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ABSTRACT

Deploying Large Language Models (LLMs) in streaming applications such as
multi-round dialogue, where long interactions are expected, is urgently needed but
poses two major challenges. Firstly, during the decoding stage, caching previous
tokens’ Key and Value states (KV) consumes extensive memory. Secondly, popular
LLMs cannot generalize to longer texts than the training sequence length. Window
attention, where only the most recent KVs are cached, is a natural approach — but
we show that it fails when the text length surpasses the cache size. We observe
an interesting phenomenon, namely attention sink, that keeping the KV of initial
tokens will largely recover the performance of window attention. In this paper, we
first demonstrate that the emergence of attention sink is due to the strong attention
scores towards initial tokens as a “sink” even if they are not semantically important.
Based on the above analysis, we introduce StreamingLLM, an efficient framework
that enables LLMs trained with a finite length attention window to generalize to
infinite sequence length without any fine-tuning. We show that StreamingLLM can
enable Llama-2, MPT, Falcon, and Pythia to perform stable and efficient language
modeling with up to 4 million tokens and more. In addition, we discover that
adding a placeholder token as a dedicated attention sink during pre-training can
further improve streaming deployment. In streaming settings, StreamingLLM
outperforms the sliding window recomputation baseline by up to 22.2× speedup.
Code and datasets are provided in the link.

1 INTRODUCTION

Large Language Models (LLMs) (Radford et al., 2018; Brown et al., 2020; Zhang et al., 2022;
OpenAI, 2023; Touvron et al., 2023a;b) are becoming ubiquitous, powering many natural language
processing applications such as dialog systems (Schulman et al., 2022; Taori et al., 2023; Chiang et al.,
2023), document summarization (Goyal & Durrett, 2020; Zhang et al., 2023a), code completion (Chen
et al., 2021; Rozière et al., 2023) and question answering (Kamalloo et al., 2023). To unleash the
full potential of pretrained LLMs, they should be able to efficiently and accurately perform long
sequence generation. For example, an ideal ChatBot assistant can stably work over the content of
recent day-long conversations. However, it is very challenging for LLM to generalize to longer
sequence lengths than they have been pretrained on, e.g., 4K for Llama-2 Touvron et al. (2023b).

The reason is that LLMs are constrained by the attention window during pre-training. Despite
substantial efforts to expand this window size (Chen et al., 2023; kaiokendev, 2023; Peng et al., 2023)
and improve training (Dao et al., 2022; Dao, 2023) and inference (Pope et al., 2022; Xiao et al., 2023;
Anagnostidis et al., 2023; Wang et al., 2021; Zhang et al., 2023b) efficiency for lengthy inputs, the
acceptable sequence length remains intrinsically finite, which doesn’t allow persistent deployments.

In this paper, we first introduce the concept of LLM streaming applications and ask the question:

Can we deploy an LLM for infinite-length inputs without sacrificing efficiency and performance?

∗Part of the work done during an internship at Meta AI.
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(a) Dense Attention

T cached tokens

Current Token

(c) Sliding Window  
w/ Re-computation

L re-computed 
tokens

previous tokens 
are truncated

O(T2) O(TL2)PPL: 5641 PPL: 5.43
Has poor efficiency and 

performance on long text.

(b) Window Attention

L cached 
tokens

T-L evicted 
tokens

O(TL) PPL: 5158
Breaks when initial 
tokens are evicted.
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for each incoming token.

(d) StreamingLLM (ours)

Attention Sink

L cached 
tokens

evicted 
tokens

O(TL) PPL: 5.40
Can perform efficient and stable 
language modeling on long texts.

Figure 1: Illustration of StreamingLLM vs. existing methods. The language model, pre-trained on texts of
length L, predicts the T th token (T � L). (a) Dense Attention has O(T 2) time complexity and an increasing
cache size. Its performance decreases when the text length exceeds the pre-training text length. (b) Window
Attention caches the most recent L tokens’ KV. While efficient in inference, performance declines sharply once
the starting tokens’ keys and values are evicted. (c) Sliding Window with Re-computation rebuilds the KV states
from the L recent tokens for each new token. While it performs well on long texts, its O(TL2) complexity,
stemming from quadratic attention in context re-computation, makes it considerably slow. (d) StreamingLLM
keeps the attention sink (several initial tokens) for stable attention computation, combined with the recent tokens.
It’s efficient and offers stable performance on extended texts. Perplexities are measured using the Llama-2-13B
model on the first book (65K tokens) in the PG-19 test set.

When applying LLMs for infinite input streams, two primary challenges arise:

1. During the decoding stage, Transformer-based LLMs cache the Key and Value states (KV)
of all previous tokens, as illustrated in Figure 1 (a), which can lead to excessive memory
usage and increasing decoding latency (Pope et al., 2022).

2. Existing models have limited length extrapolation abilities, i.e., their performance de-
grades (Press et al., 2022; Chen et al., 2023) when the sequence length goes beyond the
attention window size set during pre-training.

An intuitive approach, known as window attention (Beltagy et al., 2020) (Figure 1 b), maintains only
a fixed-size sliding window on the KV states of most recent tokens. Although it ensures constant
memory usage and decoding speed after the cache is initially filled, the model collapses once the
sequence length exceeds the cache size, i.e., even just evicting the KV of the first token, as illustrated
in Figure 3. Another strategy is the sliding window with re-computation (shown in Figure 1 c), which
rebuilds the KV states of recent tokens for each generated token. While it offers strong performance,
this approach is significantly slower due to the computation of quadratic attention within its window,
making this method impractical for real-world streaming applications.

To understand the failure of window attention, we find an interesting phenomenon of autoregressive
LLMs: a surprisingly large amount of attention score is allocated to the initial tokens, irrespective
of their relevance to the language modeling task, as visualized in Figure 2. We term these tokens
“attention sinks". Despite their lack of semantic significance, they collect significant attention scores.
We attribute the reason to the Softmax operation, which requires attention scores to sum up to one
for all contextual tokens. Thus, even when the current query does not have a strong match in many
previous tokens, the model still needs to allocate these unneeded attention values somewhere so it
sums up to one. The reason behind initial tokens as sink tokens is intuitive: initial tokens are visible
to almost all subsequent tokens because of the autoregressive language modeling nature, making
them more readily trained to serve as attention sinks.

