 channels (bits/second) achieved

by Cloud-LoRa in Fig. 7(a) for the three different sessions.

We also compare the achieved average network throughput of

Cloud-LoRa with Nephalai, SparSDR, and Rate-limiting Ora-

cle. The maximum achievable throughput with compression
is upper bounded by the rate-limiting oracle. We observe that

the throughput of Cloud-LoRa approaches that of the oracle

at higher backhaul bandwidths of 10-16 Mbps, while achiev-

ing ≈ 96% of that of the Oracle even at 2Mbps backhaul

badwidths. Further, Cloud-LoRa is able to use its adaptive

compression effectively and significantly outperforms other

LoRa compression solutions such as Nephalai by 7x and 6.2x,

and SparSDR by 2.3x and 1.9x (on average).

In Fig. 7(b), we plot the compression score, defined as (#

samples streamed to the cloud) / (# samples captured by

the CRAN gateway), for the same backhaul bandwidths. We

observe that Cloud-LoRa has a higher compression score of

98.4% at 1.7 to 2.7 Mbps, while a lower compression of 94%

at 10 to 16 Mbps, i.e., it compresses more at low backhaul

bandwidths. On the other hand, Nephalai and SparSDR adopt

static compression and hence face packet losses when the

compression does not meet the backhaul bandwidth. The

most appropriate compression necessary using CRAN is that

of the Oracle, as it has a global view; Cloud-LoRa is within

98.5% of the oracle’s comrpession score on average.

Two key reasons for the improved throughput performance

of Cloud-LoRa over existing approaches are i) sub-noise activ-

ity detection and ii) adaptive compression. The contribution

of each of these modules to the overall compression is shown

in Fig. 7(c). On average, the activity detection achieves a

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1967

Fig. 8: Distribution of the received SNR

at the Gateway in RURAL

Fig. 9: SNR Gains from Joint

Multi-Gateway Packet Decoding

Fig. 10: Throughput Improvements due

to Rapid Deployment of state-of-the-art

compression score of 63% in our setting by distinguishing

active LoRa transmission from noise samples. The remaining

compression is achieved by ACCIO , which varies the com-

pression threshold of the active period to meet the backhaul

bandwidth. While the compression score achieved by the ac-

tivity detection block does not change with backhaul or LoRa

signal characteristics, that of ACCIO changes with backhaul

bandwidth, as evident in Fig. 7(c).

5.3 Joint Multi-Gateway Packet Decoding
Cloud-LoRa offers centralization, which is key to jointly pro-

cess raw radio signals across multiple gateways such that the

SNR of weak LoRa links could be enhanced through coherent

combining with relatively stronger links. In this section, we

deploy Charm [6] using Cloud-LoRa using 3 Cloud-LoRa

gateways deployed on the floor of a large building spanning

over 100m × 50m along with a LoRa transmitter transmitting

packets. On detecting activity, the gateways would attach a

time stamp, gateway ID and relay the samples to the cloud.

In the cloud, we deploy Charm which coherently combines

samples from the 3 gateways based on time stamps and pack-

et/gateway IDs and decodes 100% packets. In Fig. 9, we plot

the CDF of packet SNR received across 3 USRP gateways

streaming samples. Jointly decoded packets achieve a mean

SNR of 16dB, a 6dB improvement from even the stronger

links, i.e. Gateways 1 and 3. This SNR boost almost doubles

the coverage area. At each gateway, ACCIO achieves 93%

compression. We also plot the network throughput achieved

by joint decoding when each gateway faces varying backhaul

bandwidths. These results are in Appendix E.

5.4 Rapid Deployment of state-of-the-art
Another key advantage of LoRa CRAN is the rapid deploy-

ment of novel PHY techniques to practice. In this section, we

evaluate a state-of-the-art LoRa receiver in the cloud server,

i.e. Concurrent Interference Cancellation (CIC) [12] pub-

lished as recently as 2021 using Cloud-LoRa . CIC improves

LoRa network throughput by decoding multi-packet colli-

sions. In Fig. 10, we plot the network throughput with CIC

as the demodulator in the cloud and compare it against Std.

LoRa in the cloud. We increase the number of concurrent

nodes (same SF and BW) in a single channel in the x-axis

and stream the samples to the cloud, where CIC is used as

the demodulator. Cloud-LoRa was capable of transporting the

samples in real-time for CIC to demodulate. Hence, the net-

work throughput shows an improvement of 1.9x over standard

LoRa when 7 nodes are colliding. The throughput begins to

drop beyond 7, the maximum collisions CIC can resolve.

