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Abstract— While Vision Transformers (ViTs) h
consistent progress in computer vision, deploying
real-time decision-making scenarios (< 1 ms) is «
Current computing platforms like CPUs, GPUs, or F
solutions struggle to meet this deterministic low-latenc
requirement, even with quantized ViT models. Some
use pruning or sparsity to reduce model size and later
often results in accuracy loss. To address the afor
constraints, in this work, we propose EQ-ViT, an
acceleration framework with novel algorithm and
co-design features to enable real-time ViT acceleratic
Versal Adaptive Compute Acceleration Platform (A
contributions are four-fold. First, we perform in-de
level performance profiling & analysis and explain the
for existing acceleration solutions on GPU, FPGA,
Second, on the hardware level, we introduce a 1
and heterogeneous accelerator architecture, EQ-Vi
ture. This architecture leverages the heterogeneous
ACAP, where both FPGA and artificial intelligen
(AIEs) coexist on the same system-on-chip (SoC). Th
algorithm level, we create a comprehensive quantizauvu-aware
training strategy, EQ-ViT algorithm. This strategy concurrently
quantizes both weights and activations into 8-bit integers, aiming
to improve accuracy rather than compromise it during quanti-
zation. Notably, the method also quantizes nonlinear functions
for efficient hardware implementation. Fourth, we design EQ-
ViT automation framework to implement the EQ-ViT architec-
ture for four different ViT applications on the AMD Versal ACAP
VCK190 board, achieving accuracy improvement with 2.4%, and
average speedups of 315.0x, 3.39x, 3.38x, 14.92x, 59.5x, 13.1x over
computing solutions of Intel Xeon 8375C vCPU, Nvidia A10G,
A100, Jetson AGX Orin GPUs, and AMD ZCU102, U250 FPGAs.
The energy efficiency gains are 62.2x, 15.33x, 12.82x, 13.31x,
13.5x, 21.9x.
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Fig. 1: E2E latency comparison for DeiT-T (FP32, INTS, batch
size = 6) by using HeatViT on U250 FPGA, TensorRT on
A10G GPU, CHARM on Versal ACAP VCK190 and EQ-ViT
(ours) on ACAP VCK190.
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Index Terms—design for space exploration, embedded systems,
FPGA, hardware/software co-design, high-level synthesis, model-
ing, performance optimization, reconfigurable logic

I. INTRODUCTION

Vision Transformers (ViTs) [1]-[3] have shown remarkable
versatility in a broad range of application domains, including
computer vision (e.g., image classification [1], [3], object
detection [4], [5], image processing [0], and video under-
standing [7]), and in complex scenarios that involve multi-
modal data. Many networks [1], [8]-[10] use ViTs as the
backbone [8], [°] and show superior transferability to various
downstream tasks with minor fine-tuning.

Low-latency real-time application scenarios. Adopting
ViT inference as a key chain for low-latency real-time
decision-making usually requires stringent latency require-
ments. For example, in autonomous driving scenarios with a
120 km/h speed, 1 ms latency corresponds to 3 cm between
a vehicle and a static object or 6 cm between two moving
vehicles [ 1]. In such a life-critical system, deterministic low
latency (<1 ms) is the first-class design citizen. European
Organization for Nuclear Research (CERN) collaborates with
autonomous driving software company Zenseact to apply
CERN’s decision-making algorithm acceleration on FPGA
at microsecond level to help avoid accidents in self-driving
cars [12]. Such latency (<1 ms) is required in broader sce-
narios, including edge and cloud applications. On the edge,
for example, radio access networks (RAN) [13] support inter-
active streaming media [14], augmented reality/virtual reality
(AR/VR) [15], [16], robot systems control [17], online error
detection in the manufacturing industry [ 18], and industrial IoT
4.0 [19]. RAN stack operates in low-latency at a transmission
time interval of 1 ms or less (based on 5G standards). Thus,
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TABLE I: Hardware specification comparisons on peak perfor-
mance for data types FP32 and INT8, on-chip memory size,
off-chip bandwidth (BW), TDP among AMD FPGA U250,
Nvidia GPU A10G, Nvidia GPU Jetson AGX Orin, and AMD
Versal ACAP VCK190.

Tech. Off-chip | On-chip | Off-chip
Hardware Spec. | (oo | FP32 | INTS BW Mo, Mem. TDbP
AMDIROA 1 ienm | 12T | 695T | 77GBis | S3MB | 16GB | 225W
Nvidia OPU -1 am | 35T | 40T | 600GB/s | 14MB | 24GB | 300W
Nvidia GPU- | g\ | 53T | 85T | 204GB/s | 6MB | 64GB | 60W
Jetson Orin
AMD ACAP
1o 7om | 64T | 102T | 25GB/s | 33MB | 8GB | <IS0W

it has to make control decisions at each millisecond [13].
In AR/VR, the latency requirement is <1 ms as the visual
reaction time for human expected events is only around 1
ms [20]. In the cloud, to guarantee the quality of service,
deep learning-based inference for cloud services in Microsoft
Bing Search [21], Microsoft Azure Cloud [22], [23], and
Google Cloud [24]-[26], all have a single-digit millisecond
latency budget to process. Powered by next-generation cellular
networks with 5G or 6G standard [13], optical interconnection
network [27], and optical chiplet [28], [29] technology, the
latency requirement will be more stringent. Acceleration
solutions that meet certain end-to-end (E2E) inference
latency requirements and optimize the overall system
energy efficiency, i.e., performance per watt, are desired.

However, existing works fail to fulfill such stringent low-
latency requirements, hindering the ViT deployment in low-
latency application scenarios. We measure the E2E low batch
inference latency for the representative ViT model DeiT-T [2]
using the state-of-the-art (SOTA) acceleration frameworks
on the FPGA and GPU, including HeatViT [30] on AMD
U250 FPGA, and TensorRT [31] on Nvidia A10G GPU. As
shown in Figure 1, in terms of E2E inference latency under
single-precision floating-point (FP32) precision, U250 FPGA
takes 50.3 ms, which far exceeds the low-latency real-time
requirement, e.g., <1 ms, while A10G GPU takes 2.21 ms. We
can achieve a lower inference latency by quantization [32] and
deploying the 8-bit integer (INTS8) inference on U250 FPGA
and A10G GPU. Then the inference latency reduces to 7.3 ms
on U250 FPGA and 1.78 ms on A10G GPU.

Based on the requirements of deterministic E2E inference
latency and the initial profiling results of existing solutions,
several research questions arise: (a) What are the limitations
of the existing acceleration platforms in satisfying the low-
latency demands? (b) With quantization optimization, do we
have a better computing solution to achieve lower latency
than FPGAs and GPUs?' (c) If so, how to achieve that? (d)
Can we also improve the accuracy with integer quantization?

