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Abstract
In the realm of Deep Q-Networks (DQNs), numerous exploration strategies have demonstrated ef-

ficacy within controlled environments. However, these methods encounter formidable challenges

when confronted with the unpredictability of real-world scenarios marked by disturbances. The

optimization of exploration efficiency under such disturbances is not fully investigated. In response

to these challenges, this work introduces a versatile reinforcement learning (RL) framework that

systematically addresses the intricate interplay between exploration and robustness in dynamic and

unpredictable environments. In particular, we propose a robust RL methodology, framed within a

two-player max-min adversarial paradigm; this formulation is cast as a Probabilistic Action Robust

Markov Decision Process (MDP), grounded in a cyber-physical perspective. Our methodology cap-

italizes on Langevin Monte Carlo (LMC) for Q-function exploration, facilitating iterative updates

that empower both the protagonist and adversary to efficaciously explore. Notably, we extend this

adversarial training paradigm to encompass robustness against delayed feedback episodes. Empir-

ical evaluation, conducted on benchmark problems such as N-Chain and deep brain stimulation,

underlines the consistent superiority of our method over baseline approaches across diverse pertur-

bation scenarios and instances of delayed feedback.

Keywords: Reinforcement Learning, Langevin Monte Carlo, Game Theory.

1. Introduction

Reinforcement Learning (RL) has shown great promise in decision-making problems across various

domains, including games (Mnih et al., 2013; Silver et al., 2016; Goldwaser and Thielscher, 2020),

robotics (Sorokin et al., 2022; Hsu et al., 2022; Smith et al., 2023), and healthcare (Gao et al., 2022b;

Sarikhani et al., 2022; Gao et al., 2023). RL algorithms, such as DQN, have achieved success relying

on exploration strategies such as ε-greedy (Mnih et al., 2013). However, recent works (Osband et al.,

2016; Fortunato and Mohammad Gheshlaghi Azar, 2017; Ishfaq et al., 2023) have introduced more

efficient exploration strategies that result in improved performance. While these methods work

well under the assumption of fixed and identical reward and transition distributions according to the

current state and the selected action (Lykouris et al., 2021), they may struggle in real-world scenarios

with unforeseeable disturbances. Thus, it is critical to develop effective exploration methods that

incorporate robustness to systematically mitigate the sensitivity of the optimal policy in perturbed

environments and thereby maintaining performance.

To address the challenges posed by external disturbances, we propose an RL method with ro-

bust exploration to maintain a high reward under perturbations in the action selection. We adopt a

two-player adversarial framework, treating the adversary as the second agent in a zero-sum game,
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enhancing the robustness of the RL agent (Gu et al., 2019; Kamalaruban et al., 2020b; Pattanaik

et al., 2017; Pinto et al., 2017; Zhang et al., 2021). This approach aligns with the principles of Ro-

bust Markov Decision Processes (R-MDP) (Bagnell et al., 2001; Iyengar, 2005; Nilim and Ghaoui,

2003) and is instantiated in frameworks like Robust Adversarial Reinforcement Learning (RARL),

Noisy Robust Markov Decision Processes (NR-MDP), and Probabilistic Action Robust MDP (PR-

MDP) (Pinto et al., 2017; Tessler et al., 2019).

In our proposed method, both the protagonist and adversary learn their Q-functions via Langevin

Monte Carlo (LMC) for exploration. The iterative updates per step allow both agents to effectively

explore in interaction with each other. In contrast to existing approaches (Vinitsky et al., 2020; Dong

et al., 2023) that formulate their adversarial actions as a combination with the original execution in

NR-MDP (Tessler et al., 2019) or only target specific entries in the action space in RARL (Pinto

et al., 2017), our model considers the problem from a cyber-physical system perspective, allowing

the attacker to potentially take over the execution completely with a certain probability in PR-

MDP (Tessler et al., 2019). We extend our framework to handle delayed feedback, adding flexibility

for real-world scenarios (Kuang et al., 2023).

We evaluate our method on the challenging exploration problem N-Chain (Osband et al., 2016)

as well as a practical problem focused on treatment of Parkinson’s disease patients using deep brain

stimulation (Schmidt et al., 2023), comparing it with various exploration strategies under adversarial

learning. Our results indicate that our method consistently generates more robust policies compared

to baselines across different types of perturbations and delayed feedback.

