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ABSTRACT
Large language models (LLMs) have fundamentally transformed the capabilities of numerous applications, from

natural language processing to more intricate domain-specific tasks in robotics and autonomous driving. Moreover,

the importance of on-device LLMs has grown significantly in the recent years. Running LLMs on edge devices

not only promises reduced latency and improved user experience but also aligns with the increasing need for

user privacy, as data processing can occur locally. However, the astronomical model sizes of modern LLMs and

constraints of the edge devices, primarily in terms of memory size and bandwidth, pose significant deployment

challenges. In this paper, we propose Activation-aware Weight Quantization (AWQ), a hardware-friendly approach

for LLM low-bit weight-only quantization. Our method is based on the observation that weights are not equally

important: protecting only 1% of salient weights can greatly reduce quantization error. We then propose to search

for the optimal per-channel scaling that protects the salient weights by observing the activation, not weights. AWQ

does not rely on any backpropagation or reconstruction, so it can well preserve LLMs’ generalization ability on

different domains and modalities, without overfitting to the calibration set. AWQ outperforms existing work on

various language modeling and domain-specific benchmarks (coding and math). Thanks to better generalization,

it achieves excellent quantization performance for instruction-tuned LMs and, for the first time, multi-modal LMs.

Alongside AWQ, we implement TinyChat, an efficient and flexible inference framework tailored for on-device

LLM/VLMs, offering more than 3× speedup over the Huggingface FP16 implementation on both desktop and

mobile GPUs. It also democratizes the deployment of the 70B Llama-2 model on mobile GPUs.

1 INTRODUCTION

Deploying large language models (LLMs) directly on edge

devices is crucial. On-device usage eliminates delays caused

by sending data to a cloud server and enables LLMs to op-

erate offline, which is beneficial for real-time applications

like virtual assistants, chatbots, and autonomous vehicles.

The operational costs associated with maintaining and scal-

ing centralized cloud infrastructure can also be reduced.

On-device LLM also enhances data security by keeping

sensitive information local, reducing the chance of data

breaches. LLMs, grounded in transformer-based architec-

tures (Vaswani et al., 2017), have gathered significant atten-

tion for their impressive performance across diverse bench-

marks (Brown et al., 2020; Zhang et al., 2022; Touvron
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Figure 1. We introduce AWQ, a versatile weight quantization
method for LLM. To implement AWQ, we developed TinyChat
to deploy 4-bit quantized LLMs into various edge platforms,
achieving a 3-4× performance boost compared to FP16. No-
tably, we’ve also manufactured a TinyChat computer, powered
by TinyChat, which contains an NVIDIA Jetson Orin Nano with
only 8GB of memory and 15W power consumption. Demo:
https://youtu.be/z91a8DrfgEw.

et al., 2023a; Scao et al., 2022). However, the large model

size leads to the high serving costs. For example, GPT-3 has

175B parameters, which is 350GB in FP16, while the latest

H100 GPU only has 96GB memory, let alone edge devices.

Low-bit weight quantization for LLMs can significantly re-

duce the memory footprint of on-device LLM inference but

ar
X

iv
:2

30
6.

00
97

8v
4 

 [c
s.C

L]
  2

3 
A

pr
 2

02
4



AWQ: Activation-aware Weight Quantization for On-Device LLM Compression and Acceleration

is hard. Quantization-aware training (QAT) is not efficient

due to the high training cost, while post-training quantiza-

tion (PTQ) suffers from large accuracy degradation under

a low-bit setting. The closest work is GPTQ (Frantar et al.,

2022), which uses second-order information to perform er-

ror compensation. However, it may overfit the calibration

set during reconstruction, distorting the learned features on

out-of-distribution domains (Figure 8), which is problematic

since LLMs are generalist models.

In this paper, we propose Activation-aware Weight Quan-

tization (AWQ), a hardware-friendly low-bit weight-only

quantization method for LLMs. Our method is based on

the observation that weights are not equally important for

LLMs’ performance. There is a small fraction (0.1%-1%)

of salient weights; skipping the quantization of these salient

weights will significantly reduce the quantization loss (Ta-

ble 1). To find the salient weight channels, the insight is

that we should refer to the activation distribution instead

of the weight distribution, despite we are doing weight-
only quantization: weight channels corresponding to larger

activation magnitudes are more salient since they process

more important features. To avoid the hardware-inefficient

mixed-precision implementation, we analyze the error from

weight quantization and derive that scaling up the salient
channels can reduce their relative quantization error (Equa-

tion 2). Following the intuition, we designed a per-channel

scaling method to automatically search for the optimal scal-

ing that minimizes the quantization error under full-weight

quantization. AWQ does not rely on any backpropagation

or reconstruction, so it can well preserve LLMs’ general-

ization ability on various domains and modalities without

overfitting to the calibration set.

To implement AWQ, we designed TinyChat, an efficient

inference framework to convert theoretical memory savings

from 4-bit LLM to measured speedup. Our framework sig-

nificantly speeds up linear layers through on-the-fly dequan-

tization. We also take advantage of efficient 4-bit weight

packing and kernel fusion to minimize the inference over-

head (e.g., intermediate DRAM access and kernel launch

overhead), such that we can better realize the speed up from

quantizing the weights to 4-bit, despite the computer is

byte-aligned.

Experiments show that AWQ outperforms existing work

on various tasks for different model families (e.g.,

LLaMA (Touvron et al., 2023a), OPT (Zhang et al., 2022))

and model sizes. Thanks to better generalization, it also

achieves good quantization performance for instruction-
tuned LMs (e.g., Vicuna) and, for the first time, multi-modal
LMs (OpenFlamingo (Awadalla et al., 2023)). TinyChat

further translates the ∼4× lower memory footprint to mea-

sured speedup. On desktop, laptop and mobile GPUs, we

consistently observe a 3.2-3.3× average speedup compared

to the FP16 implementation by Huggingface across a diverse

spectrum of LLMs. Furthermore, it facilitates effortless de-

ployment of the Llama-2-70B model on a single NVIDIA

Jetson Orin with 64GB of memory. It also democratizes

13 billion parameter LLM at an interactive pace of 30 to-

kens/second on a laptop RTX 4070 GPU with only 8GB of

memory. AWQ has been widely adopted by various open-

source LLM serving solutions including FastChat, vLLM,

HuggingFace TGI, LMDeploy, etc.