Our answer to the second question is “Yes”. We propose
EQ-ViT architecture and our implemented EQ-ViT design on
AMD Versal ACAP VCKI190 achieves a latency as low as 0.56

'Note that <1 ms latency requirement in the example discussion is
for illustration purposes. The latency requirements differ across various
application scenarios. We desire a solution that achieves lower latency than
GPUs and FPGAs under the same throughput requirement or achieves higher
throughput (or energy efficiency) than GPUs and FPGAs under the same
latency requirement. In this paper, we discuss such a solution EQ-ViT.

ms, which has 3.2x latency improvement over A10G GPU and
13.1x over U250 FPGA. However, achieving latency as low
as 0.56 ms on Heterogeneous Versal ACAP SoC involves a
lot of design efforts. To ease the programming efforts, we
propose EQ-ViT design automation framework to perform
design space exploration and automatic code generation to
facilitate the implementation. In addition, we propose EQ-
ViT algorithm to improve the inference accuracy after the
INTS8 quantization and EQ-ViT algorithm-hardware co-design
to meet the hardware constraints without hurting the algorithm
accuracy. Our contributions are summarized below:

« Detailed Profiling and Bottleneck Analysis: To understand
the performance constraints of existing solutions, we per-
form in-depth kernel-level performance profiling of ViTs
on FPGA, GPU, and ACAP in Section II. Based on the
bottlenecks for existing solutions, we propose our solution
principles.

o EQ-ViT Accelerator & Mapping: We propose a novel
spatial and heterogeneous accelerator template and program-
ming mapping solution to take advantage of the ACAP
heterogeneous features: the co-existence of FPGA and AIE
vector cores on the same system-on-chip in Section I'V. Our
accelerator architecture features multiple spatial accelerators
to improve the AIE core utilization and fine-grained pipeline
to overlap the execution time of the accelerators that run on
the FPGA and AIEs of the ACAP.

o« EQ-ViT Algorithm and Algorithm-Hardware Co-
Design: On the algorithm level, we develop a full
quantization-aware training strategy, EQ-ViT algorithm, to
quantize both weights and activations into 8-bit integers
in Section V. This method improves accuracy on all four
different ViT models. More importantly, our proposed EQ-
ViT algorithm-hardware co-design quantizes the nonlinear
functions with algorithm optimization and realizes efficient
hardware implementation for Softmax and GeLU.

e EQ-VIiT Automation and System Implementation: We
design EQ-ViT automation framework to implement the EQ-
VIiT architecture for four different ViT models on the AMD
Versal ACAP VCK190 board. Experiments in Section VI
show EQ-ViT achieves accuracy improvement with 2.4%
and average speedups of up to 315.0x, 3.39x, 3.38x, 14.93,
59.5x, 13.1x over computing solutions of Intel Xeon 8375C
vCPU, A10G, A100, Jetson AGX Orin GPUs, and AMD
ZCU102, U250 FPGAs.

e EQ-VIiT Generality Discussion: We discuss how EQ-
ViT mapping framework can be applied to other archi-
tecture, e.g., FPGA and GPU, to improve performance
in Section VII. We further discuss the microarchitecture
insights, i.e., what role reconfigurability plays in future
heterogeneous architecture.

II. BOTTLENECK ANALYSIS AND PROPOSED SOLUTION

In this section, we first explain the performance bottlenecks
of the current solutions on FPGA, GPU, and ACAP. Then we
discuss our proposed design principles.

First, FPGAs are mainly constrained by the limited
computation resources. Table I indicates that AMD FPGA
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Fig. 2: E2E inference latency comparison of using TensorRT
on NVIDIA A10G GPU and using EQ-ViT (ours) on AMD
Versal VCK190 ACAP for the representative ViT model DeiT-
T with INT8 precision when batch size = 6.

U250 (Ultrascale+, 16nm fabrication) has the lowest peak per-
formance among the three hardware platforms, at 1.2 TFLOPS
for FP32 and 6.95 TOPS for INT8 under 250 MHz. When
transitioning from FP32 to INTS, the E2E latency decreases
from 50.3 ms to 7.3 ms. However, both cases are computation-
bound and latency can not be further reduced because of
limited computation resources from DSP/LUT in FPGA.

GPUs have abundant computation cores, e.g., NVIDIA in-
troduces Tensor Cores since Volta architecture. Table I reveals
that GPU A10G (Ampere architecture, 8nm fabrication) boasts
the highest peak performance at 35 TFLOPS for FP32 and
140 TOPS for INT8. Tools like TensorRT simplify inference
streamline through methods such as quantization. However,
despite the powerful hardware, Figure 1 shows that the E2E
latency on GPU A10G is 2.21ms for FP32 and 1.78ms for
INT8. This results in a modest 1.24x E2E improvement,
significantly smaller than the theoretical peak computation
performance improvement from FP32 to INTS8 (4x, calculated
as 140T/35T). To understand the performance bottleneck, we
utilize NVIDIA Nsight System [33] and depict the kernel-
level time breakdown for INTS in Figure 2. We identify the
following performance constraints for using TensorRT on
the GPU: @ Low Tensor Cores utilization for INTS MM
kernels. Although MM kernels constitute 34.4% of the total
runtime, their effective throughput is 23 TOPS, representing
only 16% utilization of the peak INT8 computation perfor-
mance for GPU A10G. @ TensorRT adopts an implicit
quantization policy, which leads to BMM computing in
FP32, not in INTS8. Quantization enables MM and batch-
MM (BMM) to compute in INT8 for higher throughput.
However, according to the NVIDIA Nsight Compute kernel-
level profiling report, BMM kernels compute in FP32. This
is related to the implicit quantization strategy applied by
TensorRT [34], which will quantize one kernel only when this
kernel runs faster in INTS8. Otherwise, TensorRT will assign
a higher precision to this kernel, FP32, by default. Despite
having only 1/6 of the total operations of MM kernels, BMM
kernels contribute to 21.7% of the total runtime. We calculate
their effective throughput as 6.3 TFLOPS, which is 18% of
the peak FP32 computation performance for A10G. @ The

data type conversion between FP32 and INTS8 consumes
non-negligible GPU cycles. MM kernels are processed in
INT8 mode using NVIDIA Tensor Cores, while other ker-
nels use FP32 mode with NVIDIA CUDA Cores. Data type
conversions between FP32 and INTS, known as Reformat, are
introduced. This operation is significant, accounting for 5.3%
of the E2E latency. @ The nonlinear kernels take significant
GPU cycles. Non-MM kernels, such as Softmax, GeLU, and
LayerNorm, collectively contribute 27.6% of the total, despite
their operations being only 1.5% of MM kernels. This is due
to these kernels involving special functions, such as exponent
functions, division, and square root.

AMD Versal ACAP is a heterogeneous SoC, featuring ARM
CPUs, FPGA, and AIE vector cores. The AIEs support several
data types, including FP32, INT16, and INT8 [35]. ACAP
integrates the aspects of both domains, that is, FPGA for
reconfigurability and AIEs for abundant computation cores.
We deployed the DeiT-T model FP32 version on the VCK190
board using CHARM [36], a SOTA deep learning inference
framework on ACAP architecture. Figure 1 illustrates that
CHARM has an E2E latency of 48.07 ms, which is 27x
slower than using TensorRT on GPU A10G under FP32. This
performance lag is mainly due to the significant load/store of
the feature data from/to off-chip memory, caused by the FP32
model’s size exceeding the VCK190 on-chip storage capacity
of 33MB. Quantizing the model into INTS8 allows it to fit
on-chip. However, without careful design, ACAP acceleration
may face similar limitations (from @ to @) as A10G, and
potentially worse due to VCK190’s limited 4.2% off-chip BW
compared to A10G. This leads to the following question: How
can we optimize latency for INT8 ViT on ACAP, given its high
computation intensity but constrained off-chip BW?