1.1. Posterior Sampling in Reinforcement Learning

In value-based RL, for efficient exploration, posterior sampling introduces randomness into the

value function via Gaussian noise (Strens, 2020). Randomized least-squares value iteration (RLSVI)

with frequentist regret analysis was proposed for tabular MDPs (Russo, 2019; Xiong et al., 2022).

RLSVI was enhanced with the reward perturbation and greedy execution on estimated state-action

values for simplicity and computational ease (Ishfaq et al., 2021). However, Gaussian distribution

in RLSVI may not always be a proper approximation of the true posterior (Ishfaq et al., 2023) and

the good features are not always easily known (Li et al., 2021). Addressing these challenges, Adam

LMCDQN (Ishfaq et al., 2023) introduced a gradient-based approximate sampling scheme through

Langevin dynamics for posterior sampling in deep RL. Langevin dynamics for posterior sampling

were also explored in the context of delayed feedback (Kuang et al., 2023), offline settings (Ishfaq

et al., 2023) and multi-agent systems (Hsu et al., 2024b).

1.2. Robust Reinforcement Learning

Existing literature mainly considers the robust control problems from a control theory perspec-

tive (Zhou et al., 1996; Doyle et al., 2013). However, our focus narrows down to the domain

of robust RL, particularly as it pertains to robust MDPs initially explored in the context of pre-

defined uncertainty sets for environmental transitions (Bagnell et al., 2001; Iyengar, 2005; Nilim and

Ghaoui, 2003). The prevailing approach to learning robust policies involves interpreting environ-

mental changes as adversarial perturbations. This conceptualization naturally formulates a max-min

problem, encompassing two agents: an agent tasked with achieving the original objectives (protag-

onist) and an agent responsible for generating disruptions (adversary). Noteworthy instances within

this research paradigm include Robust Adversarial Reinforcement Learning (RARL) (Pinto et al.,
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2017) and Noisy Robust Markov Decision Process (NR-MDP) (Tessler et al., 2019), which differ in

their modeling of the adversary. Research within these frameworks has demonstrated that learning

with a population of adversaries can notably enhance robustness for continuous control (Vinitsky

et al., 2020; Dong et al., 2023; Hsu et al., 2024a). On the other hand, MixedNE-LD (Kamalaruban

et al., 2020a) introduced a sampling perspective via Langevin dynamics in order to facilitate robust-

ness learning.

1.3. Comparison to MixedNE-LD

While sharing the main idea with Stochastic Gradient Langevin Dynamics (SGLD) approach (Welling

and Teh, 2011), MixedNE-LD introduces a variant of DDPG ((Lillicrap et al., 2019)), focusing on

problems with a continuous action space. This adaptation involves two actor networks for protag-

onist and adversary policies, utilizing Langevin dynamics, while the critic is trained to estimate

the Q-function of the joint policy. It is important to note that, in contrast, when addressing prob-

lems with discrete action spaces in our work, Langevin dynamics is directly applied to estimate

the Q-function.

From a robust control framework perspective, our approach in the work formulates the problem

as learning on a PR-MDP, focusing on uncertainties/disturbances in cyber-physical system framed

as adversarial inputs. In contrast, MixedNE-LD adopts the NR-MDP framework, making a strong

assumption that the overall effect of disturbances can be captured as a linear combination of the

protagonist and adversary actions. Additionally, beyond adversarial learning in the action space,

our algorithm extends to be robust against delayed feedback, and empirical results support the ef-

fectiveness of our method.

2. Robust Exploration with Adversary via LMC (REAL)

2.1. Problem Formulation for Adversarial Learning

We formulate our problem as learning on a Markov Decision Process (MDP), which is defined as a

6-tuple M = (S,Ap,Aa,P, r, γ). Here, S denotes a finite state space, and Ap and Aa represent

the sets of discrete actions that the agent (protagonist) and adversary can take, respectively. The

transition function P models the transition to the next state based on the current state and the actions

of both the protagonist and the adversary. The reward function r quantifies the reward for the

protagonist, accounting for the additional impact of the adversary’s action. In this zero-sum game

framework, the reward function for the adversary is set to −r. The discounting factor, γ ∈ [0, 1), is

introduced to shape the temporal influence of future rewards.