5.5 Elastic Scaling to Multiple Channels
Cloud-LoRa allows for scaling to provision for higher ca-

pacity by increasing the number of channels from single to

multiple channels without any hardware change. However, as

the number of channels increases, the volume of samples in-

creases. With limited backhaul bandwidths, such an increase

in samples demands higher compression. In this section, we

answer the question of how well ACCIO adapts to an increas-
ing number of channels for a given bottleneck bandwidth. We

plot the number of packets decoded in the cloud at 10 Mbps

bottleneck bandwidth for increasing number of channels in

Fig. 11. When only one channel has active LoRa signals,

a 10Mbps backhaul can support low compression. As the

number of active channels increases, the load and hence the

number of samples increases. At 10 Mbps bandwidth, a static

compression of 50% for Nephalai is best suited for up to 2

channels since packet losses due to compression would be the

bottleneck in this case. With 4 or more channels, Nephalai-75

is better suited since packet losses due to network congestion

would dominate. ACCIO on the other hand adapts its com-

pression to meet the bandwidth, despite the increase in traffic

load. Cloud-LoRa ’s network throughput increases linearly

by an order of magnitude as the number of channels increases

from 1 to 8. Cloud-LoRa decodes about 2X and 4X more

packets than Nephalai-75 and Nephalai-50 respectively for 4

channels, and 12X and 20X for 8 channels.

5.6 Varying Backhaul Conditions
Bandwidth-Aware ACCIO In the practical deployment, we

have witnessed the adaptation of Cloud-LoRa ’s compression

performance to different backhaul conditions. However, due

1968 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fig. 11: Elastic Scaling to Multiple

Channels - Throughput Vs # of channels

Fig. 12: ACCIO Adaption to Varying

Backhaul Bandwidths

Fig. 13: ACCIO Adaption to Varying

Backhaul Latency

(a) (b) (c)

Fig. 14: ACCIO adaptation to varying LoRa Channel Quality

(a) Low SNR (-20 to -5 dB) (b) Medium SNR (-5 to 10 dB) (c) High SNR (10 to 25 dB) LoRa signals.

to the uncontrolled cellular backhaul, it is challenging to ob-

serve its time to learn and adapt. In this section, we study the

adaptation of Cloud-LoRa to varying backhaul bandwidths

in a controlled setting. Using the I/Q samples collected and

stored at the CRAN gateway in the outdoor RURAL, we re-

play the real-time streaming of samples to a cloud server

i.e., the gateway streams samples stored in a file to the cloud

server, where the samples are decoded, which are then used

as rewards by ACCIO at the gateway. During this replay, we

control the backhaul bandwidths using Linux-TC. We vary

the backhaul bandwidths every 0.5 hours, as shown by the

dotted orange line in Fig. 12, from 5 Mbps down to 1 Mbps,

and back to 5 Mbps, and then 1 Mbps in steps of 2 Mbps

every 0.5 hours. During the first ramp down, LoRa through-

put drops and then ramps up every time backhaul bandwidth

changes. This is because, in the first 1.5 hours, the ACCIO

module at the gateway is untrained i.e., it has not faced the

new backhaul conditions before, and hence takes time to learn

a new policy at the gateway. Once it learns the policy, the

throughput flattens. This is evident from the dip in throughput

(blue curve) at 0, 0.5, and 1 hour mark in Fig. 12. The RL

agent takes approximately 10 minutes to learn a new policy

when it faces a new backhaul bandwidth. After the 1.5 hour

mark, when the backhaul bandwidth ramps up to 5 Mbps,

LoRa throughput approaches the steady state quickly at 1.5,

2, 2.3, and 3 hour marks as the RL agent has learned a policy

for these backhaul bandwidths in the first 1.5 hours. The adap-

tation time of Cloud-LoRa to varying backhaul conditions

therefore depends on the historical data.

Latency-Aware ACCIO Figure 13 plots the queueing delay

at the SDR gateway for three networks with different network

latencies. In each of these networks, the application latency

requirement is designed to be 2 seconds. Therefore, the RL

agent learns to drop packets at the client and/or compress

more when the network latency is high such that the overall

latency is below 2 seconds. In the case of networks with low

latency, the RL agent tolerates more queueing delay at the

client, allowing it to send more packets.