2 RELATED WORK

Model quantization methods. Quantization reduces the

bit-precision of deep learning models (Han et al., 2016;

Jacob et al., 2018; Nagel et al., 2019; Wang et al., 2019;

Nagel et al., 2020; Lin et al., 2020), which helps to reduce

the model size and accelerate inference. Quantization tech-

niques generally fall into two categories: quantization-aware

training (QAT, which relies on backpropagation to update

the quantized weights) (Bengio et al., 2013; Gholami et al.,

2021; Nagel et al., 2021; Choi et al., 2018) and post-training

quantization (Jacob et al., 2018; Nagel et al., 2019; 2020)

(PTQ, usually training-free). The QAT methods cannot eas-

ily scale up to large models like LLMs. Therefore, people

usually use PTQ methods to quantize LLMs.

Quantization of LLMs. People study two settings for

LLM quantization: (1) W8A8 quantization, where both

activation and weights are quantized to INT8 (Dettmers

et al., 2022; Xiao et al., 2022; Yao et al., 2022; Wei et al.,

2022a; 2023); (2) Low-bit weight-only quantization (e.g.,

W4A16), where only weights are quantized into low-bit

integers (Frantar et al., 2022; Dettmers & Zettlemoyer, 2022;

Sheng et al., 2023; Park et al., 2022). We focus on the

second setting in this work since it not only reduces the

hardware barrier (requiring a smaller memory size) but also

speeds up the token generation (remedies memory-bound

workload). Apart from the vanilla round-to-nearest baseline

(RTN), GPTQ (Frantar et al., 2022) is the closest to our work.

However, the reconstruction process of GPTQ leads to an

over-fitting issue to the calibration set and may not preserve

the generalist abilities of LLMs for other modalities and

domains. It also requires a reordering trick to work for some

models (e.g., LLaMA-7B (Touvron et al., 2023a) and OPT-

66B (Zhang et al., 2022)). Apart from quantiztion methods

designed for general-purporse hardware, SpAtten (Wang

et al., 2020) designs a progressive approach to gradually

increase the number of bits used in softmax calculation.

System support for low-bit quantized LLMs. Low-bit

quantized LLMs have been a popular setting to reduce in-

ference costs. There are some system supports to achieve

a practical speed-up. GPTQ (Frantar et al., 2022) provides

INT3 kernels for OPT models and GPTQ-for-LLaMA ex-

tends kernel support for INT4 reordered quantization with

the help of Triton (Tillet et al., 2019). FlexGen (Sheng et al.,
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Figure 2. We observe that we can find 1% of the salient weights in LLMs based on the activation distribution (middle). Keeping the salient
weights in FP16 can significantly improve the quantized performance (PPL from 43.2 (left) to 13.0 (middle)), but the mixed-precision
format is not hardware-efficient. We follow the activation-awareness principle and propose AWQ (right). AWQ performs per-channel
scaling to protect the salient weights and reduce quantization error. We measure the perplexity of OPT-6.7B under INT3-g128 quantization.

2023), llama.cpp* and exllama† perform group-wise

INT4 quantization to reduce I/O costs and offloading. Faster-

Transformer implements FP16×INT4 GEMM for weight-

only per-tensor quantization but does not support group

quantization. LUT-GEMM (Park et al., 2022) performs bit-

wise computation on GPU CUDA cores with the help of

lookup tables. Our concurrent work, MLC-LLM (MLC-

Team, 2023) offers strong results on multiple edge CPU and

GPU platforms thanks to the powerful TVM (Chen et al.,

2018; Feng et al., 2023) backend.

3 AWQ: ACTIVATION-AWARE WEIGHT
QUANTIZATION

Quantization maps a floating-point number into lower-bit

integers. It is an effective method to reduce the model

size and inference costs of LLMs (Dettmers et al., 2022;

Frantar et al., 2022; Yao et al., 2022; Xiao et al., 2022). In

this section, we first propose a weight-only quantization

method to improve accuracy without training/regression by

protecting more “important” weights. And then develop a

data-driven method to search for the optimal scaling that

reduces quantization errors (Figure 2).

3.1 Improving LLM Quantization by Preserving 1%
Salient Weights

We observe that the weights of LLMs are not equally im-
portant: there is a small fraction of salient weights that

are much more important for LLMs’ performance com-

pared to others. Skipping the quantization of these salient

weights can help bridge the performance degradation due

to the quantization loss without any training or regression

(Figure 2(b)). To verify the idea, we benchmark the per-

formance of quantized LLMs when skipping part of the

weight channels in Table 1. We measured the performance

of INT3 quantized models while keeping some ratios of

*https://github.com/ggerganov/llama.cpp
†https://github.com/turboderp/exllama

weight channels in FP16. A widely used method to deter-

mine the importance of weights is to look at its magnitude

or L2-norm (Han et al., 2015; Frankle & Carbin, 2018).

But we find skipping the weight channels with large norm

(i.e., FP16% (based on W)) does not significantly improve

the quantized performance, leading to a similar marginal

improvement as random selection. Interestingly, selecting

weights based on activation magnitude can significantly im-

prove the performance despite keeping only 0.1%-1% of

channels in FP16. We hypothesize that the input features

with larger magnitudes are generally more important. Keep-

ing the corresponding weights in FP16 can preserve those

features, which contributes to better model performance.

Limitations: Despite keeping 0.1% of weights in FP16

can improve the quantized performance without a noticeable

increase in model size (measured in total bits), such a mixed-

precision data type will make the system implementation

difficult. We need to come up with a method to protect the

important weights without actually keeping them as FP16.

3.2 Protecting Salient Weights by Activation-aware
Scaling

We propose an alternative method to reduce the quantization

error of the salient weight by per-channel scaling, which

does not suffer from the hardware inefficiency issue.

Analyzing the quantization error.

