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ABSTRACT

Large language models (LLMs) have fundamentally transformed the capabilities of numerous applications, from
natural language processing to more intricate domain-specific tasks in robotics and autonomous driving. Moreover,
the importance of on-device LLMs has grown significantly in the recent years. Running LLMs on edge devices
not only promises reduced latency and improved user experience but also aligns with the increasing need for
user privacy, as data processing can occur locally. However, the astronomical model sizes of modern LLMs and
constraints of the edge devices, primarily in terms of memory size and bandwidth, pose significant deployment
challenges. In this paper, we propose Activation-aware Weight Quantization (AWQ), a hardware-friendly approach
for LLM low-bit weight-only quantization. Our method is based on the observation that weights are not equally
important: protecting only 1% of salient weights can greatly reduce quantization error. We then propose to search
for the optimal per-channel scaling that protects the salient weights by observing the activation, not weights. AWQ
does not rely on any backpropagation or reconstruction, so it can well preserve LLMs’ generalization ability on
different domains and modalities, without overfitting to the calibration set. AWQ outperforms existing work on
various language modeling and domain-specific benchmarks (coding and math). Thanks to better generalization,
it achieves excellent quantization performance for instruction-tuned LMs and, for the first time, multi-modal LMs.
Alongside AWQ, we implement TinyChat, an efficient and flexible inference framework tailored for on-device
LLM/VLMs, offering more than 3x speedup over the Huggingface FP16 implementation on both desktop and
mobile GPUs. It also democratizes the deployment of the 70B Llama-2 model on mobile GPUs.
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The operational costs associated with maintaining and scal-
ing centralized cloud infrastructure can also be reduced.
On-device LLM also enhances data security by keeping
sensitive information local, reducing the chance of data
breaches. LLMs, grounded in transformer-based architec-
tures (Vaswani et al., 2017), have gathered significant atten-
tion for their impressive performance across diverse bench-
marks (Brown et al., 2020; Zhang et al., 2022; Touvron
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method for LLM. To implement AWQ, we developed TinyChat
to deploy 4-bit quantized LLMs into various edge platforms,
achieving a 3-4x performance boost compared to FP16. No-
tably, we’ve also manufactured a TinyChat computer, powered
by TinyChat, which contains an NVIDIA Jetson Orin Nano with
only 8GB of memory and 15W power consumption. Demo:
https://youtu.be/z91a8DrfgEw.

et al., 2023a; Scao et al., 2022). However, the large model
size leads to the high serving costs. For example, GPT-3 has
175B parameters, which is 350GB in FP16, while the latest
H100 GPU only has 96GB memory, let alone edge devices.

Low-bit weight quantization for LLMs can significantly re-
duce the memory footprint of on-device LLM inference but
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is hard. Quantization-aware training (QAT) is not efficient
due to the high training cost, while post-training quantiza-
tion (PTQ) suffers from large accuracy degradation under
a low-bit setting. The closest work is GPTQ (Frantar et al.,
2022), which uses second-order information to perform er-
ror compensation. However, it may overfit the calibration
set during reconstruction, distorting the learned features on
out-of-distribution domains (Figure 8), which is problematic
since LLMs are generalist models.

In this paper, we propose Activation-aware Weight Quan-
tization (AWQ), a hardware-friendly low-bit weight-only
quantization method for LLMs. Our method is based on
the observation that weights are not equally important for
LLMs’ performance. There is a small fraction (0.1%-1%)
of salient weights; skipping the quantization of these salient
weights will significantly reduce the quantization loss (Ta-
ble 1). To find the salient weight channels, the insight is
that we should refer to the activation distribution instead
of the weight distribution, despite we are doing weight-
only quantization: weight channels corresponding to larger
activation magnitudes are more salient since they process
more important features. To avoid the hardware-inefficient
mixed-precision implementation, we analyze the error from
weight quantization and derive that scaling up the salient
channels can reduce their relative quantization error (Equa-
tion 2). Following the intuition, we designed a per-channel
scaling method to automatically search for the optimal scal-
ing that minimizes the quantization error under full-weight
quantization. AWQ does not rely on any backpropagation
or reconstruction, so it can well preserve LLMs’ general-
ization ability on various domains and modalities without
overfitting to the calibration set.

To implement AWQ, we designed TinyChat, an efficient
inference framework to convert theoretical memory savings
from 4-bit LLM to measured speedup. Our framework sig-
nificantly speeds up linear layers through on-the-fly dequan-
tization. We also take advantage of efficient 4-bit weight
packing and kernel fusion to minimize the inference over-
head (e.g., intermediate DRAM access and kernel launch
overhead), such that we can better realize the speed up from
quantizing the weights to 4-bit, despite the computer is
byte-aligned.