5.7 Varying LoRa Channel Quality
Compression depends on the SNR of the LoRa samples at

CRAN gateway. We evaluate the throughput and compres-

sion performance of ACCIO as a function of SNR at different

backhaul bandwidths in Figure 14. The corresponding com-

pression performance are presented in Appen. E. Figure 14

(a), (b), (c) correspond to SNR : low (-20 to -5 dB), medium

(-5 to 10 dB), and high (10 to 25 dB) respectively. At SNR <
0 dB, Nephalai decodes less than 5% of the packets even at

50% compression (Nephalai-50). This is due to its inability

to differentiate between noise and active LoRa signal. Cloud-

LoRa improves network throughput by over 20X compared to

Nephalai at low backhaul bandwidths. Cloud-LoRa’s through-

put performance is limited by the false positive rate of the

activity detection, which results in a higher volume of active

LoRa samples to be transported. At a backhaul bandwidth of 1

Mbps, the RL agent chooses compression scores of over 99%

to meet the backhaul constraints (see Fig. 19 in Appendix),

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1969

Fig. 15: Activity detection performance

resulting in poor reconstruction in the cloud. As the backhaul

bandwidth increases, the achievable throughput improves to

over 70% of that of a standard gateway. The network through-

put of Cloud-LoRa for Medium SNR signals (green bars in

Fig. 14(b)) is about 90% at 1 Mbps backhaul with a compres-

sion score of approximately 91%. Nephalai fails to decode

more than 10% at 1 Mbps; this can be attributed to the lack

of activity detection in Nephalai which leads to redundant

samples taking up available bandwidth.

Lossless compression such as Lz4-0 and Gzip9 offers bet-

ter decodability than ACCIO at bandwidths >= 5Mbps. As

the bandwidth decreases, Lz4-0 faces over 50% packet loss

due to network losses, similar to Nephalai-50. While Gzip9

achieves 75% compression and has lower packet loss even at

low bandwidths, it is too slow to use for real time compression.

Even at a backhaul bandwidth of over 5 Mbps, Nephalai-50%

compression decodes only about 50% of the packets, while

Cloud-LoRa decodes more than 95% of the packets with an

impressive compression of over 91%. For high SNRs ACCIO

transports over 95% of packets (Fig. 14(c)) to the cloud with

an average compression score of 98%.

5.8 Activity Detection of Cloud-LoRa
We evaluate the tradeoff between the sensitivity to low SNR

and false positive rate in detecting active LoRa packets of our

proposed activity detection algorithm. The proposed multi-

channel, sub-noise LoRa activity detection is agnostic to the

transmitters’ SF. Therefore, the sensitivity of the module de-

termines the minimum SNR that can be detected. We plot the

percentage of true active periods and false positives as a func-

tion of SNR in Figure 15. The two y-axes presented are true

positives, the percentage of active periods correctly detected,

normalized to that of a standard LoRa gateway (blue bars),

and the percentage of active periods that were detected but did

not contain a packet (false positives), normalized to the total

samples received (red bars). Each bar represents a different

sensitivity used by the activity detection module. A higher

sensitivity results in detecting more packets even at lower

SNRs at the cost of higher false positives. As SNR increases,

the true positive does not vary with the threshold, as the sig-

nal energy is high. However, false positives increase with

increased sensitivity, even at high SNR. Therefore, the right

choice of the threshold is particularly critical in detecting the

most active period at low SNRs, without trading off too many

false positives. Cloud-LoRa settings that detect over 80% of

the packets (Cloud-LoRa -2.25x) only result in 40% false pos-

itives, which is further compressed by RL. We observe that,

combined with the RL compression, the volume of non-active

samples transported to the cloud by Cloud-LoRa is minimal.

In contrast, SparSDR incurs more than 90% overheads to

accommodate near-zero dB SNR.

6 Discussions and Future Work

To the best of our knowledge, Cloud-LoRa is the first end-

to-end practically deployable LoRa CRAN. There are plenty

of promising future research directions emerging from this

framework. In Cloud-LoRa , we spawn a new process for

each channel and stream upto 9 channels in real-time. We can

scale to the maximum 64 channels using a NUC with more

cores, and a more efficient software implementation. Beyond

standard LoRa, recent research such as CurvingLoRa [49] and

Falcon [16] that changes the transmitter requires further study

to understand the impact of compression on packet decod-

ability. Further research is needed to incorporate performance

guarantees such as throughput fairness across channels.

7 Conclusions

We proposed, designed, and implemented Cloud-LoRa , the

first practical CRAN for LoRa networks. Cloud-LoRa streams

LoRa signals to a cloud server that performs baseband signal

processing, in turn providing opportunities for dynamic net-

work scaling and rapid deployment of novel LoRa receivers in

the cloud. Towards realizing this end-to-end framework, we

developed an activity detection algorithm that can detect sub-

noise active LoRa signals and reduce signals being streamed

to the cloud. We also developed ACCIO, an RL-based adap-
tive compression technique, whose compression threshold

adapts to variations in backhaul bandwidth, latency require-

ments, and input-signal characteristics at the gateway in real-

time. We implement and deploy Cloud-LoRa as a Docker

container in an Azure server, and experimentally show the

feasibility of CRAN for real-world LoRa deployments.