Based on the above insights, we propose StreamingLLM, a simple and efficient framework that
enables LLMs trained with a finite attention window to work on text of infinite length without fine-
tuning. StreamingLLM exploits the fact that attention sinks have high attention values, and preserving
them can maintain the attention score distribution close to normal. Therefore, StreamingLLM simply
keeps the attention sink tokens’ KV (with just 4 initial tokens sufficing) together with the sliding
window’s KV to anchor the attention computation and stabilize the model’s performance. With
StreamingLLM, models including Llama-2-[7, 13, 70]B, MPT-[7, 30]B, Falcon-[7, 40]B, and Pythia-
[2.9,6.9,12]B can reliably model 4 million tokens, and potentially even more. Compared with the only
viable baseline, sliding window with recomputation, StreamingLLM achieves up to 22.2× speedup,
realizing the streaming use of LLMs.
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Figure 2: Visualization of the average attention logits in Llama-2-7B over 256 sentences, each with a length
of 16. Observations include: (1) The attention maps in the first two layers (layers 0 and 1) exhibit the "local"
pattern, with recent tokens receiving more attention. (2) Beyond the bottom two layers, the model heavily attends
to the initial token across all layers and heads.

Furthermore, we confirm our attention sink hypothesis and demonstrate that language models can
be pre-trained to require only a single attention sink token for streaming deployment. Specifically,
we suggest that an extra learnable token at the beginning of all training samples can serve as a
designated attention sink. By pre-training 160-million parameter language models from scratch, we
demonstrate that adding this single sink token preserves the model’s performance in streaming cases.
This stands in contrast to vanilla models, which necessitate the reintroduction of multiple initial
tokens as attention sinks to achieve the same performance level.

Finally, we emphasize that StreamingLLM efficiently generates coherent text from tokens within
the KV cache without extending the LLMs’ context length. It suits continuous operation needs with
minimal memory use and past data reliance. Additionally, StreamingLLM can complement context
extension methods to increase the attendable recent context.

2 RELATED WORK

Extensive research has been done on applying LLMs to lengthy texts, with three main areas of focus:
Length Extrapolation, Context Window Extension, and Improving LLMs’ Utilization of Long
Text. While seemingly related, it’s worth noting that progress in one direction doesn’t necessarily
lead to progress in the other. For example, extending the context size of LLMs doesn’t improve the
model’s performance beyond the context size, and neither approach ensures effective use of the long
context. Our StreamingLLM framework primarily lies in the first category, where LLMs are applied
to text significantly exceeding the pre-training window size, potentially even of infinite length. We do
not expand the attention window size of LLMs or enhance the model’s memory and usage on long
texts. The last two categories are orthogonal to our focus and could be integrated with our techniques.

Length extrapolation aims to enable language models trained on shorter texts to handle longer
ones during testing. A predominant avenue of research targets the development of relative position
encoding methods for Transformer models, enabling them to function beyond their training window.
One such initiative is Rotary Position Embeddings (RoPE) (Su et al., 2021), which transforms
the queries and keys in every attention layer for relative position integration. Despite its promise,
subsequent research (Press et al., 2022; Chen et al., 2023) indicated its underperformance on text
that exceeds the training window. Another approach, ALiBi (Press et al., 2022), biases the query-key
attention scores based on their distance, thereby introducing relative positional information. While
this exhibited improved extrapolation, our tests on MPT models highlighted a breakdown when the
text length was vastly greater than the training length. Current methodologies, however, have yet to
achieve infinite length extrapolation, causing no existing LLMs to fit for streaming applications.

Context Window Extension centers on expanding the LLMs’ context window, enabling the process-
ing of more tokens in one forward pass. A primary line of work addresses the training efficiency
problem. Given the attention to computation’s quadratic complexity during training, developing
a long-context LLM is both a computational and memory challenge. Solutions have ranged from
system-focused optimizations like FlashAttention (Dao et al., 2022; Dao, 2023), which accelerates
attention computation and reduces memory footprint, to approximate attention methods (Zaheer
et al., 2020b; Beltagy et al., 2020; Wang et al., 2020; Kitaev et al., 2020) that trade model quality for
efficiency. Recently, there has been a surge of work on extending pre-trained LLMs with RoPE (Chen
et al., 2023; kaiokendev, 2023; bloc97, 2023; Peng et al., 2023), involving position interpolation and
fine-tuning. However, all the aforementioned techniques only extend LLMs’ context window to a
limited extent, which falls short of our paper’s primary concern of handling limitless inputs.
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Figure 3: Language modeling perplexity on texts with 20K tokens across various LLM. Observations reveal
consistent trends: (1) Dense attention fails once the input length surpasses the pre-training attention window
size. (2) Window attention collapses once the input length exceeds the cache size, i.e., the initial tokens are
evicted. (3) StreamingLLM demonstrates stable performance, with its perplexity nearly matching that of the
sliding window with re-computation baseline.

Improving LLMs’ Utilization of Long Text optimizes LLMs to better capture and employ the
content within the context rather than merely taking them as inputs. As highlighted by Liu et al.
and Li et al., success in the previously mentioned two directions does not necessarily translate to
competent utilization of lengthy contexts. Addressing this effective usage of prolonged contexts
within LLMs is still a challenge. Our work concentrates on stably harnessing the most recent tokens,
enabling the seamless streaming application of LLMs.

3 STREAMINGLLM

3.1 THE FAILURE OF WINDOW ATTENTION AND ATTENTION SINKS

While the window attention technique offers efficiency during inference, it results in an exceedingly
high language modeling perplexity. Consequently, the model’s performance is unsuitable for deploy-
ment in streaming applications. In this section, we use the concept of attention sink to explain the
failure of window attention, serving as the inspiration behind StreamingLLM.

Identifying the Point of Perplexity Surge. Figure 3 shows the perplexity of language modeling on
a 20K token text. It is evident that perplexity spikes when the text length surpasses the cache size, led
by the exclusion of initial tokens. This suggests that the initial tokens, regardless of their distance
from the predicted tokens, are crucial for maintaining the stability of LLMs.