Experiments show that AWQ outperforms existing work
on various tasks for different model families (e.g.,
LLaMA (Touvron et al., 2023a), OPT (Zhang et al., 2022))
and model sizes. Thanks to better generalization, it also
achieves good quantization performance for instruction-
tuned LLMs (e.g., Vicuna) and, for the first time, multi-modal
LMs (OpenFlamingo (Awadalla et al., 2023)). TinyChat
further translates the ~4 x lower memory footprint to mea-
sured speedup. On desktop, laptop and mobile GPUs, we
consistently observe a 3.2-3.3x average speedup compared

to the FP16 implementation by Huggingface across a diverse
spectrum of LLMs. Furthermore, it facilitates effortless de-
ployment of the Llama-2-70B model on a single NVIDIA
Jetson Orin with 64GB of memory. It also democratizes
13 billion parameter LLM at an interactive pace of 30 to-
kens/second on a laptop RTX 4070 GPU with only 8GB of
memory. AWQ has been widely adopted by various open-
source LLM serving solutions including FastChat, vLLM,
HuggingFace TGI, LMDeploy, etc.

2 RELATED WORK

Model quantization methods. Quantization reduces the
bit-precision of deep learning models (Han et al., 2016;
Jacob et al., 2018; Nagel et al., 2019; Wang et al., 2019;
Nagel et al., 2020; Lin et al., 2020), which helps to reduce
the model size and accelerate inference. Quantization tech-
niques generally fall into two categories: quantization-aware
training (QAT, which relies on backpropagation to update
the quantized weights) (Bengio et al., 2013; Gholami et al.,
2021; Nagel et al., 2021; Choi et al., 2018) and post-training
quantization (Jacob et al., 2018; Nagel et al., 2019; 2020)
(PTQ, usually training-free). The QAT methods cannot eas-
ily scale up to large models like LLMs. Therefore, people
usually use PTQ methods to quantize LLMs.

Quantization of LLMs. People study two settings for
LLM quantization: (1) W8AS8 quantization, where both
activation and weights are quantized to INT8 (Dettmers
et al., 2022; Xiao et al., 2022; Yao et al., 2022; Wei et al.,
2022a; 2023); (2) Low-bit weight-only quantization (e.g.,
W4A16), where only weights are quantized into low-bit
integers (Frantar et al., 2022; Dettmers & Zettlemoyer, 2022;
Sheng et al., 2023; Park et al., 2022). We focus on the
second setting in this work since it not only reduces the
hardware barrier (requiring a smaller memory size) but also
speeds up the token generation (remedies memory-bound
workload). Apart from the vanilla round-to-nearest baseline
(RTN), GPTQ (Frantar et al., 2022) is the closest to our work.
However, the reconstruction process of GPTQ leads to an
over-fitting issue to the calibration set and may not preserve
the generalist abilities of LLMs for other modalities and
domains. It also requires a reordering trick to work for some
models (e.g., LLaMA-7B (Touvron et al., 2023a) and OPT-
66B (Zhang et al., 2022)). Apart from quantiztion methods
designed for general-purporse hardware, SpAtten (Wang
et al., 2020) designs a progressive approach to gradually
increase the number of bits used in softmax calculation.

System support for low-bit quantized LLMs. Low-bit
quantized LLMs have been a popular setting to reduce in-
ference costs. There are some system supports to achieve
a practical speed-up. GPTQ (Frantar et al., 2022) provides
INT3 kernels for OPT models and GPTQ-for—-LLaMA ex-
tends kernel support for INT4 reordered quantization with
the help of Triton (Tillet et al., 2019). FlexGen (Sheng et al.,
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Figure 2. We observe that we can find 1% of the salient weights in LLMs based on the activation distribution (middle). Keeping the salient
weights in FP16 can significantly improve the quantized performance (PPL from 43.2 (left) to 13.0 (middle)), but the mixed-precision
format is not hardware-efficient. We follow the activation-awareness principle and propose AWQ (right). AWQ performs per-channel
scaling to protect the salient weights and reduce quantization error. We measure the perplexity of OPT-6.7B under INT3-g128 quantization.