Proposed Design Principles. We propose EQ-ViT to opti-
mize latency for INT8 ViT, which circumvents all constraints
from @ to @ typically encountered in GPU. The key idea
of EQ-VIiT is to design multiple heterogeneous MM acceler-
ators on AlEs, design other non-MM kernels on FPGA, and
overlap the execution of kernels running on AIEs and FPGA.
Figure 2(b) demonstrates the kernel runtime overlapping in
EQ-ViT. However, new challenges appear. First, we need
to enable explicit INT8 computation for BMMs and achieve
high computation utilization for both MMs and BMMs. The
computation and communication requirements of MMs and
BMMs are different. Overlapping these two types of kernels
can improve both computation and communication utilization.
Second, we need to design efficient accelerators for nonlinear
kernels (Softmax, GeLU, and LayerNorm). Third, we need to
leverage the flexible on-chip memory architecture provided by
FPGA on ACAP to enable data forwarding in adjacent kernels
and further reduce off-chip memory access. Fourth, we need
to carefully overlap the execution time and optimize workload
partitioning and resource partitioning jointly, for utilization
optimization, high throughput, and low latency. Fifth, we need
analytical models to optimize the E2E latency under com-
putation resource and communication bandwidth constraints.
Sixth, we need to keep the accuracy after quantization and, if
possible, enhance it.
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TABLE II: Architecture and algorithm features of EQ-ViT and comparisons with prior works.
Prior Works | Comp Platform | ] ] Accelerator Features _ | Algorithm & Algorithm-Hardware Co-Design Feat.
Board Type GOPS/(GBIs) lxlulul Sp-;mal S Ha_n:.wa:'.e FOn-cl:;P Fnll)e_-gli-f\med Explicit Coml_Jute Activation-aware  Nonlinear Accm_"acy
ccelerators pecialization 'orwarding ipeline Quant. Util. Quant. Quant. Gain
TensorRT [31] | GPU - | X X X X X Low | - - -
Herald [37] | ASIC - | v x x x - High | - - -
MAGMA [38] | ASIC - | v v x x - High | - - -
ViA [39] |  FPGA USO 372/316=1.18 | v v x v x High | - - -
CHARM [36] ‘ ACAP VCKI190 6400/25.6=250 ‘ v X v X High ‘ - - -
ViTCoD [40] ‘ ASIC 256/76.8=3.3 ‘ X v X X X High ‘ X X X
HeatViT [30] | FPGA ZCU102 1260/19.2=65.6 | x v x x v High | X v X
Auto-ViT-Ace [41] | FPGA ZCU102  1260/19.2=65.6 | x v v High | x x x
SSR [42] ‘ ACAP VCKI190  102,400/25.6=4000 ‘ v v v v v High ‘ X X X
EQ-ViT ‘ ACAP VCKI190  102,400/25.6=4000 v v v v v High v Vv v
(Ours)
Note: [31], [26]-[39] are architecture and mapping frameworks. [30], [40], [41] and EQ-VIiT (ours) are algorithm-hardware co-design frameworks.
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Fig. 3: Computation flow of one transformer encoder.

III. BACKGROUND AND RELATED WORKS

In this section, we first discuss the background for Vision
Transformer model architecture, and existing quantization
methods for ViT in Section III-A. In Section III-B, we discuss
prior works on hardware acceleration and mapping frame-
works on ASICs, FPGAs, GPUs, and ACAP. We also discuss
algorithm-hardware co-design frameworks. We summarize our
proposed methodologies in hardware accelerator architecture
and algorithm with the prior works in Table II.

A. Vision Transformer

Transformers were initially proposed to handle the learning
of long sequences in NLP tasks. Great interest has surged fol-
lowing the work [43] that applies a transformer architecture for
image classification without reliance on convolutional archi-
tectures (CNN). With more data, data enhancement techniques,
or extended training epochs, ViTs can achieve significantly
improved task accuracy [2]. Currently, ViTs excel over CNNs
in terms of both speed and accuracy in various computer
vision tasks, including image classification [15], object de-
tection [44], and real-time object detection [45] (Better than
SOTA YOLOs).

ViT Architectures. The input image is first divided and
arranged into a sequence of patches (or tokens). This sequence
is then passed through an L-layer Transformer encoder [40].
Each Transformer layer/block consists of two main compo-
nents (Figure 3): a multi-head self-attention (MSA) module
and a multi-layer perceptron (FFN) module. For instance, the
DeiT-T model is composed of L = 12 Transformer blocks,
where the typical input image resolution is 224 x224 with a
patch size of 16x16. Consequently, this results in a sequence
of n = 196 tokens, each token being embedded with 64x3
dimensions and utilizing h = 3 heads, and dim = 64 per head.
Quantization on Transformers. Quantization is one of the
most powerful ways to decrease neural networks’ computa-

tional operations and memory footprint. Current quantization
methods can be divided into two categories: quantization-
aware training (QAT) [47] and post-training quantization
(PTQ) [48]. NLP-oriented Transformers mainly employ PTQ
for two reasons [49]-[51]: e QAT needs open dataset. If the
dataset is not publicly available, users have to use PTQ. e
QAT requires significant computational resources to support
the training of large model sizes (usually over 350M), to
which academics usually have limited access. However, the
compact model size of ViT and the presence of public datasets
make it a suitable candidate for QAT, thereby sidestepping
the notable accuracy decrease that is often associated with
PTQ. [52] proposes a QAT method for ViTs with information-
rectified. However, this work does not quantize nonlinear
operations, which causes more hardware overhead because of
data conversion between different data types (dequantizing and
requantizing), and etc. Moreover, several existing works [30],
[53]-[55] utilize model pruning or sparsity to reduce the
computation operations in ViTs. However, these techniques
often lead to unavoidable accuracy drops. In EQ-ViT, we
aim to implement a fully quantized ViT through the QAT
algorithm and to improve the accuracy.

B. Transformer Accelerators on Hardware
Hardware acceleration for neural networks spans various

platforms like ASICs, GPUs, FPGAs, and ACAPs, as shown
in Table II. ACAP stands out with its high theoretical INT8
performance but faces a challenge with its relatively low off-
chip bandwidth. This requires more design efforts due to the
high computation-to-communication (CTC) ratio on ACAP.
Nevertheless, EQ-ViT incorporates all the listed accelera-
tor and algorithm-hardware co-design features, achieving the
highest computation utilization and the lowest latency for ViT
compared to existing works.

Hardware Acceleration and Mapping Framework. Ten-
sorRT [31] provides a general quantization solution on GPUs.
However, TensorRT adopts an implicit quantization policy and
faces low INT8 tensor core utilization due to its sequential
execution model, i.e., calling each kernel one after another.
Herald [37] introduces a heterogeneous system with simulta-
neous spatial accelerators (accs), allowing for optimization ex-
ploration as different accs may have varied CTC ratios. While
Herald integrates well-designed accs, EQ-ViT goes a step
further by supporting accs hardware specialization and jointly
optimizing accs scheduling and designing. MAGMA [3§]
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proposes an automatic framework for multi-tenancy b
geneous architectures but suffers from significant latenc
to off-chip communication. This is not ideal for sce
that are sensitive to time. In contrast, EQ-ViT customiz
chip forwarding among any two adjacent accs to op
off-chip access. ViA [39] applies a well-customized
solution on U50 FPGA, supporting at most two spatial
while EQ-ViT explores more accs. FLAT [
fusion mechanic and a tiling method to reduce ¢

in attention-based models. CHARM proposes a

framework that composes multiple specializec

but it only supports FP32 data type and falls sh

real-time requirements on ACAP. EQ-ViT feat

architecture with customized accs. The fine-gr.

structure and on-chip data forwarding achieve

low latency.

