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Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, and Song Han

Tiny machine learning (TinyML) is a new frontier of machine learn-
ing. By squeezing deep learning models into billions of loT de-
vices and microcontrollers (MCUs), we expand the scope of Al
applications and enable ubiquitous intelligence. However, TinyML
is challenging due to the hardware constraints: the tiny memory
resource is difficult hold deep learning models designed for cloud
and mobile platforms. There is also limited compiler and inference
engine support for bare-metal devices. Therefore, we need to co-
design the algorithm and system stack to enable TinyML. In this
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review, we will first discuss the definition, challenges, and appli-
cations of TinyML. We then survey the recent progress in TinyML
and deep learning on MCUs. Next, we will introduce MCUNet,
showing how we can achieve ImageNet-scale Al applications on
loT devices with system-algorithm co-design. We will further ex-
tend the solution from inference to training and introduce tiny on-
device training techniques. Finally, we present future directions in
this area. Today’s “large” model might be tomorrow’s “tiny” model.
The scope of TinyML should evolve and adapt over time.

Index Terms—TinyML, efficient deep learning, on-device
training, learning on the edge.
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I. Overview of Tiny Machine Learning

achine learning (ML) has made significant

impacts on various fields, including vision,

language, and audio. However, state-of-the-
art models often come at the cost of high computation
and memory, making them expensive to deploy. To ad-
dress this, researchers have been working on efficient
algorithms, systems, and hardware to reduce the cost
of machine learning models in various deployment sce-
narios. There are two main subdomains of efficient ML:
EdgeML and CloudML (Figure 1). While CloudML focus-
es on improving latency and throughput on cloud serv-
ers, EdgeML focuses on improving energy efficiency, la-
tency, and privacy on edge devices. These two domains
also intersect in areas such as hybrid inference [1],
[2], over-the-air (OTA) updates, and federated learning
between the edge and cloud [3]. In recent years, there
has been significant progress in extending the scope of
EdgeML to ultra-low-power devices such as loT devices
and microcontrollers, known as TinyML.

TinyML has several key advantages. It enables ma-
chine learning using only a few hundred kilobytes of
memory which greatly reduces the cost. With billions of
IoT devices producing more and more data in our daily
lives, there is a growing need for low-power, always-on,
on-device Al. By performing on-device inference near
the sensor, TinyML enables better responsiveness and
privacy while reducing the energy cost associated with
wireless communication. On-device processing of data
can be beneficial for applications where real-time deci-
sion-making is crucial, such as autonomous vehicles.

In addition to inference, we push the frontier of Ti-
nyML to enable on-device training on IoT devices. It-
revolutionizes EdgeAl through continuous and lifelong
learning. Edge device can finetune the model on itself
rather than transmitting data to cloud servers, which

Efficient ML

Cloud ML

Figure 1. Efficiency is critical for CloudML, EdgeML, and
TinyML. CloudML targets high-throughput accelerators
like GPUs, while EdgeML focuses on portable devices like
mobile phones. TinyML further pushes the efficiency bound-
ary, enabling powerful ML models to run on ultra-low-power
devices such as microcontrollers.

protects privacy. On-device learning has numerous ben-
efits and a variety of applications. For example, home
cameras can continuously recognize new faces, and
email clients can gradually improve their prediction by
updating customized language models. It also enables
IoT applications that do not have a physical connection
to the internet to adapt to the environment, such as pre-
cision agriculture and ocean sensing.

In this review, we will first discuss the definition and
challenges of TinyML, analyzing why we can’t directly
scale mobile ML or cloud ML models for tinyML. Then
we delve into the importance of system-algorithm co-
design in TinyML. We will then survey recent literature
and the progress of the field, presenting a holistic sur-
vey and comparison in Tables 2 and 3. Next, we will in-
troduce our TinyML project, MCUNet, which combines
efficient system and algorithm design to enable TinyML
for both inference to training. Finally, we will discuss
several emerging topics for future research directions
in the field.

A. Challenges of TinyML

The success of deep learning models often comes at the
cost of high computation, which is not feasible for use
in TinyML applications due to the strict resource con-
straints of devices such as microcontrollers. Deploying
and training Al models on MCU is extremely hard: No
DRAM, no operating systems (OS), and strict memory
constraints (SRAM is smaller than 256 kB, and FLASH
is read-only). The available resources on these devices
are orders of magnitude smaller than those available on
mobile platforms (see Table 1). Previous work in the field
has either (I) focused on reducing model parameters
without addressing the real bottleneck of activations or
(II) only optimized operator kernels without considering
improving the network architecture design. Neither of
which considers the problem from a co-design perspec-
tive, and this has led to less optimal solutions for TinyML
applications. We observe several unique challenges of
TinyML and postulate how they might be overcome:

1) Models Designed for Mobile Platforms

Does Not Fit TinyML

There has been a lot of effort optimizing deep learn-
ing models for mobile platforms like MobileNets [4], [5]
and ShuffleNet [6]. However, since mobile devices have
sufficient memory resources (Table 2), the model de-
signs focus on parameters/FLOPs/latency reduction but
not peak memory usage. As shown in Figure 2 left and
middle, comparing two models with the same level of
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Table 1.
Microcontrollers have three orders of magnitude less memory and storage compared to mobile phones, and 5-6
orders of magnitude less than cloud GPUs (left). The extremely limited memory makes deep learning deployment

difficult. The peak memory and storage usage of widely used deep learning models (right). ResNet-50 exceeds the
resource limit on microcontrollers by 100x, MobileNet-V2 exceeds by 20x. Even the int 8 quantized MobileNetV2
requires 5.3x larger memory and can’t fit a microcontroller.

Cloud AT Mobile AT Tiny AI . MobileNetV2
(NVIDIAV100) ™  (iPhone 11) "™ (STM32F746)  ResNet-50 MobileNetv2 . o)

Memory 16GB 4, 4GB 3100, 330kB <«gap> 7.2 MB 6.8 MB 1.7 MB

Storage B-PB  —20%, g4 K400 1 MB <gaps 102MB 13.6 MB 3.4 MB

ImageNet accuracy, MobileNetV2-1.4 has 4.2x smaller
model size compared to ResNet-50, but its peak memory
even larger by 2.3x. Using MobileNet designs does not
adequately address the SRAM limit, instead, it actually
makes the situation even worse compared to ResNet.
Therefore, we need to rethink the model design prin-
ciples for TinyML.

2) Directly Adapting Models for Inference

Does Not Work for Tiny Training

Training poses an even greater challenge in terms of re-
source constraints, as intermediate activations must be
stored in order to compute backward gradients. When
moving from inference to training with full backpropa-
gation, the required memory increases by a factor of
6.9. As shown in Figure 2 the training memory require-
ments of MobileNets are not much better than ResNets
(improved by only 10%). Tiny IoT devices such as mi-
crocontrollers typically have a limited SRAM size, such
as 256 KB, which is barely enough for the inference of
deep learning models, let alone training. Previous work
in the cloud and mobile Al has focused on reducing
FLOPs [4], [5], [7] or only optimizing inference memory
[8], [9]. However, even using memory-efficient inference
models such as MCUNet [8] to bridge the three orders
of magnitude gap, training is still too expensive for tiny
platforms. If we follow conventional full model update
schemes, the model must be scaled down significantly
to fit within the tight memory constraints, resulting
in low accuracy. This highlights the need to redesign
backpropagation schemes and investigate new learn-
ing algorithms to reduce the main activation memory
bottleneck and enable fast and accurate training on tiny
devices. In Section IV, we will discuss this issue in detail
and introduce the concept of sparse layer and sparse
tensor updates.

3) Co-Design is Necessary for TinyML
Co-design is necessary for TinyML because it allows us
to fully customize the solutions that are optimized for

IEEE CIRCUITS AND SYSTEMS MAGAZINE

the unique constraints of tiny devices. Previous neural
architectures like MobileNets [4], [5], and ResNets [10]
are designed for mobile/cloud scenarios but not well-
suited for tiny hardware. Therefore, we need to design
neural architectures that are suitable for TinyML appli-
cations. On the other hand, existing deep training frame-
works are optimized for cloud servers and lack support
for memory-efficient forward and backward, thus can-
not fit into tiny devices. The huge gap (>1000 x) between
the resources of tiny IoT devices and the requirements
of current frameworks prohibits the usage. To address
these challenges, it is necessary to develop algorithms,
systems, and training techniques that are specifically
tailored to the settings of these tiny platforms.

B. Applications of TinyML

By democratizing costly deep learning models to IoT
devices, TinyML has many practical applications. Some
example applications include:

B Personalized Healthcare: TinyML can allow wear-
able devices, such as smartwatches, to continuous-
ly track the activities and oxygen saturation status
of the user in order to provide health suggestions
[11], [12], [13], [14]. Body pose estimation is also a
crucial application for elderly healthcare [15].

B Wearable Applications: TinyML can assist people
with wearable or IoT devices for speech applica-
tions, e.g.,, keyword spotting, automatic speech
recognition, and speaker verification [16], [17], [18].

B Smart Home: TinyML can enable object detection,
image recognition, and face detection on IoT de-
vices to build smart environments, such as smart
homes and hospitals [19], [20], [21], [22], [23].

B Human-Machine Interface: TinyML can enable
human-machine interface applications, like hand
gesture recognition [24], [25], [26], [27]. TinyML
is also capable of predicting and recognizing sign
languages [28].

B Smart Vehicle and Transportation: TinyML can per-
form object detection, lane detection, and decision
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making without a cloud connection, achieving high-
accuracy and low-latency results for autonomous
driving scenarios [29], [30], [31].

B Anomaly Detection: TinyML can equip robots and
sensors with the capability to perform anomaly
detection to reduce human efforts [32], [33], [34].