We start by analyzing the error from weight-only quanti-

zation. Consider a group/block of weight w; the linear

operation can be written as y = wx, and the quantized

counterpart is y = Q(w)x. Specifically, the quantization

function is defined as:

Q(w) = Δ · Round(
w

Δ
), Δ =

max(|w|)
2N−1

, (1)

where N is the number of quantization bits, and Δ is the

quantization scaler determined by the absolute maximum

value. Now consider a weight element w ∈ w, if we mul-



AWQ: Activation-aware Weight Quantization for On-Device LLM Compression and Acceleration

PPL ↓ FP16 RTN
FP16% (based on act.) FP16% (based on W) FP16% (random)

(w3-g128) 0.1% 1% 3% 0.1% 1% 3% 0.1% 1% 3%

OPT-1.3B 14.62 119.00 25.03 16.91 16.68 108.71 98.55 98.08 119.76 109.38 61.49
OPT-6.7B 10.86 23.54 11.58 11.39 11.36 23.41 22.37 22.45 23.54 24.23 24.22
OPT-13B 10.13 46.04 10.51 10.43 10.42 46.07 48.96 54.49 44.87 42.00 39.71

Table 1. Keeping a small fraction of weights (0.1%-1%) in FP16 significantly improves the performance of the quantized models over
round-to-nearest (RTN). It is only effective when we select the important weights in FP16 by looking at activation distribution instead of
weight distribution. We highlight results with a decent perplexity in green. We used INT3 quantization with a group size of 128 and
measured the WikiText perplexity (↓).

OPT-6.7B s = 1 s = 1.25 s = 1.5 s = 2 s = 4

proportion of Δ
′ �= Δ 0% 2.8% 4.4% 8.2% 21.2%

average Δ
′
/Δ 1 1.005 1.013 1.038 1.213

average Δ
′

Δ
· 1
s

1 0.804 0.676 0.519 0.303

Wiki-2 PPL 23.54 12.87 12.48 11.92 12.36

Table 2. Statistics when multiplying the 1% salient channels by
s > 1. Scaling up the salient channels significantly improves
the perplexity (23.54 to 11.92). As s goes larger, the percentage
of changed Δ increases, and the error reduction rate for salient
channels also increases. However, the best perplexity is achieved
at s = 2, since further increasing s will increase the quantization
error for non-salient channels.

tiply w with s > 1 and the inversely scale x, we will have

Q(w · s)(x/s), which is:

Q(w · s) · x
s
= Δ

′ · Round(
ws

Δ′ ) · x · 1
s
, (2)

where Δ
′

is the new quantization scaler after applying s. We

empirically find that: (1) The expected error from Round(·)
(denoted as RoundErr(·)) does not change: since the

round function maps a floating-point number to an inte-

ger, the error is roughly uniformly distributed from [0,0.5],

resulting in an average error of 0.25; i.e., RoundErr(·) ∼
0.25. (2) Scaling up a single element w usually does not

change the maximum value from the group w. Therefore we

have Δ
′ ≈ Δ; (3) As Δ and x are represented in FP16, they

have no quantization error. Consequently, the quantization

error from equation 1 and 2 can be expressed as

Err(Q(w)x) = Δ · RoundErr(w
Δ
) · x

Err(Q(w · s)(x
s
)) = Δ

′ · RoundErr(ws
Δ′ ) · x · 1

s

(3)

The ratio of the new error to the original error is Δ
′

Δ · 1
s .

Given Δ
′ ≈ Δ and s > 1, the relative error is smaller for

the salient weight w.

To verify the idea, we multiply the 1% salient channels with

s > 1 for the OPT-6.7B model, and measure the change in

OPT (PPL↓) 1.3B 2.7B 6.7B 13B 30B

FP16 14.62 12.47 10.86 10.13 9.56

RTN 119.47 298.00 23.54 46.04 18.80
1% FP16 16.91 13.69 11.39 10.43 9.85
s = 2 18.63 14.94 11.92 10.80 10.32
AWQ 16.32 13.58 11.39 10.56 9.77

Table 3. AWQ protects salient weights and reduces quantization
error by using a scaling-based method. It consistently outperforms
Round-to-nearest quantization (RTN) and achieves comparable
performance as mixed-precision (1% FP16) while being more
hardware-friendly. We use 3-bit quantization with group size 128.

Δ for each group in Table 2. We find that scaling up the

salient channels is quite effective: the perplexity improves

from 23.54 for s = 1 (simply RTN) to 11.92 for s = 2.

As s goes larger, the percentage of changed Δ generally

gets larger, but the percentage is still quite small for s < 2
(less than 5%); the relative error for the salient channels

continues to go smaller as s increases. Nonetheless, the best

PPL actually appears at s = 2. This is because if we use a

very large s, it will increase the relative error for the non-
salient channels when Δ increases (the error of non-salient

channels will be amplified by Δ
′

Δ , and the ratio is larger

than 1 for 21.2% of the channels under s = 4), which can

damage the model’s overall accuracy. Therefore, we need

to also consider the error from non-salient channels when

protecting salient ones.

Searching to scale. To consider both salient and non-

salient weights, we choose to automatically search for an

optimal (per input channel) scaling factor that minimizes

the output difference after quantization for a certain layer.

Formally, we want to optimize the following objective:

s∗ = argmin
s

L(s)
L(s) = ‖Q(W · diag(s))(diag(s)−1 ·X)−WX‖

(4)

Here Q means the weight quantization function (e.g.,

INT3/INT4 quantization with group size 128), W is the

original weights in FP16, and X is the input features cached

from a small calibration set (we take a small calibration
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Figure 3. Bottleneck analysis for Llama-2-7B on NVIDIA RTX 4090. Left: In on-device LLM applications, generation stage is much
slower than the context stage. Middle: The generation stage is memory bound and has low arithmetic intensity. W4A16 quantization can
effectively improve the arithmetic intensity by 4×. Right: The amount of weight access is orders of magnitude larger than the amount of
activation access. Thus, weight-only quantization is more effective for on-device LLMs.

set from he pre-training dataset in order not to overfit to

a specific task). s is a per-(input) channel scaling factor;

for s−1 · X, it can usually be fused into the previous op-

erator (Wei et al., 2022b; Xiao et al., 2022). Since the

quantization function is not differentiable, we are not able

to directly optimize the problem with vanilla backpropaga-

tion. There are some techniques relying on approximated

gradients (Bengio et al., 2013; Esser et al., 2019), which we

found still suffers from unstable convergence.