For any set K, we use Δ(K) to denote the set of all possible probability distributions on K. The

protagonist’s and adversary’s policies are represented by πθ : S → Δ(Ap) and πφ : S → Δ(Aa),
respectively, with θ and φ denoting their respective parameters. At each time step, t, st captures the

state of the environment, while apt ∈ Ap (and aat ∈ Aa) denotes the action taken by the protagonist

(adversary, respectively). Finally, we use

R(θ, φ)
.
= E

[ ∞∑
t=0

γtr(st, a
p
t , a

a
t ) | apt ∼ πθ(st), a

a
t ∼ πφ(st)

]
, (1)

to represent the cumulative discounted reward that the agent πθ can receive under the disturbance

of the adversary πφ.
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The objective of adversarial training (two-player max-min game) for robustness (Pinto et al.,

2017; Vinitsky et al., 2020) can be defined as

max
θ∈Θ

min
φ∈Φ

R(θ, φ), (2)

where Θ and Φ are pre-defined parameter spaces for the agent and the adversaries. In this approach,

the RL agent maximizes the worst-case performance under disturbance. In this work, we follow the

Probabilistic Action Robust MDP (PR-MDP) framework (Tessler et al., 2019), which can be viewed

as a zero-sum game between protagonist and adversary.

Definition 1 (PR-MDP (Tessler et al., 2019)) Consider an MDP M, and let πθ and πφ be policies
of a protagonist and an adversary. The probabilistic joint policy πmix

p (πθ, πφ) of the corresponding
PR-MDP is defined as πmix

p (a|s) .
= (1− p) · πθ(a|s) + p · πφ(a|s).

To obtain the optimal probabilistic robust policy, the solution involves solving the zero-sum game

described by (2). The alternating update of φ and θ occurs in each module, with the adversary

updated in lines 4 to 15 and the protagonist updated in lines 16 to 27 within the main algorithm

outlined in Algorithm 1. In each iteration, episodes are executed to estimate the Q-functions for

both the protagonist and adversary using exploration, as detailed in Algorithm 2, which will be

discussed in more detail in the following subsection.

The collected data trajectories in the kth episode, denoted as {skh, akh, rkh}h∈[H], are collected in

both lines 13 and 25 of Algorithm 1. The actions in these trajectories are defined as

akh =

{
argmaxa∈Aa Qk

h,a(s
k
h, a) w. p. p,

argmaxa∈Ap Qk
h,p(s

k
h, a) w. p. 1− p.

(3)

by considering p ∈ [0, 1] as the probability of encountering adversarial activity in the PR-MDP.

2.2. Deep Q-Network with Robust Efficient Exploration

We now introduce our algorithm, Robust Exploration with Adversary via LMC (REAL). To ef-

fectively estimate the Q-function, we employ a variant of deep Q-networks (DQNs) (Mnih et al.,

2013) known as Adam LMCDQN. This serves as the core RL algorithm for both our the protagonist

and adversary. Adam LMCDQN demonstrates theoretical guarantees in linear settings and exhibits

promising empirical results in single-agent learning within the deep RL domain (Ishfaq et al., 2023).

In particular, when the Q-function’s function approximation is linear, the model approximation

at timestep h ∈ [H] and episode k ∈ [K] is denoted by Qk
h(·, ·) = min{μ(·, ·)�ωk,Jk

h , H − h− 1},

where μ(·, ·) represents a feature vector of the corresponding state-action pair. The Q-function is

parameterized with ωk,Jk
h at timestep h and episode k, incorporating the noise gradient descent on

the loss function Lk
h(ωh) for Jk updates, where Lk

h(ωh) is defined as the difference between the

target Q value and the current Q value over the whole k − 1 episodes as follows:

Lk
h(wh)

.
=

k−1∑
τ=1

(ỹτh −Q(ωh;μ(s
τ
h, a

τ
h))

2 + λ‖ωh‖22; (4)

here, ỹτh
.
= rτh +maxa∈AQk

h+1(s
τ
h+1, a), ωh is the parameter of the Q function, depending on the

protagonist or adversary, and ‖ωh‖22 with λ > 0 is the regularization term. Specifically, the gradient
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Algorithm 1 Robust Exploration with Adversary via LMC (REAL)

Input: ηk,p: step size for updating the agent policy, ηk,a: step size for updating the adversary,

inverse temperature βk, smoothing factors α1 and α2, bias factor a, update number Jk
Output: θ̂: parameter for the agent policy.