B Ecology and Agriculture: TinyML can also help
with ecological, agricultural, environmental, and
phenomics applications so as to conserve endan-
gered species or forecast weather activities [35],
[36], [37], [38], [39], [40].

Overall, the potential applications of TinyML are di-

verse and numerous, and will expand as the field contin-
ues to advance.

Il. Recent Progress in TinyML

A. Recent Progress on TinyML Inference

TinyML and deep learning on MCUs have seen rapid
growth in industry and academia in recent years. The
primary challenge of deploying deep learning models
on MCUs for inference is the limited memory and com-
putation available on these devices. For example, a pop-
ular ARM Cortex-M7 MCU, the STM32F746, has only 320
KB of SRAM and 1 MB of flash memory. In deep learning
scenarios, SRAM limits the size of activations (read and
write) while flash memory limits the size of the model
(read-only). In addition, the STM32F746 has a processor
with a clock speed of 216 MHz, which is 10-20 times low-
er than laptops. To enable deep learning inference on
MCUs, researchers have proposed various designs and
solutions to address these issues. Table 2 summarizes
the recent related studies on TinyML targeting MCUs, in-
cluding both algorithm solutions and system solutions.
In Table 3, we measured three different metrics (i.e.,
latency, peak memory, and flash usage) of four repre-
sentative related studies (i.e., CMSIS-NN [41], X-Cube-Al
[42], TinyEngine [8], and TF-Lite Micro [47]) on an iden-
tical MCU (STM32H743) and identical datasets (VWW
and Imagenet), in order to provide a more accurate and
transparent comparison.

1) Algorithm Solutions

The importance of neural network’s efficiency to the
overall performance of a deep learning system can-
not be overstated. Compressing off-the-shelf networks
by removing redundancy and reducing complexity
through pruning [57], [58], [59], [60], [61], [62] and quan-
tization [63], [64], [65], [66], [67], [68], [69], [70] are two
popular methods to improve network efficiency. Ten-
sor decomposition [71], [72], [73] is also an efficient
compression technique. In order to enhance network

THIRD QUARTER 2023

efficiency, knowledge distillation is also a method to
transfer information learned from one teacher model
to another student model [74], [75], [76], [77], [78], [79],
[80], [81]. Another method is to directly design tiny and
efficient network structures [4], [5], [6], [7]. Recently,
neural architecture search (NAS) has dominated the de-
sign of efficient networks [82], [83], [84], [85], [86], [87].
To make deep learning feasible on MCUs, research-
ers have proposed various algorithm solutions. Rusci et
al. [45] proposed a rule-based quantization strategy that
minimizes the bit precision of activations and weights
in order to reduce memory usage. Depending on the
memory constraints of various devices, this method
can quantize activations and weights with 8, 4, or 2
bits of mixed precision. On the other hand, although
neural architecture search (NAS) has been successful
in finding efficient network architectures, its effective-
ness is highly dependent on the quality of the search
space [88]. For MCUs with limited memory, standard
model designs and appropriate search spaces are es-
pecially lacking. To address this, TinyNAS, proposed as
part of MCUNet, employs a two-step NAS strategy that
optimizes the search space according to the available
resources [8]. TinyNAS then specializes network archi-
tectures within the optimized search space, allowing it
to automatically deal with a variety of constraints (e.g.,
device, latency, energy, memory) at low search costs.
MicroNets observed that the inference latency of net-
works in the NAS search space for MCUs varies linearly
with the number of FLOPs in the model [48]. As a re-
sult, it proposed differentiated NAS, which treats the
FLOPs as a proxy for latency in order to achieve both

B ResNet-50 [l MobilenetV2-1.4

1000 MB
6.9x larger, ..-==-""""" 1.1x smaller
100 MB s
4.2x smaller
10 MB 2.3x larger

Parameters Inference Mem  Training Mem

Figure 2. We can’t directly scale mobile ML or cloud ML mod-
els for TinyML. MobilenetV2 [4] with a width of 1.4 was used
for the experiments. The batch size was set to 1 for inference
and 8 for training. While MobilenetV2 reduces the number of
parameters by 4.2x compared to ResNet, the peak memory
usage increases by 2.3x for inference and only improves by
1.1x for training. Additionally, the total required training mem-
ory is 6.9x larger than the memory needed for inference.
These results demonstrate the significant memory bottleneck
for TinyML, and the bottleneck is the activation memory, not
the number of parameters.
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Table 3.

Performance comparison of various tiny models and inference frameworks on STM32H743, which runs at 480 MHz
with the resource constraint of 512 KB peak memory and 2 MB storage.

CMSIS-NN arXiv'18 . TinyEngine TF-Lite Micro
[41] X-Cube-Al [42] NeurIPS’20 [8] MLSys’21 [47]
Dataset: VWW; Model: mcunet-vwwO; Input Resolution: 64; Width Multiplier: N/A; Top-1 Accuracy: 87.3%
Latency 53 ms 32 ms 27 ms 587 ms
Peak
Memory 163 KB 88 KB 59 KB 163 KB
Storage
usage 646 KB 463 KB 453 KB 627 KB
Dataset: VWW; Model: mcunet-vww1; Input Resolution: 80; Width Multiplier: N/A; Top-1 Accuracy: 88.9%
Latency 97 ms 57 ms 51 ms 1120 ms
Peak
Memory 220 KB 113 KB 92 KB 220 KB
Storage
usage 736 KB 534 KB 521 KB 718 KB
Dataset: VWW; Model: mcunet-vww?2; Input Resolution: 144; Width Multiplier: N/A; Top-1 Accuracy: 91.8%
Latency 478 ms 269 ms 234 ms 5310 ms
Peak
Memory 390 KB 201 KB 174 KB 385 KB
Storage
usage 1034 KB 774 KB 741 KB 1016 KB
Dataset: ImageNet; Model: mcunet-in0; Input Resolution: 48; Width Multiplier: N/A; Top-1 Accuracy: 40.4%
Latency 51 ms 35 ms 25 ms 596 ms
Peak
Memory 161 KB 69 KB 49 KB 161 KB
Storage
usage 1090 KB 856 KB 842 KB 1072 KB
Dataset: ImageNet; Model: mcunet-in1; Input Resolution: 96; Width Multiplier: N/A; Top-1 Accuracy: 49.9%
Latency 103 ms 63 ms 56 ms 1227 ms
Peak
Memory 219 KB 106 KB 96 KB 219 KB
Storage
usage 956 KB 737 KB 727 KB 937 KB
Dataset: ImageNet; Model: mcunet-in2; Input Resolution: 160; Width Multiplier: N/A; Top-1 Accuracy: 60.3%
Latency 642 ms 351 ms 280 ms 6463 ms
Peak
Memory 469 KB 238 KB 215 KB 460 KB
Storage
usage 1102 KB 849 KB 830 KB 1084 KB
Dataset: ImageNet; Model: mcunet-in3; Input Resolution: 176; Width Multiplier: N/A; Top-1 Accuracy: 61.8%
Latency 770 ms 414 ms 336 ms 7821 ms
Peak
Memory 493 KB 243 KB 260 KB 493 KB
Storage
usage 1106 KB 867 KB 835 KB 1091 KB
(Continued)
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Table 3.

Performance comparison of various tiny models and inference frameworks on STM32H743, which runs at 480 MHz
with the resource constraint of 512 KB peak memory and 2 MB storage. (Continued)

CMSIS-NN arXiv'18 . TinyEngine TF-Lite Micro
[41] X-Cube-Al [42] NeurIPS’20 [8] MLSys’21 [47]
Dataset: ImageNet; Model: mcunet-in4; Input Resolution: 160; Width Multiplier: N/A; Top-1 Accuracy: 68.0%
Latency 00M 516 ms 463 ms 00M
Peak
Memory 00M 342 KB 416 KB (001}
Storage
usage 00M 1843 KB 1825 KB 00M
Dataset: ImageNet; Model: proxyless-w0.3; Input Resolution: 64; Width Multiplier: 0.3; Top-1 Accuracy: 37.0%
Latency 54 ms 35 ms 23 ms 512 ms
Peak
Memory 136 KB 97 KB 35KB 128 KB
SR 1084 KB 865 KB 777KB 1065 KB
usage
Dataset: ImageNet; Model: proxyless-w0.3; Input Resolution: 176; Width Multiplier: 0.3; Top-1 Accuracy: 56.2%
Latency 380 ms 205 ms 176 ms 3801 ms
el 453 KB 291 KB 259 KB 453 KB
Memory
Flslehg 1084 KB 865 KB 779KB 1065 KB
usage
Dataset: ImageNet; Model: mbv2-w0.3; Input Resolution: 64; Width Multiplier: 0.3; Top-1 Accuracy: 34.1%
Latency 43 ms 29 ms 23 ms 467 ms
Peak
Memory 173 KB 88 KB 61 KB 173 KB
Storage
usage 959 KB 768 KB 690 KB 940 KB

mcunet.

"All the inference frameworks used in this measurement are the latest versions as of December 19, 2022. *The measurement of X-Cube-Al (v7.3.0) is with
the default compilation setting, i.e., balanced optimization. *°00M denotes out of memory. *All the models are available on https:/github.com/mit-han-lab/

low memory consumption and high speed. MCUNetV2
identified that the imbalanced memory distribution is
the primary memory bottleneck in most convolutional
neural network designs, where the memory usage of the
first few blocks is an order of magnitude greater than
the rest of the network [9]. As a result, this study pro-
posed receptive field redistribution to shift the recep-
tive field and FLOPs to a later stage, reducing the halo’s
computation overhead. To minimize the difficulty of
manually redistributing the receptive field, this study
also automated the neural architecture search process
to simultaneously optimize the neural architecture and
inference scheduling. UDC explored a broader design
search space to generate compressible neural networks
with high accuracy for neural processing units (NPUs),
which can address the memory problem by exploit-
ing model compression with a broader range of weight
quantization and sparsity [51].

