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Abstract
Tiny machine learning (TinyML) is a new frontier of machine learn-
ing. By squeezing deep learning models into billions of IoT de-
vices and microcontrollers (MCUs), we expand the scope of AI  
applications and enable ubiquitous intelligence. However, TinyML 
is challenging due to the hardware constraints: the tiny memory 
resource is difficult hold deep learning models designed for cloud 
and mobile platforms. There is also limited compiler and inference 
engine support for bare-metal devices. Therefore, we need to co-
design the algorithm and system stack to enable TinyML. In this 

review, we will first discuss the definition, challenges, and appli-
cations of TinyML. We then survey the recent progress in TinyML 
and deep learning on MCUs. Next, we will introduce MCUNet, 
showing how we can achieve ImageNet-scale AI applications on 
IoT devices with system-algorithm co-design. We will further ex-
tend the solution from inference to training and introduce tiny on-
device training techniques. Finally, we present future directions in 
this area. Today’s “large” model might be tomorrow’s “tiny” model. 
The scope of TinyML should evolve and adapt over time.

Index Terms—TinyML, efficient deep learning, on-device 
training, learning on the edge.
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I. Overview of Tiny Machine Learning

achine learning (ML) has made significant 

impacts on various fields, including vision, 

language, and audio. However, state-of-the-

art models often come at the cost of high computation 

and memory, making them expensive to deploy. To ad-

dress this, researchers have been working on efficient 

algorithms, systems, and hardware to reduce the cost 

of machine learning models in various deployment sce-

narios. There are two main subdomains of efficient ML: 

EdgeML and CloudML (Figure 1). While CloudML focus-

es on improving latency and throughput on cloud serv-

ers, EdgeML focuses on improving energy efficiency, la-

tency, and privacy on edge devices. These two domains 

also intersect in areas such as hybrid inference [1], 

[2], over-the-air (OTA) updates, and federated learning 

between the edge and cloud [3]. In recent years, there 

has been significant progress in extending the scope of 

EdgeML to ultra-low-power devices such as IoT devices 

and microcontrollers, known as TinyML.

TinyML has several key advantages. It enables ma-

chine learning using only a few hundred kilobytes of 

memory which greatly reduces the cost. With billions of 

IoT devices producing more and more data in our daily 

lives, there is a growing need for low-power, always-on, 

on-device AI. By performing on-device inference near 

the sensor, TinyML enables better responsiveness and 

privacy while reducing the energy cost associated with 

wireless communication. On-device processing of data 

can be beneficial for applications where real-time deci-

sion-making is crucial, such as autonomous vehicles.

In addition to inference, we push the frontier of Ti-

nyML to enable on-device training on IoT devices. It-

revolutionizes EdgeAI through continuous and lifelong 

learning. Edge device can finetune the model on itself 

rather than transmitting data to cloud servers, which 

protects privacy. On-device learning has numerous ben-

efits and a variety of applications. For example, home 

cameras can continuously recognize new faces, and 

email clients can gradually improve their prediction by 

updating customized language models. It also enables 

IoT applications that do not have a physical connection 

to the internet to adapt to the environment, such as pre-

cision agriculture and ocean sensing.

In this review, we will first discuss the definition and 

challenges of TinyML, analyzing why we can’t directly 

scale mobile ML or cloud ML models for tinyML. Then 

we delve into the importance of system-algorithm co-

design in TinyML. We will then survey recent literature 

and the progress of the field, presenting a holistic sur-

vey and comparison in Tables 2 and 3. Next, we will in-

troduce our TinyML project, MCUNet, which combines 

efficient system and algorithm design to enable TinyML 

for both inference to training. Finally, we will discuss 

several emerging topics for future research directions 

in the field.

A. Challenges of TinyML

The success of deep learning models often comes at the 

cost of high computation, which is not feasible for use 

in TinyML applications due to the strict resource con-

straints of devices such as microcontrollers. Deploying 

and training AI models on MCU is extremely hard: No 

DRAM, no operating systems (OS), and strict memory 

constraints (SRAM is smaller than 256 kB, and FLASH 

is read-only). The available resources on these devices 

are orders of magnitude smaller than those available on 

mobile platforms (see Table 1). Previous work in the field 

has either (I) focused on reducing model parameters 

without addressing the real bottleneck of activations or 

(II) only optimized operator kernels without considering 

improving the network architecture design. Neither of 

which considers the problem from a co-design perspec-

tive, and this has led to less optimal solutions for TinyML 

applications. We observe several unique challenges of 

TinyML and postulate how they might be overcome:

1) Models Designed for Mobile Platforms 

Does Not Fit TinyML

There has been a lot of effort optimizing deep learn-

ing models for mobile platforms like MobileNets [4], [5] 

and ShuffleNet [6]. However, since mobile devices have 

sufficient memory resources (Table 2), the model de-

signs focus on parameters/FLOPs/latency reduction but 

not peak memory usage. As shown in Figure 2 left and 

middle, comparing two models with the same level of 

M

The authors are with the Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: songhan@mit.edu).

Figure 1. Efficiency is critical for CloudML, EdgeML, and 
TinyML. CloudML targets high-throughput accelerators 
like GPUs, while EdgeML focuses on portable devices like 
mobile phones. TinyML further pushes the efficiency bound-
ary, enabling powerful ML models to run on ultra-low-power 
devices such as microcontrollers.

Authorized licensed use limited to: Duke University. Downloaded on November 06,2024 at 04:55:57 UTC from IEEE Xplore.  Restrictions apply. 



10  IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2023

ImageNet accuracy, MobileNetV2-1.4 has 4.2× smaller 

model size compared to ResNet-50, but its peak memory 

even larger by 2.3×. Using MobileNet designs does not 

adequately address the SRAM limit, instead, it actually 

makes the situation even worse compared to ResNet. 

Therefore, we need to rethink the model design prin-

ciples for TinyML.

2) Directly Adapting Models for Inference 

Does Not Work for Tiny Training

Training poses an even greater challenge in terms of re-

source constraints, as intermediate activations must be 

stored in order to compute backward gradients. When 

moving from inference to training with full backpropa-

gation, the required memory increases by a factor of 

6.9. As shown in Figure 2 the training memory require-

ments of MobileNets are not much better than ResNets 

(improved by only 10%). Tiny IoT devices such as mi-

crocontrollers typically have a limited SRAM size, such 

as 256 KB, which is barely enough for the inference of 

deep learning models, let alone training. Previous work 

in the cloud and mobile AI has focused on reducing 

FLOPs [4], [5], [7] or only optimizing inference memory 

[8], [9]. However, even using memory-efficient inference 

models such as MCUNet [8] to bridge the three orders 

of magnitude gap, training is still too expensive for tiny 

platforms. If we follow conventional full model update 

schemes, the model must be scaled down significantly 

to fit within the tight memory constraints, resulting 

in low accuracy. This highlights the need to redesign 

backpropagation schemes and investigate new learn-

ing algorithms to reduce the main activation memory 

bottleneck and enable fast and accurate training on tiny 

devices. In Section IV, we will discuss this issue in detail 

and introduce the concept of sparse layer and sparse 

tensor updates.

3) Co-Design is Necessary for TinyML

Co-design is necessary for TinyML because it allows us 

to fully customize the solutions that are optimized for 

the unique constraints of tiny devices. Previous neural 

architectures like MobileNets [4], [5], and ResNets [10] 

are designed for mobile/cloud scenarios but not well-

suited for tiny hardware. Therefore, we need to design 

neural architectures that are suitable for TinyML appli-

cations. On the other hand, existing deep training frame-

works are optimized for cloud servers and lack support 

for memory-efficient forward and backward, thus can-

not fit into tiny devices. The huge gap (> 1000 ×) between 

the resources of tiny IoT devices and the requirements 

of current frameworks prohibits the usage. To address 

these challenges, it is necessary to develop algorithms, 

systems, and training techniques that are specifically 

tailored to the settings of these tiny platforms.

B. Applications of TinyML

By democratizing costly deep learning models to IoT 

devices, TinyML has many practical applications. Some 

example applications include:

■ Personalized Healthcare: TinyML can allow wear-

able devices, such as smartwatches, to continuous-

ly track the activities and oxygen saturation status 

of the user in order to provide health suggestions 

[11], [12], [13], [14]. Body pose estimation is also a 

crucial application for elderly healthcare [15].

■ Wearable Applications: TinyML can assist people 

with wearable or IoT devices for speech applica-

tions, e.g., keyword spotting, automatic speech 

recognition, and speaker verification [16], [17], [18]. 

■ Smart Home: TinyML can enable object detection, 

image recognition, and face detection on IoT de-

vices to build smart environments, such as smart 

homes and hospitals [19], [20], [21], [22], [23].

■ Human-Machine Interface: TinyML can enable 

human-machine interface applications, like hand 

gesture recognition [24], [25], [26], [27]. TinyML 

is also capable of predicting and recognizing sign 

languages [28].

■ Smart Vehicle and Transportation: TinyML can per-

form object detection, lane detection, and decision 

Table 1.

Microcontrollers have three orders of magnitude less memory and storage compared to mobile phones, and 5–6 

orders of magnitude less than cloud GPUs (left). The extremely limited memory makes deep learning deployment 

difficult. The peak memory and storage usage of widely used deep learning models (right). ResNet-50 exceeds the 

resource limit on microcontrollers by 100×, MobileNet-V2 exceeds by 20×. Even the int 8 quantized MobileNetV2 

requires 5.3× larger memory and can’t fit a microcontroller.
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making without a cloud connection, achieving high-

accuracy and low-latency results for autonomous 

driving scenarios [29], [30], [31].