To make the process more stable, we define a search space
for the optimal scale by analyzing the factors that will affect

the choice of scaling factor. As shown in the last section, the

saliency of weight channels is actually determined by the

activation scale (thus “activation-awareness”). Therefore,

we simply use a very simple search space:

s = sX
α, α∗ = argmin

α
L(sXα) (5)

sX is the average magnitude of activation (per-channel), and

we use a single hyper-parameter α to balance between the

protection of salient and non-salient channels. We can find

the best α by a fast grid search over the interval of [0, 1] (0
means we do not scale; 1 corresponds to the most aggres-

sive scaling in our search space). We further apply weight

clipping to minimize the MSE error of quantization. We

provide an ablation study on OPT models under INT3-g128

quantization in Table 5; AWQ consistently outperforms

round-to-nearest quantization (RTN) and achieves compara-

ble performance as mixed-precision (1% FP16) while being

more hardware-friendly.

Advantages. Our method does not rely on any regres-

sion (Frantar et al., 2022) or backpropagation, which is

required by many quantization-aware training methods. It

has minimal reliance on the calibration set since we only

measure the average magnitude per channel, thus preventing

over-fitting (Figure 8). Therefore, our method requires fewer

data for the quantization process and can preserve LLMs’

knowledge outside of the calibration set’s distribution. See

Section 5.3 for more details.

4 TINYCHAT: MAPPING AWQ ONTO EDGE
PLATFORMS

AWQ can substantially reduce the size of LLMs. However,

converting the theoretical memory savings from W4A16

(4-bit weight, 16-bit activation) quantization into measured

speedup is non-trivial. Alternative W8A8 quantization meth-

ods, such as SmoothQuant (Xiao et al., 2022), maintain the
same data precision for both storage and computation. This

allows the dequantization procedure to be seamlessly inte-

grated into the computation kernel’s epilogue. On the other

hand, W4A16 quantization employs different data types for

memory access and computation. As a result, its dequantiza-

tion must be incorporated into the primary computation loop

for optimal performance, posing implementation challenges.

To tackle this, we introduce TinyChat: a nimble system for

AWQ model inference. It boasts a PyTorch frontend and

a backend harnessing device-specific instruction sets (e.g.,

CUDA/PTX, Neon, AVX).

4.1 Why AWQ Helps Accelerate On-Device LLMs

To understand the acceleration opportunities in quantized

LLMs on the edge, we start by profiling the latency break-

down of LLaMA-7B (Touvron et al., 2023a) model on an

RTX 4090 GPU. We adopt an inference batch size of 1,

catering for edge use cases, and implement the model in

FP16 with NVIDIA FasterTransformer.

Context vs generation latency. As in Figure 3(a), it takes

310 ms to generate 20 tokens, while summarizing a prompt

with 200 tokens only takes 10 ms. Consequently, the gen-

eration phase is substantially slower than the context stage,

particularly for on-device interactive applications.

Generation stage is memory-bound. To accelerate the

generation phase, we conduct a roofline analysis in Fig-

ure 3(b). The 4090 GPU has a peak computation throughput

of 165 TFLOPS and a memory bandwidth of 1TB/s. There-

fore, any workload with arithmetic intensity (the ratio of

FLOPs to memory access) less than 165 is memory bounded
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Figure 4. SIMD-aware weight packing for ARM NEON with 128-bit SIMD units. Original weights are reordered and packed to align
with the bit width so that the weights can be unpacked into bytes at runtime using AND and shift bitwise operations with a 128-bit mask.

on 4090 GPUs. Notably, when executed in FP16, the gener-

ation stage for on-device LLMs has arithmetic intensity≈1.

This underscores the memory-bound nature of the workload.

Since the FLOPs of a given model is fixed, the only way to

improve the peak performance is to reduce the total amount

of memory traffic. AWQ reduces the weight memory by

four times.

Weight access dominates memory traffic. We therefore

further break down the memory access for weight and acti-

vation in Figure 3(c). Clearly, weight access dominates the

memory traffic for on-device LLMs. Quantizing the model

weights to 4 bit integers will approximately increase the

arithmetic intensity to 4 FLOPs/Byte, leading to a 4TFLOPS

peak performance in Figure 3(b). Since weight-only quanti-

zation leads to a lower bit width for weights (and thus higher

theoretical performance upper bound), it is natural for AWQ

to follow this setting for on-device LLM applications.

4.2 Deploy AWQ with TinyChat

To this end, we demonstrated that 4-bit weight quantiza-

tion could lead to a 4× theoretical peak performance. We

further design TinyChat to realize this speedup. On GPUs,

we only focus on implementing essential components, in-

cluding attention, layer normalization, and linear projection

kernels. The flexible frontend allows easy customization

and fast support for new models. TinyChat with 4-bit AWQ

achieves more than 3× speedup compared with the Hug-

gingface FP16 implementation across different families of

LLMs on GPUs. On CPUs, we lower the entire computation

graph to C++ to minimize overhead.

On-the-fly weight dequantization. For quantized layers,

as the hardware does not provide multiplication instructions

between INT4 and FP16, we need to dequantize the integers

to FP16 before performing matrix computation. We avoid

writing dequantized weights into DRAM by fusing dequan-

tization kernels with the matrix multplication kernel. Note

that such fusion is adopted for both matrix-matrix (MM)

and matrix-vector (MV) product kernels.

SIMD-aware weight packing. On-the-fly weight dequan-

tization reduces intermediate DRAM access, but remains

expensive. For instance, dequantizing a single 4-bit weight
involves 1 shift, 1 bitwise AND, and 1 FMA scaling op-

erations, while the dequantized weight undergoes only 1

FMA computation. This process is particularly costly on

CPUs with SIMD architecture that favor vectorized in-

structions. To mitigate this, we suggest platform-specific

weight packing tailored to the bitwidth of a device’s SIMD

units. Figure 4 demonstrates our strategy for ARM CPUs

with 128-bit SIMD registers offering up to 1.2× speedup.

Here, each register holds 32 4-bit weights, sequenced as

w0, w16, w1, w17, ..., w15, w31. This approach requires just

three SIMD instructions to unpack all 32 weights, as op-

posed to 3 scalar instructions per weight in a conventional

packing (w0, w1, ..., w31). Generally, for 2n-bit SIMD reg-

isters, adjacent weights will have indices off by 1/8× 2n,

since each register can hold 1/8 × 2n 8-bit integers. On

GPUs, we found it more efficient to pack each 8 weights

into w{0,2,4,6,1,3,5,7} following (Kim et al., 2022).