Why do LLMs break when removing initial tokens’ KV? We visualize attention maps from
all layers and heads of the Llama-2-7B and models in Figure 2. We find that, beyond the bottom
two layers, the model consistently focuses on the initial tokens across all layers and heads. The
implication is clear: removing these initial tokens’ KV will remove a considerable portion of the
denominator in the SoftMax function (Equation 1) in attention computation. This alteration leads to a
significant shift in the distribution of attention scores away from what would be expected in normal
inference settings.

SoftMax(x)i =
exi

ex1 +
∑N

j=2 e
xj

, x1 � xj , j ∈ 2, . . . , N (1)

There are two possible explanations for the importance of the initial tokens in language modeling:
(1) Either their semantics are crucial, or (2) the model learns a bias towards their absolute position.
To distinguish between these possibilities, we conduct experiments (Table 1), wherein the first four
tokens are substituted with the linebreak token “\n". The observations indicate that the model still
significantly emphasizes these initial linebreak tokens. Furthermore, reintroducing them restores
the language modeling perplexity to levels comparable to having the original initial tokens. This
suggests that the absolute position of the starting tokens, rather than their semantic value, holds
greater significance.

LLMs attend to Initial Tokens as Attention Sinks. To explain why the model disproportionately
focuses on initial tokens—regardless of their semantic relevance to language modeling, we introduce
the concept of “attention sink". The nature of the SoftMax function (Equation 1) prevents all attended
tokens from having zero values. This requires aggregating some information from other tokens across
all heads in all layers, even if the current embedding has sufficient self-contained information for its
prediction. Consequently, the model tends to dump unnecessary attention values to specific tokens. A
similar observation has been made in the realm of quantization outliers (Xiao et al., 2023; Bondarenko
et al., 2023), leading to the proposal of SoftMax-Off-by-One (Miller, 2023) as a potential remedy.
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Table 1: Window attention has poor per-
formance on long text. The perplexity
is restored when we reintroduce the initial
four tokens alongside the recent 1020 to-
kens (4+1020). Substituting the original
four initial tokens with linebreak tokens “\n"
(4"\n"+1020) achieves comparable perplexity
restoration. Cache config x+y denotes adding
x initial tokens with y recent tokens. Perplex-
ities are measured on the first book (65K to-
kens) in the PG19 test set.

Llama-2-13B PPL (↓)

0 + 1024 (Window) 5158.07
4 + 1020 5.40
4"\n"+1020 5.60

Table 2: Effects of reintroduced initial token numbers on
StreamingLLM. (1) Window attention (0+y) has a drastic in-
crease in perplexity. (2) Introducing one or two initial tokens
doesn’t fully restore model perplexity, showing that the model
doesn’t solely use the first token as the attention sink. (3) Intro-
ducing four initial tokens generally suffices; further additions
have diminishing returns. Cache config x+y denotes adding x
initial tokens to y recent tokens. Perplexities are evaluated on
400K tokens in the concatenated PG19 test set.

Cache Config 0+2048 1+2047 2+2046 4+2044 8+2040

Falcon-7B 17.90 12.12 12.12 12.12 12.12
MPT-7B 460.29 14.99 15.00 14.99 14.98
Pythia-12B 21.62 11.95 12.09 12.09 12.02

Cache Config 0+4096 1+4095 2+4094 4+4092 8+4088

Llama-2-7B 3359.95 11.88 10.51 9.59 9.54

Why do various autoregressive LLMs, such as Llama-2, MPT, Falcon, and Pythia, consistently focus
on initial tokens as their attention sinks, rather than other tokens? Our explanation is straightforward:
Due to the sequential nature of autoregressive language modeling, initial tokens are visible to all
subsequent tokens, while later tokens are only visible to a limited set of subsequent tokens. As a result,
initial tokens are more easily trained to serve as attention sinks, capturing unnecessary attention.

We’ve noted that LLMs are typically trained to utilize multiple initial tokens as attention sinks rather
than just one. As illustrated in Figure 2, the introduction of four initial tokens, as attention sinks,
suffices to restore the LLM’s performance. In contrast, adding just one or two doesn’t achieve full
recovery. We believe this pattern emerges because these models didn’t include a consistent starting
token across all input samples during pre-training. Although Llama-2 does prefix each paragraph
with a “<s>" token, it’s applied before text chunking, resulting in a mostly random token occupying
the zeroth position. This lack of a uniform starting token leads the model to use several initial tokens
as attention sinks. We hypothesize that by incorporating a stable learnable token at the start of all
training samples, it could singularly act as a committed attention sink, eliminating the need for
multiple initial tokens to ensure consistent streaming. We will validate this hypothesis in Section 3.3.

3.2 ROLLING KV CACHE WITH ATTENTION SINKS

Attention Sinks

0 1 2 3 4 5 6 7Generating 
Token 7

0 1 2 3 4 5 6 7 8Generating 
Token 8

0 1 2 3 4 5 6 7 8 9
Evicted Tokens Rolling KV Cache

Generating 
Token 9

Figure 4: The KV cache of StreamingLLM.

To enable LLM streaming in already trained LLMs, we
propose a straightforward method that can recover win-
dow attention’s perplexity without any model finetuning.
Alongside the current sliding window tokens, we reintro-
duce a few starting tokens’ KV in the attention computa-
tion. The KV cache in StreamingLLM can be conceptually divided into two parts, as illustrated
in Figure 4: (1) Attention sinks (four initial tokens) stabilize the attention computation; 2) Rolling
KV Cache retains the most recent tokens, crucial for language modeling. StreamingLLM’ design is
versatile and can be seamlessly incorporated into any autoregressive language model that employs
relative positional encoding, such as RoPE (Su et al., 2021) and ALiBi (Press et al., 2022).

When determining the relative distance and adding positional information to tokens, StreamingLLM
focuses on positions within the cache rather than those in the original text. This distinction is crucial
for StreamingLLM’s performance. For instance, if the current cache (Figure 4) has tokens [0, 1, 2, 3,
6, 7, 8] and is in the process of decoding the 9th token, the positions assigned are [0, 1, 2, 3, 4, 5, 6,
7], rather than the positions in the original text, which would be [0, 1, 2, 3, 6, 7, 8, 9].

