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ABSTRACT

The task of out-of-distribution (OOD) detection is notoriously ill-defined. Ear-
lier works focused on new-class detection, aiming to identify label-altering data
distribution shifts, also known as “semantic shift.” However, recent works argue
for a focus on failure detection, expanding the OOD evaluation framework to ac-
count for label-preserving data distribution shifts, also known as “covariate shift.”
Intriguingly, under this new framework, complex OOD detectors that were previ-
ously considered state-of-the-art now perform similarly to, or even worse than, the
simple maximum softmax probability baseline. This raises the question: what are
the latest OOD detectors actually detecting? Deciphering the behavior of OOD
detection algorithms requires evaluation datasets that decouple semantic shift and
covariate shift. To aid our investigations, we present ImageNet-OOD, a clean se-
mantic shift dataset that minimizes the interference of covariate shift. Through
comprehensive experiments, we show that OOD detectors are more sensitive to
covariate shift than to semantic shift, and the benefits of recent OOD detection al-
gorithms on semantic shift detection is minimal. Our dataset and analyses provide
important insights for guiding the design of future OOD detectors.1

1 INTRODUCTION

Out-of-distribution (OOD) detection aims to identify test examples sampled from a different distri-
bution than the training distribution. In the context of computer vision, an OOD detector is simply
a post-hoc score calibration function that operates on a trained image classification model. Previous
work has proposed tackling this problem from two perspectives: new-class detection and failure
detection. In new-class detection, OOD detectors are expected to identify new object categories for
the purpose of data collection and continual learning (Liu et al., 2020; Hendrycks et al., 2022; Wang
et al., 2022; Liang et al., 2018; Kim et al., 2022). Recent works have motioned to shift the objective
from new-class detection to the scenario of failure detection, where OOD detectors are expected to
identify misclassified examples to promote the safety and reliability of deep learning models in real-
world applications (Jaeger et al., 2023; Zhu et al., 2022; Averly & Chao, 2023; Guérin et al., 2023).
However, evaluating OOD detectors via failure detection benchmarks yields one unanimous finding:
no modern OOD detector surpasses the performance of the simple maximum softmax probability
(MSP) (Hendrycks & Gimpel, 2017) baseline. In light of this drastic discrepancy, we need to take a
step back to address the question: what are modern OOD detectors actually detecting?

Common literature in OOD detection separates distribution shifts into semantic (label-altering) and
covariate (label-preserving) shifts (Hsu et al., 2020; Tian et al., 2021; Yang et al., 2021b). Under-
standing detection behavior for either type of shift requires proper evaluation datasets that decouple
semantic shifts from covariate shifts (Yang et al., 2021a). Many OOD detection datasets (Wang et al.,
2018; Hendrycks et al., 2021; Galil et al., 2023) set ImageNet-1K (Russakovsky et al., 2015) as in-
distribution (ID) and subsets of ImageNet-21K (Deng et al., 2009) as out-of-distribution (OOD).
Since ImageNet-1K is also a subset of ImageNet-21K, both datasets’ class labels are derived from
the WordNet (Fellbaum, 1998) hierarchy and the images share the same data collection process.
However, these datasets often contain contamination from ID images, which violates one of the key

∗Equal contribution.
1 Code and data is at https://github.com/princetonvisualai/imagenetood
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assumptions of OOD detection for both new-class and failure detection (Bitterwolf et al., 2023).
Consequently, several human-annotated datasets have been constructed, though using data sources
outside the ImageNet family (Hendrycks et al., 2022; Wang et al., 2022; Bitterwolf et al., 2023),
introducing unforeseen covariate shifts due to changes in the data source and collection process.

In this paper, we design an OOD detection dataset that can accurately assess the impact of se-
mantic shift without the influence of covariate shifts. Concretely, we introduce ImageNet-OOD,
a clean, manually-curated, and diverse dataset containing 31,807 images from 637 classes for as-
sessing semantic shift detection using ImageNet-1K as the ID dataset. ImageNet-OOD minimizes
covariate shifts by curating images directly from ImageNet-21K while removing ID contamination
from ImageNet-1K through human verification. We identify and remove multiple sources of seman-
tic ambiguity arising from inaccurate hierarchical relations in ImageNet labels. Additionally, we
remove images with visual ambiguities arising from the inconsistent data curation process of Im-
ageNet. Using ImageNet-OOD and three ImageNet-1K-based covariate shift datasets, we perform
extensive experiments on nine OOD detection algorithms across 13 network architectures, from both
new-class detection and failure detection perspectives to make the following findings:

1. Modern OOD detection algorithms are even more susceptible towards detecting covariate
shifts than semantic shift compared to the baseline MSP (Hendrycks & Gimpel, 2017).

2. In ImageNet-OOD, which exhibits only semantic and limited covariate shift, modern OOD
detection algorithms yield very little improvement over the baseline on new-class detection.

3. Modern OOD detection algorithms only improve on previous benchmarks by ignoring in-
correct ID examples rather than detecting OOD examples, causing performance disparity
between the task of new-class detection and failure detection.

2 EXISTING DEFINITIONS AND FORMULATIONS

Problem Setup. For image classification, a dataset Dtr = {(xi, yi);xi ∈ X , yi ∈ Y} sampled
from training distribution Ptr(x, y) is used to train some classifier C : X → Y . In real-world
deployments, distribution shift occurs when classifier C receives data from test distribution Pte(x, y)
where Ptr(x, y) �= Pte(x, y) (Moreno-Torres et al., 2012). An OOD detector is a scoring function s
that maps an image x to a real number R such that some threshold τ arrives at a detection rule f :

f(x) =

{
in-distribution if s(x) ≥ τ

out-of-distribution if s(x) < τ
(1)

Common changes within the data distribution fall under two categories: covariate shift, which is
label-preserving (i.e. concerns examples only from training classes), and semantic shift, which is
label-altering (concerns examples only from new classes).

Covariate Shift. Covariate shift occurs in the test data when the marginal distribution with respect
to the image differs from the training data: Ptr(x) �= Pte(x) (Yang et al., 2021b), while the label dis-
tribution remains fixed: Ptr(y|x) = Pte(y|x). In this work, we will use three popular datasets with
covariate shifts with respect to ImageNet-1K (Russakovsky et al., 2015): ImageNet-C (Hendrycks &
Dietterich, 2019), ImageNet-R (Hendrycks et al., 2020), and ImageNet-Sketch (Wang et al., 2019).

Semantic Shift. Semantic shift occurs when a given set of semantic labels Ytr ⊂ Y from the train-
ing distribution and semantic labels Yte ⊂ Y from a test distribution have the following property:
Ytr ∩ Yte = ∅, such that Ptr(y) = 0 ∀y ∈ Yte. To best study the effect of semantic shifts, we
propose a new dataset, ImageNet-OOD, that minimizes the degree of covariate shifts.

Evaluation. Many OOD detection benchmark commonly use AUROC as a threshold free way of
estimating detection performance by calculating the area under false positive rate vs. true positive
rate curve, considering ID as positive and OOD as negative.

Classical Approach: New-class Detection. The majority of work in OOD detection has formu-
lated the problem as new class-detection: the notion of ID is defined by the class labels of the data
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source and therefore is model agnostic. In other words, an image x is considered ID if it comes from
a class y ∈ Ytr and OOD otherwise. OOD detection with this goal focuses exclusively on semantic
shift: the detection of novel classes. Although the objective is analogous to that of Open-Set Recog-
nition (Vaze et al., 2022), previous OOD detection works often motivated this goal to prevent model
failures (Yang et al., 2021b). We provide more intricate discussion on the subtle differences in task
formulation of previous OOD detection works in Section A of the Appendix.

Modern Approach: Failure Detection. Recent works argued to approach the OOD detection
problem from the first principle. Instead of defining “ID” and “OOD” with regard to the data sources,
the distinction is directly specified by the model’s prediction. An image is ID if the model correctly
classifies an image and OOD otherwise. These recent works converged on the conclusion that recent
advances in OOD detection do not result in any improvement for the task of failure detection (Jaeger
et al., 2023; Guérin et al., 2023; Zhu et al., 2022; Averly & Chao, 2023).

3 IMAGENET-OOD: A CLEAN SEMANTIC OOD DATASET

Recent works in OOD detection have primarily focused on failure detection, but new-class detection
is still relevant in practice with the growing interest in adaptive learning systems (Kim et al., 2022;
He & Zhu, 2022). Consequently, accurate assessment of OOD detection algorithms on semantic
shift is very important and needs to be disentangled from covariate shift. Unfortunately, previous
datasets were not carefully constructed, leading to contamination from ID classes and unintended
covariate shifts. We highlight the shortcomings of past OOD datasets and introduce ImageNet-OOD,
a carefully curated, semantic OOD dataset designed to overcome these challenges.