■ Anomaly Detection: TinyML can equip robots and 

sensors with the capability to perform anomaly 

detection to reduce human efforts [32], [33], [34].

■ Ecology and Agriculture: TinyML can also help 

with ecological, agricultural, environmental, and 

phenomics applications so as to conserve endan-

gered species or forecast weather activities [35], 

[36], [37], [38], [39], [40].

Overall, the potential applications of TinyML are di-

verse and numerous, and will expand as the field contin-

ues to advance.

II. Recent Progress in TinyML

A. Recent Progress on TinyML Inference

TinyML and deep learning on MCUs have seen rapid 

growth in industry and academia in recent years. The 

primary challenge of deploying deep learning models 

on MCUs for inference is the limited memory and com-

putation available on these devices. For example, a pop-

ular ARM Cortex-M7 MCU, the STM32F746, has only 320 

KB of SRAM and 1 MB of flash memory. In deep learning 

scenarios, SRAM limits the size of activations (read and 

write) while flash memory limits the size of the model 

(read-only). In addition, the STM32F746 has a processor 

with a clock speed of 216 MHz, which is 10–20 times low-

er than laptops. To enable deep learning inference on 

MCUs, researchers have proposed various designs and 

solutions to address these issues. Table 2 summarizes 

the recent related studies on TinyML targeting MCUs, in-

cluding both algorithm solutions and system solutions. 

In Table 3, we measured three different metrics (i.e., 

latency, peak memory, and flash usage) of four repre-

sentative related studies (i.e., CMSIS-NN [41], X-Cube-AI 

[42], TinyEngine [8], and TF-Lite Micro [47]) on an iden-

tical MCU (STM32H743) and identical datasets (VWW 

and Imagenet), in order to provide a more accurate and 

transparent comparison.

1) Algorithm Solutions

The importance of neural network’s efficiency to the 

overall performance of a deep learning system can-

not be overstated. Compressing off-the-shelf networks 

by removing redundancy and reducing complexity 

through pruning [57], [58], [59], [60], [61], [62] and quan-

tization [63], [64], [65], [66], [67], [68], [69], [70] are two 

popular methods to improve network efficiency. Ten-

sor decomposition [71], [72], [73] is also an efficient 

compression technique. In order to enhance network 

efficiency, knowledge distillation is also a method to 

transfer information learned from one teacher model 

to another student model [74], [75], [76], [77], [78], [79], 

[80], [81]. Another method is to directly design tiny and 

efficient network structures [4], [5], [6], [7]. Recently, 

neural architecture search (NAS) has dominated the de-

sign of efficient networks [82], [83], [84], [85], [86], [87].

To make deep learning feasible on MCUs, research-

ers have proposed various algorithm solutions. Rusci et 

al. [45] proposed a rule-based quantization strategy that 

minimizes the bit precision of activations and weights 

in order to reduce memory usage. Depending on the 

memory constraints of various devices, this method 

can quantize activations and weights with 8, 4, or 2 

bits of mixed precision. On the other hand, although 

neural architecture search (NAS) has been successful 

in finding efficient network architectures, its effective-

ness is highly dependent on the quality of the search 

space [88]. For MCUs with limited memory, standard 

model designs and appropriate search spaces are es-

pecially lacking. To address this, TinyNAS, proposed as 

part of MCUNet, employs a two-step NAS strategy that 

optimizes the search space according to the available 

resources [8]. TinyNAS then specializes network archi-

tectures within the optimized search space, allowing it 

to automatically deal with a variety of constraints (e.g., 

device, latency, energy, memory) at low search costs. 

MicroNets observed that the inference latency of net-

works in the NAS search space for MCUs varies linearly 

with the number of FLOPs in the model [48]. As a re-

sult, it proposed differentiated NAS, which treats the 

FLOPs as a proxy for latency in order to achieve both 

Figure 2. We can’t directly scale mobile ML or cloud ML mod-
els for TinyML. MobilenetV2 [4] with a width of 1.4 was used 
for the experiments. The batch size was set to 1 for inference 
and 8 for training. While MobilenetV2 reduces the number of 
parameters by 4.2× compared to ResNet, the peak memory 
usage increases by 2.3× for inference and only improves by 
1.1× for training. Additionally, the total required training mem-
ory is 6.9× larger than the memory needed for inference. 
These results demonstrate the significant memory bottleneck 
for TinyML, and the bottleneck is the activation memory, not 
the number of parameters.
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Table 3. 

Performance comparison of various tiny models and inference frameworks on STM32H743, which runs at 480 MHz 

with the resource constraint of 512 KB peak memory and 2 MB storage.

CMSIS-NN arXiv’18 

[41]
X-Cube-AI [42]

TinyEngine 

NeurIPS’20 [8]

TF-Lite Micro 

MLSys’21 [47]

Dataset: VWW; Model: mcunet-vww0; Input Resolution: 64; Width Multiplier: N/A; Top-1 Accuracy: 87.3%

Latency 53 ms 32 ms 27 ms 587 ms

Peak 

Memory
163 KB 88 KB 59 KB 163 KB

Storage 

usage
646 KB 463 KB 453 KB 627 KB

Dataset: VWW; Model: mcunet-vww1; Input Resolution: 80; Width Multiplier: N/A; Top-1 Accuracy: 88.9%

Latency 97 ms 57 ms 51 ms 1120 ms

Peak 

Memory
220 KB 113 KB 92 KB 220 KB

Storage 

usage
736 KB 534 KB 521 KB 718 KB

Dataset: VWW; Model: mcunet-vww2; Input Resolution: 144; Width Multiplier: N/A; Top-1 Accuracy: 91.8%

Latency 478 ms 269 ms 234 ms 5310 ms

Peak 

Memory
390 KB 201 KB 174 KB 385 KB

Storage 

usage
1034 KB 774 KB 741 KB 1016 KB

Dataset: ImageNet; Model: mcunet-in0; Input Resolution: 48; Width Multiplier: N/A; Top-1 Accuracy: 40.4%

Latency 51 ms 35 ms 25 ms 596 ms

Peak 

Memory
161 KB 69 KB 49 KB 161 KB

Storage 

usage
1090 KB 856 KB 842 KB 1072 KB

Dataset: ImageNet; Model: mcunet-in1; Input Resolution: 96; Width Multiplier: N/A; Top-1 Accuracy: 49.9%

Latency 103 ms 63 ms 56 ms 1227 ms

Peak 

Memory
219 KB 106 KB 96 KB 219 KB

Storage 

usage
956 KB 737 KB 727 KB 937 KB

Dataset: ImageNet; Model: mcunet-in2; Input Resolution: 160; Width Multiplier: N/A; Top-1 Accuracy: 60.3%

Latency 642 ms 351 ms 280 ms 6463 ms

Peak 

Memory
469 KB 238 KB 215 KB 460 KB

Storage 

usage
1102 KB 849 KB 830 KB 1084 KB

Dataset: ImageNet; Model: mcunet-in3; Input Resolution: 176; Width Multiplier: N/A; Top-1 Accuracy: 61.8%

Latency 770 ms 414 ms 336 ms 7821 ms

Peak 

Memory
493 KB 243 KB 260 KB 493 KB

Storage 

usage
1106 KB 867 KB 835 KB 1091 KB

(Continued)
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low memory consumption and high speed. MCUNetV2 

identified that the imbalanced memory distribution is 

the primary memory bottleneck in most convolutional 

neural network designs, where the memory usage of the 

first few blocks is an order of magnitude greater than 

the rest of the network [9]. As a result, this study pro-

posed receptive field redistribution to shift the recep-

tive field and FLOPs to a later stage, reducing the halo’s 

computation overhead. To minimize the difficulty of 

manually redistributing the receptive field, this study 

also automated the neural architecture search process 

to simultaneously optimize the neural architecture and 

inference scheduling. UDC explored a broader design 

search space to generate compressible neural networks 

with high accuracy for neural processing units (NPUs), 

which can address the memory problem by exploit-

ing model compression with a broader range of weight 

quantization and sparsity [51].

2) System Solutions

In recent years, popular training frameworks such as 

PyTorch [89], TensorFlow [90], MXNet [91], and JAX [92] 

have contributed to the success of deep learning. How-

ever, these frameworks typically rely on a host language 

(e.g., Python) and various runtime systems, which adds 

significant overhead and makes them incompatible with 

tiny edge devices. Emerging frameworks such as TVM 

[93], TF-Lite [94], MNN [95], NCNN [96], TensorRT [97], 

and OpenVino [98] offer lightweight runtime systems 

for edge devices such as mobile phones, but they are 

not yet small enough for MCUs. These frameworks can-

not accommodate IoT devices and MCUs with limited 

memory.

CMSIS-NN implements optimized kernels to increase 

inference speed, minimize memory footprint, and en-

hance the energy efficiency of deep learning models 

on ARM Cortex-M processors [41]. X-Cube-AI, designed 

Table 3. 

Performance comparison of various tiny models and inference frameworks on STM32H743, which runs at 480 MHz 

with the resource constraint of 512 KB peak memory and 2 MB storage.