For encoding like RoPE, we cache the Keys of tokens prior to introducing the rotary transformation.
Then, we apply position transformation to the keys in the rolling cache at each decoding phase. On the
other hand, integrating with ALiBi is more direct. Here, the contiguous linear bias is applied instead
of a ’jumping’ bias to the attention scores. This method of assigning positional embedding within the
cache is crucial to StreamingLLM’s functionality, ensuring that the model operates efficiently even
beyond its pre-training attention window size.
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3.3 PRE-TRAINING LLMS WITH ATTENTION SINKS

Table 3: Comparison of vanilla attention with prepend-
ing a zero token and a learnable sink token during pre-
training. To ensure stable streaming perplexity, the
vanilla model requires several initial tokens. While Zero
Sink shows a slight improvement, it still needs other ini-
tial tokens. Conversely, the model trained with a learn-
able Sink Token shows stable streaming perplexity with
only the sink token added. Cache config x+y denotes
adding x initial tokens with y recent tokens. Perplexity
is evaluated on the first sample in the PG19 test set.

Cache Config 0+1024 1+1023 2+1022 4+1020

Vanilla 27.87 18.49 18.05 18.05
Zero Sink 29214 19.90 18.27 18.01
Learnable Sink 1235 18.01 18.01 18.02

As elaborated in Section 3.1, a significant rea-
son for the model’s excessive attention to multi-
ple initial tokens is the absence of a designated
sink token to offload excessive attention scores.
Due to this, the model inadvertently uses glob-
ally visible tokens, primarily the initial ones,
as attention sinks. A potential remedy can be
the intentional inclusion of a global trainable
attention sink token, denoted as a “Sink Token”,
which would serve as a repository for unneces-
sary attention scores. Alternatively, replacing
the conventional SoftMax function with a vari-
ant like SoftMax-off-by-One (Miller, 2023),

SoftMax1(x)i =
exi

1 +
∑N

j=1 e
xj

, (2)

which does not require the attention scores on all contextual tokens to sum up to one, may also be
effective. Note that SoftMax1 is equivalent to prepending a token with an all-zero Key and Value
features in the attention computation. We denote this method as “Zero Sink” to fit our framework.

For validation, we pre-train three language models with 160 million parameters from scratch under
identical settings. The first model utilizes the standard SoftMax attention (Vanilla), the second
replaced the regular attention mechanism with SoftMax1 (Zero Sink), and one prepending a learnable
placeholder token (Sink Token) in all training samples. As shown in Table 3, while the zero sink
alleviates the attention sink problem to some extent, the model still relies on other initial tokens as
attention sinks. Introducing a sink token is highly effective in stabilizing the attention mechanism.
Simply pairing this sink token with recent tokens sufficiently anchors the model’s performance, and
the resulting evaluation perplexity is even marginally improved. Given these findings, we recommend
training future LLMs with a sink token in all samples to optimize streaming deployment.

4 EXPERIMENTS

We evaluate StreamingLLM using four prominent recent model families: Llama-2 (Touvron et al.,
2023b), MPT (Team, 2023), PyThia (Biderman et al., 2023), and Falcon (Almazrouei et al., 2023).
Notably, Llama-2, Falcon, and Pythia incorporate RoPE (Su et al., 2021), whereas MPT employs
ALiBi (Press et al., 2022) — two of the most influential position encoding techniques in recent
research. Our diverse model selection ensures the validity and robustness of our findings. We bench-
mark StreamingLLM against established baselines such as dense attention, window attention, and the
sliding window approach with re-computation. In all subsequent experiments with StreamingLLM,
we default to using four initial tokens as attention sinks unless stated otherwise.

4.1 LANGUAGE MODELING ON LONG TEXTS ACROSS LLM FAMILIES AND SCALES

We firstly evaluate StreamingLLM’s language modeling perplexity using the concatenated PG19 (Rae
et al., 2020) test set, which contains 100 long books. For Llama-2 models, the cache size is set at
2048, while for Falcon, Pythia, and MPT models, it’s set at 1024. This is half the pre-training window
size chosen to enhance visualization clarity.

Figure 3 illustrates that StreamingLLM can match the oracle baseline (sliding window with re-
computation) in terms of perplexity on texts spanning 20K tokens. Meanwhile, the dense attention
technique fails when the input length exceeds its pre-training window, and the window attention
technique struggles when the input length surpasses the cache size, leading to the eviction of the initial
tokens. In Figure 5, we further substantiate that StreamingLLM can reliably handle exceptionally
extended texts, encompassing more than 4 million tokens, across a spectrum of model families and
scales. This includes Llama-2-[7,13,70]B, Falcon-[7,40]B, Pythia-[2.8,6.9,12]B, and MPT-[7,30]B.
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Figure 5: Language modeling perplexity of StreamingLLM on super long texts with 4 million tokens across
various LLM families and scales. The perplexity remains stable throughout. We use the concatenated test set of
PG19 (100 books) to perform language modeling, with perplexity fluctuations due to book transitions.

Pre-Trained without Sink Token Pre-Trained with Sink Token

Layer 0 Head 0 Layer 2 Head 0 Layer 10 Head 0 Layer 0 Head 0 Layer 2 Head 0 Layer 10 Head 0

Figure 7: Visualization of average attention logits over 256 sentences, each 16 tokens long, comparing models
pre-trained without (left) and with (right) a sink token. Both maps show the same layers and heads. Key
observations: (1) Without a sink token, models show local attention in lower layers and increased attention
to initial tokens in deeper layers. (2) With a sink token, there is clear attention directed at it across all layers,
effectively collecting redundant attention. (3) With the presence of the sink token, less attention is given to other
initial tokens, supporting the benefit of designating the sink token to enhance the streaming performance.

4.2 RESULTS OF PRE-TRAINING WITH A SINK TOKEN

To validate our suggestion that introducing a sink token to all pre-training samples improves stream-
ing LLMs, we trained two language models, each with 160 million parameters, under identical
conditions. While one model adhered to the original training settings, the other incorporated a sink
token at the start of every training sample. Our experiments employed the Pythia-160M (Bider-
man et al., 2023) codebase and followed its training recipe. We train the models on an 8xA6000
NVIDIA GPU server using the deduplicated Pile (Gao et al., 2020) dataset. Apart from reducing
the training batch size to 256, we retained all Pythia training configurations, including learning rate
schedules, model initialization, and dataset permutations. Both models were trained for 143,000 steps.

Figure 6: Pre-training loss
curves of models w/ and w/o sink
tokens. Two models have a simi-
lar convergence trend.