8 Acknowledgements

We would like to thank our shepherd Kate Lin and the anony-

mous reviewers for the valuable comments and for helping

us improve the paper. The authors are partially supported

through the following NSF grants : CCSS-2034415, CNS-

2142978, 2213688, 1838733, 2112562, 1719336, 1647152,

1629833, 2107060, 2212688, and 2003129 and the US De-

partment of Commerce award 70NANB21H043.

1970 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] LoRa. https://www.semtech.com/lora.

[2] E. Asimakopoulou and N. Bessis. Buildings and crowds:

Forming smart cities for more effective disaster man-

agement. In 2011 Fifth International Conference on
Innovative Mobile and Internet Services in Ubiquitous
Computing, pages 229–234, 2011.

[3] María V Moreno, Miguel A Zamora, and Antonio F

Skarmeta. User-centric smart buildings for energy sus-

tainable smart cities. Transactions on emerging telecom-
munications technologies, 25(1):41–55, 2014.

[4] Achim Walter, Robert Finger, Robert Huber, and Nina

Buchmann. Opinion: Smart farming is key to developing

sustainable agriculture. Proceedings of the National
Academy of Sciences, 114(24):6148–6150, 2017.

[5] Climate Smart Agriculture. https://www.worldbank.
org/en/topic/climate-smart-agriculture.

[6] Adwait Dongare, Revathy Narayanan, Akshay Gadre,

Anh Luong, Artur Balanuta, Swarun Kumar, Bob Ian-

nucci, and Anthony Rowe. Charm: exploiting geograph-

ical diversity through coherent combining in low-power

wide-area networks. In 2018 17th ACM/IEEE Interna-
tional Conference on Information Processing in Sensor
Networks (IPSN), pages 60–71. IEEE, 2018.

[7] Artur Balanuta, Nuno Pereira, Swarun Kumar, and An-

thony Rowe. A cloud-optimized link layer for low-

power wide-area networks. In Proceedings of the 18th
International Conference on Mobile Systems, Applica-
tions, and Services, pages 247–259, 2020.

[8] Branden Ghena, Joshua Adkins, Longfei Shangguan,

Kyle Jamieson, Philip Levis, and Prabal Dutta. Chal-

lenge: Unlicensed lpwans are not yet the path to ubiqui-

tous connectivity. In The 25th Annual International Con-
ference on Mobile Computing and Networking, pages

1–12, 2019.

[9] Xianjin Xia, Yuanqing Zheng, and Tao Gu. Ftrack: Par-

allel decoding for lora transmissions. In Proceedings of
the 17th Conference on Embedded Networked Sensor
Systems, pages 192–204, 2019.

[10] Shuai Tong, Jiliang Wang, and Yunhao Liu. Combating

packet collisions using non-stationary signal scaling in

lpwans. In Proceedings of the 18th International Con-
ference on Mobile Systems, Applications, and Services,

pages 234–246, 2020.

[11] Rashad Eletreby, Diana Zhang, Swarun Kumar, and Os-

man Yağan. Empowering low-power wide area networks

in urban settings. In Proceedings of the Conference of

the ACM Special Interest Group on Data Communica-
tion, pages 309–321, 2017.

[12] Muhammad Osama Shahid, Millan Philipose, Krishna

Chintalapudi, Suman Banerjee, and Bhuvana Krish-

naswamy. Concurrent interference cancellation: decod-

ing multi-packet collisions in lora. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, pages 503–

515, 2021.

[13] Chenning Li, Hanqing Guo, Shuai Tong, Xiao Zeng,

Zhichao Cao, Mi Zhang, Qiben Yan, Li Xiao, Jiliang

Wang, and Yunhao Liu. Nelora: Towards ultra-low snr

lora communication with neural-enhanced demodula-

tion. In Proceedings of the 19th ACM Conference on Em-
bedded Networked Sensor Systems, pages 56–68, 2021.

[14] Qian Chen and Jiliang Wang. Aligntrack: Push the

limit of lora collision decoding. In 2021 IEEE 29th
International Conference on Network Protocols (ICNP),
pages 1–11. IEEE, 2021.

[15] Zhenqiang Xu, Pengjin Xie, and Jiliang Wang. Pyramid:

Real-time lora collision decoding with peak tracking. In

IEEE INFOCOM 2021-IEEE Conference on Computer
Communications, pages 1–9. IEEE, 2021.

[16] Shuai Tong, Zilin Shen, Yunhao Liu, and Jiliang Wang.

Combating link dynamics for reliable lora connection

in urban settings. In Proceedings of the 27th Annual
International Conference on Mobile Computing and
Networking, pages 642–655, 2021.

[17] Christophe Delacourt, Patrick Savelli, and Vincent

Savaux. A cloud ran architecture for lora. In Radio
Science Letters, 2020.