CMSIS-NN arXiv’18 

[41]
X-Cube-AI [42]

TinyEngine 

NeurIPS’20 [8]

TF-Lite Micro 

MLSys’21 [47]

Dataset: ImageNet; Model: mcunet-in4; Input Resolution: 160; Width Multiplier: N/A; Top-1 Accuracy: 68.0%

Latency OOM 516 ms 463 ms OOM

Peak 
Memory OOM 342 KB 416 KB OOM

Storage 
usage OOM 1843 KB 1825 KB OOM

Dataset: ImageNet; Model: proxyless-w0.3; Input Resolution: 64; Width Multiplier: 0.3; Top-1 Accuracy: 37.0%

Latency 54 ms 35 ms 23 ms 512 ms

Peak 
Memory 136 KB 97 KB 35 KB 128 KB

Storage 
usage 1084 KB 865 KB 777 KB 1065 KB

Dataset: ImageNet; Model: proxyless-w0.3; Input Resolution: 176; Width Multiplier: 0.3; Top-1 Accuracy: 56.2%

Latency 380 ms 205 ms 176 ms 3801 ms

Peak 
Memory 453 KB 221 KB 259 KB 453 KB

Storage 
usage 1084 KB 865 KB 779 KB 1065 KB

Dataset: ImageNet; Model: mbv2-w0.3; Input Resolution: 64; Width Multiplier: 0.3; Top-1 Accuracy: 34.1%

Latency 43 ms 29 ms 23 ms 467 ms

Peak 
Memory 173 KB 88 KB 61 KB 173 KB

Storage 
usage 959 KB 768 KB 690 KB 940 KB

1All the inference frameworks used in this measurement are the latest versions as of December 19, 2022. 2The measurement of X-Cube-AI (v7.3.0) is with 
the default compilation setting, i.e., balanced optimization. 3OOM denotes out of memory. 4All the models are available on https://github.com/mit-han-lab/
mcunet.

(Continued)
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by STMicroelectronics, enables the automatic conver-

sion of pre-trained deep learning models to run on STM 

MCUs with optimized kernel libraries [42]. TVM [93] and 

AutoTVM [99] also supports microcontrollers (referred 

to as μTVM/microTVM [43]). Compilation techniques 

can also be employed to reduce memory requirements. 

For instance, Stoutchinin et al. [100] propose to improve 

deep learning performance on MCU by optimizing the 

convolution loop nest. Liberis and Lane [44] and Ahn 

et al. [101] present to reorder the operator executions 

to minimize peak memory, whereas Miao and Lin [102] 

seek to achieve better memory utilization by temporar-

ily swapping data off SRAM. With a similar goal of reduc-

ing peak memory, other researchers further propose 

computing partial spatial regions across multiple lay-

ers [103], [104], [105]. Additionally, CMix-NN supports 

mixed-precision kernel libraries of quantized activation 

and weight on MCU to reduce memory footprint [46]. 

TinyEngine, as part of MCUNet, is proposed as a mem-

ory-efficient inference engine for expanding the search 

space and fitting a larger model [8]. TinyEngine transfers 

the majority of operations from runtime to compile time 

before generating only the code that will be executed 

by the TinyNAS model. In addition, TinyEngine adapts 

memory scheduling to the overall network topology as 

opposed to layer-by-layer optimization. TensorFlow-Lite 

Micro (TF-Lite Micro) is among the first deep-learning 

frameworks to support bare-metal microcontrollers in 

order to enable deep-learning inference on MCUs with 

tight memory constraints [47]. However, the aforemen-

tioned frameworks only support per-layer inference, 

which limits the model capacity that can be executed 

with only a small amount of memory and makes higher-

resolution input impossible. Hence, MCUNetV2 propos-

es a generic patch-by-patch inference scheduling, which 

operates on a small spatial region of the feature map 

and drastically reduces peak memory usage, and thus 

makes the inference with high-resolution input on MCUs 

feasible [9]. TinyOps combines fast internal memory 

with an additional slow external memory through direct 

memory access (DMA) peripheral to enlarge memory 

size and speed up inference [49]. TinyMaix, similar to 

CMSIS-NN, is an optimized inference kernel library, but 

it eschews new but rare features and seeks to preserve 

the readability and simplicity of the codebase [50].

B. Recent Progress on TinyML Training

On-device training on small devices is gaining popular-

ity, as it enables machine learning models to be trained 

and refined directly on small and low-power devices. 

On-device training offers several benefits, including 

the provision of personalized services and the protec-

tion of user privacy, as user data is never transmitted 

to the cloud. However, on-device training presents addi-

tional challenges compared to on-device inference, due 

to larger memory footprints and increased computing 

operations needed to store intermediate activations and 

gradients.

Researchers have been investigating ways to reduce 

the memory footprint of training deep learning models. 

One kind of approach is to design lightweight network 

structures manually or by utilizing NAS [85], [106], [107]. 

Another common approach is to trade computation for 

memory efficiency, such as freeing up activation during 

inference and recomputing discarded activation during 

the backward propagation [108], [109]. However, such 

an approach comes at the expense of increased compu-

tation time, which is not affordable for tiny devices with 

limited computation resources. Another approach is 

layer-wise training, which can also reduce the memory 

footprint compared to end-to-end training. However, it 

is not as effective at achieving high levels of accuracy 

[110]. Another approach reduces the memory footprint 

by building a dynamic and sparse computation graph 

for training by activation pruning [111]. Some research-

ers propose different optimizers [112]. Quantization is 

also a common approach that reduces the size of activa-

tion during training by reducing the bitwidth of training 

activation [113], [114].

Due to limited data and computational resources, on-

device training usually focuses on transfer learning. In 

transfer learning, a neural network is first pre-trained on 

a large-scale dataset, such as ImageNet [115], and used 

as a feature extractor [116], [117], [118]. Then, only the 

last layer needs to be fine-tuned on a smaller, task-spe-

cific dataset [119], [120], [121], [122]. This approach re-

duces the memory footprint by eliminating the need to 

store intermediate activations during training, but due 

to the limited capacity, the accuracy can be poor when 

the domain shift is large [52]. Fine-tuning all layers can 

achieve better accuracy but requires large memory to 

store activation, which is not affordable for tiny devices 

[116], [117]. Recently, several memory-friendly on-device 

training frameworks were proposed [123], [124], [125], 

but these frameworks targeted larger edge devices (i.e., 

mobile devices) and cannot be adopted on MCUs. An al-

ternative approach is only updating the parameters of 

batch normalization layers [126], [127]. This reduces the 

number of trainable parameters, which however does 

not translate to memory efficiency [52] because the in-

termediate activation of batch normalization layers still 

needs to be stored in the memory.

It has been shown that the activation of a neural net-

work is the main factor limiting the ability to train on 

small devices. Tiny-transfer-learning (TinyTL) address-

es this issue by freezing the weights of the network and 
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only fine-tuning the biases, which allows intermediate 

activations to be discarded during backward propaga-

tion, reducing peak memory usage [52]. TinyOL trains 

only the weights of the final layer, allowing for weight 

training while keeping the activation small enough 

to fit on small devices [53]. This enables incremental 

on-device streaming of data for training. However, fine-

tuning only the biases or the last layer may not provide 

sufficient precision. To train more layers on devices 

with limited memory, POET (private optimal energy 

training) [54] introduces two techniques: rematerial-

ization, which frees up activations early at the cost of 

recomputation, and paging, which allows activations 

to be transferred to secondary storage. POET uses 

an integer linear program to find the energy-optimal 

schedule for on-device training. To further reduce the 

memory required to store trained weights, MiniLearn 

applies quantization and dequantization techniques to 

store the weights and intermediate output in integer 

precision and dequantizes them to floating-point pre-

cision during training [55]. When deployed on tiny de-

vices, deep learning models are often quantized to re-

duce the memory usage of parameters and activations. 

However, even after quantization, the parameters may 

still be too large to fit in the limited hardware resourc-

es, preventing full back-propagation. To address these 

challenges, MCUNetV3 proposes an algorithm-system 

co-design approach [56]. The algorithm part includes 

quantization-aware scaling (QAS) and the sparse up-

date. QAS calibrates the gradient scales and stabilizes 

8-bit quantized training, while the sparse update skips 

the gradient computation of less important layers and 

sub-tensors. The system part includes the tiny training 

engine (TTE), which has been developed to support 

both QAS and the sparse update, enabling on-device 

learning on microcontrollers with limited memory, 

such as those with 256 KB or even less.

III. Tiny Inference

In this section, we discuss our recent work, MCUNet 

family [8], [9], a system-algorithm co-design framework 

that jointly optimizes the NN architecture (TinyNAS) 

and the inference scheduling (TinyEngine) in the same 

loop (Figure 4). Compared to traditional methods that 

either (a) optimize the neural network using neural ar-

chitecture search based on a given deep learning library 

(e.g., TensorFlow, PyTorch) [85], [86], [87] or (b) tune the 

library to maximize the inference speed for a given net-

work [93], [99], MCUNet can better utilize the resources 

by system-algorithm co-design, enabling a better per-

formance on microcontrollers. The design space of the 

inference part is listed in Figure 3 (left).

A. TinyNAS: Automated Tiny Model Design

TinyNAS is a two-stage neural architecture search meth-

od that first optimizes the search space to fit the tiny 

and diverse resource constraints, and then performs 

neural architecture search within the optimized space. 

By optimizing the search space, it significantly improves 

the accuracy of the final model.

1) Automated Search Space Optimization

TinyNAS proposes to optimize the search space auto-

matically at low cost by analyzing the computation dis-

tribution of the satisfying models. To fit the tiny and di-

verse resource constraints of different microcontrollers, 

TinyNAS scales the input resolution and the width multi-

plier of the mobile search space [86]. It chooses from an 

input resolution spanning R = {48, 64, 80, …, 192, 208, 

224} and a width multiplier W = {0.2, 0.3, 0.4, …, 1.0} to 

cover a wide spectrum of resource constraints. This 

leads to 12 × 9 = 108 possible search space configura-

tions S = W × R. Each search space configuration con-

tains 3.3 × 1025 possible sub-networks. The goal is to find 

the best search space configuration S* that contains the 

Figure 3. Techniques specifically designed for tiny devices. In order to fully leverage the limited available resources, we need to 
take careful consideration of both the system and the algorithm. The co-design approach not only enables practical AI applica-
tions on a wide range of IoT platforms (inference), but also allows AI to continuously learn over time, adapting to a world that is 
changing fast (training).