3.1 PITFALLS OF EXISTING SEMANTIC SHIFT DATASETS

Early evaluation frameworks in OOD detection primarily use small datasets such as CIFAR-10,
CIFAR-100 (Krizhevsky, 2009), SVHN (Netzer et al., 2011), and MNIST (Deng, 2012), but their
low-resolution and limited number of classes fail to extend to real-world conditions. Consequently,
the outcomes of OOD detection methods in these restricted environments can substantially deviate
from those in expansive settings. To include more diverse scenarios, recent OOD detection datasets
often designate ImageNet-1K as the ID dataset (Hendrycks et al., 2022; Huang & Li, 2021; Galil
et al., 2023). Nevertheless, these contemporary datasets frequently present issues, such as semantic
or visual ambiguities and introduction of unnecessary covariate shifts.

Semantic Ambiguity. Several existing datasets overlook the hierarchical relations in ImageNet la-
bels, leading to ambiguity in deciding whether a semantic concept is OOD. For example, ImageNet-
O (Hendrycks et al., 2021) contains images from the class “pastry dough,” which is contained in
the “dough” class in ImageNet-1K. We also observe this contamination in OOD datasets that do not
utilize ImageNet-21K classes, such as Species (Hendrycks et al., 2022). For example, the ImageNet-
1K dataset contains the class “Agaric”, which includes the Species class “Agaric Xanthodermus.”

Visual Ambiguity. Although several datasets remove ID contamination through human filtering,
they overlook visual ambiguity attributed to the intricacies in the data collection process of Ima-
geNet. OOD classes can show up in ID images even though the ID and OOD classes are far away
on the WordNet semantic tree (Fellbaum, 1998). For example, the C-OOD benchmark (Galil et al.,
2023) contains the class “basin,” while ImageNet-1K contains the class “lakeside.” While “basin” is
technically OOD, many images from the “lakeside” and “basin” classes are visually indistinguish-
able, and thus, can be labeled interchangeably.

Unnecessary Covariate Shifts. Several common OOD datasets used when ImageNet-1K is des-
ignated as ID include iNaturalist (Horn et al., 2018), SUN (Xiao et al., 2010), and Texture (Cimpoi
et al., 2014). However, these datasets come from very specific domains and thus lack the semantic
diversity that is reflected in real-world scenarios. Recent works such as NINCO (Bitterwolf et al.,
2023) and OpenImage-O (Wang et al., 2022) encourage semantic diversity through manual selection
of OOD images. However, due to the limited number of images, limited number of OOD classes,
and/or deviation from the original ImageNet data collection procedure, the resulting dataset can
potentially introduce hidden covariate shifts that OOD detection algorithms can exploit.
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Figure 1: Removing ambiguities in ImageNet-OOD. We identify classes in ImageNet-21K which
should not be included in the ImageNet-OOD dataset, since it would be ambiguous whether they are
truly OOD with respect to the ImageNet-1K classes. Left: Semantic Ambiguity. “Frozen Dessert” in
ImageNet-21K (Hendrycks et al., 2021) should not be considered OOD as it is a hyponym of “Ice
Cream.” Additionally, classes associated with organism is problematic in the WordNet hierarchy:
“Herbivore” contains images from the ImageNet-1K class “Cattle” but it is neither a hypernym or
a hyponym. Middle: Semantically-grounded Covariate Shifts. A dog vs. vehicle classifier can also
be thought of as an animal vs. vehicle classifier. Given this classifier, it is unclear whether “cat”
should be considered OOD. Right: Visual Ambiguity. “Violin” and “Viola” or ”Scuba Diver” and
”Aqualung” are visually indistinguishable to human labelers, leading to potential annotation error.

3.2 CONSTRUCTION OF IMAGENET-OOD

We start with the 1000 ImageNet-1K classes as ID. These classes are directly sampled from
ImageNet-21K, which contains images illustrating the 21K nodes in the WordNet semantic
tree (Fellbaum, 1998). We begin the construction of ImageNet-OOD with a pool of candidate classes
from the processed version of ImageNet-21K (Ridnik et al., 2021). To reduce semantic ambiguity,
we iteratively remove classes based on the following criteria:

All ImageNet-1K Classes, Their Hypernyms, and Hyponyms. Classes in ImageNet-1K are sim-
ply a subset of classes in ImageNet-21K according to the WordNet semantic tree. Since ImageNet-
21K and ImageNet-1K followed the same data collection procedure, the degree of unwanted covari-
ate shift is minimized (Galil et al., 2023). Consequently, these datasets often propose selecting OOD
images from the set of ImageNet-21K classes that are disjoint from ImageNet-1K classes (Wang
et al., 2018; Hendrycks et al., 2021). However, the hierarchical structure of WordNet allows hy-
pernyms (semantic ancestors) and hyponyms (semantic descendants) of ImageNet-1K classes to
contain ID images (e.g. “Ice Cream” vs. “Frozen Dessert” in Fig. 1 Left). We remove hypernyms
and hyponyms of ID classes to promote accurate reflection of OOD detection performance.

Hyponyms of “Organism”. Natural beings in WordNet and ImageNet-21K are categorized by
both technical biological levels and non-technical categories, which leads to inconsistencies in hi-
erarchical relations. For instance, although “Herbivore” is intuitively a hypernym of the ID class
“Cattle,” such a relationship is not captured by the WordNet semantic tree. Therefore, we avoid this
type of ambiguity by removing all the hyponyms of “Organism.”

Semantically-grounded Covariate Shifts. The definition of “semantic” vs. “covariate” shift be-
comes ambiguous if the learned decision boundary lies in higher levels of the semantic hierarchy.
Consider the scenario in Fig. 1 Middle, where “dog” and “vehicle” are the only ID classes. The
learned classifier can also be considered “animal” vs. “vehicle” classifier. Then, “cat,” although
technically a semantic shift, can also be considered a semantically-grounded covariate shift with the
label “animal.” This scenario is very similar to subpopulation shift where bias in the data collection
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Figure 2: Examples of Images from ImageNet-OOD. Images around the 10th, 30th, 50th, 70th,
90th percentile based on either the distance to the closest ImageNet-1K image using features from
self-supervised ResNet-50 pre-trained on the PASS dataset (Asano et al., 2021) or scores from OOD
detectors MSP (Hendrycks & Gimpel, 2017), Energy (Liu et al., 2020), ViM (Wang et al., 2022), and
ReAct (Sun et al., 2021). Within each pair, the left image is the ImageNet-OOD image and the right
image is its closest image in ImageNet-1K. These examples illustrate the diversity of ImageNet-
OOD and its visual similarity to ImageNet-1K despite having different semantics and OOD scores.

process results in overdomaince of a subclass. Using the WordNet semantic tree, we determine the
most general decision boundary for ImageNet-1K. We identify the common ancestor for every pair
of ImageNet-1K classes and position each ImageNet-1K class one level below any one of the com-
mon ancestors. Subsequently, we redefine all the ImageNet-1K classes to the class defined by this
decision boundary during our dataset construction process.

Final Class Selection. Despite removing ambiguous classes, manual effort is still needed to re-
solve visual ambiguities between ImageNet-1K and the rest of ImageNet-21K images. The authors
of ImageNet noted that flaws in the construction process of ImageNet-21K can introduce labeling
errors due to visual ambiguity across classes (Russakovsky et al., 2015). For instance, the classes
“Viola” and “Violin” are virtually indistinguishable unless compared side by side to discern their
sizes, thus bringing some degree of human labeling errors. Consequently, the OOD dataset might
be contaminated with images from ID classes. Additionally, certain OOD labels are distant on the
WordNet semantic tree but contain images with similar semantics. For instance, nearly all images
from “Aqualung” (ImageNet-21K) and “Scuba Diver” (ImageNet-1K) depict a scuba diver wearing
an Aqualung, since an Aqualung is an apparatus essential for scuba divers to breathe underwater.
To avoid the visual ambiguities illustrated in Fig. 1 Right, we spent 20 hours to manually select
637 classes from the remaining set that are distinguishable from ImageNet-1K classes by iteratively
examining the WordNet neighbors of each ImageNet-1K class and randomly selecting 50 images.
Following this, a final 6-hour review is conducted to filter out any images that might have been
mislabeled. This process is described in greater details in Section H of the Appendix.