THIRD QUARTER 2023

2) System Solutions

In recent years, popular training frameworks such as
PyTorch [89], TensorFlow [90], MXNet [91], and JAX [92]
have contributed to the success of deep learning. How-
ever, these frameworks typically rely on a host language
(e.g., Python) and various runtime systems, which adds
significant overhead and makes them incompatible with
tiny edge devices. Emerging frameworks such as TVM
[93], TF-Lite [94], MNN [95], NCNN [96], TensorRT [97],
and OpenVino [98] offer lightweight runtime systems
for edge devices such as mobile phones, but they are
not yet small enough for MCUs. These frameworks can-
not accommodate [oT devices and MCUs with limited
memory.

CMSIS-NN implements optimized kernels to increase
inference speed, minimize memory footprint, and en-
hance the energy efficiency of deep learning models
on ARM Cortex-M processors [41]. X-Cube-Al, designed
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by STMicroelectronics, enables the automatic conver-
sion of pre-trained deep learning models to run on STM
MCUs with optimized kernel libraries [42]. TVM [93] and
AutoTVM [99] also supports microcontrollers (referred
to as uTVM/microTVM [43]). Compilation techniques
can also be employed to reduce memory requirements.
For instance, Stoutchinin et al. [100] propose to improve
deep learning performance on MCU by optimizing the
convolution loop nest. Liberis and Lane [44] and Ahn
et al. [101] present to reorder the operator executions
to minimize peak memory, whereas Miao and Lin [102]
seek to achieve better memory utilization by temporar-
ily swapping data off SRAM. With a similar goal of reduc-
ing peak memory, other researchers further propose
computing partial spatial regions across multiple lay-
ers [103], [104], [105]. Additionally, CMix-NN supports
mixed-precision kernel libraries of quantized activation
and weight on MCU to reduce memory footprint [46].
TinyEngine, as part of MCUNet, is proposed as a mem-
ory-efficient inference engine for expanding the search
space and fitting a larger model [8]. TinyEngine transfers
the majority of operations from runtime to compile time
before generating only the code that will be executed
by the TinyNAS model. In addition, TinyEngine adapts
memory scheduling to the overall network topology as
opposed to layer-by-layer optimization. TensorFlow-Lite
Micro (TF-Lite Micro) is among the first deep-learning
frameworks to support bare-metal microcontrollers in
order to enable deep-learning inference on MCUs with
tight memory constraints [47]. However, the aforemen-
tioned frameworks only support per-layer inference,
which limits the model capacity that can be executed
with only a small amount of memory and makes higher-
resolution input impossible. Hence, MCUNetV2 propos-
es a generic patch-by-patch inference scheduling, which
operates on a small spatial region of the feature map
and drastically reduces peak memory usage, and thus
makes the inference with high-resolution input on MCUs
feasible [9]. TinyOps combines fast internal memory
with an additional slow external memory through direct
memory access (DMA) peripheral to enlarge memory
size and speed up inference [49]. TinyMaix, similar to
CMSIS-NN, is an optimized inference kernel library, but
it eschews new but rare features and seeks to preserve
the readability and simplicity of the codebase [50].

B. Recent Progress on TinyML Training

On-device training on small devices is gaining popular-
ity, as it enables machine learning models to be trained
and refined directly on small and low-power devices.
On-device training offers several benefits, including
the provision of personalized services and the protec-
tion of user privacy, as user data is never transmitted
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to the cloud. However, on-device training presents addi-
tional challenges compared to on-device inference, due
to larger memory footprints and increased computing
operations needed to store intermediate activations and
gradients.

Researchers have been investigating ways to reduce
the memory footprint of training deep learning models.
One kind of approach is to design lightweight network
structures manually or by utilizing NAS [85], [106], [107].
Another common approach is to trade computation for
memory efficiency, such as freeing up activation during
inference and recomputing discarded activation during
the backward propagation [108], [109]. However, such
an approach comes at the expense of increased compu-
tation time, which is not affordable for tiny devices with
limited computation resources. Another approach is
layer-wise training, which can also reduce the memory
footprint compared to end-to-end training. However, it
is not as effective at achieving high levels of accuracy
[110]. Another approach reduces the memory footprint
by building a dynamic and sparse computation graph
for training by activation pruning [111]. Some research-
ers propose different optimizers [112]. Quantization is
also a common approach that reduces the size of activa-
tion during training by reducing the bitwidth of training
activation [113], [114].

Due to limited data and computational resources, on-
device training usually focuses on transfer learning. In
transfer learning, a neural network is first pre-trained on
a large-scale dataset, such as ImageNet [115], and used
as a feature extractor [116], [117], [118]. Then, only the
last layer needs to be fine-tuned on a smaller, task-spe-
cific dataset [119], [120], [121], [122]. This approach re-
duces the memory footprint by eliminating the need to
store intermediate activations during training, but due
to the limited capacity, the accuracy can be poor when
the domain shift is large [52]. Fine-tuning all layers can
achieve better accuracy but requires large memory to
store activation, which is not affordable for tiny devices
[116], [117]. Recently, several memory-friendly on-device
training frameworks were proposed [123], [124], [125],
but these frameworks targeted larger edge devices (i.e.,
mobile devices) and cannot be adopted on MCUs. An al-
ternative approach is only updating the parameters of
batch normalization layers [126], [127]. This reduces the
number of trainable parameters, which however does
not translate to memory efficiency [52] because the in-
termediate activation of batch normalization layers still
needs to be stored in the memory.

It has been shown that the activation of a neural net-
work is the main factor limiting the ability to train on
small devices. Tiny-transfer-learning (TinyTL) address-
es this issue by freezing the weights of the network and
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only fine-tuning the biases, which allows intermediate
activations to be discarded during backward propaga-
tion, reducing peak memory usage [52]. TinyOL trains
only the weights of the final layer, allowing for weight
training while keeping the activation small enough
to fit on small devices [53]. This enables incremental
on-device streaming of data for training. However, fine-
tuning only the biases or the last layer may not provide
sufficient precision. To train more layers on devices
with limited memory, POET (private optimal energy
training) [54] introduces two techniques: rematerial-
ization, which frees up activations early at the cost of
recomputation, and paging, which allows activations
to be transferred to secondary storage. POET uses
an integer linear program to find the energy-optimal
schedule for on-device training. To further reduce the
memory required to store trained weights, MiniLearn
applies quantization and dequantization techniques to
store the weights and intermediate output in integer
precision and dequantizes them to floating-point pre-
cision during training [55]. When deployed on tiny de-
vices, deep learning models are often quantized to re-
duce the memory usage of parameters and activations.
However, even after quantization, the parameters may
still be too large to fit in the limited hardware resourc-
es, preventing full back-propagation. To address these
challenges, MCUNetV3 proposes an algorithm-system
co-design approach [56]. The algorithm part includes
quantization-aware scaling (QAS) and the sparse up-
date. QAS calibrates the gradient scales and stabilizes
8-bit quantized training, while the sparse update skips
the gradient computation of less important layers and
sub-tensors. The system part includes the tiny training
engine (TTE), which has been developed to support
both QAS and the sparse update, enabling on-device
learning on microcontrollers with limited memory,
such as those with 256 KB or even less.

Ill. Tiny Inference

In this section, we discuss our recent work, MCUNet
family [8], [9], a system-algorithm co-design framework
that jointly optimizes the NN architecture (TinyNAS)
and the inference scheduling (TinyEngine) in the same
loop (Figure 4). Compared to traditional methods that
either (a) optimize the neural network using neural ar-
chitecture search based on a given deep learning library
(e.g., TensorFlow, PyTorch) [85], [86], [87] or (b) tune the
library to maximize the inference speed for a given net-
work [93], [99], MCUNet can better utilize the resources
by system-algorithm co-design, enabling a better per-
formance on microcontrollers. The design space of the
inference part is listed in Figure 3 (left).

A. TinyNAS: Automated Tiny Model Design

TinyNAS is a two-stage neural architecture search meth-
od that first optimizes the search space to fit the tiny
and diverse resource constraints, and then performs
neural architecture search within the optimized space.
By optimizing the search space, it significantly improves
the accuracy of the final model.

1) Automated Search Space Optimization

TinyNAS proposes to optimize the search space auto-
matically at low cost by analyzing the computation dis-
tribution of the satisfying models. To fit the tiny and di-
verse resource constraints of different microcontrollers,
TinyNAS scales the input resolution and the width multi-
plier of the mobile search space [86]. It chooses from an
input resolution spanning R = {48, 64, 80, ..., 192, 208,
224} and a width multiplier W = {0.2, 0.3, 04, ..., 1.0} to
cover a wide spectrum of resource constraints. This
leads to 12 x 9 = 108 possible search space configura-
tions S = W x R. Each search space configuration con-
tains 3.3 x 10% possible sub-networks. The goal is to find
the best search space configuration S* that contains the

Inference (Section III)
Algorithm (IIT.A) System (II1.B)
e TinyNAS
¢ Auto-Search Space
* Once-for-all Supernet

e TinyEngine
e In-place Depth-wise
e Patch-based Inference

TinyML Techniques

Training (Section IV)
Algorithm (IV.AB) System (IV.C)
* Sparse Update ¢ Tiny Training Engine
¢ Quantization-Aware ¢ Compile-time Autodiff.
Scaling (QAS) ¢ Graph pruning/reordering

changing fast (training).