Authorized licensed use limited to: Duke University. Downloaded on November 06,2024 at 04:55:57 UTC from IEEE Xplore.  Restrictions apply. 



18  IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2023

model with the highest accuracy while satisfying the re-

source constraints.

Finding S* is non-trivial. One way is to perform neural 

architecture search on each of the search spaces and 

compare the final results. But the computation would 

be astronomical. Instead, TinyNAS evaluates the quality 

of the search space by randomly sampling m networks 

from the search space and comparing the distribution of 

satisfying networks. Instead of collecting the cumulative 

distribution function (CDF) of each satisfying network’s 

accuracy [88], which is computationally heavy due to 

tremendous training, it only collects the CDF of FLOPs

(see Figure 5(b)). The intuition is that, within the same 

model family, the accuracy is usually positively related 

to the computation [61], [128]. A model with larger com-

putation has a larger capacity, which is more likely to 

achieve higher accuracy.

Take the study of the best search space for ImageN-

et-100 (a 100-class classification task taken from the 

original ImageNet) on STM32F746 as an example. We 

show the FLOPs distribution CDF of the top-10 search 

space configurations in Figure 5(b). Only the models 

that satisfy the memory requirement at the best sched-

uling from TinyEngine are kept. For example, according 

to the experimental results on ImageNet-100, using the 

solid red space (average FLOPs 52.0 M) achieves 2.3% 

better accuracy compared to using the solid green space 

(average FLOPs 46.9 M), showing the effectiveness of au-

tomated search space optimization.

2) Resource-Constrained Model 

Specialization With Once-For-All NAS

To specialize network architecture for various microcon-

trollers, we need to keep a low neural architecture search 

cost. Given an optimized search space, TinyNAS further 

performs one-shot neural architecture search [130], [131] 

to efficiently find a good model. Specifically, it follows 

once-for-all (OFA) NAS [129] to perform network special-

ization (Figure 6). We train one super network that con-

tains all the possible sub-networks through weight sharing

and use it to estimate the performance of each sub-net-

work. The search space is based on the widely-used 

mobile search space [85], [86], [87], [129] and supports 

variable kernel sizes for depth-wise convolution (3/5/7), 

variable expansion ra-

tios for inverted bottle-

neck (3/4/6) and variable 

stage depths (2/3/4). The 

number of possible sub-

networks that TinyNAS 

can cover in the search 

space is large: 2 × 1019. 

For each batch of data, it 

randomly samples four 

sub-networks, calculates 

the loss, backpropagates 

the gradients for each 

sub-network, and up-

dates the corresponding 

Figure 5. (a) TinyNAS is a two-stage neural architecture search method. It first specifies a sub-space according to the con-
straints, and then performs model specialization. (b) TinyNAS selects the best search space by analyzing the FLOPs CDF of 
different search spaces. Each curve represents a design space. Our insight is that the design space that is more likely to pro-
duce high FLOPs models under the memory constraint gives higher model capacity, thus more likely to achieve high accuracy.

Figure 4. MCUNet jointly designs the neural architecture and the inference scheduling to fit the 
tight memory resource on microcontrollers. TinyEngine makes full use of the limited resources 
on MCU, allowing a larger design space for architecture search. With a larger degree of design 
freedom, TinyNAS is more likely to find a high accuracy model compared to using existing frame-
works. (a) Search NN model on an existing library. (b) Tune deep learning library given a NN 
model. (c) MCUNet: system-algorithm co-design.
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weights. It then performs an evolution search to find the 

best model within the search space that meets the on-

board resource constraints while achieving the highest 

accuracy. For each sampled network, it uses TinyEngine 

to optimize the memory scheduling to measure the opti-

mal memory usage. With such a kind of co-design, we can 

efficiently fit the tiny memory budget.

B. TinyEngine: A Memory-Efficient Inference Library

Researchers used to assume that using different deep 

learning frameworks (libraries) will only affect the infer-

ence speed but not the accuracy. However, this is not the 

case for TinyML: the efficiency of the inference library 

matters a lot to both the latency and accuracy of the 

searched model. Specifically, a good inference framework 

will make full use of the limited resources in MCUs, avoid-

ing waste of memory, and allowing a larger search space 

for architecture search. 

With a larger degree of de-

sign freedom, TinyNAS is 

more likely to find a high-

accuracy model. Thus, Ti-

nyNAS is co-designed with 

a memory-efficient infer-

ence library, TinyEngine.

1) Code Generation

Most existing inference li-

braries (e.g., TF-Lite Micro, 

CMSIS-NN) are interpret-

er-based. Though it is easy 

to support cross-platform 

development, it requires 

extra memory, the most 

expensive resource in 

MCU, to store the meta-in-

formation (such as model 

structure parameters). Instead, TinyEngine only focus-

es on MCU devices and adopts code generator-based 

compilation. This not only avoids the time for runtime 

interpretation, but also frees up the memory usage to al-

low design and inference of larger models. Compared to 

CMSIS-NN, TinyEngine reduced memory usage by 2.1×
and improve inference efficiency by 22% via code genera-

tion, as shown in Figures 7 and 8.

The binary size of TinyEngine is lightweight, making it 

very memory-efficient for MCUs. The model directly com-

piled by well-known programming languages for deep 

learning (e.g., Python, Cython, etc.) cannot be run on 

MCUs as the size of their dependencies and packages are 

already larger than the Flash size of MCUs, let alone the 

size of the compiled model. Besides, unlike interpreter-

based TF-Lite Micro, which prepares the code for every

operation (e.g., conv, softmax) to support cross-model 

Figure 6. Once-for-all [129] trains one single super network that supports a wide range of 
sub-networks through weight sharing, and specializes different sub-network architectures for 
different MCU hardware.

Figure 7. TinyEngine achieves higher inference efficiency than existing inference frameworks while reducing memory usage. 
TinyEngine is up to 22×, 2.3×, and 1.5× faster than TF-Lite Micro, CMSIS-NN, and X-Cube-AI, respectively (left). By reducing 
the memory usage, TinyEngine can run various model designs with tiny memory, enlarging the design space for TinyNAS under 
the limited memory of MCU (right).
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inference even if they are not used, which has high re-

dundancy. TinyEngine only compiles the operations that 

are used by a given model into the binary. That is, the 

reduction of binary size of the model compiled by TinyEn-

gine comes from not only the benefit of compilation over 

interpretation but also the model-specific optimization/

specialization. As shown in Figure 9, such model-adaptive 

compilation reduces code size by up to 4.5× and 5.0× com-

pared to TF-Lite Micro and CMSIS-NN, respectively.

2) In-Place Depth-Wise Convolution

TinyEngine supports in-place depth-wise convolution to 

further reduce peak memory. Different from standard 

convolutions, depth-wise convolutions do not perform 

filtering across channels. Therefore, once the computa-

tion of a channel is completed, the input activation of 

the channel can be overwritten and used to store the 

output activation of another channel, allowing activa-

tion of depth-wise convolutions to be updated in-place 

as shown in Figure 10. This method reduces the mea-

sured memory usage by 1.6× as shown in Figure 8.

3) Patched-Based Inference

TinyNAS and TinyEngine have significantly reduced 

the peak memory at the same level of accuracy. But 

we still notice a very imbalanced peak memory usage 

per block.

Imbalanced Memory Distribution. As an example, 

the per-block peak memory usage of MobileNetV2 [4] is 

shown in Figure 11. The profiling is done in int8. There 

is a clear pattern of imbalanced memory usage distribu-

tion. The first five blocks have large peak memory, ex-

ceeding the memory constraints of MCUs, while the re-

maining 13 blocks easily fit 256 KB memory constraints. 

The third block has 8× larger memory usage than the 

rest of the network, becoming the memory bottleneck. 

There are similar patterns for other efficient network de-

signs, which is quite common across different CNN back-

bones, even for models specialized for memory-limited 

microcontrollers [8].

The phenomenon applies to most single-branch or 

residual CNN designs due to the hierarchical structure1: 

after each stage, the image resolution is down-sampled 

by half, leading to 4× fewer pixels, while the channel 

number increases only by 2× [5], [10], [132] or by an 

even smaller ratio [4], [106], [133], resulting in a decreas-

ing activation size. Therefore, the memory bottleneck 

tends to appear at the early stage of the network, after 

which the peak memory usage is much smaller.

Breaking the Memory Bottleneck With Patch-

Based Inference. TinEngine breaks the memory bot-

tleneck of the initial layers with patch-based inference

(Figure 12). Existing deep learning inference frame-

works (e.g., TensorFlow Lite Micro [90], TinyEngine [8], 

microTVM [93], etc.) use a layer-by-layer execution. For 

each convolutional layer, the inference library first al-

locates the input and output activation buffer in SRAM, 

and releases the input buffer after the whole layer com-

putation is finished. The patch-based inference runs 

the initial memory-intensive stage in a patch-by-patch

1Some CNN designs have highly complicated branching structure (e.g., 
NASNet [83]), but they are generally less efficient for inference [6], [85], 
[86]; thus, not widely used for edge computing.