Table 4: Zero-shot accuracy (in %) across 7 NLP benchmarks, including
ARC-[Challenge, Easy], HellaSwag, LAMBADA, OpenbookQA, PIQA,
and Winogrande. The inclusion of a sink token during pre-training doesn’t
harm the model performance.

Methods ARC-c ARC-e HS LBD OBQA PIQA WG

Vanilla 18.6 45.2 29.4 39.6 16.0 62.2 50.1
+Sink Token 19.6 45.6 29.8 39.9 16.6 62.6 50.8

Convergence and Normal Model Performance. Including a sink token during pre-training has no
negative impact on model convergence and subsequent performance on a range of NLP benchmarks.
As depicted in Figure 6, models trained with a sink token exhibit similar convergence dynamics
compared to their vanilla counterparts. We evaluate the two models on seven diverse NLP bench-
marks, including ARC-[Challenge, Easy] (Clark et al., 2018), HellaSwag (Zellers et al., 2019),
LAMBADA (Paperno et al., 2016), OpenbookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020),
and Winogrande (Sakaguchi et al., 2019). As shown in Table 4, the model pre-trained with a sink
token performs similarly to that trained using the vanilla approach.

Streaming Performance. As illustrated in Table 3, the streaming perplexities differ between
models trained using traditional methods and those augmented with a sink token. Remarkably,
the vanilla model requires the addition of multiple tokens as attention sinks to maintain stable
streaming perplexity. In contrast, the model trained with a sink token achieves satisfactory streaming
performance using just the sink token.

7



Published as a conference paper at ICLR 2024

Table 5: Accuracy (in %) on the ARC-[Easy, Challenge] datasets. Questions were concatenated and answered
in a streaming manner to mimic a real-world chat setting. The dense baseline fails due to Out-of-Memory
(OOM) errors. Window attention has poor accuracy. StreamingLLM has comparable results with the one-shot
sample-by-sample baseline. Window attention and StreamingLLM use cache sizes of 1024.

Model Llama-2-7B-Chat Llama-2-13B-Chat Llama-2-70B-Chat

Dataset Arc-E Arc-C Arc-E Arc-C Arc-E Arc-C

One-shot 71.25 53.16 78.16 63.31 91.29 78.50

Dense OOM
Window 3.58 1.39 0.25 0.34 0.12 0.32
StreamingLLM 71.34 55.03 80.89 65.61 91.37 80.20

Dense Attention Window Attention StreamingLLM

Figure 9: Performance on the StreamEval benchmark. Accuracies are averaged over 100 samples.

Below is a record of lines I want you to remember. 
The REGISTER_CONTENT in line 0 is <8806> 
[omitting 9 lines…] 
The REGISTER_CONTENT in line 10 is <24879> 
[omitting 8 lines…] 
The REGISTER_CONTENT in line 20 is <45603> 
Query: The REGISTER_CONTENT in line 0 is 
The REGISTER_CONTENT in line 21 is <29189> 
[omitting 8 lines…] 
The REGISTER_CONTENT in line 30 is <1668> 
Query: The REGISTER_CONTENT in line 10 is 
The REGISTER_CONTENT in line 31 is <42569> 
[omitting 8 lines…] 
The REGISTER_CONTENT in line 40 is <34579> 
Query: The REGISTER_CONTENT in line 20 is 
[omitting remaining 5467 lines…]

Input Content

Desired Output
[“<8806>”, “<24879>”, “<45603>”, …]

Figure 8: The first sample in StreamEval.

Attention Visualization. Figure 7 contrasts attention
maps for models pre-trained with and without a sink token.
The model without the sink token, similar to Llama-2-7B
(Figure 2), shows early-layer local attention and deeper-layer
focus on initial tokens. In contrast, models trained with a
sink token consistently concentrate on the sink across layers
and heads, indicating an effective attention offloading mech-
anism. This strong focus on the sink, with reduced attention
to other initial tokens, explains the sink token’s efficacy in
enhancing model’s streaming performance.

4.3 RESULTS ON STREAMING QUESTION

ANSWERING WITH INSTRUCTION-TUNED MODELS

To show StreamingLLM’s real-world applicability, we emulate multi-round question-answering using
instruction-tuned LLMs, commonly used in real-world scenarios.

We first concatenate all question-answer pairs from the ARC-[Challenge, Easy] datasets, feed the
continuous stream to Llama-2-[7,13,70]B-Chat models, and assess model completions at each answer
position using an exact match criterion. As table 5 indicates, dense attention results in Out-of-Memory
(OOM) errors, showing it unsuitable for this setting. While the window attention method works
efficiently, it exhibits low accuracy due to random outputs when the input length exceeds the cache
size. Conversely, StreamingLLM excels by efficiently handling the streaming format, aligning with
the one-shot, sample-by-sample baseline accuracy.

Highlighting a more fitting scenario for StreamingLLM, we introduce a dataset, StreamEval, inspired
by the LongEval (Li et al., 2023) benchmark. As depicted in Figure 8, diverging from LongEval’s
single query over a long-span setup, we query the model every 10 lines of new information. Each
query’s answer is consistently 20 lines prior, reflecting real-world instances where questions typically
pertain to recent information. As illustrated in Figure 9, LLMs employing StreamingLLM maintain
reasonable accuracy even as input lengths approach 120K tokens. In contrast, both dense and window
attention fail at the pre-training text length and the KV cache size, respectively. Additionally, we
utilize two context-extended models, LongChat-7b-v1.5-32k (Li et al., 2023) and Llama-2-7B-32K-
Instruct (Together, 2023), to show that StreamingLLM can complement context extension techniques.
Within StreamingLLM, context extension means broadening the maximum cache size of streaming
LLMs, enabling the capture of broader local information.
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Figure 10: Comparison of per-token decoding latency and memory usage between the sliding window approach
with re-computation baseline and StreamingLLM, plotted against the cache size (attention window size) on the
X-axis. StreamingLLM delivers a remarkable speedup of up to 22.2× per token and retains a memory footprint
similar to the re-computation baseline.

4.4 ABLATION STUDIES

Numbers of Initial Tokens. In Table 2, we ablate the effect of adding varying numbers of initial
tokens with recent tokens on the streaming perplexity. The results show the insufficiency of introduc-
ing merely one or two initial tokens, whereas a threshold of four initial tokens appears enough, with
subsequent additions contributing marginal effects. This result justifies our choice of introducing 4
initial tokens as attention sinks in StreamingLLM.