1: Randomly initialize θ1,0h and φ1,0
h from appropriate distribution for h ∈ [H], J0 = 0, m1,0

h = 0

and v1,0h = 0 for h ∈ [H] and k ∈ [K].
2: i ← 0, θt ← θ, φt ← φ
3: for Iteration i = 0 : I − 1 do
4: {Update the adversary.}
5: for episode k = 1 : K do
6: Receive the initial state sk1
7: for step h = H,H − 1, ...1 do
8: φk,0

h = φ
k−1,Jk−1

h ,mk,0
h,a = m

k−1,Jk−1

h,a , vk,0h,a = v
k−1,Jk−1

h,a

9: φk,Jk
h ,mk,Jk

h,a , vk,Jkh,a = aLMC(φk,0
h ,∇L̃k

h(φ
k,0
h ), a,mk,0

h,a, v
k,0
h,a, ηk,a, βk, α1, α2)

10: Qk
h,a(·, ·) ← Q(φk,Jk

h ;μ(·, ·))
11: end for
12: for step h = 1, 2, ...H do
13: Take action akh, observe reward rkh and next state skh+1

14: end for
15: end for
16: {Update the protagonist.}
17: for episode k = 1 : K do
18: Receive the initial state sk1
19: for step h = H,H − 1, ...1 do
20: θk,0h = θ

k−1,Jk−1

h ,mk,0
h,p = m

k−1,Jk−1

h,p , vk,0h,p = v
k−1,Jk−1

h,p

21: θk,Jkh ,mk,Jk
h,p , vk,Jkh,p = aLMC(θk,0h ,∇L̃k

h(θ
k,0
h ), a,mk,0

h,p, v
k,0
h,p, ηk,p, βk, α1, α2)

22: Qk
h,a(·, ·) ← Q(θk,Jkh ;μ(·, ·))

23: end for
24: for step h = 1, 2, ...H do
25: Take action akh, observe reward rkh and next state skh+1

26: end for
27: end for
28: end for
29: θ̂ ← θT

descent update adheres to Langevin Monte Carlo (LMC) principles, introducing isotropic Gaussian

noise in each update as

ωk,j
h = ωk,j−1

h − ηk∇Lk
h(ω

k,j−1
h ) +

√
2ηkβ

−1
k εk,jh , (5)

where ηk represents the step-size parameter, βk stands for the inverse temperature parameter, and

εk,jh denotes an isotropic Gaussian random vector in R
d, where j ∈ [Jk].

LMC is replaced with Adam SGLD (Kim et al., 2020) in Adam LMCDQN (Ishfaq et al., 2023)

due to the prevalent pathological curvature and saddle points in most deep neural networks. Within
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Algorithm 2 Adam Langevin Monte Carlo aLMC(ωk,0
h ,∇L̃k

h(ω
k,0
h ), a,mk,0

h , vk,0h , ηk, βk, α1, α2)

1: for j = 1, ..., Jk do
2: εk,jh ∼ N(0, I)

3: ωk,j
h = ωk,j−1

h − ηk∇L̃k
h(ω

k,j−1
h )+amk,j−1

h �
√

vk,j−1
h + C11 +

√
2ηkβ

−1
k εk,jh

4: mk,j
h = α1m

k,j−1
h + (1− α1)∇L̃k

h(ω
k,j−1
h )

5: vk,jh = α2v
k,j−1
h + (1− α2)∇L̃k

h(ω
k,j−1
h )	∇L̃k

h(ω
k,j−1
h )

6: end for

Algorithm 2 (aLMC), ∇L̃k
h(ω

k,j−1
h ) represents an estimate of ∇Lk

h(ω
k,j−1
h ) based on one mini-

batch of data sampled from the replay buffer. The smoothing factors for the first and second mo-

ments of stochastic gradients are denoted by α1 and α2, respectively. Additionally, α serves as the

bias factor, and C1 is a small constant introduced to prevent zero-divisors. Note that in this context,

	 and � represent the element-wise vector product and division, respectively. The term vk,jh can

be considered an approximator of the true second-moment matrix E(∇L̃k
h(ω

k,j−1
h )∇L̃k

h(ω
k,j−1
h )�),

and the bias term mk,j−1
h �

√
vk,j−1
h + C11 can be interpreted as the rescaled momentum, which is

isotropic near stationary points.