Figure 8. TinyEngine outperforms existing libraries by eliminating runtime overheads, specializing each optimization tech-
nique, and adopting in-place depth-wise convolution. This effectively enlarges design space for TinyNAS under a given latency/
memory constraint.

Figure 9. Binary size comparison between different frame-
works (TF-Lite Micro[47], CMSIS-NN[41], and TinyEngine[8]) 
and models (SmallCifar[8] and MbV2[4]) during deployment. 
We scale the width multiplier and input resolution of MbV2 to 
0.35 and 64 so that most libraries can fit the neural network.
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manner. For each time, it only runs the model on a 

small spatial region (>10× smaller than the whole area), 

which effectively cuts down the peak memory usage. 

After this stage is finished, the rest of the network with 

a small peak memory is executed in a normal layer-by-

layer manner (upper notations in Figure 11).

An example of two convolutional layers (with 

stride 1 and 2) is shown in Figure 12. For conventional 

Figure 10. TinyEngine reduces peak memory by performing in-place depth-wise convolution. Conventional depth-wise convo-
lution requires 2N memory footprint for activations (left). In-place depth-wise convolution reduces the memory of depth-wise 
convolutions to N+1 (right). Specifically, the output activation of the first channel is stored in a temporary buffer. Then, for each 
following channel, the output activation overwrites the input activation of its previous channel. Finally, the output activation of 
the first channel stored in the buffer is written back to the input activation of the last channel. (a) Depth-wise convolution. (b) 
In-place depth-wise convolution.

Figure 11. MobileNetV2 [4] has a very imbalanced memory usage distribution. The peak memory is determined by the first 
five blocks with high peak memory, while the later blocks all share a small memory usage. By using per-patch inference (4 × 4 
patches), we are able to significantly reduce the memory usage of the first five blocks, and reduce the overall peak memory by 
8×, fitting MCUs with a 256kB memory budget. Notice that the model architecture and accuracy are not changed for the two 
settings. The memory usage is measured in int8.

Figure 12. Per-patch inference can significantly reduce the peak memory required to execute a sequence of convolutional 
layers. We study two convolutional layers (stride 1 and 2). (a) Under per-layer computation, the first convolution has a large 
input/output activation size, dominating the peak memory requirement. (b) With per-patch computation, we allocate the buffer 
to host the final output activation, and compute the results patch-by-patch. We only need to store the activation from one patch
but not the entire feature map, reducing the peak memory (the first input is the image, which can be partially decoded from a 
compressed format like JPEG).

Authorized licensed use limited to: Duke University. Downloaded on November 06,2024 at 04:55:57 UTC from IEEE Xplore.  Restrictions apply. 



22  IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2023

per-layer computation, the first convolutional layer 

has large input and output activation size, leading to a 

high peak memory. With spatial partial computation, it 

allocates the buffer for the final output and computes 

its values patch-by-patch. In this manner, it only needs 

to store the activation from one patch instead of the 

whole feature map.

Reducing Computation Overhead by Redistribut-

ing the Receptive Field. The significant memory saving 

comes at the cost of computation overhead. To maintain 

the same output results as per-layer inference, the non-

overlapping output patches correspond to overlapping 

patches in the input image (the shadow area in Figure 

12(b)). This is because convolutional filters with kernel 

size >1 contribute to increasing receptive fields. The 

computation overhead is related to the receptive field of 

the patch-based initial stage. Consider the output of the 

patch-based stage, the larger receptive field it has on the 

input image, the larger resolution for each patch, leading 

to a larger overlapping area and repeated computation. 

There are some focusing on addressing the issue from 

the hardware perspective [103]. However, since such 

practices may not be general to all devices, TinyEngine 

solves the problem from the network architecture side.

MCUNet proposes to redistribute the receptive field 

(RF) of the CNN to reduce computation overhead. The 

basic idea is: (1) reduce the receptive field of the patch-

based initial stage and (2) increase the receptive field of 

the later stage. Reducing RF for the initial stage helps 

to reduce the size of each input patch and repeated 

computation. However, some tasks may have degrad-

ed performance if the overall RF is smaller (e.g., de-

tecting large objects). Therefore, it further increases 

the RF of the later stage to compensate for the per-

formance loss. A manually tuned example of Mobile-

NetV2 is shown in Figure 13. After redistributing the 

receptive field (“MbV2-RD”), the computation over-

head is negligible.

MCUNet automates the process with joint search (in-

troduced in the next section).

C. Co-Design: Joint Neural Architecture and 

Inference Scheduling Search

1) Co-Design Loop

The optimization algorithms for model architectures and 

inference engines are tightly coupled. For example, redis-

tributing the receptive field allows us to enjoy the benefit 

of memory reduction at minimal computation/latency 

overhead, which allows larger freedom when designing 

the backbone architecture (e.g., we can now use a larger 

input resolution). To explore such a large design space, 

MCUNet jointly optimizes the neural architecture and the 

inference scheduling in an automated manner. Given a cer-

tain dataset and hardware constraints (SRAM limit, flash 

limit, latency limit, etc.), our goal is to achieve the high-

est accuracy while satisfying all the constraints. For the 

model optimization, it uses NAS to find a good candidate 

network architecture; for the scheduling optimization, it 

optimizes the knobs like the patches number p and the 

number of blocks n to perform patch-based inference, 

and other knobs in TinyEngine [8].

There are some trade-offs during the co-design. For 

example, given the same constraints, it can choose to 

use a smaller model that fits per-layer execution (p=1, 

no computation overhead), or a larger model and per-

patch inference (p > 1, with a small computation over-

head). Therefore, MCUNet puts both sides in the same 

loop and uses evolutionary search to find the best set of 

(k[], e[], d[], w[], r, p, n) satisfying constraints. Therefore, 

the two dimensions are jointly searched in the same 

loop with evolutionary search.

Figure 13. The redistributed MobileNetV2 (MbV2-RD) has reduced receptive field for the per-patch inference stage and 
increased receptive field for the per-layer stage. The two networks have the same level of performance, but MbV2-RD has a 
smaller overhead under patch-based inference. The mobile inverted block is denoted as MB {expansion ratio} {kernel 
size}. The dashed border means stride = 2.
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2) Experimental Results

Pushing the ImageNet Record on MCUs

With joint optimization of neural architecture and 

inference scheduling, MCUNet significantly pushes 

the state-of-the-art results for MCU-based tiny image 

classification.

We compared MCUNet with existing state-of-the-art 

solutions on ImageNet classification under two hard-

ware settings: 256 kB SRAM/1 MB Flash and 512 kB 

SRAM/2 MB Flash. The former represents a widely used 

Cortex-M4 microcontroller; the latter corresponds to a 

higher-end Cortex-M7. The goal is to achieve the high-

est ImageNet accuracy on resource-constrained MCUs 

(Table 4). MCUNet significantly improves the ImageNet 

accuracy of tiny deep learning on microcontrollers. 

Under 256 kB SRAM/1 MB Flash, MCUNet outperforms 

the state-of-the-art method [8] by 4.6% at 18% lower 

peak SRAM. Under 512 kB SRAM/2 MB Flash, MCUNet 

achieves a new record ImageNet accuracy of 71.8% on 

commercial microcontrollers, which is 3.3% compared 

to the best solution under the same quantization pol-

icy. Lower-bit (int4) or mixed-precision quantization 

can further improve the accuracy (marked in gray in 

the table). 

Visual Wake Words under 32k KB SRAM

Visual wake word (VWW) reflects the low-energy ap-

plication of TinyML. MCUNet allows running a VWW 

model with a modest memory requirement. As in Figure 

14,2 MCUNet outperforms state-of-the-art method [8] for 

both accuracy versus peak memory and accuracy ver-

sus latency trade-off. Compared to per-layer inference, 

MCUNet can achieve better accuracy using 4.0× smaller 

memory. Actually, it can achieve >90% accuracy under 

32 kB SRAM requirement, allowing model deployment 

on low-end MCUs like STM32F410 costing only $1.6. Per-

patch inference also expands the search space, giving 

us more freedom to find models with better accuracy 

versus latency trade-off.

MCU-Based Detection on Pascal VOC

Object detection is sensitive to a smaller input reso-

lution [9]. Current state-of-the-art [8] cannot achieve 

a decent detection performance on MCUs due to the 

resolution bottleneck. MCUNet breaks the memory 

bottleneck for detectors and improves the mAP by 

double digits.

2Note that MCUNetV2 refers to the version w/ patch-based inference, 
while MCUNet refers to per-layer inference.

Table 4. 

MCUNet significantly improves the ImageNet accuracy on microcontrollers, outperforming the state-of-the-arts 

by 4.6% under 256 kB SRAM and 3.3% under 512kB. Lower or mixed precisions (marked gray) are orthogonal 

techniques, which we leave for future work out-of-memory (OOM) results are struck out.