Figure 3. Techniques specifically designed for tiny devices. In order to fully leverage the limited available resources, we need to
take careful consideration of both the system and the algorithm. The co-design approach not only enables practical Al applica-
tions on a wide range of loT platforms (inference), but also allows Al to continuously learn over time, adapting to a world that is
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model with the highest accuracy while satisfying the re-
source constraints.

Finding S* is non-trivial. One way is to perform neural
architecture search on each of the search spaces and
compare the final results. But the computation would
be astronomical. Instead, TinyNAS evaluates the quality
of the search space by randomly sampling m networks
from the search space and comparing the distribution of
satisfying networks. Instead of collecting the cumulative
distribution function (CDF) of each satisfying network’s
accuracy [88], which is computationally heavy due to
tremendous training, it only collects the CDF of FLOPs
(see Figure 5(b)). The intuition is that, within the same
model family, the accuracy is usually positively related
to the computation [61], [128]. A model with larger com-
putation has a larger capacity, which is more likely to
achieve higher accuracy.

Take the study of the best search space for ImageN-
et-100 (a 100-class classification task taken from the
original ImageNet) on STM32F746 as an example. We
show the FLOPs distribution CDF of the top-10 search
space configurations in Figure 5(b). Only the models

that satisfy the memory requirement at the best sched-
uling from TinyEngine are kept. For example, according
to the experimental results on ImageNet-100, using the
solid red space (average FLOPs 52.0 M) achieves 2.3%
better accuracy compared to using the solid green space
(average FLOPs 46.9 M), showing the effectiveness of au-
tomated search space optimization.

2) Resource-Constrained Model
Specialization With Once-For-All NAS
To specialize network architecture for various microcon-
trollers, we need to keep a low neural architecture search
cost. Given an optimized search space, TinyNAS further
performs one-shot neural architecture search [130], [131]
to efficiently find a good model. Specifically, it follows
once-for-all (OFA) NAS [129] to perform network special-
ization (Figure 6). We train one super network that con-
tains all the possible sub-networks through weight sharing
and use it to estimate the performance of each sub-net-
work. The search space is based on the widely-used
mobile search space [85], [86], [87], [129] and supports
variable kernel sizes for depth-wise convolution (3/5/7),
variable expansion ra-
tios for inverted bottle-

(a) Search NN model on an existing library

o i

(b) Tune deep learning library given a NN model

model. (c) MCUNet: system-algorithm co-design.

Efficient Neural Architecture

Efficient Compiler / Runtime
(c) MCUNet: system-algorithm co-design

Figure 4. MCUNet jointly designs the neural architecture and the inference scheduling to fit the
tight memory resource on microcontrollers. TinyEngine makes full use of the limited resources
on MCU, allowing a larger design space for architecture search. With a larger degree of design
freedom, TinyNAS is more likely to find a high accuracy model compared to using existing frame-
works. (@) Search NN model on an existing library. (b) Tune deep learning library given a NN

neck (3/4/6) and variable
stage depths (2/3/4). The
number of possible sub-
networks that TinyNAS
can cover in the search
space is large: 2 x 10%.
For each batch of data, it
randomly samples four
sub-networks, calculates
the loss, backpropagates
the gradients for each
sub-network, and up-
dates the corresponding

TinyEngine

Memory/Storage
Constraints

Full Network l Optimized Model
Space Search Space Specialization

Cumulative Probability

100% X X
width-resolution | avgFLOPs
— w0.3-r160 | 32.5

— w0.4-r144 | 46.9

— w0.5-r144|52.0

— w0.6-r112|41.3

-+ p0.8

=80%
75% 50.3M, 8%%)
50%
Good design space]
likely to achieve
high FLOPs under
memory constraint

25%

0%

FLOPs(M)25 30 35 40 45 50 55 60 65

(a) TinyNAS: two-stage neural architecture search (b) Search space optimization by analyzing FLOPs CDF

Figure 5. (a) TinyNAS is a two-stage neural architecture search method. It first specifies a sub-space according to the con-
straints, and then performs model specialization. (b) TinyNAS selects the best search space by analyzing the FLOPs CDF of
different search spaces. Each curve represents a design space. Our insight is that the design space that is more likely to pro-
duce high FLOPs models under the memory constraint gives higher model capacity, thus more likely to achieve high accuracy.
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weights. It then performs an evolution search to find the
best model within the search space that meets the on-
board resource constraints while achieving the highest
accuracy. For each sampled network, it uses TinyEngine
to optimize the memory scheduling to measure the opti-
mal memory usage. With such a kind of co-design, we can
efficiently fit the tiny memory budget.

B. TinyEngine: A Memory-Efficient Inference Library
Researchers used to assume that using different deep
learning frameworks (libraries) will only affect the infer-
ence speed but not the accuracy. However, this is not the
case for TinyML: the efficiency of the inference library
matters a lot to both the latency and accuracy of the
searched model. Specifically, a good inference framework
will make full use of the limited resources in MCUs, avoid-
ing waste of memory, and allowing a larger search space
for architecture search.
With a larger degree of de-

structure parameters). Instead, TinyEngine only focus-
es on MCU devices and adopts code generator-based
compilation. This not only avoids the time for runtime
interpretation, but also frees up the memory usage to al-
low design and inference of larger models. Compared to
CMSIS-NN, TinyEngine reduced memory usage by 2.1x
and improve inference efficiency by 22% via code genera-
tion, as shown in Figures 7 and 8.

The binary size of TinyEngine is lightweight, making it
very memory-efficient for MCUs. The model directly com-
piled by well-known programming languages for deep
learning (e.g., Python, Cython, etc.) cannot be run on
MCUs as the size of their dependencies and packages are
already larger than the Flash size of MCUs, let alone the
size of the compiled model. Besides, unlike interpreter-
based TF-Lite Micro, which prepares the code for every
operation (e.g., conv, softmax) to support cross-model

sign freedom, TinyNAS is
more likely to find a high-
accuracy model. Thus, Ti-
nyNAS is co-designed with
a memory-efficient infer-
ence library, TinyEngine.

1) Code Generation

Most existing inference li-
braries (e.g., TF-Lite Micro,
CMSIS-NN) are interpret-
er-based. Though it is easy
to support cross-platform
development, it requires
extra memory, the most
expensive resource in
MCU, to store the meta-in-
formation (such as model

Cortex M7
STM32H743
p (512kB/2MB)

different MCU hardware.

Figure 6. Once-for-all [129] trains one single super network that supports a wide range of
sub-networks through weight sharing, and specializes different sub-network architectures for

Cortex M7 Cortex M4
STM32F746 9 STM32F412
(320kB/1MB) , (256kB/1MB)

I TF-Lite Micro

B CMSIS-NN
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Figure 7. TinyEngine achieves higher inference efficiency than existing inference frameworks while reducing memory usage.
TinyEngine is up to 22x, 2.3%, and 1.5x faster than TF-Lite Micro, CMSIS-NN, and X-Cube-Al, respectively (left). By reducing
the memory usage, TinyEngine can run various model designs with tiny memory, enlarging the design space for TinyNAS under
the limited memory of MCU (right).
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Figure 8. TinyEngine outperforms existing libraries by eliminating runtime overheads, specializing each optimization tech-
nique, and adopting in-place depth-wise convolution. This effectively enlarges design space for TinyNAS under a given latency/

memory constraint.

[ TF-Lite Micro B CMSIS-NN
B TinyEngine

Binary Size (kB)

SmallCifar MbV2
Figure 9. Binary size comparison between different frame-
works (TF-Lite Micro[47], CMSIS-NN[41], and TinyEngine[8])
and models (SmallCifar[8] and MbV2[4]) during deployment.

We scale the width multiplier and input resolution of MbV2 to
0.35 and 64 so that most libraries can fit the neural network.

inference even if they are not used, which has high re-
dundancy. TinyEngine only compiles the operations that
are used by a given model into the binary. That is, the
reduction of binary size of the model compiled by TinyEn-
gine comes from not only the benefit of compilation over
interpretation but also the model-specific optimization/
specialization. As shown in Figure 9, such model-adaptive
compilation reduces code size by up to 4.5x and 5.0x com-
pared to TF-Lite Micro and CMSIS-NN, respectively.

2) In-Place Depth-Wise Convolution

TinyEngine supports in-place depth-wise convolution to
further reduce peak memory. Different from standard
convolutions, depth-wise convolutions do not perform
filtering across channels. Therefore, once the computa-
tion of a channel is completed, the input activation of
the channel can be overwritten and used to store the
output activation of another channel, allowing activa-
tion of depth-wise convolutions to be updated in-place
as shown in Figure 10. This method reduces the mea-
sured memory usage by 1.6x as shown in Figure 8.
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3) Patched-Based Inference

TinyNAS and TinyEngine have significantly reduced
the peak memory at the same level of accuracy. But
we still notice a very imbalanced peak memory usage
per block.

Imbalanced Memory Distribution. As an example,
the per-block peak memory usage of MobileNetV2 [4] is
shown in Figure 11. The profiling is done in int8. There
is a clear pattern of imbalanced memory usage distribu-
tion. The first five blocks have large peak memory, ex-
ceeding the memory constraints of MCUs, while the re-
maining 13 blocks easily fit 256 KB memory constraints.
The third block has 8x larger memory usage than the
rest of the network, becoming the memory bottleneck.
There are similar patterns for other efficient network de-
signs, which is quite common across different CNN back-
bones, even for models specialized for memory-limited
microcontrollers [8].

The phenomenon applies to most single-branch or
residual CNN designs due to the hierarchical structure':
after each stage, the image resolution is down-sampled
by half, leading to 4x fewer pixels, while the channel
number increases only by 2x [5], [10], [132] or by an
even smaller ratio [4], [106], [133], resulting in a decreas-
ing activation size. Therefore, the memory bottleneck
tends to appear at the early stage of the network, after
which the peak memory usage is much smaller.