Kernel fusion. We also extensively apply kernel fusion

to optimize on-device LLM inference. For layer normaliza-

tion, we fuse all operators (e.g. multiplication, division and

square root) into a single kernel. For attention layers, we

fuse QKV projections into a single kernel, and also perform

on-the-fly positional embedding calculation. We also pre-

allocate KV caches and perform cache updates within the

attention kernel. Kernel fusion is particularly useful for mod-

els with inefficient forward pass implementations, such as

Falcon (Penedo et al., 2023) and StarCoder (Li et al., 2023c).

Notably, the computation time for each FP16 kernel is in

the order of 0.01ms on the 4090 GPU, comparable to the

GPU kernel launch overhead. Hence, reducing number of

kernel calls through kernel fusion leads to direct speedups.

5 EXPERIMENTS

5.1 Settings

Quantization. We focus on weight-only grouped quanti-

zation in this work. As shown in previous work (Dettmers &

Zettlemoyer, 2022; Frantar et al., 2022), grouped quantiza-

tion is always helpful for improving performance/model size

trade-off. We used a group size of 128 throughout the work,

except otherwise specified. We focus on INT4/INT3 quan-

tization since they are able to mostly preserve the LLMs’

performance (Dettmers & Zettlemoyer, 2022). For AWQ,

we used a small calibration set from the Pile (Gao et al.,
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PPL↓ Llama-2 LLaMA

7B 13B 70B 7B 13B 30B 65B

FP16 - 5.47 4.88 3.32 5.68 5.09 4.10 3.53

INT3
g128

RTN 6.66 5.52 3.98 7.01 5.88 4.88 4.24
GPTQ 6.43 5.48 3.88 8.81 5.66 4.88 4.17
GPTQ-R 6.42 5.41 3.86 6.53 5.64 4.74 4.21
AWQ 6.24 5.32 3.74 6.35 5.52 4.61 3.95

INT4
g128

RTN 5.73 4.98 3.46 5.96 5.25 4.23 3.67
GPTQ 5.69 4.98 3.42 6.22 5.23 4.24 3.66
GPTQ-R 5.63 4.99 3.43 5.83 5.20 4.22 3.66
AWQ 5.60 4.97 3.41 5.78 5.19 4.21 3.62

Table 4. AWQ improves over round-to-nearest quantization (RTN) for different model sizes and different bit-precisions. It consistently
achieves better perplexity than GPTQ (w/ and w/o reordering) on LLaMA & Llama-2 models.

Wikitext2 PPL↓ Mixtral-8x7B Mistral-7B

FP16 5.94 4.14

INT4-g128 6.05 4.30
INT3-g128 6.52 4.83

Table 5. AWQ quantization results on Mistral-7B-Instruct-
v0.2(Jiang et al., 2023) and Mixtral-8x7B-Instruct-v0.1 model
(Jiang et al., 2024). The PPL result on wikitext shows that AWQ
can achieve superior quantization performance on different model
architectures including LLMs with GQA and Mixture-of-Experts
(MoE) models.

2020) dataset in order not to overfit to a specific down-

stream domain. We used a grid size of 20 to search for the

optimal α in Equation 5.

Models. We benchmarked our method on LLaMA (Tou-

vron et al., 2023a) and OPT (Zhang et al., 2022) families.

There are other open LLMs like BLOOM (Scao et al., 2022),

but they are generally worse in quality, so we do not include

them in our study. We further benchmark an instruction-

tuned model Vicuna (Chiang et al., 2023) and visual lan-

guage models OpenFlamingo-9B (Awadalla et al., 2023)

and LLaVA-13B (Liu et al., 2023a) to demonstrate the gen-

erability of our method.

Evaluations. Following previous literature (Dettmers

et al., 2022; Xiao et al., 2022; Frantar et al., 2022; Dettmers

& Zettlemoyer, 2022; Yao et al., 2022), we mainly profiled

the quantized models on language modeling tasks (perplex-

ity evaluation on WikiText-2 (Merity et al., 2016)) since per-

plexity can stably reflect the LLM’s performance (Dettmers

& Zettlemoyer, 2022).

Baselines. Our primary baseline is vanilla round-to-

nearest quantization (RTN). It is actually quite strong when

using a small group size like 128 (Frantar et al., 2022;

Dettmers & Zettlemoyer, 2022). We also compare with

a state-of-the-art method GPTQ (Frantar et al., 2022) for
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Figure 5. Comparing INT3-g128 quantized Vicuna models with
FP16 counterparts under GPT-4 evaluation protocol (Chiang et al.,
2023). More winning cases (in blue) indicate better performance.
AWQ consistently improves the quantized performance compared
to RTN and GPTQ (Frantar et al., 2022), showing generalization
to instruction-tuned models.

LLM weight quantization. For GPTQ, we also compare

with an updated version that uses a “reorder” trick (denoted

as GPTQ-Reorder or GPTQ-R). Other techniques like Ze-

roQuant (Yao et al., 2022), AdaRound (Nagel et al., 2020),

and BRECQ (Li et al., 2021) rely on backpropagation to up-

date the quantized weights, which may not easily scale up to

large model sizes; they also do not outperform GPTQ (Fran-

tar et al., 2022), thus not included for study.

5.2 Evaluation

Results on LLaMA models. We focus on LLaMA mod-

els (LLaMA (Touvron et al., 2023a) and Llama-2 (Touvron

et al., 2023b)) due to their superior performance compared

to other open-source LLMs (Zhang et al., 2022; Scao et al.,

2022); it is also the foundation of many popular open-source

models (Taori et al., 2023; Chiang et al., 2023). We evalu-

ate the perplexity before and after quantization in Table 4.

AWQ consistently outperforms round-to-nearest (RTN) and

GPTQ (Frantar et al., 2022) (w/ and w/o reordering) across

different model scales (7B-70B) and generations.