3.3 IMAGENET-OOD STATISTICS

ImageNet-OOD contains a total of 31,807 images from 637 classes. Our construction methodology
naturally results in a dataset that is as diverse as ImageNet-1K and also very similar visually to
ImageNet-1K images. To illustrate this, Fig. 2 displays an amalgamation of images that is very
diverse in terms of both semantics and visuals, ranging from fried eggs to capacitors, and objects
against plain backgrounds to complex scenes. Additionally, the nearest ImageNet-1K image for
each ImageNet-OOD image appears to be in a very similar domain.
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Figure 3: Influence of Covariate Shift on OOD Detection. Left. Relationship between OOD de-
tection performance and the average distance to the closest ImageNet-1K (Russakovsky et al., 2015)
image using features from self-supervised models trained on the PASS (Asano et al., 2021) dataset.
Results reveal that given similar PASS feature distances between subsets of the two datasets, mod-
ern OOD detection algorithms elicit a stronger response to covariate shift (ImageNet-R (Hendrycks
et al., 2020)) than semantic shift (ImageNet-OOD). Right. An image of Ostrich in ImageNet-1K
dataset where an elementary zoom transformation is applied. The transformation did not influence
the model prediction, but substantially decreased the ranking of ViM (Wang et al., 2022) and Re-
Act (Sun et al., 2021) scores in ImageNet-OOD by 38.4%, 39.6%, respectively.

4 EMPIRICAL ANALYSIS

Equipped with ImageNet-OOD, we now analyze the performance of OOD detection algorithms un-
der semantic shift with limited covariate shift. First, we demonstrate that modern OOD detection
algorithms are more susceptible to covariate shifts. We reveal that even for images with similar dis-
tance to ImageNet-1K, modern OOD detection algorithms perform better at detecting images from
covariate shift dataset ImageNet-R (Hendrycks et al., 2020) than images from ImageNet-OOD. Ad-
ditionally, we design a simple sanity check for OOD detection on random untrained models. Our
result show that OOD detection algorithms fails the sanity check and elicit a strong response to
covariate shift. Finally, through an extensive evaluation of nine OOD detection algorithms and six
datasets over 13 network architectures, we demonstrate that many modern OOD detection algo-
rithms do not draw practical benefits in both new-class detection and failure detection scenarios.

Our experiments include nine logit-based and feature-based OOD detection algorithms, which are
more practically adopted due to their require minimal computational cost (Yang et al., 2021b). Logit-
based methods MSP (Hendrycks & Gimpel, 2017), Energy (Liu et al., 2020), Max-Cosine (Zhang
& Xiang, 2023), and Max-Logit (Hendrycks et al., 2022) derive scoring functions from classifica-
tion logits because OOD examples tend to have lower activations. Feature-based methods Maha-
lanobis (Lee et al., 2018), KNN (Sun et al., 2022), ViM (Wang et al., 2022), ASH-B (Djurisic et al.,
2022), and ReAct (Sun et al., 2021) operate on the penultimate layer of the model. Hyperparameters
are selected based on ablation studies on ImageNet-1K done by original authors.

4.1 COVARIATE SHIFTS CONFOUND DETECTION OF SEMANTIC SHIFT

We begin by demonstrating that modern OOD detectors are highly sensitive to covariate shift. Con-
cretely, they cannot only detect a large proportion of semantic shift data without simultaneously
detecting a large proportion of covariate shift data. To illustrate this, we partition subsets of im-
ages with varying degrees of visual similarity to ImageNet-1K, the ID data, with half the subsets
exhibiting covariate shift and half exhibiting semantic shift. Specifically, we partition ImageNet-R
(Hendrycks et al., 2020) and ImageNet-OOD datasets into 100 subsets each. In each set, images
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have similar distances to the closest ImageNet-1K (Russakovsky et al., 2015) image using features
from a MoCo-v2 (Chen et al., 2020) self-supervised ResNet-50 (He et al., 2016) model pre-trained
on the PASS dataset (Asano et al., 2021), which is an ImageNet replacement derived from YFCC-
100M (Thomee et al., 2016). Next, we feed each image into a ResNet-50 classifier trained on
ImageNet-1K to obtain the OOD scores. Finally, we calculate the AUROC between images of each
subset and images from ImageNet-1K to analyze the relationship between OOD detection perfor-
mance (AUROC) and the average PASS distance to the closest ImageNet-1K image of each subset.

We make a number of observations shown in Fig. 3 Left. First, as one would expect, there is
a positive trend between the OOD detection performance and average PASS distance, as images
“farther” from the training distribution have been shown to be easier to detect (Fort et al., 2021).
The trend seems to be stronger in modern OOD detection algorithms such as Energy (Liu et al.,
2020), ViM (Wang et al., 2022), and ReAct (Sun et al., 2021) than in the baseline MSP (Hendrycks
& Gimpel, 2017). More importantly, modern detection algorithms are clearly better at detecting
ImageNet-R images than ImageNet-OOD images, even with similar PASS distances. To verify
this quantitatively, we fit a linear regression model between PASS distance and AUROC for each
of the datasets to account for the effect of PASS distance on AUROC. Our results reveal that for
ViM, Energy, and ReAct, the 95% confidence intervals on the intercept of the regression trained
between the two datasets do not overlap. As a result, there is statistical significance suggesting that
the effect of ImageNet-R naturally induces a higher detection performance than ImageNet-OOD on
ViM, Energy, and ReAct. The full results and details are included in the Section C of the appendix.

To further demonstrate that OOD scores are affected by covariate shifts, we illustrate that upon
introducing a modest covariate shift, there is a notable decline in the scores of OOD detectors.
Fig. 3 Right displays an image from ImageNet-1K, depicting an ostrich. A ResNet-50 classifier
predicts the image correctly with a confidence score around 100%, which ranks higher than 99%
of confidence on ImageNet-OOD images. Three modern OOD detectors also assign a score to this
image that ranks it higher than 99% of the images from ImageNet-OOD. After applying a zoom to
the ostrich, the classifier still exhibits a high classification confidence score of 98%, which still ranks
higher than 95.3% of ImageNet-OOD. However, the OOD detection scores rankings from Energy,
ViM, and React drops to only 83.7%, 61.6%, and 61.4% higher than the ImageNet-OOD samples,
respectively, despite there being no change in semantic label or model prediction.

4.2 OOD DETECTION ALGORITHMS FAIL SANITY CHECK ON COVARIATE SHIFT DATASETS

Figure 4: Performance of OOD detection un-
der random models. Five ResNet-50 models (in-
dicated by color) with random parameters were
evaluated on ImageNet-R (IN-R), ImageNet-C
(IN-C) and ImageNet-OOD (IN-OOD).

After observing how sensitive modern OOD de-
tection algorithms are to covariate shifts, we de-
sign a sanity check to further test this sensitiv-
ity in a much stronger setting. Previous works
demonstrated the power of random models as
feature extractors for tasks such as in-painting,
super resolution, and interpretability (Adebayo
et al., 2018; Saxe et al., 2011; Alain & Bengio,
2016; Ulyanov et al., 2018). While having this
power is acceptable for other tasks, it is very
problematic in the context of OOD detection as
it challenges the fundamental concept of ID and
OOD. The idea of ID becomes ill-defined on
random models as the model has not encoun-
tered or learned from data sampled from any
distributions. Therefore, for a randomly initial-
ized model, the concept of ID should not exist.

Given that every data point should be con-
sidered OOD for a random model, a well-
behaved OOD detection algorithm should per-
form around random chance (AUROC = 0.5)
(Hendrycks & Gimpel, 2017). We design a sim-
ple sanity check around this idea and found that
OOD detection algorithm is biased toward certain covariate shifts. Performance of seven commonly
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Table 1: Performance of OOD Detection Algorithms. We evaluate seven modern OOD detection
algorithms across 13 models, three covariate shift datasets: ImageNet-C (IN-C), ImageNet-R (IN-
R), ImageNet-Sketch (IN-Sketch) and two semantic shift datasets: ImageNet-OOD and OpenImage-
O, under the goals of both new-class detection and failure detection. Results in each column denotes
the AUROC of each pair of ID vs. OOD datasets. The low AUROCs of the In-C, IN-R, and IN-
Sketch vs. IN-OOD experiments indicate that OOD detection algorithms lose their ability to perform
new-class detection under the presence of covariate shifts that these datasets introduce. Moreover,
the improvement of the best-performing detector is only 0.7% in the IN-1K vs. IN-OOD experiment.
The results also confirm that MSP still outperforms all modern methods under failure detection.