Algorithm-Hardware Co-Design Acceleratior

architecture works [30], [40], [41] also cons:

adaption, e.g., sparsity, to speed up model infer

[40] efficiently prunes and polarizes attention 1

denser or sparser fixed patterns, reducing atten

tions. HeatViT [30] employs image-adaptive tok

8-bit quantization to eliminate model redund:

in improved on-device throughput. Auto-ViT-A¢

network search to tune the quantization choices for the best
latency under the frame-per-second (FPS) performance con-
straints. SSR [42] provides a framework that explores the
latency throughput tradeoff for the transformer-based appli-
cations. While enabling the hardware accelerator features,
there is a lack of discussion about the algorithm design and
algorithm-hardware co-design features. However, these works
have two main limitations. (i) In [40] and [4 1], the nonlinear
operators in ViT models are computed in FP32, leading to
significant hardware overhead. HeatViT [30] uses polynomial
approximations for GeLU and Softmax, quantizing them into
INTS. However, this approach consumes a significant amount
of FF/LUT resources due to the exponent ‘e’ in Softmax. EQ-
ViT (ours) employs ‘2’ as the exponent, resulting in lower
FF/LUT resource usage. (ii) Task accuracy degrades. ViTCoD
applies uniform pruning pattern to compress the attention
matrix, leading to accuracy drops of 0.5%~1%. HeatViT and
Auto-ViT-Acc fail to consider the inherent data distribution
within ViTs, resulting in inconsistencies between the quan-
tization strategy and the data distribution. In contrast, EQ-
ViT introduces a hardware-efficient nonlinear quantization
and achieves better task accuracy than full-precision models
through activation-aware quantization.

] annliec a

IV. EQ-VIT FRAMEWORK & ARCHITECTURE

In this section, we first illustrate the proposed framework
and the EQ-ViT heterogeneous accelerator. We then elaborate
on the detailed mapping methodology.

A. EQ-VIiT Framework Overview

Our EQ-VIiT provides the optimization for algorithm/hard-
ware co-design. In Fig 4, our framework takes the latency
and accuracy requirement and the hardware information from
the user. These combined constraints will decide the final
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Fig. 5: Versal ACAP architecture overview.

quantization strategy by the activation-aware training and
mapping strategy through Eq. (1)-(7) in Section IV-E. Given an
application, our EQ-ViT will conduct activation-aware training
and provide accuracy under 32bits, 16bits, 8bits, and 4bits for
both activations and weights. Then according to the accuracy
constraint and the hardware information, EQ-ViT will pick
a quantization strategy that meets the accuracy requirement
while best fitting the vector processors(AlEs). For instance,
Versal VEK280 provides peak performance under 8bits x 4bits
mode whereas VCK190 provides peak performance under
8bits x 8bits mode. Then we use Eq. (1)-(7) to optimize
the throughput under the latency constraint and quantization
strategy. If model quantization is insufficient to target a single
board, our work can be used in concert with partitioning
approaches to map larger models onto multiple devices [57].
Our EQ-ViT framework also includes a Python-based code
generation toolflow. Based on the generated mapping strategy,
it can instantiate the code template to generate the design
source files including ARM CPU host code, FPGA high-level
synthesis code, and AIE intrinsic C/C++ code which can be
directly compiled and deployed on Versal ACAP.

B. Versal Heterogeneous Platform

For AMD Versal shown in Figure 5, the heterogeneous
SoC is composed of the vector processor array, i.e., AlE,
the programmable logic (PL), and the CPU. The data can be
transferred among CPU, PL, and AIE through the Network-
on-Chip (NoC). The AIE array contains 8 * 50 = 400 very
long instruction words (VLIW) processors (AIEs). AIE runs
at 1GHz frequency and supports up to two loads, two moves,
one vector, one scalar, and one store instruction in each
clock cycle. Each AIE has a 32KB local memory that can
be shared with the other three adjacent AIEs. There are 2Kb
vector registers and 3Kb accumulation registers in the AIE
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for data reuse. In terms of computation, an AIE is capable of
processing 128 INT8 MACs in one cycle. In terms of data
movement between AIEs, the bulk of data can be shared via
the local memory (256 bits/cycle bandwidth) or the AXIS
network (32 bits/cycle bandwidth). Data transmission between
AIE and PL is through the 39 programmable logic I/0 (PLIO)
tiles on the bottom of the AIE array.

C. EQ-ViT Heterogeneous Accelerator Overview

Figure 6 shows the overall EQ-ViT architecture on ACAP.
It is composed of multiple spatial accelerators with MM units
allocated to the AIE region and non-MM units allocated to the
PL region. The MM and non-MM units are connected through
the PLIO interface. We design specialized MM units for the
computation-intensive kernels, e.g. MM, BMM, and Conv, by
exploring 3D parallelism on the AIE array. By leveraging the
flexibility of the PL region, we implement non-MM units for
transpose, Softmax, Layernorm, and GeLu. Based on these
building blocks, our proposed EQ-ViT architecture has the
following hardware characteristics: (1) We apply spatial ar-
chitecture that multiple accelerators compute different kernels
with high AIE utilization at the same time instead of using one
unified accelerator and launching it sequentially. (2) To reduce
the expensive off-chip memory access, we explore the on-chip
data forwarding between different spatial accelerators. (3) We
propose a fine-grained pipeline structure within each spatial
accelerator to further overlap the execution of nonlinear and
element-wise kernels with MMs to reduce latency. The details
will be elaborated in Section IV-D.

D. Hardware Design Methodology

High Utilization Matrix Multiply Design on Single AIE
and AIE Array. When designing the MM/BMM kernels under
INTS data type, efficient communication between PL SRAM,
AIE local memory, and registers is important to saturate
the abundant computation resource. We optimize MM/BMM
kernels from two levels, the single AIE and AIE array levels.

In the single AIE level, based on the byte-level flexibility of
AIE, we write efficient AIE intrinsic instructions to make full
use of the 2Kb vector register to sustain the 128 MACs/cycle
throughput with two 256 bits/cycle load instructions. The 128
MACs can be constructed as a 16x8 MAC array where the
second dimension is the reduction dimension. Under the con-
straints of 2Kb vector register as well as the 256 bits/cycle load
bandwidth, we customize the 128 MACs into an 8*8*2 3D-
SIMD instruction. Based on our atomic 8*%8*2 MAC operation,

AIE Local Memory

4
8 2
8
3000110111 8

Pre-load

[T N Loo> Ao Lor>Aor Lig>Ajg Li1>As

et - Aeco_+= Acct+= AccO+= Accl+=

Mem L Mem R Mem O

------------------------ MAC
AIE Registers
9 HI Store Accy>0q Ace; D0,
1
. Cycle 0 1 2 3 4 5 6
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Fig. 7: Efficient single AIE design.

the execution pipeline of a MM with size 8%16*4 is shown
in Figure 7. In order to achieve back-to-back issued MAC
instructions, we allocate 8*8 and 8*4 8bits vector registers
and use the double buffer technique to hide the latency of
loading from local memory to the vector registers. After two
cycles of pre-loading the data into AIE registers for LHS and
RHS operands, the MAC operations can be issued without idle
cycles. Based on this scheduling, it can also handle the MM
with a larger size at the expense of only two preload cycles.
When scaling out to the AIE array, the shape variance of
the multiple layers within a transformer block often leads to
hardware underutilization [36], [37], [58]. Thus for each layer
within a transformer block, we design a customized MM unit
that perfectly matches the shape of the layer. The number of
AlEs utilized in each MM unit are proportional to the total
number of operations within the layer. We propose two kinds
of MM units as shown in Figure 6. For AIEs of Type O that
take both the activation and weights as their operands, we
efficiently allocate the AIE local memory to make sure the
weight of all the blocks fit and loaded during initialization
without further excessive loads. Thus it saves the PLIO of
sending the right-hand-side (RHS) operands (weights). For the
kernels that the weights can’t fit in the AIE local memory or
the two operands are both activations (attention batch dot), we
map them to AIE design of Type 1.
Element-wise and Nonlinear Kernel Design. Element-wise
kernels and nonlinear kernels including Transpose, VectorAdd,
Reformat, Softmax, LayerNorm, and GeLU account for less
than 2% of the total operations. However they collectively
contribute 40% of the total execution time as shown in
Fig 2. To overlap the latency of these operations with the
MM operations, we apply a similar line-buffer methodology
proposed in SSR [42] to enable a fine-grained pipeline. Beyond
the proposed method, we further apply quantization to the
nonlinear kernels introduced in Section V-C, significantly
reducing the number of resources used in the PL.