Breaking the Memory Bottleneck With Patch-
Based Inference. TinEngine breaks the memory bot-
tleneck of the initial layers with patch-based inference
(Figure 12). Existing deep learning inference frame-
works (e.g., TensorFlow Lite Micro [90], TinyEngine [8],
microTVM [93], etc.) use a layer-by-layer execution. For
each convolutional layer, the inference library first al-
locates the input and output activation buffer in SRAM,
and releases the input buffer after the whole layer com-
putation is finished. The patch-based inference runs
the initial memory-intensive stage in a patch-by-patch

'Some CNN designs have highly complicated branching structure (e.g.,
NASNet [83]), but they are generally less efficient for inference [6], [85],
[86]; thus, not widely used for edge computing.
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manner. For each time, it only runs the model on a
small spatial region (>10x smaller than the whole area),
which effectively cuts down the peak memory usage.
After this stage is finished, the rest of the network with

a small peak memory is executed in a normal layer-by-
layer manner (upper notations in Figure 11).

An example of two convolutional layers (with
stride 1 and 2) is shown in Figure 12. For conventional

channels

(Peak Mem: 2N) (Peak Mem: N+1)

Input activation Output activation Input/output activation Temp buffer

(a) Depth-wise convolution (b) In-place depth-wise convolution
Figure 10. TinyEngine reduces peak memory by performing in-place depth-wise convolution. Conventional depth-wise convo-
lution requires 2N memory footprint for activations (left). In-place depth-wise convolution reduces the memory of depth-wise
convolutions to N+1 (right). Specifically, the output activation of the first channel is stored in a temporary buffer. Then, for each
following channel, the output activation overwrites the input activation of its previous channel. Finally, the output activation of
the first channel stored in the buffer is written back to the input activation of the last channel. (a) Depth-wise convolution. (b)
In-place depth-wise convolution.
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Figure 11. MobileNetV2 [4] has a very imbalanced memory usage distribution. The peak memory is determined by the first

five blocks with high peak memory, while the later blocks all share a small memory usage. By using per-patch inference (4 x 4

patches), we are able to significantly reduce the memory usage of the first five blocks, and reduce the overall peak memory by

8x, fitting MCUs with a 256kB memory budget. Notice that the model architecture and accuracy are not changed for the two

settings. The memory usage is measured in ints.
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Figure 12. Per-patch inference can significantly reduce the peak memory required to execute a sequence of convolutional
layers. We study two convolutional layers (stride 1 and 2). (a) Under per-layer computation, the first convolution has a large
input/output activation size, dominating the peak memory requirement. (b) With per-patch computation, we allocate the buffer
to host the final output activation, and compute the results patch-by-patch. We only need to store the activation from one patch
but not the entire feature map, reducing the peak memory (the first input is the image, which can be partially decoded from a

compressed format like JPEG).
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per-layer computation, the first convolutional layer
has large input and output activation size, leading to a
high peak memory. With spatial partial computation, it
allocates the buffer for the final output and computes
its values patch-by-patch. In this manner, it only needs
to store the activation from one patch instead of the
whole feature map.

Reducing Computation Overhead by Redistribut-
ing the Receptive Field. The significant memory saving
comes at the cost of computation overhead. To maintain
the same output results as per-layer inference, the non-
overlapping output patches correspond to overlapping
patches in the input image (the shadow area in Figure
12(b)). This is because convolutional filters with kernel
size >1 contribute to increasing receptive fields. The
computation overhead is related to the receptive field of
the patch-based initial stage. Consider the output of the
patch-based stage, the larger receptive field it has on the
input image, the larger resolution for each patch, leading
to a larger overlapping area and repeated computation.
There are some focusing on addressing the issue from
the hardware perspective [103]. However, since such
practices may not be general to all devices, TinyEngine
solves the problem from the network architecture side.

MCUNet proposes to redistribute the receptive field
(RF) of the CNN to reduce computation overhead. The
basic idea is: (1) reduce the receptive field of the patch-
based initial stage and (2) increase the receptive field of
the later stage. Reducing RF for the initial stage helps
to reduce the size of each input patch and repeated
computation. However, some tasks may have degrad-
ed performance if the overall RF is smaller (e.g., de-
tecting large objects). Therefore, it further increases
the RF of the later stage to compensate for the per-
formance loss. A manually tuned example of Mobile-
NetV2 is shown in Figure 13. After redistributing the

receptive field (“MbV2-RD”), the computation over-
head is negligible.

MCUNet automates the process with joint search (in-
troduced in the next section).

C. Co-Design: Joint Neural Architecture and
Inference Scheduling Search

1) Co-Design Loop

The optimization algorithms for model architectures and
inference engines are tightly coupled. For example, redis-
tributing the receptive field allows us to enjoy the benefit
of memory reduction at minimal computation/latency
overhead, which allows larger freedom when designing
the backbone architecture (e.g., we can now use a larger
input resolution). To explore such a large design space,
MCUNet jointly optimizes the neural architecture and the
inference scheduling in an automated manner. Given a cer-
tain dataset and hardware constraints (SRAM limit, flash
limit, latency limit, etc.), our goal is to achieve the high-
est accuracy while satisfying all the constraints. For the
model optimization, it uses NAS to find a good candidate
network architecture; for the scheduling optimization, it
optimizes the knobs like the patches number p and the
number of blocks n to perform patch-based inference,
and other knobs in TinyEngine [8].

There are some trade-offs during the co-design. For
example, given the same constraints, it can choose to
use a smaller model that fits per-layer execution (p=1,
no computation overhead), or a larger model and per-
patch inference (p > 1, with a small computation over-
head). Therefore, MCUNet puts both sides in the same
loop and uses evolutionary search to find the best set of
(ky» eqy, dy, wy, 1, p, N) satisfying constraints. Therefore,
the two dimensions are jointly searched in the same
loop with evolutionary search.
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MobileNetV2 (MbV2-RD) has reduced receptive field for the per-patch inference stage and
increased receptive field for the per-layer stage. The two networks have the same level of performance, but MbV2-RD has a
smaller overhead under patch-based inference. The mobile inverted block is denoted as MB {expansion ratio}
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Table 4.

MCUNet significantly improves the ImageNet accuracy on microcontrollers, outperforming the state-of-the-arts

by 4.6% under 256 kB SRAM and 3.3% under 512kB. Lower or mixed precisions (marked gray) are orthogonal
techniques, which we leave for future work out-of-memory (00M) results are struck-out.

Model/Library Quant. MACs SRAM Flash Top-1 Top-5
STM32F412 (256 kB SRAM, 1 MB Flash)

m\ylgng.ie;gx[é]r=144) [41/ ints 24M 308kB 862kB 49.0% 73.8%

?{ﬁ;gﬁﬁe‘)éf (=176) [851/ g 38 292kB 892kB 56.2% 79.7%

M&VJ gtilx %2:;]92) [51/ mixed 110M <256KkB <IMB 60.2%

#’:g&“{'}‘;‘gg”ﬁg}“\s / int8 65M 238kB 1007kB 60.3% -

ngUE'\l']Zt”(]g”[g}'AS / int4 134M 233kB 1008KkB 62.0%

MCUNet-M4 (w/ patch) ints 119M 196kB 1010kB 64.9% 86.2%
STM32H743 (512 kB SRAM, 2 MB Flash)

m’; 2{2?75’52]224) [51/ mixed 317M <512kB <2MB 68.0%

Q’:ﬁ&“{'}‘;ﬁégr‘[ﬁ'}“\s / ints 126M 452kB 2014kB 68.5% -

Q’:gyUE'\[']Zt”gg”[g}'AS/ int4 474 M 498KB 2000kB 70.7%

MCUNet-H7 (w/ patch) ints 256M 465kB 2032kB 71.8% 90.7%

2) Experimental Results

Pushing the ImageNet Record on MCUs

With joint optimization of neural architecture and
inference scheduling, MCUNet significantly pushes
the state-of-the-art results for MCU-based tiny image
classification.

We compared MCUNet with existing state-of-the-art
solutions on ImageNet classification under two hard-
ware settings: 256 kB SRAM/1 MB Flash and 512 kB
SRAM/2 MB Flash. The former represents a widely used
Cortex-M4 microcontroller; the latter corresponds to a
higher-end Cortex-M7. The goal is to achieve the high-
est ImageNet accuracy on resource-constrained MCUs
(Table 4). MCUNet significantly improves the ImageNet
accuracy of tiny deep learning on microcontrollers.
Under 256 kB SRAM/1 MB Flash, MCUNet outperforms
the state-of-the-art method [8] by 4.6% at 18% lower
peak SRAM. Under 512 kB SRAM/2 MB Flash, MCUNet
achieves a new record ImageNet accuracy of 71.8% on
commercial microcontrollers, which is 3.3% compared
to the best solution under the same quantization pol-
icy. Lower-bit (int4) or mixed-precision quantization
can further improve the accuracy (marked in gray in
the table).

THIRD QUARTER 2023

Visual Wake Words under 32k KB SRAM

Visual wake word (VWW) reflects the low-energy ap-
plication of TinyML. MCUNet allows running a VWW
model with a modest memory requirement. As in Figure
14,2 MCUNet outperforms state-of-the-art method [8] for
both accuracy versus peak memory and accuracy ver-
sus latency trade-off. Compared to per-layer inference,
MCUNet can achieve better accuracy using 4.0x smaller
memory. Actually, it can achieve >90% accuracy under
32 kB SRAM requirement, allowing model deployment
on low-end MCUs like STM32F410 costing only $1.6. Per-
patch inference also expands the search space, giving
us more freedom to find models with better accuracy
versus latency trade-off.