IN-C IN-R IN-Sketch IN-1K IN-1KGoal Method
IN-OOD IN-OOD IN-OOD OpenImage-O IN-OOD

MSP 55.5 48.0 46.4 84.6 79.8
Max-Logit 52.3 40.4 41.0 87.9 80.5

Energy 51.5 38.9 39.9 87.6 79.9
Mahalanobis 43.6 37.8 30.7 76.0 64.8

ViM 46.4 35.9 31.8 88.9 79.8
KNN 39.7 36.9 26.3 76.0 59.3

Max-Cosine 55.4 36.3 38.0 85.8 80.7

New-class Detection

ASH-B 51.5 46.2 41.8 90.1 79.5
ReAct 41.4 35.0 36.9 82.7 63.4

MSP 80.8 76.1 76.8 90.0 86.9
Max-Logit 76.9 68.9 72.6 89.2 84.1

Energy 75.5 66.4 70.9 88.5 83.1
Mahalanobis 57.1 58.4 51.0 74.5 65.9

ViM 70.7 67.1 64.7 88.7 82.5
KNN 51.9 52.7 47.2 68.7 55.0

Max-Cosine 73.5 71.5 72.6 88.5 84.8

Failure Detection

ASH-B 67.7 71.7 70.4 88.3 81.0
ReAct 60.2 47.9 55.9 80.4 65.7

used OOD detection methods is evaluated using five random models on the ImageNet-R (Hendrycks
et al., 2020) images and on blurring and noise corruptions in ImageNet-C (Hendrycks & Dietterich,
2019). This experiment is performed on Resnet-50 with Kaiming normal initialization (He et al.,
2015). We use only the most severe corruptions in ImageNet-C.

Fig. 4 reveals that OOD detectors confidently detect blurry ImageNet-C images as OOD (AUROC
> 0.5) and noisy ImageNet-C images as ID (AUROC < 0.5). Additionally, they also tend to detect
ImageNet-R images as ID. ImageNet-OOD, on the other hand, is unaffected and detected around
random chance (AUROC = 0.5). The bias toward detecting certain corrupted images illustrates that
OOD detectors can easily pick up patterns from covariate shift, even on untrained models.

4.3 MODERN OOD DETECTION ALGORITHMS DO NOT BRING PRACTICAL BENEFITS

In this section, we show that modern detection algorithms do not gain significant benefits over the
MSP (Hendrycks & Gimpel, 2017) baseline regardless of the approach to OOD detection. Under
new-class detection, we reveal that when covariate shifts are minimized, modern detection algo-
rithms have less than 1% AUROC improvement over the MSP baseline. Furthermore, comprehen-
sive analysis under failure detection reveals that modern OOD detection algorithms do not actually
improve at distinguishing between correctly classified examples and semantically OOD examples.

For the evaluation, we used 13 different convolutional neural networks trained on ImageNet-1K
from the torchvision library: ResNet(He et al., 2016), DenseNet (Huang et al., 2017), Wide ResNet
(Zagoruyko & Komodakis, 2016), RegNet (Xu et al., 2022), ResNeXt (Xie et al., 2017). The algo-
rithms were evaluated across five different datasets: ImageNet-C (Hendrycks & Dietterich, 2019),
ImageNet-R (Hendrycks et al., 2020), ImageNet-Sketch(Wang et al., 2019), OpenImage-O (Wang
et al., 2022), and ImageNet-OOD. The results from Table 1 reports the average AUROC across the
13 models under both new-class and failure detection scenarios.
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New-class Detection. New-class detection aims to detect only examples from semantic shift
datasets. All images that belong to training classes, including covariate shifted examples, are con-
sidered ID. We first demonstrate that under the influence of certain covariate shifts, OOD detec-
tion algorithms are not able to identify semantic shifts. Table 1 displays AUROC scores on three
covariate shift datasets vs. ImageNet-OOD. All detection algorithms show AUROC below 50%
on ImageNet-Sketch and ImageNet-R vs. ImageNet-OOD, indicating a less than 50% probability
that an OOD detector scores an ImageNet-OOD example higher than an ImageNet-Sketch example.
However, MSP yields significantly higher AUROC than other OOD detectors, revealing that modern
OOD detectors are more susceptible towards covariate shift.

Next, we demonstrate that improvements gained on past datasets disappear when modern OOD
detection algorithms are evaluated on ImageNet-OOD. The discrepancy in AUROC between
ImageNet-1K vs. OpenImage-O and ImageNet-1K vs. ImageNet-OOD highlights the importance of
the semantic shift dataset. In particular, on OpenImage-O, Max-Logit, ViM, and ASH-B all exhibit
significant improvements over the MSP baseline, showing a 3.3%, 4.3%, and 5.5% enhancement
in AUROC, respectively. However, when evaluated on ImageNet-OOD, the improvements drasti-
cally shrank to 0.7% for Max-Logit, completely disappears for ViM and even decreased by 0.3%
for ASH-B. We provide qualitative explanations for this phenomenon in Section G in the Appendix.
With the insignificant improvement under semantic shift coupled with the increased susceptibility
towards covariate shift, it is unclear whether modern OOD detection algorithms yields any practical
improvements over the baseline when deployed to the real-world.

Figure 5: Comparison of the ranking between
MSP and Max-Logit . Left. MSP is slightly bet-
ter at ranking correctly predicted ImageNet im-
ages higher. Center. Max-Logit ranks more in-
correct ImageNet images higher than MSP. Right.
MSP and Max-Logits have near identical ranks on
ImageNet-OOD examples.

Findings on Failure Detection. Failure de-
tection aims to detect incorrectly classified ex-
amples regardless of the type of distribution
shift with semantic shift examples being incor-
rect by definition. Results from Table 1 con-
firms previous findings that MSP outperforms
modern OOD detection algorithms under fail-
ure detection across all experiments. Interest-
ingly, on the ImageNet-1K vs. ImageNet-OOD
experiment, MSP outperforms Max-Logit by
2.8% under failure detection despite Max-Logit
outperforming MSP by 0.7% under new-class
detection. This discrepancy is particularly an
unexpected outcome since semantic shift exam-
ples are considered OOD for both failure and
new-class detection. Breaking down the test
data by whether or not they are correctly pre-
dicted resolves this mystery. Fundamentally,
the goal of an OOD detection algorithm is to
give lower scores, and hence, lower rankings, on semantic shift data (Equation 1). However, we ob-
serve from Fig. 5 that Max-Logit does not rank the semantic shift (ImageNet-OOD) examples lower
(more OOD) than MSP does. Instead, it ranks the incorrect test (ImageNet-1K) examples higher.
In other words, Max-Logit is neither better at detecting semantic shift examples (Fig. 5 Right) nor
better at preserving correct test examples (Fig. 5 Left). Instead, it is better at preserving incorrect test
examples (Fig. 5 Center), which is the opposite of the ideal behavior for catching model failures.

5 CONCLUSION

We introduce ImageNet-OOD, a carefully curated, diverse OOD detection dataset for studying the
effects of semantic shifts. By building on top of ImageNet-21K and manually selecting test classes
to remove semantic and visual ambiguities, we avoid unnecessary covariate shifts that may confound
the performance of OOD detection algorithms. Using ImageNet-OOD, we reveal that many modern
OOD detection algorithms detect covariate shifts to a greater extent than semantic shifts and further
demonstrate that the improvement of many algorithms disappears. We hope that our dataset and
findings will help the OOD detection community in building methods that are more effective at
detecting semantic shifts and aligning their behavior with their stated purpose.
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ETHICS STATEMENT

Although our dataset and analysis does not directly produce harmful impact, we note that the bias
from ImageNet may be propagated as ImageNet-OOD reuses images from ImageNet-21K (Deng
et al., 2009; Yang et al., 2020). As a means of mitigation, we manually filter out inappropriate
classes. In addition, OOD detection becomes a high-stake task to prevent catastrophic failures in
computer vision systems. While we strive to include a diverse set of classes in ImageNet-OOD, we
cannot guarantee that performance on ImageNet-OOD is the a valid indicator for all safety-critical
applications.

REPRODUCIBILITY STATEMENT

We provide the class names and synset IDs for all ImageNet-OOD classes in the appendix. In
addition, we provide all image filenames as presented in the ILSVRC 2012 Challenge (Russakovsky
et al., 2015), as well as sample code for the experiments in the linked Github repository linked in
the abstract.
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APPENDIX

In this appendix, we will provide more detailed analysis on claims made in the main paper.

• Section A: We provide an related work on covariate shifts in OOD detection, failure detec-
tion, and different OOD detection datasets used in the paper.

• Section B: We extend Section 4.1 of the main paper to analyze the difference between score
distributions across multiple OOD detection algorithms.

• Section C: We supplement Section 4.1 of the main paper on quantitative results using
PASS (Asano et al., 2021) distances.

• Section D: We analyze the behavior of methods developed for Open-Set Recognition and
gradient-based OOD detection.

• Section E: We supplement Section 4.3 of the main paper and provide more analysis on the
separability between correct and incorrect ID examples.

• Section F: We supplement Section 4.2 of the main paper and perform the sanity check to
examine covariate shift bias from different model architectures.

• Section G: We supplement Section 4.3 of the main paper to provide qualitative examples
of images revealing the inherent bias of modern detectors towards certain covariate shift.