2023), 11ama.cpp® and ex1lama’ perform group-wise
INT4 quantization to reduce I/O costs and offloading. Faster-
Transformer implements FP16 xINT4 GEMM for weight-
only per-tensor quantization but does not support group
quantization. LUT-GEMM (Park et al., 2022) performs bit-
wise computation on GPU CUDA cores with the help of
lookup tables. Our concurrent work, MLC-LLM (MLC-
Team, 2023) offers strong results on multiple edge CPU and
GPU platforms thanks to the powerful TVM (Chen et al.,
2018; Feng et al., 2023) backend.

3 AWQ: ACTIVATION-AWARE WEIGHT
QUANTIZATION

Quantization maps a floating-point number into lower-bit
integers. It is an effective method to reduce the model
size and inference costs of LLMs (Dettmers et al., 2022;
Frantar et al., 2022; Yao et al., 2022; Xiao et al., 2022). In
this section, we first propose a weight-only quantization
method to improve accuracy without training/regression by
protecting more “important” weights. And then develop a
data-driven method to search for the optimal scaling that
reduces quantization errors (Figure 2).

3.1 Improving LLM Quantization by Preserving 1%
Salient Weights

We observe that the weights of LLMs are not equally im-
portant: there is a small fraction of salient weights that
are much more important for LLMs’ performance com-
pared to others. Skipping the quantization of these salient
weights can help bridge the performance degradation due
to the quantization loss without any training or regression
(Figure 2(b)). To verify the idea, we benchmark the per-
formance of quantized LLMs when skipping part of the
weight channels in Table 1. We measured the performance
of INT3 quantized models while keeping some ratios of

fhttps://github.com/ggerganov/llama.cpp
"https://github.com/turboderp/exllama

weight channels in FP16. A widely used method to deter-
mine the importance of weights is to look at its magnitude
or Ly-norm (Han et al., 2015; Frankle & Carbin, 2018).
But we find skipping the weight channels with large norm
(i.e., FP16% (based on W)) does not significantly improve
the quantized performance, leading to a similar marginal
improvement as random selection. Interestingly, selecting
weights based on activation magnitude can significantly im-
prove the performance despite keeping only 0.1%-1% of
channels in FP16. We hypothesize that the input features
with larger magnitudes are generally more important. Keep-
ing the corresponding weights in FP16 can preserve those
features, which contributes to better model performance.

Limitations: Despite keeping 0.1% of weights in FP16
can improve the quantized performance without a noticeable
increase in model size (measured in total bits), such a mixed-
precision data type will make the system implementation
difficult. We need to come up with a method to protect the
important weights without actually keeping them as FP16.

3.2 Protecting Salient Weights by Activation-aware
Scaling

We propose an alternative method to reduce the quantization
error of the salient weight by per-channel scaling, which
does not suffer from the hardware inefficiency issue.

Analyzing the quantization error.

We start by analyzing the error from weight-only quanti-
zation. Consider a group/block of weight w; the linear
operation can be written as y = wx, and the quantized
counterpart is y = Q(w)x. Specifically, the quantization
function is defined as:

w

A

max(|w|)

Q(w) = A - Round( oN—T

), A= (D
where N is the number of quantization bits, and A is the
quantization scaler determined by the absolute maximum

value. Now consider a weight element w € w, if we mul-
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FP16% (based on act.)

FP16% (based on W) FP16% (random)

PPL | FP16 RTN

(w3-g128) 0.1% 1% 3% 0.1% 1% 3% 0.1% 1% 3%
OPT-1.3B 14.62 119.00  25.03 1691 16.68 108.71 9855 98.08 119.76 109.38 61.49
OPT-6.7B  10.86 23.54 11.58 11.39 11.36 2341 2237 2245 2354 2423 2422
OPT-13B  10.13 46.04 10.51 1043 1042  46.07 4896 5449 4487 42.00 39.71

Table 1. Keeping a small fraction of weights (0.1%-1%) in FP16 significantly improves the performance of the quantized models over
round-to-nearest (RTN). It is only effective when we select the important weights in FP16 by looking at activation distribution instead of
weight distribution. We highlight results with a decent perplexity in green. We used INT3 quantization with a group size of 128 and

measured the WikiText perplexity ({).