2.3. Deep Q-Network with Robustness to Delayed Feedback

We account for stochastic delays across episodes, where the trajectory generated in each episode is

not immediately observable due to delays. The definition of episodic delayed feedback, as adopted

in this work, is provided below.

Definition 2 (Episodic Delayed Feedback (Kuang et al., 2023)) In each episode k ∈ [K], the
execution of a fixed policy πk produces a trajectory {skh, akh, rkh}h∈[H]. Such trajectory information,
termed the feedback of episode k, is subject to a random delay denoted as τk, representing the time
gap between the completion of the rollout in episode k and the time point at which its feedback
becomes observable.

The feedback {skh, akh, rkh}h∈[H] of an episode k can only be observed after the initiation of the

k + τk-th episode, indicating that the delayed version of the loss function used in Algorithm 1

effectively becomes

Lk
h(wh)

.
=

k−1∑
τ=1

1τ,k−1(ỹ
τ
h −Q(ωh;μ(s

τ
h, a

τ
h))

2 + λ‖ωh‖22,

where 1 represents the indicator whether the previous history from episode τ to k−1 are observable.

3. Evaluations

In this section, we empirically evaluate the proposed method by validating the robustness of our

method against existing baselines in two tasks: N-Chain and Parkinson’s symptom suppression via

Deep Brain Stimulation (DBS). Note that the deployed adversary model during evaluation is the

same as the trained adversary model after convergence.
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3.1. N-Chain

In our N-Chain experiments (Osband et al., 2016), we aim to demonstrate that Adam LMCDQN

exhibits enhanced robustness under adversarial learning in comparison to existing baselines. The

N-Chain environment comprises a chain of N states, with the RL agent starting from the second

state and having the option to move left or right. The agent receives a small reward of r = 0.001 in

the first state and a larger reward of r = 1 in the final state. The horizon length is N + 9, resulting

in an optimal return of 10.

Despite the apparent simplicity of this environment, it presents a non-trivial challenge for ex-

ploration strategies. The propensity for the agent to become ensnared in the initial state, with its

diminutive but immediate reward, accentuates the complexity of the task. Notably, as the chain

length N increases, the exploration hardness also escalates. We compare our approach with several

baselines, including vanilla DQN (Mnih et al., 2013), Bootstrapped DQN (Osband et al., 2016),

Noisynet DQN (Fortunato and Mohammad Gheshlaghi Azar, 2017), and DQN with perturbed his-

tory exploration (PHE) as the exploration strategy (Ishfaq et al., 2021). We consider different num-

bers of states N ; specifically, 25, 50, or 75.

Initially, we train all algorithms in the standard RL pipeline to establish the performance of

Adam LMCDQN across different N (see Figure 1(a)). Bootstrapped DQN and PHE are competitive

with N = 25, but their returns drop significantly when N increases. Given the simplicity of this

environment with a discrete action space A = 2, we set a small adversarial probability p = 0.01. We

then evaluate the trained policies under the adversarial environment, where all methods experience

a drop in return compared to the non-adversarial setting. However, Adam LMCDQN consistently

outperforms other methods in general (see Figure 1(b)).

Finally, we proceed to train all methods under adversarial learning in PR-MDP with an adver-

sarial probability p = 0.01, wherein the adversary tends to take over the action by moving left under

the pre-defined probability. Adversarial training improves all exploration strategies in Figure 1(c)

against Figure 1(b), and our proposed framework REAL based on Adam LMCDQN consistently

exhibits robustness (denoted as ”Adam LMCDQN” in Figure 1(c)). It is imperative to highlight

that, in stark contrast, Bootstrapped DQN does not exhibit robustness to the adversarial attack, even

with a chain length of N = 25, irrespective of whether it undergoes adversarial training or not. This

observation holds for all subfigures in Figure 1. The performance of each algorithm is averaged

over 10 seeds.