MCU-Based Detection on Pascal VOC

Object detection is sensitive to a smaller input reso-
lution [9]. Current state-of-the-art [8] cannot achieve
a decent detection performance on MCUs due to the
resolution bottleneck. MCUNet breaks the memory
bottleneck for detectors and improves the mAP by
double digits.

“Note that MCUNetV2 refers to the version w/ patch-based inference,
while MCUNet refers to per-layer inference.
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The object detection results on Pascal VOC trained
with YOLOv3 [135] are shown in Table 5 including results
for M4 MCU with 256 kB SRAM and H7 MCU with 512 kB
SRAM. On H7 MCU, MCUNet-H7 improves the mAP by
16.7% compared to the state-of-the-art method MCUNet
[8]. It can also scale down to fit a cheaper commodity
Cortex-M4 MCU with only 256 kB SRAM, while still im-
proving the mAP by 13.2% at 1.9x smaller peak SRAM.
Note that MCUNet-M4 shares a similar computation with
MCUNet (172 M versus 168 M) but a much better mAP.
This is because the expanded search space from patch-
based inference allows us to choose a better configura-
tion of larger input resolution and smaller models.

Memory-Efficient Face Detection

The performance of MCUNet for memory-efficient face
detection on WIDER FACE [136] dataset are shown in
Table 6. The analytic memory usage of the detector
backbone in £p32 is reported following [105]. The mod-
els are trained with S3FD face detector [140] following
[105] for a fair comparison. The reported mAP is calcu-
lated on samples with <3 faces, which is a more realistic

setting for tiny devices. MCUNet outperforms existing
solutions under different scales. MCUNet-L. achieves
comparable performance at 3.4x smaller peak memory
compared to RNNPool-Face-C [8] and 9.9x smaller peak
memory compared to LFFD [138]. The computation is
also 1.6x and 8.4x smaller. MCUNet-S consistently out-
performs RNNPool-Face-A [105] and EagleEye [139] at
1.8x smaller peak memory.

IV. Tiny Training

In addition to inference, tiny on-device training is a
growing direction that allows us to adapt the pre-trained
model to newly collected sensory data after deployment.
By training and adapting locally on the edge, the model
can learn to continuously improve its predictions and
perform lifelong learning and user customization. By
bringing training closer to the sensors, it also helps to
protect user privacy when handling sensitive data (e.g.,
healthcare).

However, on-device training on tiny edge devices
is extremely challenging and fundamentally different

€ MCUNet (w/o oat%li)

# MbLV2+TF-Lite % Proxyless+TF-Lite

4 MCUNet (w/ patch)

~ 94 2
X : -
< o 1256kB o
2 - iconstraint 1.8x faster
g 90 30k<]§:“.4. — ion MCU 90 *
& 88 ./. 88

86 / 86 SRAM < 320kB

o Flash < IMB % Flash < IMB

20 224 292 360 150 320 830 1000

90 660
Measured Latency (ms)
(b) Trade-off: accuracy v.s. measured latency

88 156
Measured Peak SRAM (kB)
(a) Trade-off: accuracy v.s. peak SRAM

Figure 14. MCUNet has better visual wake word (VWW) accuracy versus peak SRAM trade-off (left). Compared to MCUNet [8],
MCUNet achieves better accuracy at 4.0x smaller peak memory. It achieves >90% accuracy under <32kB memory, facilitating
deployment on extremely small hardware. patch-based method expands the search space that can fit the MCU, allowing better
accuracy versus latency trade-off (right). (a) Trade-off: accuracy versus peak SRAM. (b) Trade-off: accuracy versus measured
latency.

Table 5.
MCUNet significantly improves Pascal VOC [134] object detection on MCU by allowing a higher input resolution.

Under STM32H743 MCU constraints, MCUNet-H7 improves the mAP by 16.9% compared to [8], achieving a record
performance on MCU. It can also scale down to cheaper MCU STM32F412 with only 256kB SRAM while still improving
mAP by 13.2% at 1.9x smaller peak SRAM and a similar computation.

MCUModel  Constraint  Model #Param  MACs  peak SRAM :1’3\(; Gain
SRAM MbV2+CMSIS [8]  0.87M 34M 519kB 316% -
H743 (-$7)  <512kB MCUNet [8] 1.20M 168M  466kB 514% 0%
MCUNet-H7 0.67M 343M  438KB 68.3%  +16.9%
FA12 (~$4)  <256kB MCUNet-M4 0.47M 170M  247kB 64.6%  +13.2%
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Table 6.
MCUNet outperforms existing methods for memory-efficient face detection on WIDER FACE [136] dataset. Compared

to RNNPool-Face-C [105], MCUNet-L can achieve similar mAP at 3.4x smaller peak SRAM and 1.6x smaller
computation. The model statistics are profiled on 640 x 480 RGB input images following [105].

Method MAcs,  PeakMemory mA.P T mAP (s?: faces) T
(£p32) 4 Easy  Medium Hard  Easy  Medium  Hard
EXTD [137] 8.49G 18.8MB (9.9x) 0.90 0.88 0.82 0.93 0.93 0.91
LFFD [138] 9.25G 18.8MB (9.9x) 091  0.88 077 083 083 0.82
RNNPool-Face-C [105]  1.80G 6.44MB (3.4x)  0.92  0.89 070 095 0.94 0.92
MCUNet-L 1.10G 1.89 MB (1.0x) 0.92 0.90 0.70 0.94 0.93 0.92
EagleEye [139] 0.08G 1.17MB (1.8x) 0.74 0.70 0.44 0.79 0.78 0.75
RNNPool-Face-A [105]  0.10G 117MB (1.8x) 077 075 053 081 079 0.77
MCUNet-S 0.11G 672kB (1.0x) 0.85 0.81 0.55 0.90 0.89 0.87

from cloud training. Tiny loT devices (e.g., microcon-
trollers) typically have a limited SRAM size like 256
KB. Such a small memory budget is hardly enough
for the inference of deep learning models [8], [9], [44],
[45], [48], [141], [142], [143], let alone the training,
which requires extra computation for the backward
and extra memory for intermediate activation [109].
On the other hand, modern deep training frameworks
(e.g., PyTorch [89] and TensorFlow [144]) are usually
designed for cloud servers and require a large mem-
ory footprint (> 300 MB) even when training a small
model (e.g., MobileNetV2-w0.35 [4]) with batch size
1. The huge gap (> 1000x) makes it impossible to run
on tiny IoT devices. Furthermore, devices like micro-
controllers are bare-metal and do not have an op-
erational system and the runtime support needed by
existing training frameworks. Therefore, we need to
jointly design the algorithm and the system to enable
tiny on-device training.

Deep learning training systems such as PyTorch [89],
TensorFlow [144], JAX [92], MXNet [91], etc., do not con-
sider the tight resources on edge devices. Edge deep
learning inference frameworks like TVM [93], TF-Lite
[94], NCNN [97], etc., provide a slim runtime, but lack
the support for back-propagation. There are low-cost ef-
ficient transfer learning algorithms like training only the
final classifier layer, bias-only update [52], etc. However,
the existing training systems can not realize the theo-
retical saving into measured savings. The downstream
accuracy of such update schemes is also low (Figure 18).
There is a need for training systems that can effectively
utilize the limited resources on edge devices.

In order to bridge the gap and enable tiny on-device
training with algorithm-system co-design, there are two
unique challenges in tiny on-device training: (1) the mod-
el is quantized on edge devices. A real quantized graph
is difficult to optimize due to mixed-precision tensors

THIRD QUARTER 2023

and the lack of batch normalization layers [145]; (2) the
limited hardware resource (memory and computation)
of tiny hardware does not allow full back-propagation,
as the memory usage can easily exceed the SRAM of
microcontrollers by more than an order of magnitude.
To cope with the difficulties, TinyTraining proposes the
following designs.

A. Quantization Aware Scaling

Neural networks usually need to be quantized to fit the
limited memory of edge devices [8], [146]. For a £p32
linear layer y;, = Wep30Xs 3, + Dypsy, the int 8 quantized
counterpart is:

Vincs = CaSt2int8[Sfp32 “(Wineg Xines +Dinesd)], @)

where = denotes the tensor being quantized to fixed-
point numbers, and s is a floating-point scaling factor
to project the results back into int 8 range. The gradi-
ent update for the weights can be presented as:W'_ ., =
cast2int8(W,,., — @- Gy), where o is the learning rate,
and Gy is the gradient of the weights. After applying
the gradient update, the weights are rounded back to
8-bit integers.

1) Gradient Scale Mismatch: Unlike fine-tuning floating-
point model on the cloud, training with a real quantized
graph® is difficult: the quantized graph has tensors of
different bit-precisions (int8, int32, £p32, shown in
Equation (1) and lacks batch normalization [145] layers
(fused), leading to unstable gradient update.
Optimizing a quantized graph often leads to lower
accuracy compared to the floating-point counterpart.
A possible hypothesis is that the quantization process

Note that this is contrary to the fake quantization graph, which is wide-
ly used in quantization-aware training [146].
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1256KB constraint

TensorFlow (cloud)
PyTorch (cloud)
MNN (edge)
Tiny Training Engine
+ Quantization-aware scaling
+ Sparse layer/tensor update
+ Operator reordering

B
78x {

== 12.0x

335KB 8.8x
WiLEB o4
0.1 MB

2300x

1 MB 10 MB 100 MB

Figure 15. Algorithm and system co-design reduces the training memory from 303 MB (PyTorch) to 149KB with the same trans-
fer learning accuracy, leading to 2077x reduction. The numbers are measured with MobilenetV2-w0.35 [4], batch size 1 and
resolution 128x128. It can be deployed to a microcontroller with 256 KB SRAM.