Cache Sizes. In Table 6, we evaluate cache size’s impact on StreamingLLM’s perplex-
ity. Contrary to intuition, increasing the cache size doesn’t consistently lower the lan-
guage modeling perplexity. This inconsistency shows a potential limitation where these mod-
els might not maximize the utility of the entire context they receive. Future research ef-
forts should target enhancing these models’ capabilities to utilize extensive contexts better.

Table 6: Effects of cache size on StreamingLLM’s
performance. Increasing the cache size in
StreamingLLM doesn’t consistently yield a de-
crease in perplexity, showing these models may
not fully utilize the provided context. Cache config
x+y denotes adding x initial tokens with y recent
tokens. Perplexity is evaluated on 400K tokens in
the concatenated PG19 test set.

Cache 4+252 4+508 4+1020 4+2044

Falcon-7B 13.61 12.84 12.34 12.84
MPT-7B 14.12 14.25 14.33 14.99
Pythia-12B 13.17 12.52 12.08 12.09

Cache 4+508 4+1020 4+2044 4+4092

Llama-2-7B 9.73 9.32 9.08 9.59

4.5 EFFICENCY RESULTS

We benchmark StreamingLLM’s decoding latency
and memory usage against the sliding window with
re-computation, which is the only baseline with ac-
ceptable quality. Both methods are implemented
using the Huggingface Transformers library (Wolf
et al., 2020) and tested on a single NVIDIA A6000
GPU using the Llama-2-7B and Llama-2-13B models.
As shown in Figure 10, as the cache size increases,
StreamingLLM’s decoding speed has a linear growth.
The sliding window with re-computation baseline
has a quadratic rise in decoding latency. Thus,
StreamingLLM achieves an impressive speedup,
reaching up to 22.2× per token. Despite its reduced
latency, StreamingLLM sustains a memory footprint
consistent with the re-computation baseline.

5 CONCLUSION

Deploying LLMs in streaming applications is urgently needed but comes with challenges due to
efficiency limitations and reduced performance with longer texts. Window attention provides a partial
solution, but its performance plummets when initial tokens are excluded. Recognizing the role of
these tokens as “attention sinks", we introduced StreamingLLM —a simple and efficient framework
that enables LLMs to handle unlimited texts without fine-tuning. By adding attention sinks with
recent tokens, StreamingLLM can efficiently model texts of up to 4 million tokens. We further
show that pre-training models with a dedicated sink token can improve the streaming performance.
StreamingLLM firstly decouples the LLM’s pre-training window size and its actual text generation
length, paving the way for the streaming deployment of LLMs.
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A DISCUSSIONS

Applications. StreamingLLM is particularly suited for streaming applications, such as multi-round
dialogues, where continuous operation without heavy reliance on extensive memory or historical data
is crucial. For instance, in a daily assistant application based on LLMs, StreamingLLM enables the
model to function seamlessly over extended periods. It bases its responses on recent interactions, thus
avoiding the need for frequent cache refreshes. Traditional methods might require resetting the cache
when the conversation length surpasses the training length, leading to a loss of recent context, or they
might need to recompute key-value (KV) states from recent text history, which can be inefficient.

Limitations. While StreamingLLM improves the efficiency of LLMs in streaming contexts, it
does not extend the models’ context window or enhance their long-term memory capabilities. As
detailed in Section C, the model is limited to operating within the confines of its current cache.
Consequently, StreamingLLM is not suitable for tasks that demand long-term memory and extensive
data dependency, such as long document question-answering (QA) and summarization. However, it
excels in scenarios only requiring short-term memory, like daily conversations and short document
QA, where its strength lies in generating coherent text from recent context without the need for cache
refreshment.

Broader Societal Impacts. StreamingLLM significantly enhances the efficiency and accessibility of
LLMs, democratizing their use across various sectors. By enabling nonstop and rapid interactions
in applications like conversational agents, StreamingLLM improves user experiences, especially in
scenarios requiring fixed-length models. This advancement allows for more seamless and contextually
aware dialogues, potentially benefiting sectors like education, healthcare, and customer service.
Additionally, StreamingLLM’s efficiency in processing reduces the computational load, aligning with
the need for environmentally sustainable AI technologies. This aspect is crucial in making advanced
AI tools more accessible in regions with limited technological resources. However, the potential
negative impacts of StreamingLLM mirror those associated with general language models, such as
misinformation and biased content generation risks. It’s essential to address these risks with robust
ethical guidelines and safeguards. In summary, while StreamingLLM shares some risks common to
language models, its positive contributions towards enhancing user experience, democratizing AI
access, and promoting sustainability are noteworthy. These benefits underscore the importance of
responsible deployment and ethical use of this technology.

B ADDITIONAL RELATED WORKS

Sparse Transformers. The literature on efficient Transformer models primarily focuses on reducing
the computational and memory complexity of the self-attention mechanism. A relevant line of
work involves sparsifying the attention matrix by restricting the field of view to fixed, predefined
patterns, such as local windows or block patterns with fixed strides (Tay et al., 2022). Sparse Trans-
former (Child et al., 2019) introduces sparse factorizations of the attention matrix, reducing the
computational complexity of attention to O(n

√
n). LongFormer (Beltagy et al., 2020) combines

dilated local windowed attention with task-motivated global attention. Extended Transformer Con-
struction (ETC) Ainslie et al. (2020) presents a novel global-local attention mechanism, incorporating
four types of attention patterns: global-to-global, local-to-local, local-to-global, and global-to-local.
Building on ETC, BigBird (Zaheer et al., 2020a) proposes another linear complexity attention alter-
native, utilizing global tokens, local sliding window attentions, and random attention. However, these
methods have several limitations. First, Sparse Transformer and ETC require custom GPU kernels
for a specific block-sparse variant of matrix-matrix multiplication. Second, LongFormer, ETC, and
BigBird all rely on a global attention pattern, which is unsuitable for autoregressive language models.
Third, these methods are incompatible with pre-trained models, necessitating retraining from scratch.
In contrast, our method offers ease of implementation using standard GPU kernels and is compatible
with pre-trained autoregressive language models using dense attention, which are prevalent in the
NLP community. This compatibility provides a significant advantage, allowing for the leveraging of
existing pre-trained models without any fine-tuning.