Model/Library Quant. MACs SRAM Flash Top-1 Top-5

STM32F412 (256 kB SRAM, 1 MB Flash)

MbV2 0.35× (r=144) [4] / 
TinyEngine [8] int8 24M 308kB 862kB 49.0% 73.8%

Proxyless 0.3× (r=176) [85] / 
TinyEngine [8] int8 38M 292kB 892kB 56.2% 79.7%

MbV1 0.5× (r=192) [5] /  
Rusci et al. [45] mixed 110M <256kB <1MB 60.2%

MCUNet (TinyNAS / 
TinyEngine) [8] int8 68M 238kB 1007kB 60.3% -

MCUNet (TinyNAS / 
TinyEngine) [8] int4 134M 233kB 1008kB 62.0% -

MCUNet-M4 (w/ patch) int8 119M 196kB 1010kB 64.9% 86.2%

STM32H743 (512 kB SRAM, 2 MB Flash)

MbV1 0.75× (r=224) [5]/ 
Rusci et al. [45] mixed 317M <512kB <2MB 68.0%

MCUNet (TinyNAS / 
TinyEngine) [8] int8 126M 452kB 2014kB 68.5% -

MCUNet (TinyNAS / 
TinyEngine) [8] int4 474 M 498kB 2000kB 70.7% -

MCUNet-H7 (w/ patch) int8 256M 465kB 2032kB 71.8% 90.7%
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The object detection results on Pascal VOC trained 

with YOLOv3 [135] are shown in Table 5 including results 

for M4 MCU with 256 kB SRAM and H7 MCU with 512 kB 

SRAM. On H7 MCU, MCUNet-H7 improves the mAP by 

16.7% compared to the state-of-the-art method MCUNet 

[8]. It can also scale down to fit a cheaper commodity 

Cortex-M4 MCU with only 256 kB SRAM, while still im-

proving the mAP by 13.2% at 1.9× smaller peak SRAM. 

Note that MCUNet-M4 shares a similar computation with 

MCUNet (172 M versus 168 M) but a much better mAP. 

This is because the expanded search space from patch-

based inference allows us to choose a better configura-

tion of larger input resolution and smaller models.

Memory-Efficient Face Detection

The performance of MCUNet for memory-efficient face 

detection on WIDER FACE [136] dataset are shown in 

Table 6. The analytic memory usage of the detector 

backbone in fp32 is reported following [105]. The mod-

els are trained with S3FD face detector [140] following 

[105] for a fair comparison. The reported mAP is calcu-

lated on samples with ≤3 faces, which is a more realistic 

setting for tiny devices. MCUNet outperforms existing 

solutions under different scales. MCUNet-L achieves 

comparable performance at 3.4× smaller peak memory 

compared to RNNPool-Face-C [8] and 9.9× smaller peak 

memory compared to LFFD [138]. The computation is 

also 1.6× and 8.4× smaller. MCUNet-S consistently out-

performs RNNPool-Face-A [105] and EagleEye [139] at 

1.8× smaller peak memory.

IV. Tiny Training

In addition to inference, tiny on-device training is a 

growing direction that allows us to adapt the pre-trained 

model to newly collected sensory data after deployment. 

By training and adapting locally on the edge, the model 

can learn to continuously improve its predictions and 

perform lifelong learning and user customization. By 

bringing training closer to the sensors, it also helps to 

protect user privacy when handling sensitive data (e.g., 

healthcare).

However, on-device training on tiny edge devices 

is extremely challenging and fundamentally different 

Figure 14. MCUNet has better visual wake word (VWW) accuracy versus peak SRAM trade-off (left). Compared to MCUNet [8], 
MCUNet achieves better accuracy at 4.0× smaller peak memory. It achieves >90% accuracy under <32kB memory, facilitating 
deployment on extremely small hardware. patch-based method expands the search space that can fit the MCU, allowing better 
accuracy versus latency trade-off (right). (a) Trade-off: accuracy versus peak SRAM. (b) Trade-off: accuracy versus measured 
latency.

Table 5. 

MCUNet significantly improves Pascal VOC [134] object detection on MCU by allowing a higher input resolution. 

Under STM32H743 MCU constraints, MCUNet-H7 improves the mAP by 16.9% compared to [8], achieving a record 

performance on MCU. It can also scale down to cheaper MCU STM32F412 with only 256kB SRAM while still improving 

mAP by 13.2% at 1.9× smaller peak SRAM and a similar computation.

MCU Model Constraint Model #Param MACs peak SRAM
VOC 

mAP
Gain

H743 (∼$7)

SRAM MbV2+CMSIS [8] 0.87M 34M 519kB 31.6% -

<512kB MCUNet [8] 1.20M 168M 466kB 51.4% 0%

MCUNet-H7 0.67M 343M 438kB 68.3% +16.9%

F412 (∼$4) <256kB MCUNet-M4 0.47M 172M 247kB 64.6% +13.2%
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from cloud training. Tiny IoT devices (e.g., microcon-

trollers) typically have a limited SRAM size like 256 

KB. Such a small memory budget is hardly enough 

for the inference of deep learning models [8], [9], [44], 

[45], [48], [141], [142], [143], let alone the training, 

which requires extra computation for the backward 

and extra memory for intermediate activation [109]. 

On the other hand, modern deep training frameworks 

(e.g., PyTorch [89] and TensorFlow [144]) are usually 

designed for cloud servers and require a large mem-

ory footprint (> 300 MB) even when training a small 

model (e.g., MobileNetV2-w0.35 [4]) with batch size 

1. The huge gap (> 1000×) makes it impossible to run 

on tiny IoT devices. Furthermore, devices like micro-

controllers are bare-metal and do not have an op-

erational system and the runtime support needed by 

existing training frameworks. Therefore, we need to 

jointly design the algorithm and the system to enable 

tiny on-device training.

Deep learning training systems such as PyTorch [89], 

TensorFlow [144], JAX [92], MXNet [91], etc., do not con-

sider the tight resources on edge devices. Edge deep 

learning inference frameworks like TVM [93], TF-Lite 

[94], NCNN [97], etc., provide a slim runtime, but lack 

the support for back-propagation. There are low-cost ef-

ficient transfer learning algorithms like training only the 

final classifier layer, bias-only update [52], etc. However, 

the existing training systems can not realize the theo-

retical saving into measured savings. The downstream 

accuracy of such update schemes is also low (Figure 18). 

There is a need for training systems that can effectively 

utilize the limited resources on edge devices.

In order to bridge the gap and enable tiny on-device 

training with algorithm-system co-design, there are two 

unique challenges in tiny on-device training: (1) the mod-

el is quantized on edge devices. A real quantized graph 

is difficult to optimize due to mixed-precision tensors 

and the lack of batch normalization layers [145]; (2) the 

limited hardware resource (memory and computation) 

of tiny hardware does not allow full back-propagation, 

as the memory usage can easily exceed the SRAM of 

microcontrollers by more than an order of magnitude. 

To cope with the difficulties, TinyTraining proposes the 

following designs.

A. Quantization Aware Scaling

Neural networks usually need to be quantized to fit the 

limited memory of edge devices [8], [146]. For a fp32 

linear layer yfp32 = Wfp32xfp32 + bfp32, the int 8 quantized 

counterpart is:

 −yint8 = cast2int8[sfp32 ⋅ (
−
Wint8

−xint8 + 
−
bint32)], (1)

where −⋅ denotes the tensor being quantized to fixed-

point numbers, and s is a floating-point scaling factor 

to project the results back into int 8 range. The gradi-

ent update for the weights can be presented as: 
−
W'int8  = 

cast2int8(
−
Wint8 − α · G −

W ), where α is the learning rate, 

and GW  is the gradient of the weights. After applying 

the gradient update, the weights are rounded back to 

8-bit integers.

1) Gradient Scale Mismatch: Unlike fine-tuning floating-

point model on the cloud, training with a real quantized 

graph3 is difficult: the quantized graph has tensors of 

different bit-precisions (int8, int32, fp32, shown in 

Equation (1) and lacks batch normalization [145] layers 

(fused), leading to unstable gradient update.

Optimizing a quantized graph often leads to lower 

accuracy compared to the floating-point counterpart. 

A possible hypothesis is that the quantization process 

3Note that this is contrary to the fake quantization graph, which is wide-
ly used in quantization-aware training [146].

Table 6. 

MCUNet outperforms existing methods for memory-efficient face detection on WIDER FACE [136] dataset. Compared 

to RNNPool-Face-C [105], MCUNet-L can achieve similar mAP at 3.4× smaller peak SRAM and 1.6× smaller 

computation. The model statistics are profiled on 640 × 480 RGB input images following [105].

Method MACs ↓ Peak Memory 

(fp32) ↓
mAP ↑ mAP (≤3 faces) ↑

Easy Medium Hard Easy Medium Hard

EXTD [137] 8.49G 18.8MB (9.9×) 0.90 0.88 0.82 0.93 0.93 0.91

LFFD [138] 9.25G 18.8MB (9.9×) 0.91 0.88 0.77 0.83 0.83 0.82

RNNPool-Face-C [105] 1.80G 6.44MB (3.4×) 0.92 0.89 0.70 0.95 0.94 0.92

MCUNet-L 1.10G 1.89 MB (1.0×) 0.92 0.90 0.70 0.94 0.93 0.92

EagleEye [139] 0.08G 1.17MB (1.8×) 0.74 0.70 0.44 0.79 0.78 0.75

RNNPool-Face-A [105] 0.10G 1.17MB (1.8×) 0.77 0.75 0.53 0.81 0.79 0.77

MCUNet-S 0.11G 672kB (1.0×) 0.85 0.81 0.55 0.90 0.89 0.87
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distorts the gradient update. To verify the idea, Figure 

16 plot the ratio between weight norm and gradient 

norm (i.e., � � � �W G/ )  for each tensor at the begin-

ning of the training on the CIFAR dataset [147]. The ratio 

curve is very different after quantization: (1) the ratio is 

much larger (could be addressed by adjusting the learn-

ing rate) and (2) the ratio has a different pattern after 

quantization. Take the highlighted area (red box) as an 

example, the quantized ratios have a zigzag pattern, dif-

fering from the floating-point curve. If all the tensors 

are updated with a fixed learning rate, then the update 

speed of each tensor would be very different compared 

to the floating-point case, leading to inferior accuracy. 