QAS aligns the W/G ratio with £p32 QAS improves the val performance.
1 AN

35 - — 6
= fp32 nt8 int8+QAS - & wioQAS
o 25 " ® w/ QAS
= g 4
= 15 = :
= = e
%'l—)‘ 5 2 ®ese

-5 | 1
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Epochs
(b) Training convergence.

Tensor Index
(a) Weight/gradient norm ratio

Figure 16. The quantized model has a very different weight/gradient norm ratio (i.e., [|[W||/||G||) compared to the floating-point
model at training time (left). QAS stabilizes the ||[W||/||G|| ratio and helps optimization. The validation loss curves w/ and w/o
QAS. QAS effectively helps convergence, leading to better accuracy (right). The results are from updating the last two blocks of

the MCUNet model on the Cars dataset. (a) Weight/gradient norm ratio. (b) Training convergence.

distorts the gradient update. To verify the idea, Figure
16 plot the ratio between weight norm and gradient
norm (i.e., ||W]|/||G]|) for each tensor at the begin-
ning of the training on the CIFAR dataset [147]. The ratio
curve is very different after quantization: (1) the ratio is
much larger (could be addressed by adjusting the learn-
ing rate) and (2) the ratio has a different pattern after
quantization. Take the highlighted area (red box) as an
example, the quantized ratios have a zigzag pattern, dif-
fering from the floating-point curve. If all the tensors
are updated with a fixed learning rate, then the update
speed of each tensor would be very different compared
to the floating-point case, leading to inferior accuracy.
Even adaptive-learning rate optimizers like Adam [148]
cannot fully address the issue, as shown in Table 7.

2) Hyperparameter-Free Gradient Scaling. To address
the problem, a hyper-parameter-free learning rate scal-
ing rule, QAS, is proposed. Consider a 2D weight matrix
of alinear layer W € R*“2| where c;,c, are the input and

IEEE CIRCUITS AND SYSTEMS MAGAZINE

output channel. To perform per-tensor quantization* a
scaling rate sy € R is computed, such that W’s largest
magnitude is 2" - 1= 12T7:

quantize

W=sw-(W/sw) = sw-W, Gyrsw-Gw (2

The process (roughly) preserves the mathematical
functionality during the forward (Equation 1)], but it
distorts the magnitude ratio between the weight and its
corresponding gradient:

W/ G | =1l W/sw I/l sw - Gw || =sw- I W/ Gl (3)

The weight and gradient ratios are off by s?, leading
to the distorted pattern in Figure 16: (1) the scaling fac-
tor is far smaller than 1, making the weight-gradient ratio
much larger and (2) weights and biases have different

“For simplicity. In practice, per-channel quantization [146] is used and
the scaling factor is a vector of size C,.

THIRD QUARTER 2023

Authorized licensed use limited to: Duke University. Downloaded on November 06,2024 at 04:55:57 UTC from |IEEE Xplore. Restrictions apply.



Table 7.
Updating real quantized graphs (intg) with SGD is difficult: the transfer learning accuracy falls behind the floating-

point counterpart (fp32), even with adaptive learning rate optimizers like Adam [148] and LARS [149]. QAS helps to
bridge the accuracy gap without memory overhead (slightly higher). The numbers are for updating the last two blocks
of MCUNet-5FPS [8] model.

. L. Accuracy (%) MCUNet backbone: 23 M MACs, 0.48 M Param) Avg
Precision Optimizer

Cars CF10 CF100 CUB Flowers Food Pets VWW  Acec.

fp32 SGD-M 56.7 86.0 63.4 56.2 88.8 67.1 79.5 88.7 733

SGD-M 31.2 75.4 545 55.1 84.5 52.5 81.0 85.4 64.9

Adam [148]  54.0 84.5 61.0 58.5 87.2 62.6 80.1 86.5 71.8

ints LARS [149] 5.1 64.8 39.5 9.6 28.8 46.5 39.1 85.0 39.8

SGD-
M+QAS 55.2 86.9 64.6 57.8 89.1 64.4 80.9 89.3 73.5

data type (int8 versus int 32) and thus have scaling
factors of very different magnitude, leading to the zigzag
pattern. To solve the issue, quantization-aware scaling
(QAS) is proposed by compensating the gradient of the
quantized graph according to Equation (3):

Gw =Gy -sw, G5 =Gy -sw s> =G s (©)

where sy is the scaling factor for quantizing in-
put x (a scalar following [146], note that s = sy - sx in
Equation (1). [|W||/||G] curve with QAS is plotted in
Figure 16 (int8+scale). After scaling, the gradient ratios
match the floating-point counterpart. It also improves
transfer learning accuracy (Table 7), matching the accu-
racy of the floating-point counterpart without incurring
memory overhead.

3) Experiment Results. The last two blocks in Table 7
show the fine-tuning results (simulating low-cost fine-
tuning) of MCUNet on various downstream datasets.
With momentum SGD, the training accuracy of the quan-
tized model (int 8) falls behind the floating-point coun-
terpart due to the difficulty in optimization. Adaptive
learning rate optimizers like Adam [148] can improve the
accuracy, but it is still lower than the fp32 fine-tuning
results. It also consumes three times more memory due
to second-order momentum, which is not desired in Ti-
nyML settings. LARS [149] does not converge well on
most datasets despite extensive hyperparameter tuning
(of both the learning rate and the “trust coefficient”). The
aggressive gradient scaling rule of LARS makes the train-
ing unstable. The accuracy gap is closed when applying
QAS, achieving the same accuracy as floating-point train-
ing with no extra memory cost. Figure 16 shows the train-
ing curve of TinyTraining on the Cars dataset with and
without QAS. QAS effectively improves optimization.

THIRD QUARTER 2023

B. Memory-Efficient Sparse Update

Though QAS makes optimizing a quantized model pos-
sible, updating the whole model (or even the last sev-
eral blocks) requires a large amount of memory, which
is not affordable for the TinyML setting. To address
this, sparsely updating the layers and the tensors is
proposed.

1) Sparse Layer/Tensor Update. Pruning techniques
prove to be quite successful for achieving sparsity and
reducing model size [58], [59], [60], [61], [62], [63]. Instead
of pruning weights for inference, the gradient during
backpropagation, and updating the model sparsely are
pruned. Given a tight memory budget, updates of the less
important parameters are skipped to reduce memory us-
age and computation cost. When updating a linear layer
y = Wx + b (similar analysis applies to convolutions), the
gradient update is Gy = £1(G,x) and G,=1,(Gy), given the
output gradient G, from the later layer Notice that updat-
ing the biases does not require saving the intermediate
activation x, leading to a lighter memory footprint [52],>
while updating the weights is more memory-intensive
but also more expressive. For hardware like microcon-
trollers, an extra copy is needed for the updated pa-
rameters since the original ones are stored in read-only
FLASH [8]. Given the different natures of updating rules,
three aspects of the sparse update rule are considered
(Figure 17): (1) Bias update: how many layers should be
backpropagated to and update the biases (bias update
is cheap, the bias terms can be always updated if the
layer is backpropagated). (2) Sparse layer update: select
a subset of layers to update the corresponding weights.
(3) Sparse tensor update: further allow updating a subset
of weight channels to reduce the cost.

5If many layers are updated, the intermediate activation could consume
a large memory [109].
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However, finding the right sparse update scheme
under a memory budget is challenging due to the large
combinational space. For MCUNet [8] model with 43
convolutional layers and weight update ratios from
{0,1/8,1/4,1/2,1}, the combination is about 10*°, making
exhaustive search impossible.

2) Automated Selection With Contribution Analysis.
Contribution analysis is proposed to automatically de-
rive the sparse update scheme by counting the contribu-
tion of each parameter (weight/bias) to the downstream
accuracy. Given a convolutional neural network with [
layers, the accuracy improvement is measured from (1)
biases: the improvement of updating last k biases b;, b,_;,
., b_x1 (bias-only update) compared to only updating
the classifier, defined as Aaccy,; and (2) weights: the im-
provement of updating the weight of one extra layer W,
(with a channel update ratio r) compared to bias-only
update, defined as Aaccy,,. An example of the contri-
bution analysis can be found in Figure 18 left (MCUNet
on Cars [150] dataset. After finding Aaccy,.,; and Aaccyi
(1<k,i<l), an optimization problem is solved to find:

R i —Tax Aaccpg] + z Aaccwy;

®

lEl rer
s.t. Memory (k, i, r) < constraint,

where i is a collection of layer indices whose weights are
updated, and r is the corresponding update ratios (1/8,
1/4, 1/2, 1). Intuitively, by solving this optimization prob-
lem, the combination of (#layers for bias update is found,
the subset of weights to update), such that the total
contribution is maximized while the memory overhead
does not exceed the constraint. The problem can be
efficiently solved with the evolutionary search. Sparse
update assumes that the accuracy contribution of each
tensor (Aacc) can be summed up. Such an approxima-
tion proves to be quite effective in our experiments.

3) Sparse Update Obtains Better Accuracy at Lower
Memory. The performance of our searched sparse up-
date schemes is compared to two baseline methods:
fine-tuning only the biases of the last k layers and fine-
tuning the weights and biases of the last k& layers. For
each configuration, the average accuracy is measured
on eight downstream datasets, and the extra memory
usage is calculated analytically. Figure 18 compares
the results with a simple baseline of fine-tuning only
the classifier. The accuracy of classifier-only update is
low due to the limited learning capacity. Updating only
the classifier is not enough; the backbone also needs
updates. Bias-only update outperforms classifier-only
update, but the accuracy quickly plateaus and does not

accuracy on downstream tasks.