E. Hardware Design Optimization

To meet the latency constraints while optimizing the
throughput in the system, we mathematically formulate a
mixed-integer-programming (MIP) [59] optimization problem
to guide the design space exploration and determine the hard-
ware resource partitioning and configuration for each spatial
accelerator. We denote the number of accelerators and batches
as Acc and B. These are hyperparameters. The ViT graph
is denoted as G and the start execution time of each node
included in the graph is referred to as T},. D, ,, refers to a
binary dependency matrix of the nodes in the graph where
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Dy, = 1 means node m depends on n. E, , and A, , are
integer and binary matrix variables representing the execution
time and allocation map of each node on every accelerator.
Eq. (2) limits the finish time of every node in batch 1 as
the latency of the first batch should meet a certain budget,
e.g., Budget as 1ms. The goal is to maximize the overall
throughput calculated as Eq. (1) and (3). Eq. (4) and (5)
guarantee each node will be mapped to only one accelerator
and each time one hardware accelerator will only execute one
logic node in the graph. The execution order should follow the
dependency map (Eq. (6)). The sum of hardware utilization
should meet the hardware constraints (Eq. (7)).

mazimize B/Laty, (1)
st. T, + Eyq X Ay o < Budget ¥n € (Gy) 2)
Latg =T, + Epg X Ap o Vn € (G) 3)
YA, . =1VneG 4)

T >Th+FEnaXAnagor Tn>Th +FEmaXAmna
V(n,m) € G”7 Ya € Acc, Dpm =0,Am,4 7: Ana ’ )
T > T+ Eng X A V¥(n,m) € G, Dy =1 (6)
YUiram,a1E,PLIO,DSPYa < HW{RAM, AIE,PLIO,DSP} 7

Va € Acc

V. EQ-VIT ALGORITHM

In this section, to optimize the task accuracy of the quan-
tized models, we first probe into a comprehensive analysis of
the data distribution (weight & activation) of ViTs and arrive
at several discoveries. Then we develop activation-aware QAT
to quantize ViTs and improve accuracy. Furthermore, as we
find that Softmax, GeLU take too much resource (REG, LUT,
DSP, etc.) and can not fit on board for the whole system
implementation, we propose INT-Softmaxa» and I-GeLUyy,
to reduce hardware resources.

A. Discovery of Data Distribution within ViTs

Weight: Data follows a standard normal distribution (Figure 8
(a)). Activation: Two key features impact the quantization
strategy, long-tail distribution and channel-wise outliers.

Long-tail distribution. e Attention map. The attention map is
the feature map of Softmax output. To preserve the informative
message of the Softmax, we plot attention maps in the Real
and Log domain (Figure 8 (b)), which reveals a long-tail
distribution. Two cases are put here to show the attention
map value. Compared to the uniform quantization (with 8-bit),

which assigns only one bin to such a large number of values,
the log2 method has more resolution (24 bins) to cover this
data range. This indicates that the low-bit log2 method plays
an ideal quantization choice. e Activation after GeLU. The
GeLU [60] function in FFN causes a truncation effect that
concentrates the resulting values around zero, showcasing a
clear one-sided stacking pattern (Figure 8 (c)).
Channel-wise outliers. e Large inter-channel variations in the
residual link addition. As shown in Figure 9 (b), the channel-
wise ranges in ViTs exhibit more significant fluctuations than
in ResNets. As the channels with outliers require larger scales
than others, using common quantization methods like layer-
wise quantization with the same parameters for all channels
would result in an unacceptable quantization error. e Sys-
tematic and fixed outliers. Although outliers appear in every
sequence, they are concentrated in fixed channel dimensions
of the residual link addition, as shown in Figure 9 (a) (We test
1024 images). Thanks to the fixed pattern, we predict and pre-
load locations onboard, enabling efficient computation with
matrix multiplication.

B. Activation-aware QAT

Based on the data distribution within ViTs, we propose two
novel quantization methods, long-tail-oriented quantization
and outlier-predictable QAT. Assuming the bit-width is b, the
quantizer Q(X|b) can be formulated by mapping a floating-
point number X €R to the nearest quantization bin. Among
various quantizers, uniform [61] and log2 [62] are typically
used. Apart from the special data distribution highlighted in
Section V-A, we apply layer-wise uniform quantization on
weights and activations.

1) Long-tail-oriented Quantization
e Log2Q on Attention map. Based on V-A, we apply Log2Q
on the attention map to preserve the informative content as:

Attng = Log2Q(Attn|b) = clip(| —log, (Attn)],0,2° — 1), ®)

For the activation after GeLU, we clip the value to [-10,10]
with the uniform quantization.
2) Outlier-predictable QAT. Significant outliers existing in
the residual link addition are channel-wise and fixed. There-
fore, we propose the outlier-predictable training that obtains
the precise channel indices of outliers in the addition of
residual links and regularizes scales of outliers with different
power-of-two coefficients (PTC) in channel-wise.
e Power-of-Two Coefficients on the Residual Link Quanti-
zation. Given the input activation (token) X € B x L x C (B:
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and INT-Softmaxs- in quantized MSA inference.

batch size, L: token/sequence length, C': channel dimension of
one token), and the PTC reNC, then the quantized activation
Xg can be formulated as:

Xq = QUXI) = dlip(l -1+ 2,0,2" ~ 1), ©
_ max(X) — min(X) _ .o min(X) b
s = ToR@ -1 z = clip(| max(X)]’O’ 2?-1) (10

where the outlier channel index is 7, PTC is r € [2,3,4], s is
scaling factor and z is zero-point.

e QOutlier-predictable Training. It includes three stages as
Algorithm 1: 1) Initialize the PTC with the full-precision
model estimated by 30 method [64]. 2) Search for the channel
index ¢ and the PTC r with the l5 regularization. 3) Fix the
index ¢ and r obtained in stage 2 and fine-tune the model.

Algorithm 1: Outlier-predictable training

1 . Given the full-precision ViT Model, the test subdataset D,
the number of blocks L, Epochs for searching, Epochy for
fine-tuning, and quantized low-bit b;

// Stagel: Initialize the PTC 7 with the outlier
estimated from the full-precision Model.

2 foreach € [0,1,...,L — 1] do

3 10, 7o = Check_Outlierss,(Model;, D);

4 Quantize Model; by Eq.(9) with i,, 75, b into QModel;;
5 end

// Stage2: Search for the channel index i of outliers
and determine the PTC 7 by the 12 regularization.
6 T = To, 1=lo;
7 foreach eps € [0,1, ..., Epoch, — 1] do
// These three operations are gradient-free.