OPT-6.7B s=1s=125s=15s=2 s=4
proportion of A #A 0% 28% 44% 82% 21.2%
average A" /A 1 1.005 1013 1.038 1213
average & - 1 1 0804 0676 0519 0.303
Wiki-2 PPL 23.54 1287 1248 11.92 12.36

Table 2. Statistics when multiplying the 1% salient channels by
s > 1. Scaling up the salient channels significantly improves
the perplexity (23.54 to 11.92). As s goes larger, the percentage
of changed A increases, and the error reduction rate for salient
channels also increases. However, the best perplexity is achieved
at s = 2, since further increasing s will increase the quantization
error for non-salient channels.

tiply w with s > 1 and the inversely scale x, we will have
Q(w - s)(x/s), which is:

ws 1
A/)'x';a (2)

Q(w-s) - g = A" - Round(

where A is the new quantization scaler after applying s. We
empirically find that: (1) The expected error from Round(-)
(denoted as RoundErr(-)) does not change: since the
round function maps a floating-point number to an inte-
ger, the error is roughly uniformly distributed from [0,0.5],
resulting in an average error of 0.25; i.e., RoundErr(-) ~
0.25. (2) Scaling up a single element w usually does not
change the maximum value from the group w. Therefore we
have A" ~ A; (3) As A and z are represented in FP16, they
have no quantization error. Consequently, the quantization
error from equation 1 and 2 can be expressed as

Err(Q(w)x) = A- RoundErr(%) T

3)
Err(Q(w-s)(3)) = A RoundErx( 1

N

The ratio of the new error to the original error is % - %
Given A" ~ A and 5 > 1, the relative error is smaller for

the salient weight w.

To verify the idea, we multiply the 1% salient channels with
s > 1 for the OPT-6.7B model, and measure the change in

OPT (PPL}) 1.3B 27B 6B 13B  30B

FP16 14.62 1247 10.86 10.13 9.56
RTN 119.47 298.00 23.54 46.04 18.80
1% FP16 16.91 13.69 11.39 1043 9.85
s=2 18.63 1494 11.92 10.80 10.32
AWQ 16.32 13.58 11.39 10.56  9.77

Table 3. AWQ protects salient weights and reduces quantization
error by using a scaling-based method. It consistently outperforms
Round-to-nearest quantization (RTN) and achieves comparable
performance as mixed-precision (1% FP16) while being more
hardware-friendly. We use 3-bit quantization with group size 128.

A for each group in Table 2. We find that scaling up the
salient channels is quite effective: the perplexity improves
from 23.54 for s = 1 (simply RTN) to 11.92 for s = 2.
As s goes larger, the percentage of changed A generally
gets larger, but the percentage is still quite small for s < 2
(less than 5%); the relative error for the salient channels
continues to go smaller as s increases. Nonetheless, the best
PPL actually appears at s = 2. This is because if we use a
very large s, it will increase the relative error for the non-
salient channels when A increase§ (the error of non-salient

channels will be amplified by %, and the ratio is larger
than 1 for 21.2% of the channels under s = 4), which can
damage the model’s overall accuracy. Therefore, we need
to also consider the error from non-salient channels when
protecting salient ones.

Searching to scale. To consider both salient and non-
salient weights, we choose to automatically search for an
optimal (per input channel) scaling factor that minimizes
the output difference after quantization for a certain layer.
Formally, we want to optimize the following objective:

st = arg;nin L(s) @
L(s) = |Q(W - diag(s))(diag(s) " - X) — WX]|

Here ) means the weight quantization function (e.g.,
INT3/INT4 quantization with group size 128), W is the
original weights in FP16, and X is the input features cached
from a small calibration set (we take a small calibration
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Figure 3. Bottleneck analysis for Llama-2-7B on NVIDIA RTX 4090. Left: In on-device LLM applications, generation stage is much
slower than the context stage. Middle: The generation stage is memory bound and has low arithmetic intensity. W4A16 quantization can
effectively improve the arithmetic intensity by 4 x. Right: The amount of weight access is orders of magnitude larger than the amount of
activation access. Thus, weight-only quantization is more effective for on-device LLMs.

set from he pre-training dataset in order not to overfit to
a specific task). s is a per-(input) channel scaling factor;
for s~! - X, it can usually be fused into the previous op-
erator (Wei et al., 2022b; Xiao et al., 2022). Since the
quantization function is not differentiable, we are not able
to directly optimize the problem with vanilla backpropaga-
tion. There are some techniques relying on approximated
gradients (Bengio et al., 2013; Esser et al., 2019), which we
found still suffers from unstable convergence.