3.2. Deep Brain Stimulation

Deep brain stimulation (DBS) constitutes a surgical intervention aimed at alleviating motor symp-

toms by administering electrical pulses to the basal ganglia (BG) region of the brain (Benabid, 2003;

Okun, 2012). The BG encompasses three primary sub-regions: the subthalamic nucleus (STN),

globus pallidus pars externa (GPe), and globus pallidus pars interna (GPi). For a comprehensive

understanding and quantification of Parkinson’s disease (PD) manifestations, it becomes crucial

to incorporate not only these principal sub-regions but also include the thalamic region (TH) and

sensory-motor cortex (SMC) inputs within the PD-specific brain model, as illustrated in Figure 2.

Assuming the presence of n neurons in each sub-region, the state emanating from the computational

BG model at each time step t can be succinctly represented as a vector denoting electrical potential

– i.e., vq(t) = [νq1 , ..., ν
q
n], where νqi (·) signifies the ith neuron in the corresponding sub-region
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(a) Train(s), Test(s) (b) Train(s), Test(a) (c) Train(a), Test(a)

Figure 1: The comparison among all exploration strategies, including Adam LMCDQN, is con-

ducted in N-Chain environment with varying chain lengths N. Different subfigures cap-

ture distinct training and testing conditions: (s) denotes standard setting without an adver-

sary and (a) indicates setting under adversarial attack. Note that Adam LMCDQN in (c)

with adversarial training is our proposed method (REAL). All results are averaged over

10 runs. Since the standard errors are not significantly different, they are not depicted.

Figure 2: An illustration of the computational brain model (Jovanov et al., 2018). Deep Brain

Stimulation (DBS) pulses are applied to the Subthalamic Nucleus (STN), with its effects

propagating to other sub-regions. The Error Index (EI) is computed based on the activa-

tions passing from the sensorimotor cortex (SMC) to the thalamus (TH).

q ∈ {STN,GPe,GPi, TH}. The initial states of these neurons are treated as model parameters,

stochastically determined within the experimental setup.

For the training and evaluation of RL methods in the context of DBS, a computational Basal

Ganglia Model (BGM) (Jovanov et al., 2018) is cast as an OpenAI gym environment. Two essential

metrics, namely Beta-band Power Spectral Density (Pβ) and Error Index (EI), are introduced fol-

lowing the methodology outlined in (Gao et al., 2020). These metrics replace the direct observation

of the entire electrical potential vector vq(t). Specifically, Pβ gauges the power spectral density of

neuron potentials within the beta band for the GPi sub-region. Pathological oscillations of neurons

in this band are indicative of Parkinson’s disease. On the other hand, EI is defined as the percentage

of erroneously activated neurons in the TH in response to inputs from the SMC. Note that the Error

Index (EI) is constrained within the range [0, 1], as it is defined as a ratio.

The objective of a DBS controller is to minimize the value of EI. While EI serves as an oracle

for estimating the severity of Parkinson’s disease symptoms, and the goal is to minimize its value, it
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is not accessible during training in practical scenarios. Consequently, unlike the reward function and

states in (Gao et al., 2020, 2022a), we do not incorporate EI as a component of our reward function

and states during the training phase. Instead, EI is solely considered as the final evaluation metric.

Following the formulated MDP detailed in Section 2.1, we model the dynamics of the neuron

activities in the BGM. Specifically, the state st ∈ S is defined as the discretized sequence of past

Pβ signals. In essence, each state encompasses a sequence of Pβ signals sampled periodically to

facilitate improved training. In the computational BGM, the stimulus is executed once a pulse is

triggered at that specific time point.