[18] Eryk Schiller, Silas Weber, and Burkhard Stiller. De-

sign and evaluation of an sdr-based lora cloud radio

access network. In 2020 16th International Conference
on Wireless and Mobile Computing, Networking and
Communications (WiMob), pages 1–7. IEEE, 2020.

[19] Jun Liu, Weitao Xu, Sanjay Jha, and Wen Hu. Nephalai:

towards lpwan c-ran with physical layer compression.

In Proceedings of the 26th Annual International Con-
ference on Mobile Computing and Networking, pages

1–12, 2020.

[20] FCC Report on Broadband Aceess. https:
//www.fcc.gov/reports-research/
reports/broadband-progress-reports/
2020-broadband-deployment-report.

[21] Tyler B Mark, Terry W Griffin, and Brian E Whitacre.

The role of wireless broadband connectivity on ‘big

data’and the agricultural industry in the united states

and australia. International Food and Agribusiness Man-
agement Review, 19(1030-2016-83150):43–56, 2016.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1971

[22] FCC Working Paper on Digital Divide . https://www.
fcc.gov/reports-research/working-papers/
digital-divide-us-mobile-technology-and-speeds.

[23] Amalinda Gamage, Jansen Christian Liando, Chaojie

Gu, Rui Tan, and Mo Li. Lmac: Efficient carrier-sense

multiple access for lora. In Proceedings of the 26th
Annual International Conference on Mobile Computing
and Networking, pages 1–13, 2020.

[24] Moein Khazraee, Yeswanth Guddeti, Sam Crow, Alex C

Snoeren, Kirill Levchenko, Dinesh Bharadia, and Aaron

Schulman. Sparsdr: Sparsity-proportional backhaul and

compute for sdrs. In Proceedings of the 17th Annual In-
ternational Conference on Mobile Systems, Applications,
and Services, pages 391–403, 2019.

[25] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,

Soheil Hassas Yeganeh, and Van Jacobson. BBR:

Congestion-based congestion control. ACM Queue, 14,

September-October:20 – 53, 2016.

[26] LoRa and LoRaWAN. https://
lora-developers.semtech.com/documentation/
tech-papers-and-guides/lora-and-lorawan//.

[27] James E Prieger. The broadband digital divide and the

economic benefits of mobile broadband for rural areas.

Telecommunications Policy, 37(6-7):483–502, 2013.

[28] Christopher Ali. The politics of good enough: Rural

broadband and policy failure in the united states. Inter-
national Journal of Communication, 14:23, 2020.

[29] John Lai and Nicole O Widmar. Revisiting the digital di-

vide in the covid-19 era. Applied economic perspectives
and policy, 43(1):458–464, 2021.

[30] FCC Task Force. www.fcc.gov/
task-force-reviewing-connectivity-and-technology-needs-precision-agriculture-united-states.

[31] Muhammad Iqbal Rochman, Vanlin Sathya, Norlen

Nunez, Damian Fernandez, Monisha Ghosh, Ahmed S

Ibrahim, and William Payne. A comparison study of cel-

lular deployments in chicago and miami using apps on

smartphones. In Proceedings of the 15th ACM Workshop
on Wireless Network Testbeds, Experimental evaluation
& CHaracterization, pages 61–68, 2022.

[32] Yuanjie Li, Chunyi Peng, Zhehui Zhang, Zhaowei Tan,

Haotian Deng, Jinghao Zhao, Qianru Li, Yunqi Guo, Kai

Ling, Boyan Ding, et al. Experience: a five-year retro-

spective of mobileinsight. In Proceedings of the 27th
Annual International Conference on Mobile Computing
and Networking, pages 28–41, 2021.

[33] David L Donoho. Compressed sensing. IEEE Transac-
tions on Information Theory, 52(4):1289–1306, 2006.

[34] Revathy Narayanan, Swarun Kumar, and Siva Ram

Murthy. Cross technology distributed mimo for low

power iot. IEEE Transactions on Mobile Computing,

2020.

[35] Alan V. Oppenheim and Ronald W. Schafer. Discrete-
Time Signal Processing. Prentice Hall Press, USA, 3rd

edition, 2009.

[36] LoRa Modulation Basics. https://www.
frugalprototype.com/wp-content/uploads/
2016/08/an1200.22.pdf.

[37] Stéphane Mallat. A wavelet tour of signal processing.

Elsevier, 1999.

[38] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep Learning. MIT Press, 2016.

[39] Richard S Sutton and Andrew G Barto. Reinforcement
Learning: An Introduction. MIT Press, 2018.

[40] Richard S. Sutton, David A. McAllester, Satinder P.

Singh, and Yishay Mansour. Policy gradient methods

for reinforcement learning with function approximation.

In Advances in Neural Information Processing Systems,

pages 1057–1063. The MIT Press, 1999.