Even adaptive-learning rate optimizers like Adam [148] 

cannot fully address the issue, as shown in Table 7.

2) Hyperparameter-Free Gradient Scaling. To address 

the problem, a hyper-parameter-free learning rate scal-

ing rule, QAS, is proposed. Consider a 2D weight matrix 

of a linear layer W∈
×c c1 2 ,  where c1,c2 are the input and 

output channel. To perform per-tensor quantization4 a 

scaling rate sW ∈  is computed, such that W ′s largest 

magnitude is 27 − 1 = 127:

W W W G GW W W W W W= ⋅ ( ) ≈ ⋅ ≈ ⋅s s s s/ ,
quantize

(2)

The process (roughly) preserves the mathematical 

functionality during the forward (Equation 1)], but it 

distorts the magnitude ratio between the weight and its 

corresponding gradient:

� � � � � � � � � � � �W G W G W GW W W W W/ / / / .≈ ⋅ = ⋅
−s s s 2 (3)

The weight and gradient ratios are off by sW
−2, leading 

to the distorted pattern in Figure 16: (1) the scaling fac-

tor is far smaller than 1, making the weight-gradient ratio 

much larger and (2) weights and biases have different 

4For simplicity. In practice, per-channel quantization [146] is used and 
the scaling factor is a vector of size C2.

Figure 15. Algorithm and system co-design reduces the training memory from 303 MB (PyTorch) to 149KB with the same trans-
fer learning accuracy, leading to 2077× reduction. The numbers are measured with MobilenetV2-w0.35 [4], batch size 1 and 
resolution 128×128. It can be deployed to a microcontroller with 256 KB SRAM.

Figure 16. The quantized model has a very different weight/gradient norm ratio (i.e., � � � �W G/ )  compared to the floating-point 
model at training time (left). QAS stabilizes the � � � �W G/  ratio and helps optimization. The validation loss curves w/ and w/o 
QAS. QAS effectively helps convergence, leading to better accuracy (right). The results are from updating the last two blocks of 
the MCUNet model on the Cars dataset. (a) Weight/gradient norm ratio. (b) Training convergence.
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data type (int8 versus int 32) and thus have scaling 

factors of very different magnitude, leading to the zigzag 

pattern. To solve the issue, quantization-aware scaling 

(QAS) is proposed by compensating the gradient of the 

quantized graph according to Equation (3):

 � �G G G G GW W W b b W x b= ⋅ = ⋅ ⋅ = ⋅
− − − −s s s s2 2 2 2,  (4)

where sX
−2 is the scaling factor for quantizing in-

put x (a scalar following [146], note that s  =  sW  ⋅  sX in 

Equation  (1). � � � �W G/  curve with QAS is plotted in 

Figure 16 (int8+scale). After scaling, the gradient ratios 

match the floating-point counterpart. It also improves 

transfer learning accuracy (Table 7), matching the accu-

racy of the floating-point counterpart without incurring 

memory overhead.

3) Experiment Results. The last two blocks in Table 7 

show the fine-tuning results (simulating low-cost fine-

tuning) of MCUNet on various downstream datasets. 

With momentum SGD, the training accuracy of the quan-

tized model (int 8) falls behind the floating-point coun-

terpart due to the difficulty in optimization. Adaptive 

learning rate optimizers like Adam [148] can improve the 

accuracy, but it is still lower than the fp32 fine-tuning 

results. It also consumes three times more memory due 

to second-order momentum, which is not desired in Ti-

nyML settings. LARS [149] does not converge well on 

most datasets despite extensive hyperparameter tuning 

(of both the learning rate and the “trust coefficient”). The 

aggressive gradient scaling rule of LARS makes the train-

ing unstable. The accuracy gap is closed when applying 

QAS, achieving the same accuracy as floating-point train-

ing with no extra memory cost. Figure 16 shows the train-

ing curve of TinyTraining on the Cars dataset with and 

without QAS. QAS effectively improves optimization.

B. Memory-Efficient Sparse Update

Though QAS makes optimizing a quantized model pos-

sible, updating the whole model (or even the last sev-

eral blocks) requires a large amount of memory, which 

is not affordable for the TinyML setting. To address 

this, sparsely updating the layers and the tensors is 

proposed.

1) Sparse Layer/Tensor Update. Pruning techniques 

prove to be quite successful for achieving sparsity and 

reducing model size [58], [59], [60], [61], [62], [63]. Instead 

of pruning weights for inference, the gradient during 

backpropagation, and updating the model sparsely are 

pruned. Given a tight memory budget, updates of the less 

important parameters are skipped to reduce memory us-

age and computation cost. When updating a linear layer 

y = Wx + b (similar analysis applies to convolutions), the 

gradient update is GW = f1(Gy,x) and Gb=f2(Gy), given the 

output gradient Gy from the later layer Notice that updat-

ing the biases does not require saving the intermediate 

activation x, leading to a lighter memory footprint [52],5 

while updating the weights is more memory-intensive 

but also more expressive. For hardware like microcon-

trollers, an extra copy is needed for the updated pa-

rameters since the original ones are stored in read-only 

FLASH [8]. Given the different natures of updating rules, 

three aspects of the sparse update rule are considered 

(Figure 17): (1) Bias update: how many layers should be 

backpropagated to and update the biases (bias update 

is cheap, the bias terms can be always updated if the 

layer is backpropagated). (2) Sparse layer update: select 

a subset of layers to update the corresponding weights. 

(3) Sparse tensor update: further allow updating a subset 

of weight channels to reduce the cost.

5If many layers are updated, the intermediate activation could consume 
a large memory [109].

Table 7. 

Updating real quantized graphs (int8) with SGD is difficult: the transfer learning accuracy falls behind the floating-

point counterpart (fp32), even with adaptive learning rate optimizers like Adam [148] and LARS [149]. QAS helps to 

bridge the accuracy gap without memory overhead (slightly higher). The numbers are for updating the last two blocks 

of MCUNet-5FPS [8] model.

Precision Optimizer
Accuracy (%) MCUNet backbone: 23 M MACs, 0.48 M Param) Avg

Cars CF10 CF100 CUB Flowers Food Pets VWW Acc.

fp32 SGD-M 56.7 86.0 63.4 56.2 88.8 67.1 79.5 88.7 73.3

int8

SGD-M 31.2 75.4 54.5 55.1 84.5 52.5 81.0 85.4 64.9

Adam [148] 54.0 84.5 61.0 58.5 87.2 62.6 80.1 86.5 71.8

LARS [149] 5.1 64.8 39.5 9.6 28.8 46.5 39.1 85.0 39.8

SGD-
M+QAS 55.2 86.9 64.6 57.8 89.1 64.4 80.9 89.3 73.5
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However, finding the right sparse update scheme 

under a memory budget is challenging due to the large 

combinational space. For MCUNet [8] model with 43 

convolutional layers and weight update ratios from 

{0,1/8,1/4,1/2,1}, the combination is about 1030, making 

exhaustive search impossible.

2) Automated Selection With Contribution Analysis. 

Contribution analysis is proposed to automatically de-

rive the sparse update scheme by counting the contribu-

tion of each parameter (weight/bias) to the downstream 

accuracy. Given a convolutional neural network with l

layers, the accuracy improvement is measured from (1) 

biases: the improvement of updating last k biases bl, bl−1, 

…, bl−k+1 (bias-only update) compared to only updating 

the classifier, defined as Δaccb[:k] and (2) weights: the im-

provement of updating the weight of one extra layer Wi

(with a channel update ratio r) compared to bias-only 

update, defined as ΔaccWi,r. An example of the contri-

bution analysis can be found in Figure 18 left (MCUNet 

on Cars [150] dataset. After finding Δaccb[:k] and ΔaccWi

(1≤k,i≤l), an optimization problem is solved to find:

k
k
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where i is a collection of layer indices whose weights are 

updated, and r is the corresponding update ratios (1/8, 

1/4, 1/2, 1). Intuitively, by solving this optimization prob-

lem, the combination of (#layers for bias update is found, 

the subset of weights to update), such that the total 

contribution is maximized while the memory overhead 

does not exceed the constraint. The problem can be 

efficiently solved with the evolutionary search. Sparse 

update assumes that the accuracy contribution of each 

tensor (Δacc) can be summed up. Such an approxima-

tion proves to be quite effective in our experiments.

3) Sparse Update Obtains Better Accuracy at Lower 

Memory. The performance of our searched sparse up-

date schemes is compared to two baseline methods: 

fine-tuning only the biases of the last k layers and fine-

tuning the weights and biases of the last k layers. For 

each configuration, the average accuracy is measured 

on eight downstream datasets, and the extra memory 

usage is calculated analytically. Figure 18 compares 

the results with a simple baseline of fine-tuning only 

the classifier. The accuracy of classifier-only update is 

low due to the limited learning capacity. Updating only 

the classifier is not enough; the backbone also needs 

updates. Bias-only update outperforms classifier-only 

update, but the accuracy quickly plateaus and does not 

Figure 17. Different learning schemes on ProxylessNAS-Mobile [85]. Full update (a) consumes a lot of memory thus cannot fit 
TinyML. Efficient learning methods like (b) last-only/(c) bias-only save the memory but cannot match the baseline performance. 
Sparse update (d) only performs partial back-propagation, leading to less memory usage and computation with comparable 
accuracy on downstream tasks.
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improve even when more biases are tuned. For updat-

ing the last k layers, the accuracy generally improves 

as more layers are tuned; however, it has a very large 

memory footprint. For example, updating the last two 

blocks of MCUNet leads to an extra memory usage ex-

ceeding 256 KB, making it infeasible for IoT devices/mi-

crocontrollers. Our sparse update scheme can achieve 

higher downstream accuracy at a much lower memory 

cost. Compared to updating the last k layers, the sparse 

update can achieve higher downstream accuracy with 

4.5–7.5 times smaller memory overhead The highest ac-

curacy is achievable by updating the last k layers6 as 

the baseline upper bound (denoted as “upper bound”). 