Results on Mistral / Mixtral models. We also evalu-

ated AWQ on the Mistral and Mixtral models, which are

among the most popular open-source LLMs and Mixture-

of-Experts (MoE) models, respectively (Jiang et al., 2023;
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COCO (CIDEr ↑) 0-shot 4-shot 8-shot 16-shot 32-shot Δ(32-shot)

FP16 - 63.73 72.18 76.95 79.74 81.70 -

INT4
g128

RTN 60.24 68.07 72.46 74.09 77.13 -4.57
GPTQ 59.72 67.68 72.53 74.98 74.98 -6.72
AWQ 62.57 71.02 74.75 78.23 80.53 -1.17

INT3
g128

RTN 46.07 55.13 60.46 63.21 64.79 -16.91
GPTQ 29.84 50.77 56.55 60.54 64.77 -16.93
AWQ 56.33 64.73 68.79 72.86 74.47 -7.23

Table 6. Quantization results of a visual language model OpenFlamingo-9B (Awadalla et al., 2023) on COCO Captioning datasets. AWQ
outperforms existing methods under zero-shot and various few-shot settings, demonstrating the generability to different modalities and
in-context learning workloads. AWQ reduces the quantization degradation (32-shot) from 4.57 to 1.17 under INT4-g128, providing 4×
model size reduction with negligible performance loss.

Model (Accuracy↑) VQAv2 GQA VizWiz SQA-I VQA-T POPE MME MMB SEED llava-bench MM-Vet

VILA-7B 80.3 63.1 59.6 68.0 62.6 86.3 1489.4 69.8 61.7 75.2 35.1
VILA-7B-AWQ 80.1 63.0 57.8 68.0 61.9 85.3 1486.3 68.8 61.3 75.8 35.9
VILA-13B 80.5 63.6 63.1 70.5 64.0 86.3 1553.6 73.8 62.8 78.3 42.6
VILA-13B-AWQ 80.4 63.6 63.0 71.2 63.5 87.0 1552.9 73.6 62.2 77.6 42.0

Table 7. INT4-g128 results of VILA-7B and VILA-13B (Lin et al., 2024) on 11 visual-language benchmarks. AWQ consistently
shows lossless performance on all benchmarks. Benchmark names are abbreviated due to space limits. VQA-v2 (Goyal et al., 2017);
GQA (Hudson & Manning, 2019); VisWiz (Gurari et al., 2018); SQAI: ScienceQA-IMG (Lu et al., 2022); VQAT: TextVQA (Singh et al.,
2019); POPE (Li et al., 2023d); MME (Fu et al., 2023); MMB: MMBench (Liu et al., 2023b); MMBCN: MMBench-Chinese (Liu et al.,
2023b); SEED: SEED-Bench (Li et al., 2023a); LLaVAW: LLaVA-Bench (In-the-Wild) (Liu et al., 2023a); MM-Vet (Yu et al., 2023).

2024). The results indicate that AWQ achieves superior

performance on both the Mistral and Mixtral models. This

demonstrates that AWQ is effective across various model

architectures.

Quantization of instruction-tuned models. Instruction

tuning can significantly improve the models’ performance

and usability (Wei et al., 2021; Sanh et al., 2021; Ouyang

et al., 2022; Chung et al., 2022). It has become an essential

procedure before model deployment. We further benchmark

our method’s performance on a popular instruction-tuned

model Vicuna (Chiang et al., 2023) in Figure 5. We used the

GPT-4 score to evaluate the quantized models’ performance

against the FP16 counterpart on 80 sample questions (Chi-

ang et al., 2023). We compare the responses with both orders

(quantized-FP16, FP16-quantized) to get rid of the ordering

effect (we found GPT-4 tends to increase the rating of the

first input), leading to 160 trials. AWQ consistently im-

proves the INT3-g128 quantized Vicuna models over RTN

and GPTQ under both scales (7B and 13B), demonstrating

the generability to instruction-tuned models.

Quantization of multi-modal language models. Large

multi-modal models (LMMs) or visual language models

(VLMs) are LLMs augmented with vision inputs (Alayrac

et al., 2022; Li et al., 2023b; Koh et al., 2023; Driess et al.,

2023; Zhang et al., 2023; Liu et al., 2023a). Such models are

able to perform text generation conditioned on image/video

inputs. Since our method does not have the overfitting issue

MBPP (7B) pass@1 pass@10

FP16 38.53 49.77

RTN 37.51 48.49
GPTQ 31.97 44.75
AWQ 40.64 49.25

GSM8K 7B 13B 70B

FP16 13.87 26.16 56.41

RTN 11.07 21.23 53.98
GPTQ 12.13 24.26 56.03
AWQ 13.57 25.25 56.40

Table 8. INT4-g128 quantization results of CodeLlama-7b-
Instruct-hf on MBPP dataset and Llama-2 (7B/13B/70B) on
GSM8K dataset. AWQ outperforms existing methods on program-
ming and math datasets, demonstrating the generability to different
scenarios and evaluation settings. Notably, AWQ under the INT4-
g128 configuration demonstrates comparable performance to the
original FP16 model across both datasets.

to the calibration set, it can be directly applied to VLMs

to provide accurate and efficient quantization. We perform

experiments with the OpenFlamingo-9B model (Awadalla

et al., 2023) (an open-source reproduction of (Alayrac et al.,

2022)) on COCO captioning (Chen et al., 2015) dataset (Ta-

ble 6). We measured the average performance of 5k samples

under different few-shot settings. We only quantize the lan-

guage part of the model since it dominates the model size.

AWQ outperforms existing methods under zero-shot and

various few-shot settings, demonstrating the generability to

different modalities and in-context learning workloads. It

reduces the quantization degradation (32-shot) from 4.57 to

1.17 under INT4-g128, providing 4× model size reduction

with negligible performance loss. To further demonstrate
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Question: Can you explain this meme in detail? 
I T4-g128 RT : The meme in the image features a plate of food, likely fried chicken, with a unique twist. There 
are small pictures of the Earth and other planets placed on top of the food, creating an interesting and amusing 
visual. Alongside the plate, a caption reads, "Sometimes I look at pictures of the Earth from space and I marvel at 
how beautiful it all is." This combination of food and planet images adds a touch of humor and curiosity, making 
the viewer wonder about the context and intent behind the meme.
I T4-g128 AWQ: The meme in the image is a lighthearted and humorous take on the concept of looking at 
pictures of the Earth from space. A plate of fried food, specifically chicken nuggets, is presented with the caption, 
"Sometimes I look at pictures of the Earth from space and I marvel at how beautiful it all is." The playful 
combination of a food item and an Earth-related context creates a fun and entertaining visual.