• Section H: We supplement Section 3 of the main paper and provide details on the construc-
tion process of the ImageNet-OOD dataset.

• Section I: We supplement Section 3 of the main paper and provide class names and synset
IDs for the 637 ImageNet-OOD classes.

A RELATED WORK

Covariate shift in OOD detection. Covariate shift was first considered in OOD detection by Gen-
eralized ODIN (Hsu et al., 2020), where OOD detection performance was evaluated considering all
covariate shifted examples as out-of-distribution. (Tian et al., 2021) designed a scoring function that
disentangles detection of semantic vs. covariate shifts. Later, (Yang et al., 2023) pointed out that
models should ideally generalize, instead of detect, in the case of covariate shifts, because general-
ization is the primary goal of machine learning. Thus, they defined all covariate shifted examples
as in-distribution and proposed several benchmarks that include covariate shifted data. Recently
proposed benchmark OpenOODv1.5 (Zhang et al., 2023) coined the term full-spectrum detection
to encapsulate this idea. They found that under this setting, OOD detection performance are sig-
nificantly hindered in contrast to the traditional setting. While new-class detection characterizes all
covariate shifted examples as ID, failure detection only characterize the correctly classified ones as
ID, since the rejection of covariate shift examples that would otherwise hurt the model’s classifica-
tion performance should not be penalized.

Failure Detection. OOD detection is often categorized as a sub-task of failure detection, as the
primary goal of OOD detection is to catch unsafe prediction before models make a mistake. Other
tasks that share this common goal of failure detection include misclassification detection (Hendrycks
& Gimpel, 2017) and uncertainty calibration (Kendall & Gal, 2017), both of which differs from
OOD detection in that they do not consider examples outside the set of training classes. However,
since all failure detection methods can be interpreted as scoring functions and are motivated from
a common principle (alerting failure before occurrence), (Jaeger et al., 2023) argues that all failure
detection tasks should be evaluated across a common benchmark that takes into account the classifi-
cation performance of the model. (Xia & Bouganis, 2022) made similar arguments under Selective
Classification in the presence of OOD Data (SCOD).

Datasets for OOD detection. In the experiments of the paper, we used three covariate shift
datasets: ImageNet-R (Hendrycks et al., 2020), ImageNet-C (Hendrycks & Dietterich, 2019), and
ImageNet-Sketch (Wang et al., 2019). ImageNet-R has 30,000 images containing renditions of
200 ImageNet-1K classes. These renditions include art, cartoons, deviantart, graffiti, embroidery,
graphics, origami, paintings, patterns, plastic objects, plush objects, sculptures, sketches, tattoos,
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Figure 6: Distribution of OOD scores on ImageNet-C. A kernel density estimator further il-
lustrates that all OOD detectors detect covariate shift. Results reveal that for both covariate shift
datasets ImageNet-C, the distribution of scores is lower than that of semantic shift.

Figure 7: Distribution of OOD scores on ImageNet-R. Same setup as Figure 6 but on ImageNet-R
and reaches the same conclusion.

toys, and video games. ImageNet-C includes corrupted versions of ImageNet-1K images at dif-
ferent severity levels using corruptions such as brightness, contrast, elastic, pixelate, and JPEG.
ImageNet-Sketch contains 50,000 images of sketches of all ImageNet-1K classes. We also used
OpenImage-O (Wang et al., 2022), a manually curated semantic shift dataset, which is derived from
OpenImages (Kuznetsova et al., 2020), an object detection dataset.

B ANALYSIS OF SCORE DISTRIBUTIONS

In the following experiment, we will compare the score distributions of OOD detectors on semantic
and covariate shift datasets to further show that that OOD detectors cannot only reject a large propor-
tion of semantic shift data without simultaneously rejecting a large proportion correctly classified
covariate shift data.

We provide complete analysis across seven OOD detection algorithms on their distribution of scores
between covariate and semantic shift. Fig. 6 and 7 shows that all seven algorithms rank a significant
proportion of covariate shift examples lower than semantic shift examples. Additionally, breaking
down covariate shift examples between correct vs. incorrect, Fig. 8 and 9 reveals that all seven
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Figure 8: Score breakdown on covariate shift data on ImageNet-C. Comparison of detection
score distributions for correctly classified covariate shift examples on ImageNet-C and semantic
shift examples (ImageNet-OOD). Scores of correct ImageNet-C examples tend to be even lower
than ImageNet-OOD examples. Rejecting a significant portion of semantic shift data leads to the
rejection of a significant portion of correct covariate shift data.

Figure 9: Score breakdown on covariate shift data on ImageNet-R. Same setup as Figure 8
but on ImageNet-R. Scores of correct ImageNet-C examples tend to be similar to ImageNet-OOD
examples.

Table 2: Proportion of correct examples discarded by rejecting 75 percent of ImageNet-OOD
examples. Using the threshold where 75 percent of ImageNet-OOD examples are rejected as OOD,
how many correct examples from ImageNet-1K, ImageNet-C, and ImageNet-R are discarded, which
hurt model safety. Results reveals that modern OOD detection methods does not show significant
lower false rejection rate on ImageNet-1K and have significantly worse false rejection rate when
covariate shift is introduced by ImageNet-C and ImageNet-R.

ImageNet (Russakovsky et al., 2015) ImageNet-C (Hendrycks & Dietterich, 2019) ImageNet-R (Hendrycks et al., 2020)
MSP (Hendrycks & Gimpel, 2017) 18 53.6 41.9
Max-Logit (Hendrycks et al., 2022) 17.8 65.6 58.7

Energy (Liu et al., 2020) 19.3 67.4 61.2
Mahalanobis (Lee et al., 2018) 59.0 91.7 80.2

ViM (Wang et al., 2022) 22.2 85.3 68.8
KNN (Sun et al., 2022) 57.8 92.3 83.1
ReAct (Sun et al., 2021) 27.1 73.5 68.0
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Method Dataset Value SE

MSP
IN-R

β 0.001 0.011
α 0.804 0.007

IN-OOD
β 0.008 0.011
α 0.791 0.007

Energy
IN-R

β 0.012 0.009
α 0.862 0.006

IN-OOD
β 0.052 0.010
α 0.767 0.006

ViM
IN-R

β 0.114 0.007
α 0.812 0.005

IN-OOD
β 0.163 0.121
α 0.701 0.007

ReAct
IN-R

β 0.154 0010
α 0.738 0.007

IN-OOD
β 0.515 0.010
α 0.402 0.016

Figure 10: Full Analysis on influence of Covariate Shift on OOD Detection. Left. Relationship
between OOD detection performance and the average distance to the closest ImageNet-1K (Rus-
sakovsky et al., 2015) image using features from self-supervised pre-trained models on the PASS
(Asano et al., 2021) dataset. This figure adds a linear regression model with its 95% confidence
interval to Fig. 3. The results augments findings in section 4.1 by revealing substantial overlap in
confident region in MSP but low overlap for Energy, ViM, and ReAct. Right. Quantitative measures
for each of the fitted linear model with given form AUROC = β(distance) + α. The 95% confi-
dence interval for the α between the two datasets do not overlap for Energy, ViM, and ReAct, but
do overlap for MSP. This means that the difference in intercept coefficient is statistically significant
for Energy, ViM, and ReAct but not MSP.

algorithms do indeed confuse correctly classified covariate shift examples with semantic shift ex-
amples. Finally, Table 2 uncovers that all seven algorithms yield significantly more rejection of
correctly classified examples with covariate shift datasets. This provide comprehensive support for
the conclusion drawn in Section 3.2 of the main paper.

C QUANTITATIVE ANALYSIS ON PASS DISTANCES

In this section, we provide full details on the quantitative measures of the relationship between
PASS (Asano et al., 2021) distance (image similarity) and AUROC (OOD detection performance).
The results in Fig. 10 Right confirms that there is a statistical significant difference on the per-
formance of OOD detection between covariate shift (ImageNet-R) and semantic shift (ImageNet-
OOD). Using the standard error, we can derive the 95% confidence interval for the intercept measure
of the linear regression model. For example, using two times the standard error, we can derive for
energy the respective confidence interval between ImageNet-R and ImageNet-OOD as (0.85, 0.874)
and (0.755, 779). Since these two intervals do not overlap, there is statistical significance that the
real intercept between the two datasets is different. Intuitively, the intercept of the model measure
the effect of dataset independent from PASS distance on OOD detection performance. Since it ap-
pears the intercept for the ImageNet-R model is higher, this suggests covariate shifts tend to boost
AUROC, demonstrating that OOD detectors detect covariate shift more easily. Similar conclusions
can be reached for ViM and ReAct, but not MSP, revealing modern algorithms are more susceptible
to covariate shifts. Fig. 10 Left unravel the performance different between the two datasets across
different PASS measures. We observe that the confident region of the linear regression model have
substantial overlaps for MSP and minor overlap for ReAct. On other hand, Energy and ViM have
no overlap within the specified interval, indicating that the modern detectors are more affected by
covariate shift than MSP.
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Table 3: OOD detection performance for ResNet-50 under Gradient-based OOD and Open-
Max. OOD detection performance for Open-Set Recognition and gradient-based OOD detection
methods on the two semantic shift datasets suggest the same conclusion: MSP baseline is best for
failure detection and modern methods do not have substantial improvement over baseline once spu-
rious covariate shift is removed. ODINε uses T = 1000 and ε = 0.0014. ODIN uses T = 1000
with no adversarial perturbations. GradNorm uses T = 1.