[41] John Schulman, Sergey Levine, Pieter Abbeel, Michael

Jordan, and Philipp Moritz. Trust region policy optimiza-

tion. In International Conference on Machine Learning,

pages 1889–1897. PMLR, 2015.

[42] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec

Radford, and Oleg Klimov. Proximal policy optimiza-

tion algorithms. CoRR, abs/1707.06347, 2017.

[43] USRP B200. https://www.ettus.com/
all-products/ub200-kit/.

[44] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-

ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz,

Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan-

delion Mané, Rajat Monga, Sherry Moore, Derek Mur-

ray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit

Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,

Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:

Large-scale machine learning on heterogeneous systems,

2015. Software available from tensorflow.org.

[45] Diederik P Kingma and Jimmy Ba. Adam: A

method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

1972 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[46] Docker containers on Azure. https://docs.docker.
com/cloud/aci-integration/.

[47] Docker Compose. https://docs.docker.com/
compose/.

[48] Linux Traffic Control. https://man7.org/linux/
man-pages/man8/tc.8.html.

[49] Chenning Li, Xiuzhen Guo, Longfei Shangguan,

Zhichao Cao, and Kyle Jamieson. {CurvingLoRa} to

boost {LoRa} network throughput via concurrent trans-

mission. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages

879–895, 2022.

[50] Richard S. Sutton and Andrew G. Barto. Reinforcement

learning: An introduction. IEEE Transactions on Neural
Networks, 9(5):1054–1054, 1998.

[51] Kai Arulkumaran, Marc Peter Deisenroth, Miles

Brundage, and Anil Anthony Bharath. Deep reinforce-

ment learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1973

Appendix

A LoRa Modulation and Demodulation

LoRa uses Chirp Spread Spectrum (CSS) as its PHY layer

modulation. In CSS, the instantaneous frequency of the signal

increases linearly with time within a predefined Bandwidth

BW over a symbol duration of Ts as shown by chirp equa-

tion 2. The start frequency fsym of the data chirp S(t, fsym)
encodes the data to be transmitted. The slope of the datachirp

in frequency-time plot as shown in Fig.16 denotes the Spread-

ing Factor SF which in turn determines the symbol duration

Ts =
2SF

BW , Data Rate and range of operation. Higher SF offers

longer range at the cost of reduced data rate. SF can take

values ∈ {7,8,9,10,11,12} and for increasing SF , symbol

duration doubles. That means an SF8 chirp is twice the length

of an SF7 chirp and an SF12 chirp is 32 times the length of

an SF7 chirp.

C(t) = e
j2π(BW2

2×2SF t− BW
2)t

, 0 ≤ t ≤ Ts (2)

S(t, fsym) =C(t) · e j2π fsymt (3)

Fig. 16: LoRa Demodulation

At the receiver, LoRa demodulation starts by correlating

the received buffer with a preamble (8 base upchirps C(t)) to

determine the start of LoRa packet. The receiver correlates

the buffer with preambles of all possible SFs to reveal the

spreading factor SFx of received packet. It then demodulates

the data by multiplying the data symbols with downchirp of

same SFx as shown in Fig.16. Downchirp is a conjugate of

base upchirp whose frequency decreases linearly with time.

This multiplication is called dechirping and it concentrates

the signal energy into a single frequency which is equal to the

start frequency of the data symbol. Index of the peak in the

FFT of the dechirped signal gives us the demodulated data.

A.1 Chirps of different SF are Pseudo-
orthogonal.

As discussed above, to detect the presence and thus start of

a LoRa packet, receiver correlates the incoming I/Q sam-

ples with base upchirps of all SFs. Once a packet of specific

SF = x is detected, datachirps are then demodulated using

a downchirp of SF = y : x = y. Two chirps (a datachirp and

a downchirp) for which x �= y cannot concentrate energy of

the datachirp through dechirping since chirps of unequal SFs

Fig. 17: Pseudo-Orthogonal LoRa chirps

are pseudo-orthogonal. For such cases, dechirping only re-

moves the linear increase in frequency-time trend of the chirps

when the magnitude of frequency-time slope of both chirps

is equal as shown in top plot of Fig.17. It therefore results

in clear peak in the FFT of the dechirped signal. In contrast,

if the two chirps have unequal SF, and therefore different

magnitude of slopes as shown in the middle plot of Fig.17,

dechirping followed by FFT will not concentrate signal en-

ergy into a single peak. Instead, the energy is spread over

multiple frequencies (hence the term pseudo) depending upon

the difference in x and y. Therefore, pseuso-orthogonality of

SF means that chirps of similar SF can only dechirp signals

to a single frequency whereas chirps of unequal SF do not

show this behaviour.