Figure 6. Visual reasoning examples from LLaVA-13B model (Liu et al., 2023a). AWQ improves over the round-to-nearest (RTN)
baseline, providing more reasonable answers. We color the text to show the correct or wrong responses.

W4-RTN: A man 
and a dog walking 
past some bushes.  
W4-AWQ: Two 
dogs are walking 
on the street. 

W4-RTN: A man is 
holding a baby elephant
in his arms. 
W4-AWQ: A man and 
his daughter pose with 
an elephant. 

W4-RTN: A model 
airplane flying in 
the sky. 
W4-AWQ: Two toy 
airplanes sit on a 
grass field. 

Figure 7. Qualitative results of quantized OpenFlamingo-9B (Awadalla et al., 2023) on COCO captioning dataset (4-shot, INT4-g128
quantization). Our method significantly improves the captioning quality compared to the round-to-nearest (RTN) baseline. We color the
text to show the correct or wrong captions.

OPT (Wiki PPL↓) 1.3B 2.7B 6.7B 13B 30B

FP16 14.62 12.47 10.86 10.13 9.56

RTN 10476 193210 7622 17564 8170
GPTQ 46.67 28.15 16.65 16.74 11.75

AWQ +GPTQ 35.71 25.70 15.71 13.25 11.38

Table 9. Our method is orthogonal to GPTQ: it further closes the
performance gap under extreme low-bit quantization (INT2-g64)
when combined with GPTQ. Results are WikiText-2 perplexity of
OPT models.

the generability of AWQ, we also evaluated AWQ on one of

the SoTA multi-image visual language models: VILA. The

result in Table 7 shows that AWQ achieves lossless quanti-

zation performance on 11 visual-language benchmarks. We

further provide some qualitative captioning results in Fig-

ure 7 to show our advantage over RTN. Our method provides

a push-the-button solution for LMM/VLM quantization. It

is the first study of VLM low-bit quantization to the best of

our knowledge.

Visual reasoning results. We further provide some qual-

itative visual reasoning examples of the LLaVA-13B (Liu

et al., 2023a) model in Figure 6. AWQ improves the re-

sponses compared to round-to-nearest (RTN) for INT4-g128

quantization, leading to more reasonable answers. In this

first example, the AWQ model can understand the meme as

it resembles the Earth when looking from space, while RTN

produces wrong descriptions (marked in red).

Results on programming and math tasks To fur-

ther evaluate the performance of AWQ on tasks in-

volving complex generations, we also tested AWQ on

MBPP (Austin et al., 2021) and GSM8K (Cobbe et al.,

2021). MBPP (Austin et al., 2021) consists of around 1,000

Python programming problems, designed to be solvable by

entry level programmers, covering programming fundamen-

tals, standard library functionality, etc. GSM8K (Cobbe

et al., 2021) was created to support the task of question an-

swering on basic mathematical problems that require multi-

step reasoning. We quantize CodeLlama-7b-Instruct-hf and

Llama-2 to INT4-g128 and perform experiments on pro-

gramming and math datasets (Table 8). AWQ outperforms

existing methods on both datasets, demonstrating the gener-

ability to complex generation. AWQ under the INT4-g128

configuration demonstrates comparable performance to the

original FP16 model on both datasets.

Extreme low-bit quantization. We further quantize LLM

to INT2 to accommodate limited device memory (Table 9).

RTN completely fails, and AWQ brings significant perplex-

ity improvement on top of GPTQ.Our method is orthogonal

to GPTQ. We can combine our method with GPTQ to fur-

ther improve the INT2 quantization performance, making it

a more practical setting.

5.3 Data Efficiency and Generalization

Better data-efficiency for the calibration set. Our

method requires a smaller calibration set since we do not

rely on regression/backpropagation; we only measure the

average activation scale from the calibration set, which is

data-efficient. To demonstrate the idea, we compare the per-

plexity of the OPT-6.7B model with INT3-g128 quantization

in Figure 8 (a). AWQ needs a much smaller calibration to



AWQ: Activation-aware Weight Quantization for On-Device LLM Compression and Acceleration
Pe

rp
le

xi
ty

13

13.5

14

8 16 32 64 128 192 256

GPTQ
Ours GPTQ Ours

PubMed Enron PubMed Enron

PubMed 32.48 50.41 32.56 45.07

Enron 34.81 45.52 33.16 44.57

Calib
Eval

+2.33

+4.89

+0.60

+0.50

# calibration sequences (×2048 tokens)
(a) Our method needs a smaller calibration set (b) Our method is more robust to calibration set distribution

Figure 8. Left: AWQ needs a much smaller calibration set to reach a good quantized performance. It can achieve better perplexity using
10× smaller calibration set compared to GPTQ. Right: Our method is more robust to the calibration set distribution. Overall, using the
same calibration and evaluation distribution works the best (PubMed-PubMed, Enron-Enron). But when using a different calibration
distribution (PubMed-Enron, Enron-PubMed), AWQ only increases the perplexity by 0.5-0.6, while GPTQ has 2.3-4.9 worse perplexity.
All experiments are done with the OPT-6.7B model under INT3-g128 quantization.

0

50

100

150

200

124

49

158

110

194

536362
33

5952

Huggingface (FP16) Ours (FP16) Ours (AWQ, W4A16)

To
ke

ns
 / 

se
c

FP16
OOM

(a) RTX 4090 desktop GPU (b) Jetson Orin mobile GPU

FP16
OOM

Llama-2
(7B)

Llama-2
(13B)

MPT
(7B)

MPT
(30B)

Falcon
(7B)

0

10

20

30

40

22

9

38

21

39

91212
7

1111
FP16
OOM

FP16
OOM

Llama-2
(7B)

Llama-2
(13B)

MPT
(7B)

MPT
(30B)

Falcon
(7B)

0

15

30

45

60
52

60

33

61

Llama-2
(7B)

Llama-2
(13B)

MPT
(7B)

Falcon
(7B)

(c) RTX 4070 laptop GPU

FP
16

 O
O

M

FP
16

 O
O

M

FP
16

 O
O

M

FP
16

 O
O

M

Figure 9. TinyChat provides a turn-key solution to transform the theoretical memory footprint reduction into a quantifiable speedup. As a
result, TinyChat is up to 3.9× and 3.5× faster than the FP16 implementation from Huggingface on 4090 (desktop GPU) and Orin (mobile
GPU), respectively. AWQ also democratizes Llama-2-13B deployment on laptop GPUs (4070) with merely 8GB memory.

reach a good quantized performance; it can achieve better

perplexity using 10× smaller calibration set compared to

GPTQ (16 sequences v.s. 192 sequences).