Goal Method OpenImage-O ImageNet-OOD

New-class Detection

MSP 84.0 79.2
ODINε 86.5 80.1
ODIN 87.4 80.4

GradNorm 80.4 73.8
OpenMax 87.4 80.2

Failure Detection

MSP 89.9 86.8
ODINε 87.9 83.5
ODIN 89.3 84.6

GradNorm 77.2 72.2
OpenMax 88.5 83.4

Table 4: Detailed breakdown of AUROC performance with respect to ImageNet-OOD. Break-
down reveals that the improvement observed in both Max-Logit and Energy is attributed to bet-
ter separation between incorrect ID predictions and OOD predictions, shown by the large margin
of increase in AUROC between Incorrect ID (+) vs. OOD (-). Performance between correct in-
distribution predictions and out-of-distribution predictions are similar. Additionally, when evaluat-
ing incorrect ID predictions vs. correct ID predictions, separability decreases for Max-Logit and
Energy compared to MSP.

Correct ID (+) vs. OOD (-) Incorrect ID (+) vs. OOD (-) Correct ID (+) vs. Incorrect ID (-)
MSP (Hendrycks & Gimpel, 2017) 86.9 54.7 86.4
Max-Logit (Hendrycks et al., 2022) 86.3 61.8 77.7
Energy (Liu et al., 2020) 85.4 62.4 76.2

D OPEN-SET RECOGNITION AND GRADIENT-BASED OOD DETECTION

Open-Set Recognition (OSR) is a similar task to semantic OOD detection, where the goal is to
identify unseen classes. Gradient-based OOD detection algorithms uses some aspects on the gra-
dients of a model to calculate an OOD score. Since detection requires the calculation of gradient
on each image, such method of OOD detection is more computationally expensive. We perform
the same analysis from 4.3 but on a single ResNet-50 model on the popular OSR algorithm Open-
Max (Hsu et al., 2020) which does not require any retraining and gradient-based OOD detection
algorithm ODIN (Liang et al., 2018) and GradNorm (Huang et al., 2021) on OpenImage-O and
ImageNet-OOD. Results from Table 1 reveals the same consistent behavior where we see substan-
tial improvement from MSP on OpenImage-O but not ImageNet-OOD for new-class detection, and
the MSP baseline outperforms these methods for failure detection.

E ADDITIONAL EXPERIMENTS FOR DETECTION OF INCORRECT EXAMPLES

In addition to the analysis that visualizes the ranking of OOD scores in Section 4.3, we quantitatively
examine AUROC on ImageNet-OOD to measure the separability between three groups of examples:
correctly classified in-distribution (ID) examples, incorrectly classified ID examples, and semantic
shifted OOD examples.

Specifically, since AUROC is a measure of separability (i.e. the probability of scoring a positive
example higher than a negative example), we examine the AUROC among these three groups of
examples. Using the probabilistic interpretation of AUROC, we can decompose AUROC between
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ID vs. OOD by correct ID and incorrect ID using the law of total probability:

p(f(xin) > f(xout)) =

p(f(xin) > f(xout)|C(xin) = 1)p(C(xin) = 1)+

p(f(xin) > f(xout)|C(xin) = 0)p(C(xin) = 0)

(2)

where xin, xout refer to semantic ID and OOD examples, respectively, f is the OOD scoring func-
tion, and C is an indicator function with C(x) = 1 if x is predicted correctly, and 0 otherwise.

Table 4 reports p(f(xin) > f(xout)|C(xin) = 1) (i.e. column Correct ID (+) vs. OOD (-)) and
p(f(xin) > f(xout)|C(xin) = 0) (i.e. column Incorrect ID (+) vs. OOD (-)). The results reveal
increased separability between incorrect ID vs. OOD from MSP to ViM and ReAct, decreased sep-
arability between correctly classified ID vs. incorrectly classified ID, and roughly the same separa-
bility between correctly classified vs. OOD. Since p(C(xin) = 1) in Equation 2 is the classification
accuracy on the ID dataset, we see that for 71.6% of increase in new-class detection AUROC from
ViM can be attributed to an increase in performance of detecting Incorrect ID vs. OOD predic-
tions. This pattern supports the claim that many advanced OOD detection methods improve under
the old benchmark by detecting more incorrectly classified examples as ID rather than a balanced
improvement across the ID set.

Additionally, we also use AUROC to approximate the probability of scoring correct ID higher than
incorrect ID examples, reported in the Correct ID (+) vs. Incorrect ID (-) column in Table 4. We
found that advanced OOD detection methods have lower separability between correctly classified
ID vs. incorrectly classified ID. Having lower separability between correct vs. incorrect hurts the
performance of the model from a safety perspective, as more problematic examples can pass through
the OOD detection filter.
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Figure 11: OOD detection performance under random models. AUROC performance of 5
DenseNet-121 models (left) or 5 Wide ResNet-50 model (right) with random, untrained param-
eters on subsets of ImageNet-C (Hendrycks & Dietterich, 2019) under the existing benchmark vs
our proposed benchmark. Colors indicate the specific random model and the markers indicate the
corruption type. Results reveals the same conclusion as the ResNet-50 sanity check.

F SANITY CHECK EXTENDS TO OTHER MODEL ARCHITECTURES

We expand our analysis of the sanity check in Section 4.2 to other model architectures and to the
scenario of failure detection. For architectures, we display additional random DenseNet-121 (Huang
et al., 2017) and Wide ResNet-50 (Zagoruyko & Komodakis, 2016). Results from Figure 11 reveal
that the same issue with sanity check occurs on DenseNet, except ViM, and Wide Resnet-50 in the
scenario of new-class detection, suggesting that this issue applies to convolution based architecture.

G QUALITATIVE ANALYSIS ON COVARIATE SHIFT BIAS

We expand our analysis by visualizing images where modern OOD detection algorithms and
the baseline MSP differ the most. We perform this analysis on ImageNet-1K, ImageNet-OOD,
OpenImage-O, and ImageNet-Sketch on a ResNet-50 model trained on ImageNet-1K. We found
that modern OOD detection algorithms ViM and ASH-B tends to latch on to specific spurious fea-
tures that are exacerbated by dataset with uncontrolled covariate shift, confounding their evaluation
on semantic shift.

We reveal in Figure 12 that the OOD detection method ViM tends to give texture-like images low
scores, detecting them as OOD. This effect is more prominent in OpenImage-O because it appears
there are many images in a different domain. In contrast, our dataset ImageNet-OOD has images
more similar to ImageNet-1K. The observed change in domain is a clear example of unnecessary
covariate shifts, explaining the vanishing performance gains of ViM in ImageNet-OOD. Similarly
in Figure 13, we observe that the OOD detection algorithm ASH-B tends to score text-like images
as OOD. Though there are some imperfections due to the class semantics (e.g. map is an object
but also can be a diagram), ImageNet-OOD overall still produced more similar looking images to
ImageNet-1K.

In summary, qualitative analysis on the discrepancy between modern OOD detection algorithms and
MSP motivate our dataset: the minimization of covariate shift is important when assessing an OOD
detector’s performance on semantic shift for the task of new-class detection.
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Figure 12: Images with highest discrepancy in ranks between ViM and MSP. We show 12 im-
ages from ImageNet-1K, ImageNet-OOD, OpenImage-O, and ImageNet-Sketch with the highest
discrepancy in ranks where ViM scores low (OOD) and MSP scores high (ID) revealing that ViM
tends to prefer detecting texture as OOD. The images also reveal that ImageNet-OOD images are
more realistic and comparable to ImageNet-1K than OpenImage-O.
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Figure 13: Images with highest discrepancy in ranks between ASH-B and MSP. We show 12
images from ImageNet-1K, ImageNet-OOD, OpenImage-O, and ImageNet-Sketch with the highest
discrepancy in ranks where ASH-B scores low (OOD) and MSP scores high (ID) revealing that
ASH-B tends to prefer detecting text as OOD.
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H MORE DETAILS ON IMAGENET-OOD CONSTRUCTION

In this section, we provide details on the manual selection process of ImageNet-OOD. Because im-
ages from ID classes may leak into OOD classes if human labelers are unable to disambiguate two
classes, such as “violin” and “viola” (Russakovsky et al., 2015), we manually selected 1000 classes
from ImageNet-21K to construct ImageNet-OOD. However, even after excluding hypernyms, hy-
ponyms, and the “organism” subtree, there are still 5074 remaining candidate ImageNet-21K classes.
It is simply infeasible to check all 5074 classes against all 1000 ImageNet-1K classes, which would
require 5074 × 1000 = 5, 074, 000 manual comparisons. Therefore, we need to employ another
mechanism that can pass through the 5074 classes in linear time.