We define the action space for both the protagonist Ap and the adversary Aa in the MDP as

a discrete action at ∈ [1, 12] at time step t, representing the selected stimulus frequency. The

maximum stimulus frequency is constrained to 180 Hz, and F = 15i (for instance, when i = 12,

the stimulus frequency reaches 180 Hz). The selected at is then mapped back to the stimulus for

the BGM. To mitigate potential severe side effects arising from high-frequency stimulus (Beudel

and Brown, 2016), the reward function is defined as r(t) = −s̄t+1 − C · at, where s̄t+1 denotes

the average Pβ over the entire sampling period. The second term of the reward function can be

interpreted as a constant penalty C ∈ R on the frequency of the action at. Finally, it is important

to note that determining at is influenced either by the protagonist or the adversary, depending on

whether the protagonist is under attack during the time step t.

HYPERPARAMETER TUNING OF PENALTY COEFFICIENT

Our penalty coefficient C is subject to tuning within a specified search space. Considering that

the value of the penalty coefficient C significantly impacts both the reward function and EI, our

objective is to identify a suitable C that enables the learned policy to consistently maintain a low EI

(below 0.1) (Gao et al., 2020) while employing a lower stimulation frequency with reduced energy

consumption and side effects.

Inherent in this optimization is a trade-off between task performance and safety considerations.

A higher stimulation frequency may be more effective in suppressing Parkinson’s disease (PD)

symptoms, while a larger C in the reward function discourages the policy from selecting a higher

stimulation frequency to mitigate potential side effects. The primary objective is to choose the

lowest average stimulation frequency while prioritizing effective task performance.

We evaluate three exploration strategies: vanilla DQN, Bootstrapped DQN (previously success-

ful in N-Chain), and Adam LMCDQN. PHE and Noisynet DQN are omitted from the comparison

due to scalability limitations (Ishfaq et al., 2023) and lower competitiveness in the N-Chain envi-

ronment, respectively. To ensure a fair comparison, we tune the constant C within the range of

[0.09, 0.17] for all algorithms to achieve lower EI values.

PERFORMANCE OF THE PROPOSED METHOD – REAL

We initially train three exploration strategies without adversarial learning and evaluate them in the

same environment. The results, along with those for the untreated PD brain and the healthy brain,

are presented based on Pβ and EI in Figure 3(a) and Figure 3(b). The entire evaluation period is

demarcated by a dashed line, signifying the activation of all DBS controllers to produce their respec-

tive outputs after 4000 time steps. Consequently, excluding the healthy brain, all other controllers

commence with the same oscillation characterized by higher Pβ and EI.
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(a) Pβ w/o adversary (b) EI w/o adversary

(c) Pβ w/ adversary (d) EI w/ adversary

Figure 3: Pβ and EI over time in model PD brains without and with various types of stimulation, as

well as in healthy brain. First row: training and testing without adversary. Second row:
training and testing with adversary.

Adam LMCDQN demonstrates a superior trade-off between exploration and exploitation, re-

sulting in lower Pβ and EI values in the same environment. Subsequently, we conduct additional

training for all exploration strategies under PR-MDP with p = 0.1 in Figure 3(c) and Figure 3(d).

Notably, the learned adversary for each method represents its worst adversary, as we further learn

the adversary πφ after the convergence of the protagonist πθ. Despite the increase in Pβ and EI

values for all variants of DQNs, Our REAL method, based on Adam LMCDQN (depicted in green)

consistently maintains an EI value around 0.1, showcasing its efficacy as a DBS treatment.

Finally, an evaluation of the successfully trained Adam LMCDQN in an environment with

episode delay following a Poisson distribution (Kuang et al., 2023) indicates that episode delay,

viewed as a form of disturbance, could be effectively handled through the construction of varying

episode delays during training, as outlined in Algorithm 1.

4. Conclusion
In this study, we have addressed the challenge of efficient exploration in the presence of unforesee-

able adversaries or perturbations, specifically focusing on Deep Q-Networks (DQN) with discrete

action space. We have assumed that the adversaries would follow PR-MDP formulation within

a two-player zero-sum game framework. Both the protagonist and adversary use noisy gradient

descent updates to approximate samples from the posterior distribution of the data, promoting ex-

ploration. Further, we have extended our adversarial learning framework to accommodate episodic

delayed feedback, enhancing adaptability to more challenging scenarios. Finally, we have presented

empirical results on an exploration problem, N-Chain, and a real-world application involving DBS.
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