Robust to the calibration set distributions. Our method

is less sensitive to the calibration set distribution since we

only measure the average activation scale from the calibra-

tion set, which is more generalizable across different dataset

distributions. We further benchmarked the effect of the dif-

ferent calibration set distributions in Figure 8(b). We took

two subsets from the Pile dataset (Gao et al., 2020): PubMed

Abstracts and Enron Emails (Klimt & Yang, 2004). We use

each of the subsets as the calibration set and evaluate the

quantized model on both sets (the calibration and evaluation

sets are split with no overlapping; we used 1k samples for

evaluation). Overall, using the same calibration and evalua-

tion distribution works the best (PubMed-PubMed, Enron-

Enron). But when using a different calibration distribution

(PubMed-Enron, Enron-PubMed), AWQ only increases the

perplexity by 0.5-0.6, while GPTQ has 2.3-4.9 worse per-

plexity. This demonstrates the robustness of AWQ to the

calibration set distribution.

5.4 Speedup Evaluation

Settings. In Figure 9, we demonstrate the system accel-

eration results from TinyChat. TinyChat optimizes both

linear layers and layers that do not have quantized weights.

We conduct benchmarking experiments on RTX 4090 and

Model (Throughput↑) Precision A100 4090 Orin

VILA-7B FP16 81.6 58.5 11.5
VILA-7B-AWQ W4A16 155.3 168.1 35.6

VILA-13B FP16 48.5 OOM 6.1
VILA-13B-AWQ W4A16 102.1 99.0 17.5

Table 10. TinyChat also enables seamless deployment of
VILA (Lin et al., 2024), a state-of-the-art visual-language model,
on multiple GPU platforms. Leveraging our 4-bit AWQ quantiza-
tion, TinyChat accelerates VILA-7B by up to 3.1× and VILA-13B
by up to 2.9×.

Jetson Orin following the protocol described in exllama ‡.

We perform batch size = 1 inference for all LLMs using a

fixed prompt length of 4 tokens. We generate 200 tokens for

each inference run and calculate the median latency as the

final result.

Results. As in Figure 9(a), TinyChat brings 2.7-3.9×
speedup to three families of LLMs (Llama-2, MPT and

Falcon) on 4090 compared with the Huggingface FP16 im-

plementation. For Llama-2-7B, we improve the inference

speed from 52 tokens/s to 62 tokens/s through FP16 kernel

fusion. On top of the stronger FP16 baseline, we further

harvest 3.1× additional speedup from the fast quantized lin-

ear kernels. For Falcon-7B, the official implementation did

not support KV cache correctly during the inference time,

‡https://github.com/turboderp/exllama
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Figure 10. TinyChat offers 1.2-3.0× speedup over existing systems when running 4-bit quantized Llama models on NVIDIA Jetson Orin.
It also supports a diverse range of general-purpose and coding-specific LLMs with at least 2.6× speedup over AutoGPTQ, which also
supports all these workloads. Moreover, TinyChat seamlessly operates on Raspberry Pi and enables the deployment of LLMs with up to 7
billion parameters on extremely resource-constrained IoT devices.

and thus it is significantly slower than other models. In this

case, our FP16 optimizations bring about a larger speedup

of 1.6×. On the laptop 4070 GPU with only 8GB memory,

we are still able to run Llama-2-13B models at 33 tokens/s,

while the FP16 implementation cannot fit 7B models. We

also demonstrate visual-language model (Lin et al., 2024)

acceleration results in Table 10. TinyChat brings about 3×
speedup to both VILA-7B and VILA-13B on NVIDIA Jet-

son Orin. Notably, we implement the forward pass for all

AWQ models using native PyTorch APIs, and this code is

reused across various GPU architectures. Hence, TinyChat

offers exceptional extensibility.

Comparisons against other systems. We compare Tiny-

Chat against existing edge LLM inference systems Auto-

GPTQ, llama.cpp and exllama in Figure 10. Our system

achieves up to 1.7× speedup over llama.cpp on Orin. Fur-

thermore, llama.cpp and exllama exhibit limited adaptability,

primarily tailored for LLaMA and Llama-2 models. In con-

trast, our TinyChat supports a wide range of applications,

including StarCoder (Li et al., 2023c), StableCode (GPT-

NeoX) (Black et al., 2022), Mistral (Jiang et al., 2023), and

Falcon (Penedo et al., 2023) while consistently delivering

significant speedup over AutoGPTQ. TinyChat even democ-

ratizes LLM deployment on extremely resource-constrained

Raspberry Pi 4B, achieving 0.7 tokens/s for 7B models.

6 CONCLUSION

In this work, we propose Activation-aware Weight Quan-

tization (AWQ), a simple yet effective method for low-bit

weight-only LLM compression. Based on the observation

that weights are not equally important in LLMs, AWQ per-

forms per-channel scaling to reduce the quantization loss

of salient weights. AWQ does not over-fit the calibration

set and preserves the generalist abilities of LLMs in various

domains and modalities. It outperforms existing work on

language modeling and is applicable to instruction-tuned

LMs and multi-modal LMs. Our TinyChat system further

translates the theoretical memory savings achieved by AWQ

into 3.2-3.3× measured speedups over the FP16 implemen-

tations from Huggingface on desktop and mobile GPUs,

democratizing LLM deployment on the edge.

REFERENCES

Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I.,

Hasson, Y., Lenc, K., Mensch, A., Millican, K., Reynolds,

M., et al. Flamingo: a visual language model for few-shot

learning. Advances in Neural Information Processing
Systems, 35:23716–23736, 2022.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,

H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., and

Sutton, C. Program synthesis with large language models,

2021.

Awadalla, A., Gao, I., Gardner, J., Hessel, J., Hanafy, Y.,

Zhu, W., Marathe, K., Bitton, Y., Gadre, S., Jitsev, J.,

Kornblith, S., Koh, P. W., Ilharco, G., Wortsman, M., and

Schmidt, L. Openflamingo, March 2023. URL https:
//doi.org/10.5281/zenodo.7733589.
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