To start the collection process, we aim to pick out 1000 classes, We first gathered the sister classes
for each ImageNet-1K class. A sister class cis is defined as a class that shares a direct parent with
an ImageNet-1K class ci. For example, the sister classes for the ImageNet-1K class “microwave”
has sister classes “food processor”, ‘ice maker”, “hot plate”, “coffee maker”, and “oven”, because
these classes all have the same direct parent “kitchen appliance.” Considering only sister classes
allowed us to further reduce the search space down to 2874 candidate classes.

Once we had obtained the sister classes, we examined the visual and semantic ambiguity between
each sister class and its corresponding ImageNet-1K class through example images. Unambiguous
classes are added to the final list of ImageNet-OOD classes. Since the ambiguity between classes
was considered during the curation of ImageNet-1K classes, we assume that there exists minimal
ambiguity between classes under different subtrees that contains an ImageNet-1K class. This as-
sumption allowed us to only examine the relationship of sister classes with their corresponding
ImageNet-1K class instead of with all 1000 ImageNet-1K classes. In the end, we only needed to
compare 13,831 pairs of classes.

Following the manual selection of the 1000 classes, we filtered out the classes with semantically-
grounded covariate shift using the method described in Section 3. Then, we examined the 1000
images that are the closest to ImageNet-1K validation images in terms of ResNet-50 (He et al.,
2016) feature distance to filter out visual similarity. We filter out both classes and images. Classes
such as “aqualung” (visually similar to ID class “scuba diver”) were filtered out in this stage, and
images with indistinguishable visuals were also thrown out. The final resulting dataset will include
31,807 images from 637 classes.

I IMAGENET-OOD CLASSES

Synset ID Class Name Synset ID Class Name
n02666943 abattoir n04108822 rope bridge
n02678897 adapter n04113406 roulette wheel
n02688273 air filter n04114844 router
n02689434 air hammer n04116098 rubber band
n02698634 alpenstock n04118635 ruin
n02705429 amphora n04119230 rumble seat
n02705944 amplifier n04122685 sachet
n02710044 andiron n04123740 saddle
n02723165 antiperspirant n04132603 samisen
n02725872 anvil n04134008 sandbag
n02726681 apartment building n04136800 sash fastener
n02757337 audiometer n04139140 saucepot
n02758960 autoclave n04150153 scouring pad
n02763604 aviary n04150980 scraper
n02767956 backbench n04167346 seeder
n02768226 backboard n04168199 Segway
n02770721 backscratcher n04171831 semiconductor device
n02770830 backseat n04176068 serving cart
n02775897 Bailey bridge n04176190 serving dish
n02776205 bait n04182152 shadow box

Continued on next page
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Synset ID Class Name Synset ID Class Name
n02783994 baluster n04184435 shaper
n02786331 bandbox n04186051 shaving cream
n02799323 baseball cap n04190376 shelf bracket
n02806379 bat n04198722 shiv
n02807523 bath oil n04200258 shoebox
n02807616 bathrobe n04200537 shoehorn
n02808185 bath salts n04206356 shotgun
n02811618 battle cruiser n04210120 shredder
n02812949 bayonet n04211219 shunter
n02816656 beanbag n04218564 silencer
n02817031 bearing n04219424 silk
n02821202 bedpan n04221823 simulator
n02823586 beer garden n04224842 sitar
n02826068 bell jar n04228215 ski binding
n02831237 beret n04228693 ski cap
n02841187 binnacle n04233124 skyscraper
n02843553 bird feeder n04237423 slicer
n02851939 blindfold n04238321 slide fastener
n02855089 blower n04248851 snare
n02868975 bone-ash cup n04252331 snowshoe
n02869249 bones n04252653 snow thrower
n02874442 bootjack n04253057 snuffbox
n02877266 bottle n04258333 solar heater
n02879087 bouquet n04258859 soldering iron
n02880842 Bowie knife n04260364 sonogram
n02881757 bowler hat n04269270 spark plug
n02882190 bowling alley n04270891 spear
n02882301 bowling ball n04272389 spectator pump
n02882647 bowling pin n04273285 speculum
n02887489 brace n04282494 splint
n02890940 brake shoe n04284869 sport kite
n02892948 brass knucks n04287747 spray gun
n02893608 breadbasket n04289027 sprinkler
n02893941 bread knife n04290259 spur
n02895438 breathalyzer n04292921 squeegee
n02903204 broadcaster n04303357 staple gun
n02904803 brocade n04303497 stapler
n02905036 broiler n04306592 stator
n02910145 bucket seat n04314914 step
n02911332 buffer n04315342 step-down transformer
n02925009 bushel basket n04320973 stirrup
n02927764 butter dish n04326896 stool
n02928608 button n04331639 straightener
n02939866 caliper n04335886 streetlight
n02940385 call center n04344003 stud finder
n02944579 camouflage n04346157 stun gun
n02947660 canal boat n04358117 supercomputer
n02951703 canopic jar n04364160 surge suppressor
n02952237 canopy n04364545 surgical instrument
n02955247 capacitor n04373894 sword
n02956699 capitol n04386051 tailstock
n02957008 capote n04387095 tam
n02960690 carabiner n04389854 tank engine
n02960903 carafe n04392113 tape
n02962061 carboy n04409128 tender
n02962200 carburetor n04414675 Tesla coil
n02967782 carpet sweeper n04417180 textile machine

Continued on next page
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Synset ID Class Name Synset ID Class Name
n02970685 car seat n04419073 theodolite
n02973017 cartridge holder n04421872 thermometer
n02973904 carving knife n04432662 ticking
n02976249 case knife n04438897 tin
n02977330 cashmere n04442441 toaster oven
n02978055 casket n04449966 tomahawk
n02981024 catacomb n04450749 tongs
n02982232 catapult n04451318 tongue depressor
n02986160 cattle guard n04452528 tool bag
n02988066 C-clamp n04453156 toothbrush
n02993194 cenotaph n04453390 toothpick
n02993368 censer n04469514 trampoline
n02998003 cereal box n04474035 transporter
n03005033 chancellery n04477387 treadmill
n03005285 chandelier n04479939 trestle bridge
n03011355 checker n04482177 tricorn
n03014440 chessman n04483073 trigger
n03019685 chin rest n04483925 trimmer
n03027250 chuck n04488202 trophy case
n03029445 churn n04489817 trowel
n03030353 cigar box n04495698 tudung
n03033362 circuit n04495843 tugboat
n03034405 circuitry n04496872 tumbler
n03041114 cleat n04497801 tuning fork
n03049924 cloth cap n04502502 tweed
n03050655 clothes dryer n04502851 twenty-two
n03051249 clothespin n04520784 vane
n03061674 cockpit n04525821 Venn diagram
n03063199 coffee filter n04526964 ventilator
n03064758 coffin n04532831 vibraphone
n03066359 coil spring n04533199 vibrator
n03067093 cold cathode n04538552 vise
n03075097 comb n04540255 volleyball net
n03080633 compass n04554406 washboard
n03082807 compressor n04556408 watch cap
n03087069 concrete mixer n04559166 water cooler
n03089753 conference center n04568069 weathervane
n03097362 control center n04568841 webbing
n03099147 convector n04579056 whiskey bottle
n03101664 cookie jar n04582869 wicket
n03103563 coonskin cap n04586581 winder
n03105088 copyholder n04589325 window box
n03105467 corbel n04590746 windshield wiper
n03115400 cotton flannel n04594489 wire
n03119510 coupling n04606574 wrench
n03122073 covered bridge n04613939 Zamboni
n03133415 crock n04615226 zither
n03140431 cruet n06275095 cable
n03141702 crusher n07579688 piece de resistance
n03150232 curler n07579917 adobo
n03156767 cylinder lock n07580359 casserole
n03158885 dagger n07591961 paella
n03161450 damper n07593471 viand
n03175457 densitometer n07594066 cake mix
n03176386 denture n07607138 chocolate kiss
n03176594 deodorant n07611991 mousse
n03180504 destroyer n07613815 jello