8 i, 7 = Check_Outlierss,(QModel;);

9 ri= argmin ||X; — [5oi ] - 27s||2
r;€{1,2,...,R}
// Following Eq.(11), Eq.(8), Eqg.(I12) and Eq. (9).
10 task;oss, quantization;,ss = Quantize(QModel, b);
11 SGDBackward(task;,ss, quantization;,ss);
12 end

// Stage3: Finetune the b-bit quantizaton.
13 Fix r and ¢ and quantize QModel with fine-tune Epochy;
14 Finalize the quantized ViT Model.

C. Nonlinear Operations Quantization

1) INT-Softmaxo.. We replace natural constant e inside
Softmax with the power of 2 [05] with integer inputs. ¢
represents the ¢th token:

2Xi

L ox;’
L, 2

exp(X;)

INT-Softmaxan (X) =
Zlelexp(Xl)

an

TABLE III: Model structures of four different ViT models.

Model #Head | Embed. Dim | Depth | Precision | Model (MB) | MACs (G)
DeiT-T 3 192 12 INT8 5.6 1.3
DeiT-160 4 160 12 INT8 4 0.9
DeiT-256 4 256 12 INT8 74 2.1
LV-ViT-T 4 240 12 INT3 6.75 1.6

e Log2Q with INT-Softmaxs~. Similar to [660], we utilize
Log2Q on the attention map. We then integrate the power of
2 inside Softmax and the operation can be modified as:

Attngy = Log2Q(Attn|b) = clip(| —log, S~ ,2%1+X,1,0,2° — 1), (12)
The exponent function is a crucial component of Softmax, but
its nonlinearity makes it expensive to implement on hardware.
Combined with Log2 quantization, Softmax function can be
executed with only addition computation and removes division
thus can be implemented by LUTs on FPGA instead of AIEs.
The difference between normal MSA and our method is shown
in Figure 9 (c). Normal MSA needs to be dequantized and
requantized around full-precision Softmax. The floating-point
exponential calculation of INT-Softmaxs» is replaced with
BitShift and addition and keeps integer-only data type.

2) I-GeLUpyp. We adapt I-GeLU [67] to a combination
with linear kernels and lookup table under INT8 mode, since
1+L (x) is an odd function within the range (0,2):

0 if —(28-1)<z<-3
I-GeLUpyp = < {0,0,0,0,1} ifz € {-2,1,0,1,2} (13)
x if3<z<28—-1

The original data value in -2<x<2 is {-0.0257, -0.1152,
0, 0.5919, 1.3885}. For implementation, we pre-load the
requantized integer value directly on-board as Equation (13).

VI. EXPERIMENTS

A. Experiment Settings

Application and Training Framework Setup. Our experi-
ments are conducted on ImageNet-1k [68], Cifar-100, Cifar-
10 [69] datasets in PyTorch 3.8. We use two representative
vision transformers, DeiT [2] (with three model variants), and
LV-ViT [70], in Table III. The baseline models with FP32
are obtained from the TorchVision. The outlier-predictable
training follows Q-ViT with distribution-guided distillation
(DGD) techniques [52], and the training process is executed
on 4 NVIDIA V100 GPUs. We set stage 1 to 70 epochs, and
stage 2 to 30 epochs.

Hardware Setup. We evaluate EQ-ViT the on AMD ACAP
VCK190. We compare EQ-ViT with other SOTA implemen-
tations on CPU, FPGA, and GPU. For each model, we iterate
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TABLE IV: Comparison of EQ-ViT and works on CPU, GPU, FPGA, ACAP in latency & energy efficiency on four models.

PyTorch | TensorRT | TensorRT | TensorRT | HeatViT | HeatViT | SSR | EQ-ViT (ours) | EQ-VIT (ours)

Model |# of Batch Metric Xeon8375| A10G A100 Orin ZCU102 | U250 |VCK190 VCK190 VEK280 (est.)
10nm Snm 7nm 8nm 16nm 16nm 7nm Tnm Tnm
Latency (ms) 167.68 1.78 1.84 7.97 32.72 73 0.54 0.56 0.33
DeiT-T 6 FPS (image/sec.) 36 3371 3260 753 183 822 11111 10695 18010
Energy.Eff (FPS/W) 38 15.8 18.6 17.7 194 10.2 213.7 224.7 427.8
Latency (ms) 129.01 1.78 1.73 7.92 29.75 6.34 0.50 0.46 0.28
DeiT-T-160 6 FPS (image/sec.) 47 3371 3468 758 202 946 11976 13187 21702
Energy.Eff (FPS/W) 4.9 16.9 20.0 19.0 21.9 12.2 206.8 280 503.5
Latency (ms) 294.61 2.07 2.09 10.44 39.33 9.13 0.98 0.89 0.53
DeiT-T-256 6 FPS (image/sec.) 20 2899 2871 575 153 657 6122 6726 11393
Energy.Eff (FPS/W) 2.2 12.5 15.0 13.2 14.7 8.5 102.9 142.8 269.3
Latency (ms) 213 2.55 2.54 10.1 43.21 9.36 0.85 0.61 0.37
LV-ViT-T 6 FPS (image/sec.) 28 2353 2362 594 139 639 7059 9836 16017
Energy.Eff (FPS/W) 3 10.6 12.9 13.5 13.5 7.8 115.3 202.8 359.9

the inference for over 60s and perform this measurement 10
times to calculate the average inference latency. On CPU,
we measure the inference latency on an mé6i.large instance
from Amazon AWS using pytorch 2.0.1. The instance has
two Intel Xeon 8375C vCPU cores running at 2.9 GHz
and thermal design power (TDP) is 300W. On GPUs, we
measure the performance of TensorRT [31] on A10G (8nm),
A100(7nm), and Jetson AGX Orin (8nm). We first use onnx
1.14.0 to compile the PyTorch model into onnx format, then
use TensorRT 8.6 and its Python interface to compile the
onnx model into the TensorRT engine. To perform the INTS8
inference, we enable the tensorrt. Builder Flag.I NT'8 flag in
compilation. The power consumption of the GPUs is measured
via nvidia-smi [71]. For the CPU and GPU experiments, the
PyTorch models are from the Meta Research [72].

On FPGA, we compare EQ-ViT with HeatViT [30] on
AMD Zynq ZCU102 and AMD Alveo U250. We compare EQ-
ViT with SSR [42] on the same device VCK190. We measure
the power of VCK190 using AMD Board Evaluation and
Management [73]. To be noted, EQ-ViT provides algorithm &
algorithm/hardware co-design to explore different quantization
strategies, e.g. activations 8bits, weights 4bits (A8W4), with-
out accuracy loss. We add the new estimated results (est.) in
Table IV when using the A8W4 quantization on AMD Versal
VEK280 which provides 4x 8bits x 4bits MAC operations/-
cycle/AIE over VCKI190 with 8bits x 8bits precision. Our
estimation shows that EQ-ViT further reduces the latency
by 1.67x using VEK280 over VCK190. This gain can not
be achieved without the algorithm & algorithm/hardware co-
design, demonstrating the key new contribution of EQ-ViT.