To make the process more stable, we define a search space
for the optimal scale by analyzing the factors that will affect
the choice of scaling factor. As shown in the last section, the
saliency of weight channels is actually determined by the
activation scale (thus “activation-awareness”). Therefore,
we simply use a very simple search space:

s=sx% o =argminL(sx?) 5)

sx is the average magnitude of activation (per-channel), and
we use a single hyper-parameter « to balance between the
protection of salient and non-salient channels. We can find
the best « by a fast grid search over the interval of [0, 1] (0
means we do not scale; 1 corresponds to the most aggres-
sive scaling in our search space). We further apply weight
clipping to minimize the MSE error of quantization. We
provide an ablation study on OPT models under INT3-g128
quantization in Table 5; AWQ consistently outperforms
round-to-nearest quantization (RTN) and achieves compara-
ble performance as mixed-precision (1% FP16) while being
more hardware-friendly.

Advantages. Our method does not rely on any regres-
sion (Frantar et al., 2022) or backpropagation, which is
required by many quantization-aware training methods. It
has minimal reliance on the calibration set since we only
measure the average magnitude per channel, thus preventing
over-fitting (Figure 8). Therefore, our method requires fewer
data for the quantization process and can preserve LLMs’
knowledge outside of the calibration set’s distribution. See
Section 5.3 for more details.

4 TINYCHAT: MAPPING AWQ ONTO EDGE
PLATFORMS

AWAQ can substantially reduce the size of LLMs. However,
converting the theoretical memory savings from W4A16
(4-bit weight, 16-bit activation) quantization into measured
speedup is non-trivial. Alternative W8AS8 quantization meth-
ods, such as SmoothQuant (Xiao et al., 2022), maintain the
same data precision for both storage and computation. This
allows the dequantization procedure to be seamlessly inte-
grated into the computation kernel’s epilogue. On the other
hand, W4A16 quantization employs different data types for
memory access and computation. As a result, its dequantiza-
tion must be incorporated into the primary computation loop
for optimal performance, posing implementation challenges.
To tackle this, we introduce TinyChat: a nimble system for
AWQ model inference. It boasts a PyTorch frontend and
a backend harnessing device-specific instruction sets (e.g.,
CUDA/PTX, Neon, AVX).

4.1 Why AWQ Helps Accelerate On-Device LLMs

To understand the acceleration opportunities in quantized
LLMs on the edge, we start by profiling the latency break-
down of LLaMA-7B (Touvron et al., 2023a) model on an
RTX 4090 GPU. We adopt an inference batch size of 1,
catering for edge use cases, and implement the model in
FP16 with NVIDIA FasterTransformer.

Context vs generation latency. As in Figure 3(a), it takes
310 ms to generate 20 tokens, while summarizing a prompt
with 200 tokens only takes 10 ms. Consequently, the gen-
eration phase is substantially slower than the context stage,
particularly for on-device interactive applications.

Generation stage is memory-bound. To accelerate the
generation phase, we conduct a roofline analysis in Fig-
ure 3(b). The 4090 GPU has a peak computation throughput
of 165 TFLOPS and a memory bandwidth of 1TB/s. There-
fore, any workload with arithmetic intensity (the ratio of
FLOPs to memory access) less than 165 is memory bounded
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Figure 4. SIMD-aware weight packing for ARM NEON with 128-bit SIMD units. Original weights are reordered and packed to align
with the bit width so that the weights can be unpacked into bytes at runtime using AND and shift bitwise operations with a 128-bit mask.

on 4090 GPUs. Notably, when executed in FP16, the gener-
ation stage for on-device LLMs has arithmetic intensity~1.
This underscores the memory-bound nature of the workload.
Since the FLOPs of a given model is fixed, the only way to
improve the peak performance is to reduce the total amount
of memory traffic. AWQ reduces the weight memory by
four times.

Weight access dominates memory traffic. We therefore
further break down the memory access for weight and acti-
vation in Figure 3(c). Clearly, weight access dominates the
memory traffic for on-device LLMs. Quantizing the model
weights to 4 bit integers will approximately increase the
arithmetic intensity to 4 FLOPs/Byte, leading to a 4TFLOPS
peak performance in Figure 3(b). Since weight-only quanti-
zation leads to a lower bit width for weights (and thus higher
theoretical performance upper bound), it is natural for AWQ
to follow this setting for on-device LLM applications.

4.2 Deploy AWQ with TinyChat

To this end, we demonstrated that 4-bit weight quantiza-
tion could lead to a 4x theoretical peak performance. We
further design TinyChat to realize this speedup. On GPUs,
we only focus on implementing essential components, in-
cluding attention, layer normalization, and linear projection
kernels. The flexible frontend allows easy customization
and fast support for new models. TinyChat with 4-bit AWQ
achieves more than 3x speedup compared with the Hug-
gingface FP16 implementation across different families of
LLMs on GPUs. On CPUs, we lower the entire computation
graph to C++ to minimize overhead.