Continued on next page
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Synset ID Class Name Synset ID Class Name
n03219135 doll n07617708 plum pudding
n03229244 dowel n07617932 corn pudding
n03232543 drain basket n07618119 duff
n03233744 drawbridge n07618432 chocolate pudding
n03235327 drawknife n07621618 garnish
n03235796 drawstring bag n07624466 turnover
n03240892 drill press n07641928 fish cake
n03247083 dropper n07642361 fish stick
n03249342 drugstore n07648913 buffalo wing
n03250279 drumhead n07648997 barbecued wing
n03253796 duffel n07654148 barbecue
n03254046 duffel coat n07654298 biryani
n03254862 dulcimer n07655263 saute
n03255899 dumpcart n07665438 veal parmesan
n03256166 dump truck n07666176 veal cordon bleu
n03261776 earphone n07680313 bap
n03266371 eggbeater n07680517 breadstick
n03267468 ejection seat n07680761 brown bread
n03272125 electric hammer n07681450 challah
n03282295 embassy n07681691 cinnamon bread
n03287351 energizer n07682197 crouton
n03293741 equalizer n07682316 dark bread
n03296081 escapement n07682477 English muffin
n03309356 eyepatch n07682624 flatbread
n03326795 felt n07682808 garlic bread
n03329663 ferry n07684164 matzo
n03331077 fez n07684517 raisin bread
n03342127 finger-painting n07685730 rye bread
n03345837 fire extinguisher n07686720 sour bread
n03350204 fishbowl n07686873 toast
n03351434 fishing gear n07687053 wafer
n03356982 flannel n07696527 butty
n03359566 flask n07696625 ham sandwich
n03363749 flintlock n07696728 chicken sandwich
n03364599 float n07696839 club sandwich
n03367410 florist n07696977 open-face sandwich
n03367545 floss n07697699 Sloppy Joe
n03378174 food processor n07697825 bomber
n03379828 footbridge n07698250 gyro
n03392741 franking machine n07698401 bacon-lettuce-tomato sandwich
n03397266 frigate n07698543 Reuben
n03397947 Frisbee n07698672 western
n03398228 frock coat n07698782 wrap
n03407369 fuse n07708124 julienne
n03420801 garrison cap n07709172 potherb
n03423479 gas heater n07713267 pieplant
n03423719 gasket n07713763 mustard
n03429288 gauge n07715221 brussels sprouts
n03430418 gazebo n07723039 leek
n03431745 gearing n07730406 celery
n03432129 gearshift n07733394 gumbo
n03440682 glockenspiel n07750736 Jordan almond
n03442756 goal n07750872 apricot
n03448590 gorget n07753743 passion fruit
n03451711 graduated cylinder n07755411 melon
n03456024 gravy boat n07758680 grape
n03456665 greatcoat n07762114 papaw

Continued on next page
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Synset ID Class Name Synset ID Class Name
n03460040 grinder n07762740 ackee
n03466493 guided missile cruiser n07765073 date
n03469903 gunnysack n07765999 jujube
n03475823 hairdressing n07770763 pumpkin seed
n03490119 hand truck n07775197 sunflower seed
n03490884 hanger n07806221 salad
n03494537 harmonium n07817871 fennel
n03495039 harness n07823951 curry
n03497352 hasp n07830593 hot sauce
n03505133 headrest n07832416 pesto
n03505504 headscarf n07835457 hollandaise
n03506184 headstock n07835921 bourguignon
n03506727 hearing aid n07837362 white sauce
n03507241 hearth n07838073 gravy
n03542333 hotel n07840027 veloute
n03542605 hotel-casino n07841495 boiled egg
n03548402 hula-hoop n07842202 poached egg
n03549473 hunting knife n07842308 scrambled eggs
n03553019 hydrofoil n07842433 deviled egg
n03565288 imprint n07842605 shirred egg
n03571625 ink bottle n07842753 omelet
n03572107 inkle n07843464 souffle
n03572321 inkwell n07843636 fried egg
n03589513 jack n07849336 yogurt
n03609397 kazoo n07861557 coq au vin
n03610682 kepi n07861813 chicken and rice
n03612965 kettle n07862244 bacon and eggs
n03614782 keyhole n07862348 barbecued spareribs
n03615790 khukuri n07862461 beef Bourguignonne
n03625355 knit n07862611 beef Wellington
n03626760 knocker n07864756 chicken Kiev
n03628215 koto n07864934 chili
n03631177 lace n07865196 chop suey
n03641569 lanyard n07865484 chow mein
n03645011 latch n07866015 croquette
n03659809 lever n07866151 cottage pie
n03659950 lever lock n07866277 rissole
n03668067 lightning rod n07866409 dolmas
n03680858 lobster pot n07866723 egg roll
n03699591 machete n07866868 eggs Benedict
n03718212 man-of-war n07867021 enchilada
n03719743 mantilla n07867164 falafel
n03720163 map n07867324 fish and chips
n03721047 marble n07867421 fondue
n03725600 Mason jar n07868200 French toast
n03742019 medicine ball n07868340 fried rice
n03743279 megaphone n07868508 frittata
n03760944 microtome n07868830 galantine
n03765561 mill n07868955 gefilte fish
n03767112 millstone n07869522 corned beef hash
n03774327 miter box n07869611 jambalaya
n03775388 mixer n07869775 kabob
n03784270 monstrance n07870313 seafood Newburg
n03789946 motor n07871436 meatball
n03795269 mouthpiece n07872593 moussaka
n03797182 muffler n07873464 pilaf
n03802007 musket n07874780 porridge
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Synset ID Class Name Synset ID Class Name
n03805280 nailfile n07875436 risotto
n03814817 neckerchief n07876651 Scotch egg
n03819448 nest egg n07877299 Spanish rice
n03820318 net n07877675 steak tartare
n03836451 nut and bolt n07877849 pepper steak
n03839671 observatory n07878647 stuffed peppers
n03840823 octant n07878926 stuffed tomato
n03844045 oil lamp n07879072 succotash
n03858418 ottoman n07879174 sukiyaki
n03865557 overpass n07879350 sashimi
n03875955 paintball gun n07879450 sushi
n03883524 pannier n07879659 tamale
n03884926 pantheon n07879953 tempura
n03887185 paper fastener n07880213 terrine
n03890093 parer n07880325 Welsh rarebit
n03890514 pari-mutuel machine n07880458 schnitzel
n03897943 patch n07880751 taco
n03901229 pavior n07881404 tostada
n03904909 peeler n07929351 coffee bean
n03919430 pestle n07933154 tea bag
n03920641 pet shop n07937461 couscous
n03923379 phial n07938149 vitamin pill
n03923918 phonograph needle n09451237 supernova
n03936466 pile driver n09818022 astronaut
n03937931 pillion n09834699 ballet dancer
n03938037 pillory n09846755 beekeeper
n03938401 pillow block n09913593 cheerleader
n03939178 pilot boat n10091651 fireman
n03941231 pinata n10366966 nurse
n03941417 pinball machine n10514429 referee
n03941684 pincer n10521662 reporter
n03946076 pipe cutter n10772092 weatherman
n03948950 piston n11706761 avocado
n03952576 pizzeria n11851578 prickly pear
n03955489 plane seat n11877283 kohlrabi
n03967396 plotter n11879054 bok choy
n03968293 plug n12088223 yam
n03968581 plughole n12136392 rattan
n03973628 pocketknife n12158031 gourd
n03977592 police boat n12158443 pumpkin
n03983612 poplin n12172364 okra
n03993180 pouch n12246232 blueberry
n03996416 power shovel n12301445 olive
n04000311 press n12333771 guava
n04011827 propeller n12352990 plantain
n04013729 prosthesis n12373100 papaya
n04015908 protractor n12399132 mulberry
n04016846 psaltery n12400489 breadfruit
n04020298 pulley n12433081 onion
n04022332 pump n12441183 asparagus
n04024862 punnet n12501202 tamarind
n04039848 radar n12515925 chickpea
n04041243 radiator cap n12544539 lentil
n04043411 radio-phonograph n12560282 pea
n04049753 rain stick n12578916 cowpea
n04050933 ramekin n12636224 medlar
n04051549 ramp n12638218 plum
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Synset ID Class Name Synset ID Class Name
n04054670 rasp n12642090 wild cherry
n04063154 record changer n12648045 peach
n04064401 record player n12709103 pomelo
n04071263 regalia n12709688 grapefruit
n04072960 relay n12711984 lime
n04075291 remote terminal n12713063 kumquat
n04075916 repair shop n12744387 litchi
n04079933 resistor n12761284 mango
n04082562 retainer n12771192 persimmon
n04093625 rink n12805146 currant
n04093775 riot gun n12911673 tomatillo
n04095577 riveting machine n13136316 bean
n04097760 roaster n13136556 nut
n04098513 rocker
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