Concurrent Works. Our research coincides with the work of Han et al., who conducted a theoretical
study on the length generalization failure of language models, identifying three out-of-distribution
factors. Their approach, inspired by this analysis, involves employing a “Λ"-shaped attention pattern
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Table 7: Accuracy (in %) on StreamEval with increasing query-answer distance. Each line in StreamEval
contains 23 tokens. Accuracies are averaged over 100 samples, and each sample contains 100 queries.

Llama-2-7B-32K-Instruct Cache Config

Line Distances Token Distances 4+2044 4+4092 4+8188 4+16380

20 460 85.80 84.60 81.15 77.65
40 920 80.35 83.80 81.25 77.50
60 1380 79.15 82.80 81.50 78.50
80 1840 75.30 77.15 76.40 73.80
100 2300 0.00 61.60 50.10 40.50
150 3450 0.00 68.20 58.30 38.45
200 4600 0.00 0.00 62.75 46.90
400 9200 0.00 0.00 0.00 45.70
600 13800 0.00 0.00 0.00 28.50
800 18400 0.00 0.00 0.00 0.00
1000 23000 0.00 0.00 0.00 0.00

and reconfiguring position encoding distances to enhance length generalization in LLMs. This
approach bears a resemblance to our methodology. However, our work uncovers the “attention sink"
phenomenon, wherein Transformer models tend to assign high attention scores to initial tokens
with small semantics. This phenomenon extends beyond the scope of length generalization failure,
indicating a more pervasive issue in Transformer models. We observe this “attention sink" behavior
not only in auto-regressive language models but also in encoder Transformers such as BERT (see
Section H), and Vision Transformers (ViTs) (Darcet et al., 2023), suggesting its broader prevalence in
Transformer architectures. To mitigate the “attention sink" phenomenon, we propose the introduction
of a learnable sink token during pre-training, and we support our findings with extensive ablation
studies.

In parallel, Darcet et al. observed similar attention concentration on random background patch tokens
in Vision Transformers, termed as "registers." These registers act as repositories for global image
information. Their solution, adding dedicated "register" tokens, aims to balance attention distribution.
Our finding of "attention sinks" parallels this concept. In our paper, the “attention sinks" are initial
tokens that disproportionately attract attention from subsequent tokens. Introducing a dedicated sink
token during pre-training prevents the model from inappropriately using content tokens as attention
sinks, leading to more effective attention distribution. However, a key difference exists: "registers" in
Vision Transformers function as global information holders within intermediate layers, whereas our
"attention sinks" are positioned as initial tokens in autoregressive models. This positional variance
suggests that the softmax function in attention computation might play a more fundamental role in
the emergence of attention sinks.

C ACCURACY ON STREAMEVAL WITH INCREASING QUERY-ANSWER LINE

DISTANCE

To assess StreamingLLM’s handling of extended inputs, we evaluated the Llama-2-7B-32K-Instruct
model on StreamEval, focusing on different query-answer line distances under various cache con-
figurations. In StreamEval, each line consists of 23 tokens, making the line distances equivalent
to token distances of 23 × line distances. Accuracy was calculated by averaging results over 100
samples, with each sample comprising 100 queries. Table 7 illustrates that StreamingLLM retains
accuracy when the token distance between the query and answer is within the cache size. However,
accuracy diminishes as this distance increases and eventually drops to zero when it surpasses the
cache capacity.

These results demonstrate that while StreamingLLM is effective in generating coherent text based on
recent context, it cannot extend the context length of language models. These results also emphasize
a broader challenge in current language models: their inability to fully utilize context information
within the cache, a finding that aligns with the observations made by Liu et al..
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Table 8: Performance comparison of StreamingLLM against the default truncation baseline in LongBench (Bai
et al., 2023). The baseline truncates inputs to 1750 initial and 1750 final tokens. StreamingLLM 4+3496 uses 4
attention sink tokens and 3496 recent tokens, while StreamingLLM 1750+1750 uses 1750 tokens for both initial
and recent segments.

Llama2-7B-chat
Single-Document QA Multi-Document QA Summarization
NarrativeQA Qasper HotpotQA 2WikiMQA GovReport MultiNews

Truncation 1750+1750 18.7 19.2 25.4 32.8 27.3 25.8

StreamingLLM 4+3496 11.6 16.9 21.6 28.2 23.9 25.5
StreamingLLM 1750+1750 18.2 19.7 24.9 32.0 26.3 25.9

D LONG-RANGE BENCHMARK EVALUATION

We evaluated StreamingLLM using the Llama-2-7B-chat model (max context length 4k) on Long-
Bench (Bai et al., 2023), which encompasses three key NLP tasks: single-document QA (Narra-
tiveQA (Kočiský et al., 2017) and Qasper (Dasigi et al., 2021)), multi-document QA (HotpotQA (Yang
et al., 2018) and 2WikiMQA Ho et al. (2020)), and summarization (GovReport (Huang et al., 2021),
MultiNews (Fabbri et al., 2019)). LongBench sets a default max sequence length of 3,500 tokens for
the Llama-2-7B-chat model, truncating from the middle to preserve beginning and end information
(1,750 tokens each). Table 8 shows that StreamingLLM with a 4+3496 cache configuration under-
performs compared to the truncation baseline, likely due to the loss of crucial initial input prompt
information. However, aligning the attention sink number to 1750 restores performance to the level
of the text truncation baseline. These results corroborate the findings in Section C, demonstrating
that StreamingLLM’s effectiveness is contingent on the information within its cache, with in-cache
performance comparable to the text truncation baseline.

E LLAMA-2-7B ATTENTION VISUALIZATION ON LONGER SEQUENCES

(a) Layer 0 Head 0 (b) Layer 6 Head 0 (c) Layer 12 Head 0

(d) Layer 18 Head 0 (e) Layer 24 Head 0 (f) Layer 30 Head 0

Figure 11: Visualization of the average attention logits in Llama-2-7B over 256 sentences, each with a length
of 128.
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Figure 12: Visualization of attention scores (after SoftMax) on the first token across layers in Llama-
2-7B. Attention Scores are the 4096th token’s attention towards the first token in each layer. The
error bars are the standard deviation of the first token’s attention scores across different heads in one
layer. Results are averaged over 256 sentences, each having a length of 4096 tokens.