Based on this observation, if we design a downchirp which

is superposition of two downcirps of SF = x & y respectively

and use it to dechirp a datachirp of SF = x, we will obtain

energy concentration due to downchirp of SF = x and will

obtain an increased noise floor due to downchirp of SF = y
as shown in bottom plot of Fig.17.

B Primer on the Discrete Wavelet Transform

Fig. 18: Filter Bank Implementation of DWT

DWT is a multi-resolution time-frequency analysis tool that

1974 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

is widely used in image signal processing. It decomposes the

input signal into a set of mutually orthogonal wavelet basis

functions, that are shifted and scaled versions of a mother
wavelet. With the appropriate choice of the mother wavelet,

DWT provides high time and frequency resolution. Hence,

it is an efficient tool to de-noise and compress signals with

varying frequency content, such as chirp spread spectrum used

by LoRa.

Figure 18(top) shows a k-stage DWT that uses a series of

high-pass (h[n]) and low-pass (g[n]) filter banks to decompose

the signal into coefficients at multiple levels. This filter-bank

implementation of DWT of an input signal of length N has a

complexity of O(N), making it computationally a minimally

intensive operation, and hence enabling compression in real-

time. The DWT coefficients from higher levels of decomposi-

tion provide detailed time information. The coefficients from

lower levels of the DWT provide the more detailed frequency

information. Each DWT coefficient represents the energy of

the received signal corresponding to the frequency (level) and

time (shift).

C Reward Function Shaping

We discuss the specific choice of the reward function used in

our RL algorithm. Recall that the reward function is designed

as follows:

r(s,a) = udec(s,a) − uband(s,a) − ulat(s,a) − uover(s,a).
(4)

The first reward term encourages the RL algorithm to max-

imize the total number of LoRa packets decoded correctly

over an episode of compression, consisting of (potentially)

multiple APs. As discussed in Section 3.2, we would like to

weight the number of packets decoded by the estimated true

positive rate (TPR) in order to account for the false positives

included in the count. Since, the TPR cannot be estimated

exactly due to absence of ground truth about when an ac-

tual LoRa transmission occurs, we estimate the TPR as the

fraction of LoRa packets decoded correctly over the last 100

detected active periods. Suppose Ndec is the number of packets

decoded correctly and P̂t pr is the estimated TPR, then

udec(s,a) =
Ndec

P̂t pr
. (5)

The second term in the reward function uband(s,a) penal-

izes the bandwidth utilized B from getting very close to the

available bandwidth Bmax and is defined as follows:

uband(s,a) =

⎧⎪⎨
⎪⎩

0, if B
Bmax

∈ [0,α]
0.5α

1−α2 (
B

Bmax
− α), if B

Bmax
∈ [α, 1

α]

0.5, if B
Bmax

> 1
α .

(6)

Here α ∈ (0,1) is a constant that determines how close to

the maximum bandwidth we want to start penalizing the RL

algorithm. We set α = 0.9 in our experiments. As shown in

Fig. 5, the graph of uband(s,a) as a function of the bandwidth

ratio (BWR) B/Bmax would be a constant 0 for BWR values

less than α; a straight line ranging from 0 to 0.5 for BWR

values in the interval [α,1/α]; and a constant value of 0.5 for

BWR values larger than 1/α. The idea is that we start giving

as negative reward (penalty) as the BWR approaches 1 and

the penalty increases until the BWR exceeds a value slightly

larger than 1.

The third term in the reward function ulat(s,a) is very sim-

ilar to the second term. We simply replace the BWR with the

ratio of the overall latency Tlat to the maximum latency Tmax,

and it is given below for completeness

ulat(s,a) =

⎧⎪⎨
⎪⎩

0, if Tlat ∈ [0,α]
0.5α

1−α2 (
Tlat
Tmax

− α), if Tlat
Tmax

∈ [α, 1
α]

0.5, if Tlat
Tmax

> 1
α .

(7)

We set Tmax = 0.2 in our experiments. The factor 0.5 is in-

cluded in both the penalty terms in order to balance out the

rewards due to correct packet decoding and the two penalty

terms. We want to avoid giving a higher overall weight to the

penalty terms in order to encourage the RL to focus on its

main goal of accurate packet decoding.

As discussed in Section 3.2, the final penalty term

uover(s,a) is included to preemptively avoid packet buffer

overflow, which could result in dropped packets. It is set to a

constant −10 whenever an action of the RL agent could result

in a packet buffer overflow.

D Background on Reinforcement Learning

Reinforcement learning (RL) is a machine learning paradigm

of sequential decision making where an agent acting in an un-

certain (stochastic) environment learns to perform actions by

interacting with the environment using trial and error (rather

than direct supervision) in a way that it maximizes its cumu-

lative reward [39, 50]. This is a popular setting for learning

when it is hard to obtain supervised data (e.g., labeled inputs)

and the data distribution is non-stationary.