Interestingly, our sparse update achieves a better down-

stream accuracy compared to the baseline best statis-

tics. The sparse update scheme alleviates over-fitting or 

makes momentum-free optimization easier.

6Note that fine-tuning the entire model does not always lead to the best 
accuracy. The best k on Cars dataset is obtained via grid search: k = 36 
for MobileNetV2, 39 for ProxylessNAS, 12 for MCUNet, and apply it to 
all datasets.

C. Tiny Training Engine (TTE)

The theoretical saving from real quantized training and 

sparse update does not translate to measured memory 

saving in existing deep learning frameworks, due to 

the redundant runtime and the lack of graph pruning. 

MCUNetV3 co-designed an efficient training system, 

tiny training engine (TTE), to transform the above algo-

rithms into slim binary codes (Figure 19).

1) Compile-Time Differentiation and Code Generation. 

TTE offloads the auto-differentiation from the runtime to 

the compile-time, generating a static backward graph that 

can be pruned and optimized (see below) to reduce the 

memory and computation. TTE is based on code genera-

tion: it compiles the optimized graphs to executable bina-

ries on the target hardware, which minimizes the runtime 

library size and removes the need for host languages like 

Python (typically uses Megabytes of memory).

2) Backward Graph Pruning for Sparse Update. TTE 

prune the redundant nodes in the backward graph 

Figure 18. Contribution analysis of updating biases and weights. For updating the weight of a specific layer, the later layers 
appear to be more important; the first point-wise conv (pw1) in an inverted bottleneck block [4] appears to be more important; 
and the gains are bigger with more channels updated (left). Sparse update can achieve higher transfer learning accuracy using 
4.5−7.5× smaller extra memory (analytic) compared to updating the last k layers (right). For classifier-only update, the accuracy 
is low due to limited capacity. Bias-only update can achieve a higher accuracy but plateaus soon. (a) Contribution of a certain 
weight laccWi,r (b) MbV2-w0.35 accuracy comparison.

Figure 19. The workflow of our tiny training engine (TTE). (a) and (b) Our engine traces the forward graph for a given model 
and derives the corresponding backward graph at compile time. The red cycles denote the gradient descent operators. (c) To 
reduce memory requirements, nodes related with frozen weights (colored in light blue) are pruned from backward computation. 
(d) To minimize memory footprint, the gradient descent operators are re-ordered to be interlaced with backward computations 
(colored in yellow). (e) TTE compiles forward and backward graphs using code generation and deploys training on tiny IoT 
devices (best viewed in colors).
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before compiling it to binary codes. For sparse layer up-

date, TTE prune away the gradient nodes of the frozen 

weights, only keeping the nodes for bias update. After-

ward, TTE traverses the graph to find unused interme-

diate nodes due to pruning (e.g., saved input activation) 

and apply dead-code elimination (DCE) to remove the 

redundancy. For sparse tensor update, TTE introduces a 

sub-operator slicing mechanism to split a layer’s weights 

into trainable and frozen parts; the backward graph of 

the frozen subset is removed. TTE’s compilation trans-

lates the sparse update algorithm into the measured 

memory saving, reducing the training memory by 7−9× 
without losing accuracy (Figure 21(a)).

3) Operator Reordering and Graph Optimization. The 

execution order of different operations affects the life 

cycle of tensors and the overall memory footprint. This 

has been well-studied for inference [44], [101] but not for 

training due to the extra complexity. Traditional train-

ing frameworks usually derive the gradients of all the 

trainable parameters before applying the update. Such 

a practice leads to significant memory waste for stor-

ing the gradients. By reordering operators, the gradient 

update to a specific tensor can immediately be applied 

(in-place update) before back-propagating to earlier lay-

ers, so that the gradient can be released. As such, TTE 

trace the dependency of all tensors (weights, gradients, 

activation) and reorder the operators, so that some op-

erators can be fused to reduce memory footprint (by 

2.4–3.2 ×, Figure 21(a)). Figure 20 provides an example to 

reflect the memory saving from reordering.

4) Memory Saving and Faster Training. Figure 21(a) 

shows the training memory of three models on STM32F746 

MCU to compare the memory saving from TTE. The 

sparse update effectively reduces peak memory by 7−9×

Figure 20. Memory footprint reduction by operator reordering. With operator reordering, TTE can apply in-place gradient update 
and perform operator fusion to avoid large intermediate tensors to reduce memory footprint. We profiled MobileNetV2-w0.35 in 
this figure (same as Figure 15). (a) Vanilla backward graph. (b) Optimized backward graph.

Figure 21. Measured peak memory and latency: (a) sparse update with TTE graph optimization can reduce the measured peak 
memory by 20–21 ×  for different models, making training feasible on tiny edge devices. (b) Graph optimization consistently 
reduces the peak memory for different sparse update schemes (denoted by different average transfer learning accuracies). 
(c) Sparse update with TTE operators achieves 23–25× faster training speed compared to the full update with TF-Lite Micro 
operators, leading to less energy usage. Note: for sparse update, we choose the config that achieves the same accuracy as 
full update.

Authorized licensed use limited to: Duke University. Downloaded on November 06,2024 at 04:55:57 UTC from IEEE Xplore.  Restrictions apply. 



THIRD QUARTER 2023   IEEE CIRCUITS AND SYSTEMS MAGAZINE 31

compared to the full update thanks to the graph pruning 

mechanism, while achieving the same or higher transfer 

learning accuracy (compare the data points connected 

by arrows in Figure 18). The memory is further reduced 

with operator reordering, leading to 20–21× total memo-

ry saving. With both techniques, the training of all three 

models fits 256 KB SRAM.

The training latency per image on the STM32F746 MCU 

is measured in Figure 21(c). By graph optimization and ex-

ploiting multiple compiler optimization approaches (such 

as loop unrolling and tiling), our sparse update + TTE ker-

nels can significantly enhance the training speed by 23−25× 

compared to the full update + TF-Lite Micro kernels, lead-

ing to energy saving and making training practical.

V. Conclusion and Outlook

In conclusion, TinyML is a rapidly evolving field that en-

ables deep learning on resource-constrained devices. 

It fosters a wide range of customized and private AI ap-

plications on edge devices, which can process the data 

collected from the sensors right at the source. We point 

out several unique challenges of TinyML. First, we need 

to redesign the model design space since deep models 

designed for mobile and other platforms do not work well 

for TinyML. Second, we need to redesign backpropaga-

tion schemes and investigate new learning algorithms 

since directly adapting models for inference does not 

work for tiny training. Third, co-design is necessary for 

TinyML. We summarize the related works aiming to over-

come the challenges from the algorithm and the system 

perspectives. Furthermore, we introduce the TinyML 

techniques that not only enable practical AI applications 

on a wide range of IoT platforms for inference, but also al-

low AI to be continuously trained over time, adapting to a 

world that is changing fast. Looking to the future, TinyML 

will continue to be an active and rapidly growing area, 

which requires continued efforts to improve the perfor-

mance and energy efficiency. We discuss several possible 

directions for the future development of TinyML.

A. More Applications and Modalities

This review mainly focuses on convolutional neural net-

works (CNNs) as computer vision is widely adapted to tiny 

devices. However, TinyML has a broad range of applications 

beyond computer vision, including but not limited to audio 

processing, language processing, anomaly detection, etc., 

with sensor inputs from temperature/humidity sensors, 

accelerometers, current/voltage sensors, among others. 

TinyML enables local devices to process multiple-sensor 

inputs to handle multi-task workloads, opening up future 

avenues for numerous potential applications. We will leave 

further exploration of these possibilities for future work.

B. Self-Supervised Learning

Obtaining accurately labeled data for on-device learn-

ing on the edge can be challenging. In some cases, like 

keyboard typing, we can use the next input word as the 

prediction target for the model. However, this is not 

always practical for most applications, such as domain 

adaptation for vision tasks (e.g., segmentation, detec-

tion), obtaining supervision can be expensive and diffi-

cult. One potential solution is to design self-supervised 

learning tasks for on-device training, as has been pro-

posed in recent research [151]. 

C. Relationship Between TinyML and LargeML

TinyML and LargeML both aim to develop efficient mod-

els under resource constraints such as memory, com-

putation, engineering effort, and data. While TinyML is 

primarily focusing on making models run efficiently on 

small devices, many of its techniques can also be applied 

in cloud environments for large-scale machine learning 

scenarios. For example, quantization techniques have 

been effective in both TinyML [8], [9] and LargeML set-

tings [152], [153], and the concept of sparse learning has 

been used in both scenarios to run models efficiently 

with limited resources [56], [154]. These efficient tech-

niques are generally applicable and should not be limited 

to TinyML settings.

The concept of TinyML is constantly evolving and 

expanding. When ResNet-50 [10] was first introduced 

in 2016, it was considered as a large model with 25 M 

parameters and 4G MACs. However, six years later, with 

the rapid advances in hardware, it can now achieve sub-

millisecond inference on a smartphone DSP (Qualcomm 

Snapdragon 8Gen1). As hardware continues to improve, 

what was once considered a “large” model may be con-

sidered “tiny” in the future. The scope of TinyML should 

evolve and adapt over time.
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