Figure 2 visualizes the attention map of Llama-2-7B using short sequences (length of 16) for clarity.
We further visualize the attention of Llama-2-7B on longer sequences (length of 128) in Figure 11.
We find the observations on short sequences also hold on longer sequences, where the attention scores
of the initial tokens are much higher than the rest of the tokens in most layers, regardless of the
distance between the initial tokens and the tokens in the rest of the sequence. Because the longer the
sequence, the thinner the attention sinks’ scores are visualized on the heatmap. We further analyze
the attention distribution on longer sequences (length of 4096) using a different method in Section F.

F QUATITATIVE ANALYSIS OF ATTENTION SINKS IN LONG INPUTS

Figures 2 and 13 illustrate the attention sink phenomenon using short sequences for clarity. Extending
this analysis, Figure 12 demonstrates the distribution of attention scores (after SoftMax) towards
the first token in lengthy inputs (sequence length of 4096). We average attention scores across 256
sequences, with each sequence comprising 4096 tokens. The plotted data represent the attention
allocated by the 4096th token to the initial token in every layer. Notably, the attention scores for
the first token are significantly high, often exceeding half of the total attention, except for the two
bottom layers. This observation empirically substantiates the preferential focus on the first token by
the majority of layers and heads, irrespective of other tokens’ distances within the sequence. Such
a trend underscores the critical role of the initial tokens in a sequence, as their removal has a huge
impact on language model performance due to a large portion of the denominator in the SoftMax
function being removed.

G LLAMA-2-70B ATTENTION VISUALIZATION

Figure 2 shows the attention visualization of Llama-2-7B, we further visualize the attention of
Llama-2-70B in Figure 13. We find the observation on Llama-2-7B also holds on Llama-2-70B,
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(a) Layer 0 Head 0 (b) Layer 0 Head 1 (c) Layer 8 Head 0 (d) Layer 8 Head 1

(e) Layer 16 Head 0 (f) Layer 16 Head 1 (g) Layer 24 Head 0 (h) Layer 24 Head 1

(i) Layer 32 Head 0 (j) Layer 32 Head 1 (k) Layer 40 Head 0 (l) Layer 40 Head 1

(m) Layer 48 Head 0 (n) Layer 48 Head 1 (o) Layer 56 Head 0 (p) Layer 56 Head 1

(q) Layer 64 Head 0 (r) Layer 64 Head 1 (s) Layer 72 Head 0 (t) Layer 72 Head 1

Figure 13: Visualization of the average attention logits in Llama-2-70B over 256 sentences, each with a length
of 16.
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where the attention scores of the initial tokens are much higher than the rest of the tokens in most
layers.

H ATTENTION SINKS IN ENCODER TRANSFORMERS

Figure 14: Visualization of attention maps for sentence “StreamingLLM can work on infinite-length texts
without compromising efficiency and performance.” in BERT-base-uncased.

In this paper, we mainly explore the attention sink phenomenon observed in autoregressive, decoder-
only language models like GPT and Llama. Building upon the insights from Section 3.1, we propose
that this phenomenon likely extends to other Transformer architectures, including encoder models
such as BERT (Devlin et al., 2019) and ViT (Dosovitskiy et al., 2021). This assumption stems
from the fact that these models share a similar Transformer structure and utilize SoftMax attention
mechanisms. To substantiate our hypothesis, we analyze the attention patterns of BERT-base-uncased,
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Table 10: Comparison of vanilla attention with prepending a zero token and a learnable sink token
during pre-training. Cache config x+y denotes adding x initial tokens with y recent tokens. Perplexity
is evaluated on the first sample in the PG19 test set.

Cache Config 0+1024 1+1023 2+1022 4+1020

Vanilla 27.87 18.49 18.05 18.05
+ 1 Sink Token 1235 18.01 18.01 18.02
+ 2 Sink Tokens 1262 25.73 18.05 18.05

as depicted in Figure 14. Our findings reveal that BERT-base-uncased exhibits the attention sink
phenomenon, characterized by disproportionately high attention scores assigned to the [SEP] token
in most layers. This indicates that the model consistently relies on the omnipresent [SEP] token as a
focal point for attention. Furthermore, concurrent research by Darcet et al. identifies similar attention
spikes in Vision Transformers, attributed to random background patch tokens acting as "registers"
for global image information. We contend that these "registers" are analogous to the attention sink
phenomenon we observed, suggesting that this is a universal characteristic across all Transformer
models.

I USING MORE SINK TOKENS IN THE PRE-TRAINING STAGE

Section 3.3 illustrated that incorporating a single dedicated sink token in the pre-training stage doesn’t
affect model performance but enhances streaming performance by centralizing attention sinks to
one token. This section delves into whether adding additional sink tokens during pre-training could
further optimize the performance of pre-trained language models.

As depicted in Figure 15, our experiments show that incorporating either one or two sink tokens
during pre-training results in pre-training loss curves that closely resemble those of the baseline
(vanilla) model. However, as detailed in Table 9, the introduction of a second sink token does not
yield substantial improvements in performance across most benchmark tasks.

Further analysis, as shown in Table 10, reveals that the inclusion of additional sink tokens does
not enhance streaming performance. Interestingly, the model appears to rely on both sink tokens
to maintain stable streaming performance. These findings suggest that while a single sink token is
adequate for improving streaming performance, adding more sink tokens does not lead to further
enhancements in overall language model performance. This contrasts with findings in Vision
Transformers (ViT) (Darcet et al., 2023), where multiple "registers" have been found to be beneficial.

Figure 15: Pre-training loss
curves of models with 0, 1, and
2 sink tokens.

Table 9: Zero-shot accuracy (in %) across 7 NLP benchmarks,
including ARC-[Challenge, Easy], HellaSwag, LAMBADA, Open-
bookQA, PIQA, and Winogrande.

Methods ARC-c ARC-e HS LBD OBQA PIQA WG

Vanilla 18.6 45.2 29.4 39.6 16.0 62.2 50.1
+ 1 Sink Token 19.6 45.6 29.8 39.9 16.6 62.6 50.8
+ 2 Sink Tokens 18.7 45.6 29.6 37.5 15.8 64.3 50.4
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