The main component of RL is an agent (e.g., a self-driving

car), which is the decision-making center that acts in an uncer-

tain environment (e.g., a street). At any time step t, the agent

senses the environment and obtains a signal or reading known

as the state st ∈ S ⊆ R
ds (e.g., processed sensor inputs from

cameras, Radar, LIDAR etc), which is typically a vector de-

noted in bold. Given the state st , the agent performs an action

at ∈ A (e.g., the steering angle, brake position etc.) that has an

effect on the environment. Here S and A are the state space

and action space respectively. The environment transitions

to a new state st+1 according to its (usually unknown) state-
transition function P(st+1 |st ,at) that governs its dynamics.

This is a conditional probability distribution of the state at

time t+1 given the state and action at time t. The environment

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1975

(a) (b) (c)

Fig. 19: (a-c): Compression performance of Cloud-LoRa in a single channel (a) Low SNR (-20 to -5 dB) (b) Medium SNR (-5

to 10 dB) and (c) High SNR (10 to 25 dB) LoRa signals.

Fig. 20: Throughput performance of Charm with and w/o

Cloud-LoRa

provides feedback to the agent in the form of a reward signal
rt := r(st ,at) ∈ R that informs the agent of how good or bad

its action at was in the state st . Starting from an initial state s0,

this sequence of state observation, action, reward, and state

transition is repeated for a number of time steps, known as an
epsiode or trajectory τ := (s0,a0,r0,s1,a1,r1, · · · ,sT ,aT ,rT).

The agent learns a strategy or policy to perform actions in

different states by repeatedly interacting with the environment

over several episodes, with the goal of maximizing its total

rewards. Formally, the policy π : S ×A �→ [0,1] of the agent

is a conditional probability distribution over the set of actions

given the state, i.e., π(a |s) := P(At = a |St = s). We define

the discounted return Ut at time t as the discounted cumu-
lative future reward, with a discount factor γ ∈ [0,1], given

by Ut = Rt + γRt+1 + · · · + γT−t RT
4. The discount factor

γ determines the relative importance of the current reward

over future rewards. For a given policy π, the state-value func-
tion Vπ(st) and action-value function Qπ(st ,at) are important

quantities that define the value of a given state or a state-action

pair in terms of the (discounted) cumulative future rewards.

The action-value function captures how good an action at is

while being in state st , and is defined as

Qπ(st ,at) = E[Ut |St = st ,At = at],

where the expectation is over all the future states and actions,

and defined by the policy and the state transition function.

The state-value function (or simply value function) captures

4The state, action, and reward random variables are denoted in uppercase,

taking on specific values denoted in lowercase.

how good a given state is under the policy π, and defined as

Vπ(st) = E[Ut |St = st] = EA∼π(· |st)[Qπ(st ,A)].

The goal of an RL agent is to find an optimal policy that max-

imizes the expected value function ES[Vπ(S)]. It is common

to use the advantage function Aπ(st ,at) = Qπ(st ,at)−Vπ(st),
which captures the excess return (in a state st) obtained by per-

forming action at , compared to the expected return obtained

over all possible actions.

There are many classes of RL methods, and recently deep

learning methods have been adopted to solve the tradition-

ally challenging setting of large and continuous state/action

spaces [51]. We focus on a particular type of on-policy RL

known as Policy Gradient methods [40, 41], whose goal is to

directly learn an optimal policy function that is parameterized

by a neural network. Specifically, we use the Proximal Pol-

icy Optimization (PPO) method with clipped objective [42]

for online training of the RL agent. PPO is widely adopted

as a state-of-the-art online policy-gradient method due to its

better computational and sample efficiency, and stable policy

function updates.

E Supplementary Results

The amount of compression by ACCIO depends on the SNR

of the LoRa samples at CRAN gateway. The compression

performance of ACCIO for varying LoRa channel quality are

presented in Figure 19. Figure 19 (a), (b), (c) correspond to

low SNR (-20 to -5 dB), medium SNR (-5 to 10 dB), and high

SNR (10 to 25 dB) respectively.

In Fig. 20, we plot the network throughput of Charm with

3 USRP gateways streaming samples to the cloud. Charm

coherently combines samples from the 3 gateways and de-

codes the packets. We compare Charm with Cloud-LoRa ,

against Charm on a local machine without any compression

(i.e., Charm without a bottleneck backhaul). It can be noted

that the throughput is unaffected by Cloud-LoRa even at band-

widths as low as 500 kbps, indicating that the compression

did not affect the quality of the LoRa signals, and still allows

Charm to coherently combine signals in the cloud.

1976 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