(@) Full update

(d) Sparse layer/Sparse tensor update

Figure 17. Different learning schemes on ProxylessNAS-Mobile [85]. Full update (a) consumes a lot of memory thus cannot fit
TinyML. Efficient learning methods like (b) last-only/(c) bias-only save the memory but cannot match the baseline performance.
Sparse update (d) only performs partial back-propagation, leading to less memory usage and computation with comparable
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layer index to update weight
(a) Contribution of a certain weight Aaccyy; .

Extra Memory (KB)
(b) MbV2-w0.35 accuracy comparison

Figure 18. Contribution analysis of updating biases and weights. For updating the weight of a specific layer, the later layers
appear to be more important; the first point-wise conv (pw1) in an inverted bottleneck block [4] appears to be more important;
and the gains are bigger with more channels updated (left). Sparse update can achieve higher transfer learning accuracy using
4.5-7.5x smaller extra memory (analytic) compared to updating the last k layers (right). For classifier-only update, the accuracy
is low due to limited capacity. Bias-only update can achieve a higher accuracy but plateaus soon. (a) Contribution of a certain
weight laccy,, (b) MbV2-w0.35 accuracy comparison.
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Figure 19. The workflow of our tiny training engine (TTE). (a) and (b) Our engine traces the forward graph for a given model
and derives the corresponding backward graph at compile time. The cycles denote the gradient descent operators. (c) To
reduce memory requirements, nodes related with frozen weights (colored in light blue) are pruned from backward computation.
(d) To minimize memory footprint, the gradient descent operators are re-ordered to be interlaced with backward computations

(colored in
devices (best viewed in colors).

)- (e) TTE compiles forward and backward graphs using code generation and deploys training on tiny loT

improve even when more biases are tuned. For updat-
ing the last k layers, the accuracy generally improves
as more layers are tuned; however, it has a very large
memory footprint. For example, updating the last two
blocks of MCUNet leads to an extra memory usage ex-
ceeding 256 KB, making it infeasible for IoT devices/mi-
crocontrollers. Our sparse update scheme can achieve
higher downstream accuracy at a much lower memory
cost. Compared to updating the last & layers, the sparse
update can achieve higher downstream accuracy with
4.5-7.5 times smaller memory overhead The highest ac-
curacy is achievable by updating the last k layers® as
the baseline upper bound (denoted as “upper bound”).
Interestingly, our sparse update achieves a better down-
stream accuracy compared to the baseline best statis-
tics. The sparse update scheme alleviates over-fitting or
makes momentum-free optimization easier.

SNote that fine-tuning the entire model does not always lead to the best
accuracy. The best k on Cars dataset is obtained via grid search: k = 36
for MobileNetV2, 39 for ProxylessNAS, 12 for MCUNet, and apply it to
all datasets.

THIRD QUARTER 2023

C. Tiny Training Engine (TTE)

The theoretical saving from real quantized training and
sparse update does not translate to measured memory
saving in existing deep learning frameworks, due to
the redundant runtime and the lack of graph pruning.
MCUNetV3 co-designed an efficient training system,
tiny training engine (TTE), to transform the above algo-
rithms into slim binary codes (Figure 19).

1) Compile-Time Differentiation and Code Generation.
TTE offloads the auto-differentiation from the runtime to
the compile-time, generating a static backward graph that
can be pruned and optimized (see below) to reduce the
memory and computation. TTE is based on code genera-
tion: it compiles the optimized graphs to executable bina-
ries on the target hardware, which minimizes the runtime
library size and removes the need for host languages like
Python (typically uses Megabytes of memory).

2) Backward Graph Pruning for Sparse Update. TTE
prune the redundant nodes in the backward graph
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before compiling it to binary codes. For sparse layer up-
date, TTE prune away the gradient nodes of the frozen
weights, only keeping the nodes for bias update. After-
ward, TTE traverses the graph to find unused interme-
diate nodes due to pruning (e.g., saved input activation)
and apply dead-code elimination (DCE) to remove the
redundancy. For sparse tensor update, TTE introduces a
sub-operator slicing mechanism to split a layer’s weights
into trainable and frozen parts; the backward graph of
the frozen subset is removed. TTE’s compilation trans-
lates the sparse update algorithm into the measured
memory saving, reducing the training memory by 7-9x
without losing accuracy (Figure 21(@)).

3) Operator Reordering and Graph Optimization. The
execution order of different operations affects the life
cycle of tensors and the overall memory footprint. This
has been well-studied for inference [44], [101] but not for

training due to the extra complexity. Traditional train-
ing frameworks usually derive the gradients of all the
trainable parameters before applying the update. Such
a practice leads to significant memory waste for stor-
ing the gradients. By reordering operators, the gradient
update to a specific tensor can immediately be applied
(in-place update) before back-propagating to earlier lay-
ers, so that the gradient can be released. As such, TTE
trace the dependency of all tensors (weights, gradients,
activation) and reorder the operators, so that some op-
erators can be fused to reduce memory footprint (by
2.4-3.2 x, Figure 21(a)). Figure 20 provides an example to
reflect the memory saving from reordering.

4) Memory Saving and Faster Training. Figure 21(a)
showsthetrainingmemoryofthreemodels on STM32F746
MCU to compare the memory saving from TTE. The
sparse update effectively reduces peak memory by 7-9x
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Figure 20. Memory footprint reduction by operator reordering. With operator reordering, TTE can apply in-place gradient update
and perform operator fusion to avoid large intermediate tensors to reduce memory footprint. We profiled MobileNetV2-w0.35 in
this figure (same as Figure 15). (a) Vanilla backward graph. (b) Optimized backward graph.
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Figure 21. Measured peak memory and latency: (a) sparse update with TTE graph optimization can reduce the measured peak
memory by 20-21 x for different models, making training feasible on tiny edge devices. (b) Graph optimization consistently
reduces the peak memory for different sparse update schemes (denoted by different average transfer learning accuracies).
(c) Sparse update with TTE operators achieves 23—-25x faster training speed compared to the full update with TF-Lite Micro
operators, leading to less energy usage. Note: for sparse update, we choose the config that achieves the same accuracy as
full update.
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compared to the full update thanks to the graph pruning
mechanism, while achieving the same or higher transfer
learning accuracy (compare the data points connected
by arrows in Figure 18). The memory is further reduced
with operator reordering, leading to 20-21x total memo-
ry saving. With both techniques, the training of all three
models fits 256 KB SRAM.

The training latency per image on the STM32F746 MCU
is measured in Figure 21(c). By graph optimization and ex-
ploiting multiple compiler optimization approaches (such
as loop unrolling and tiling), our sparse update + TTE ker-
nels can significantly enhance the training speed by 23-25x
compared to the full update + TF-Lite Micro kernels, lead-
ing to energy saving and making training practical.

V. Conclusion and Outlook

In conclusion, TinyML is a rapidly evolving field that en-
ables deep learning on resource-constrained devices.
It fosters a wide range of customized and private Al ap-
plications on edge devices, which can process the data
collected from the sensors right at the source. We point
out several unique challenges of TinyML. First, we need
to redesign the model design space since deep models
designed for mobile and other platforms do not work well
for TinyML. Second, we need to redesign backpropaga-
tion schemes and investigate new learning algorithms
since directly adapting models for inference does not
work for tiny training. Third, co-design is necessary for
TinyML. We summarize the related works aiming to over-
come the challenges from the algorithm and the system
perspectives. Furthermore, we introduce the TinyML
techniques that not only enable practical Al applications
on a wide range of IoT platforms for inference, but also al-
low Al to be continuously trained over time, adapting to a
world that is changing fast. Looking to the future, TinyML
will continue to be an active and rapidly growing area,
which requires continued efforts to improve the perfor-
mance and energy efficiency. We discuss several possible
directions for the future development of TinyML.

A. More Applications and Modalities

This review mainly focuses on convolutional neural net-
works (CNNs) as computer vision is widely adapted to tiny
devices. However, TinyML has a broad range of applications
beyond computer vision, including but not limited to audio
processing, language processing, anomaly detection, etc.,
with sensor inputs from temperature/humidity sensors,
accelerometers, current/voltage sensors, among others.
TinyML enables local devices to process multiple-sensor
inputs to handle multi-task workloads, opening up future
avenues for numerous potential applications. We will leave
further exploration of these possibilities for future work.
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B. Self-Supervised Learning

Obtaining accurately labeled data for on-device learn-
ing on the edge can be challenging. In some cases, like
keyboard typing, we can use the next input word as the
prediction target for the model. However, this is not
always practical for most applications, such as domain
adaptation for vision tasks (e.g., segmentation, detec-
tion), obtaining supervision can be expensive and diffi-
cult. One potential solution is to design self-supervised
learning tasks for on-device training, as has been pro-
posed in recent research [151].

C. Relationship Between TinyML and LargeML
TinyML and LargeML both aim to develop efficient mod-
els under resource constraints such as memory, com-
putation, engineering effort, and data. While TinyML is
primarily focusing on making models run efficiently on
small devices, many of its techniques can also be applied
in cloud environments for large-scale machine learning
scenarios. For example, quantization techniques have
been effective in both TinyML [8], [9] and LargeML set-
tings [152], [153], and the concept of sparse learning has
been used in both scenarios to run models efficiently
with limited resources [56], [154]. These efficient tech-
niques are generally applicable and should not be limited
to TinyML settings.

The concept of TinyML is constantly evolving and
expanding. When ResNet-50 [10] was first introduced
in 2016, it was considered as a large model with 25 M
parameters and 4G MACs. However, six years later, with
the rapid advances in hardware, it can now achieve sub-
millisecond inference on a smartphone DSP (Qualcomm
Snapdragon 8Genl). As hardware continues to improve,
what was once considered a “large” model may be con-
sidered “tiny” in the future. The scope of TinyML should
evolve and adapt over time.
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