B. ViT Inference Perf. & Energy Eff. Analysis

(DPerformance and energy efficiency comparison among
CPU, GPU, FPGA, and ACAP. We apply our EQ-
ViT framework to four different ViT applications under INT8
quantization mode and evaluate the on-board implementation
on AMD Versal VCK190. We compare EQ-ViT with six works
on CPU, GPUs, and FPGAs regarding latency and energy
efficiency on four models in Table IV. Here we report the
performance when setting the latency budget as 1 ms. EQ-
ViT DSE finds the optimal throughput design under this
latency constraint when the batch size is set to 6. The achieved
latencies are 0.56ms, 0.46ms, 0.89ms, and 0.61ms for the four
applications. In contrast, the solutions on other platforms have
larger latency and do not meet the latency constraint under the
same batch size. For all four applications, the average latency

TABLE V: Latency comparison between on-board measure-
ments and MIP modeling estimations for four ViT models.

Model # of AIE | Estimation | On-board | Error Rate
DeiT-T 394 0.58 (ms) 0.56 (ms) 4%
DeiT-160 396 0.48 (ms) 0.46 (ms) 5%
DeiT-256 399 0.92 (ms) 0.89 (ms) 3%
LV-ViT-T 398 0.59 (ms) 0.61 (ms) -3%

TABLE VI: Resource utilization of Softmax and GeLU before
vs. after EQ-ViT algorithm changes for hardware efficient
implementation on VCK190.

Operations Softmax [36] INT-Softmax(ours) GeLU [30] INT-GeLU(ours)

REG 62415 (4.17x) 14962 22238 (137x) 162
LUTLogic 94739 (14.48x) 6545 14222 (142x) 100
LUTMem 37668 (18834x) 2 1392 (-) 0

RAM 147 (9.19x) 16 1() 0

DSP 196 (7.00x) 28 128 (-) 0

gains are 315.0x, 3.39x, 3.38x, 14.93x, 59.5x, 13.1x, and the
gains of energy efficiency are 62.2x, 15.33x, 12.82x, 13.31x,
13.5x, 21.9x when comparing to Intel Xeon 8375C vCPU,
A10G, A100 GPUs, and AMD ZCU102, U250 FPGAs. We
list the latency improvement from the four features (4.2x, 3.4x,
2.3x, 2.7x) in the last two columns in Table VIII, together
achieving 89x latency reduction from 50ms using FP32 model
with CHARM to 0.56ms using the INT8 model with EQ-
ViT on VCK190. We also applies the int8§ GEMM solution
proposed by [35]. For DeiT-T with batch equals 6, it achieves
12.1 ms latency as it only implement a monolithic accelerator
and requires the weights and activation to be accessed from
the off-chip memory. By applying the on-chip data forwarding,
fine-grained pipeline and multiple spatial accelerators, EQ-ViT
achieves 21.6x performance improvement. We further discuss
the in-depth performance analysis in Section VII.
(@Analytical model VS. EQ-ViT on-board implementation.
We evaluate the latency of the four ViT models on AMD
Versal VCK190 and compare them with the proposed MIP
modeling. Guided by the MIP, all four cases utilize over 98.5%
AIE. The error rate in percentage refers to the difference
between the estimated latency by MIP and our real on-board
implementation. On average, the MIP modeling achieves a
high prediction accuracy and has less than 4% error rate.
(®Resource utilization before VS. after EQ-
ViT  hardware-efficient algorithm adaption for two
non-MM kernels Softmax, GeLU. We compare the
hardware utilization of the optimized Softmax and GeLU
implementation with the previous FP32 design reported in
CHARM [36]. We normalize the number of processing units
to 16, the same as the implementation in CHARM. The
hardware utilization of our real implementation is illustrated
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EQ-ViT on VCK190 and TensorRT on A10G GPU.

TABLE VII: Comparison of the top-1 (%) accuracy with stz
of-the-art methods on multiple datasets.

TensorRT A10G GPU

Throughput (TOPS)

PT. AT
Model ‘ Fp32 } MinMax | EMA | Petcentle [OMSE [ FQ-ViT } [SQ] T [EQ-ViT
ImageNet Dataset
DT [722] 709 [712] 715 | 713 [ 716 [715] 736 | 745
DeiT-160 | 68.1 | 67 | 67.6| 678 | 679 | 68 [679] 70.1 | 70.5
DeiT256 772 | 725 | 725 | 74 | 724 | 766 |759| 716 | 782
LV-ViT-T | 79.1 | 754 | 754 | 769 | 753 | 774 |78.7] 801 | 80.5
Cifar-100 Dataset
DeiTT [856] 85 [851] 853 | 851 | 854 [853] 862 | 8656
DeiT-160 | 83.5 | 83 | 833 | 833 | 834 | 835 [83.5| 844 | 844
DeiT-256 | 87.1 | 858 | 850 | 865 | 85.7 | 87 [869| 88 | 883
LV-ViT-T| 88.1| 873 | 874 | 875 | 872 | SS.1 |834] 892 | 895
Cifar-10 Dataset
DeiT-T [978 | 975 [976 | 975 [ 974 [ 978 [97.7] 98.1 [ 983
DeiT160] 9.3 | 96.1 | 962 | 963 | 961 | 964 |965| 969 | 96.9
DeiT256 | 98.1 | 98 | 98 | 983 | 979 | 98.1 | 98 | 987 | 98.9
LV-VIT-T | 98.7 | 986 | 986 | 987 | 985 | 988 |986| 992 | 994

ote: * indicates our reproduced results with quantized nonlinear operations for a fair
comparison; And all the models (except FP32) are quantized into 8-bit precision.

in Table VI. We normalize 1 URAM as 8 BRAM and report
the total number of RAM used in both designs. For the
Softmax layer, since we replace the resource-demanding
operations, i.e. exponential and division, we saved the number
of DSP and LUT by 7.0x and 14.48x respectively. Instead of
using the double buffer technique applied in CHARM [36],
by using the streaming pipelined architecture within this
kernel, we save the LUTMem by 18834x and total RAM by
9.19x. For the GeLU kernel, with the LUT optimization, it
no longer consumes LUTMem, RAM, and DSP and reduces
REG and LUT by 137x and 142x. We show the overall
implementation layout of DeiT-T in Figure 11 containing
ten MM units and non-MM modules including AXI DMA,
Transpose, and non-linear kernels.

@ The effect of batch size on latency-throughput trade-off.
We can leverage the MIP-based analytical model to perform
latency-throughput trade-off in EQ-ViT, e.g., find the designs
that achieve the highest throughput under latency constraints.
Figure 10 shows the latency-throughput Pareto fronts of EQ-
ViT on VCKI190 and TensorRT on A10G GPU. EQ-
ViT achieves a better Pareto front than that of GPU.

®Can we leverage EQ-ViT when model sizes do not
fit on-chip? If a model can not fit on a single board, we can
leverage EQ-ViT to explore how the model is most effectively
partitioned onto multiple devices, which is our future work.

C. Inference Accuracy Comparisons

We compare EQ-ViT accuracy with popular PTQ meth-
ods [61], [74], [75] and SOTA QAT methods [52], [76]. For
the sake of fairness, we reproduced the results of Q-ViT with
quantized GeLU and Softmax.

Image Classification on Multiple Datasets. (I) ImageNet.
Recent SOTA methods for PTQ suffer a significant drop in
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Transpose

Fig. 11: EQ-ViT implementation layout on VCK190 with
kernels highlighted in the FPGA and AIE portion of ACAP.

accuracy up to 3.8% (Table VII). In contrast, ours can enhance
task accuracy up to 2.4% over the baseline by minimizing
quantization errors and removing model redundancy. While
the SOTA QAT method, Q-ViT, has made strides in cor-
recting information distribution within ViT models, it still
relies on floating-point computations for Softmax and GeLU,
making it challenging for practical and efficient hardware
deployment. In contrast, EQ-ViT leverages activation flow
fitting and optimization to achieve an additional accuracy boost
of 0.4%~0.9% over Q-ViT. Furthermore, EQ-ViT supports
efficient implementation on ACAP. 2) Cifar-100 & Cifar-10.
We extend results on Cifar datasets to showcase our validation.
For Cifar-100 dataset, EQ-ViT can enhance accuracy up to
1.4% and achieve 0.3% ~ 0.4% higher accuracy than Q-
ViT; For Cifar-10 dataset, EQ-ViT can enhance accuracy up
to 0.8%, and reach 0.2% higher accuracy than Q-ViT. EQ-
ViT models are equipped with quantized nonlinear operations.
The full precision ViTs’ accuracy is based on the original DeiT
and Swin papers, which don’t use DGD distillation. Q-ViT
introduces DGD distillation to distill the knowledge from the
larger-size ViT to the smaller-size one, which is integrated
into our training setting. This is why EQ-ViT achieves better
accuracy than the full-precision models. Notably, EQ-ViT also
surpasses Q-ViT accuracy under the same training conditions.

VII. GENERALITY DISCUSSION
& MICROARCHITECTURE INSIGHTS

EQ-ViT performance improvements over prior solutions
come from two folds: (1) Software aspect: EQ-ViT acceler-
ator mapping & optimization techniques that fully leverage
all the heterogeneous microarchitecture features on ACAP.
For those, we explain how different optimization techniques
included in EQ-ViT contribute to performance improvements
and discuss whether and how those optimizations can be
applied on other platforms including FPGA and GPU; (2)
Hardware aspect: the heterogeneous microarchitecture features
from ACAP that provide flexible mapping features to be
applied on such architecture. Specifically, those EQ-ViT map-
ping features that can not be ported to FPGAs or GPUs reflect
the corresponding architecture limitations on FPGAs or GPUs.
Quantization: The performance gain from quantization comes
from two parts: (1) the improved peak computation through-
put, and (2) the reduced off-chip data access. Especially, if
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TABLE VIII: Comparsions of FPGA, GPU, ACAP with SOTA framework implementations (Impl.) and EQ-ViT optimizations

Manpine features FPGA+SOTA FPGA+EQ-ViT GPU+ SOTA GPU+EQ-ViT ACAP+SOTA ACAP+EQ-ViT
apping leatures Impl. (HeatViT) Optimizations Impl. (TensorRT)  Optimizations | Impl. (CHARM) Optimization
Quantization yes yes partial partial ->yes no yes (4.2x)
On-Chip Forwarding no yes no arch limit no yes (3.4x)
Multi Spatial Accelerators no yes no arch limit yes yes (2.3x)
Fine-grained Pipelining no yes no arch limit no yes (2.7x)
Utilize Al-optimized PEs no arch limit yes yes yes yes
Estimated latency after EQ-ViT 7.3ms 3.9ms 1.8ms 1.05ms 50ms (1x) 0.561ms (89x)

the model size after quantization gets across a threshold and
the weights can fit on-chip, there will be a huge improvement
since all the intermediate data can be forwarded on-chip.

Accelerators on FPGA and ACAP can fully benefit from

quantization, whereas GPU can not. Current GPU frameworks,
e.g., TensorRT, can not fully cache intermediate data across
different kernel function calls unless users explicitly rewrite
multiple kernels into one kernel (fusion). Another GPU soft-
ware limitation is the implicit quantized kernels. In our GPU
profiling for quantized models, we observe that TensorRT
generates a mixed precision model, where the BMM kernels
are computed in FP32, not in IN8. In our analysis, if we
can quantize the BMM, softmax, LayerNorm, and transpose
kernels in GPU, the hypothetical latency of DeiT-T on A10G
GPU can be reduced to 1.05 ms, which is 1.9x when compared
to EQ-VIiT latency.
On-chip forwarding: By applying on-chip forwarding, acti-
vations of the models can be kept inside the accelerator chip
to reduce off-chip communication. This technique has been
applied to the Versal ACAP and FPGA platforms. On ACAP,
applying this technique gives 3x latency reduction.

For GPU, the on-chip forwarding is limited compared to
FPGA or ACAP. The flexibility in PL logic in FPGA and
ACAP allows multiple accelerators to communicate with each
other with arbitrary data forwarding per the user’s control. In
GPU, shared memory can be explicitly controlled by the user.
However, one shared memory in one stream multi-processor
(SM) can not directly forward the data to the other shared
memory in another SM. It has to go through off-chip DDR or
HBM. This is the microarchitecture limitation on GPU.”
Multiple spatial accelerators: On FPGA and ACAP plat-
forms, compared with sequentially-called one unified acceler-
ator, the spatially-called multiple accelerators can reach higher
hardware utilization as each hardware accelerator has smaller
hardware resources and can be specialized for the kernel.

In GPUs, horizontal fusion [78], [79] is motivated by similar
reasons, i.e., using multiple kernels running at the same time
instead of launching kernels sequentially. The key idea is
to allocate different groups of SM working simultaneously
whereas each SM group works on one type of kernel. However,
such multiple spatial accelerators in GPU have less flexibility
than in FPGA and ACAP. The partition in GPU is in the
SM granularity, therefore, different hardware resources, i.e.,
computation processing elements (PE), and on-chip storage,
across different accs have a fixed ratio. In FPGA and ACAP,

20n-chip forwarding between SMs can not be implemented on Nvidia
GPUs before Ampere generation. However, as the successor of Ampere archi-
tecture, the Hopper architecture uses distributed shared memory (DSMEM)
[77], enabling fast communication between shared memory and potentially
providing more flexibility in on-chip forwarding among SMs on GPUs.

PL provides users with full flexibility to partition computation
PE (DSPs, LUT, AIEs) and on-chip storage (BRAM, URAM)
with arbitrary ratios across different accs.

Fine-grained pipelining: Applying the fine-grained pipelining
enables execution overlap among accelerators, and leads to
higher resource utilization and lower latency. Fine-grained
pipelining can be easily implemented in FPGA and ACAP,
on the contrary, it is not easily implemented on GPUs. We
analyze the DeiT-T inference on A10G, if we can hack all
BMM kernels to be computed in INT8, the latency reduces
from 1.8ms to 1.05ms, however, this can not be further
reduced. The 1.05ms latency includes MM kernels at 0.78ms
and non-MM kernels at 0.27ms. Unlike ACAP, which allows
full programmability and flexibility to allow AIE and FPGA
within the ACAP SoC to run simultaneously, the current
GPU programming model does not allow the simultaneous
execution between GPU Tensor cores and GPU CUDA cores.

VIII. SUMMARY AND CONCLUSION

We summarize our generality discussion in Table VIII. The
FPGA platforms are highly flexible and can support most
of the EQ-ViT optimization methods, but without the Al-
optimized processing element like tensor cores or Al engine,
the computing capability limits the performance of FPGAs.
GPUs have the highest theoretical throughput and bandwidth,
but the relatively fixed architecture limits their performance
in latency-critical situations. The ACAP platform has both
flexibility and Al-optimized PE, thus reaching the lowest
latency with the optimization of EQ-ViT.

This implies interesting research questions, e.g., what other
kinds of applications will let ACAP, a combination of FPGA
and Al-optimized SoC, achieve the better of both worlds?
Shall we introduce FPGA or reconfigurable architecture in
broader GPU architecture to improve latency? If FPGA is
too fine-grained, what is the least reconfigurability needed in
future architecture to balance performance and adaptability?
We leave these in our future work.
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