On-the-fly weight dequantization. For quantized layers,
as the hardware does not provide multiplication instructions
between INT4 and FP16, we need to dequantize the integers
to FP16 before performing matrix computation. We avoid
writing dequantized weights into DRAM by fusing dequan-
tization kernels with the matrix multplication kernel. Note
that such fusion is adopted for both matrix-matrix (MM)
and matrix-vector (MV) product kernels.

SIMD-aware weight packing. On-the-fly weight dequan-
tization reduces intermediate DRAM access, but remains
expensive. For instance, dequantizing a single 4-bit weight
involves 1 shift, 1 bitwise AND, and 1 FMA scaling op-

erations, while the dequantized weight undergoes only 1
FMA computation. This process is particularly costly on
CPUs with SIMD architecture that favor vectorized in-
structions. To mitigate this, we suggest platform-specific
weight packing tailored to the bitwidth of a device’s SIMD
units. Figure 4 demonstrates our strategy for ARM CPUs
with 128-bit SIMD registers offering up to 1.2x speedup.
Here, each register holds 32 4-bit weights, sequenced as
wo, W16, W1, W17, ..., W15, W31. This approach requires just
three SIMD instructions to unpack all 32 weights, as op-
posed to 3 scalar instructions per weight in a conventional
packing (wg, wy, ..., w31). Generally, for 2"-bit SIMD reg-
isters, adjacent weights will have indices off by 1/8 x 2™,
since each register can hold 1/8 x 2™ 8-bit integers. On
GPUs, we found it more efficient to pack each 8 weights
into wyo,2,4,6,1,3,5,7} following (Kim et al., 2022).

Kernel fusion. We also extensively apply kernel fusion
to optimize on-device LLM inference. For layer normaliza-
tion, we fuse all operators (e.g. multiplication, division and
square root) into a single kernel. For attention layers, we
fuse QKV projections into a single kernel, and also perform
on-the-fly positional embedding calculation. We also pre-
allocate KV caches and perform cache updates within the
attention kernel. Kernel fusion is particularly useful for mod-
els with inefficient forward pass implementations, such as
Falcon (Penedo et al., 2023) and StarCoder (Li et al., 2023c¢).
Notably, the computation time for each FP16 kernel is in
the order of 0.01ms on the 4090 GPU, comparable to the
GPU kernel launch overhead. Hence, reducing number of
kernel calls through kernel fusion leads to direct speedups.

5 EXPERIMENTS

5.1 Settings

Quantization. We focus on weight-only grouped quanti-
zation in this work. As shown in previous work (Dettmers &
Zettlemoyer, 2022; Frantar et al., 2022), grouped quantiza-
tion is always helpful for improving performance/model size
trade-off. We used a group size of 128 throughout the work,
except otherwise specified. We focus on INT4/INT3 quan-
tization since they are able to mostly preserve the LLMs’
performance (Dettmers & Zettlemoyer, 2022). For AWQ,
we used a small calibration set from the Pile (Gao et al.,
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PPL| Llama-2 LLaMA
7B 13B 70B 7B 13B 30B 65B
FP16 - 5.47 4.88 3.32 5.68 5.09 4.10 3.53
RTN 6.66 5.52 3.98 7.01 5.88 4.88 424
INT3 GPTQ 6.43 5.48 3.88 8.81 5.66 4.88 4.17
g128 GPTQ-R 6.42 541 3.86 6.53 5.64 474 421
AWQ 6.24 5.32 3.74 6.35 5.52 4.61 3.95
RTN 5.73 498 3.46 5.96 5.25 423 3.67
INT4 GPTQ 5.69 4.98 3.42 6.22 5.23 424 3.66
2128 GPTQ-R 5.63 4.99 343 5.83 5.20 422 3.66
AWQ 5.60 4.97 341 5.78 5.19 4.21 3.62

Table 4. AWQ improves over round-to-nearest quantization (RTN) for different model sizes and different bit-precisions. It consistently
achieves better perplexity than GPTQ (w/ and w/o reordering) on LLaMA & Llama-2 models.

Wikitext2 PPL| Mixtral-8x7B  Mistral-7B

FP16 5.94 4.14
INT4-g128 6.05 4.30
INT3-g128 6.52 4.83

Table 5. AWQ quantization results on Mistral-7B-Instruct-
v0.2(Jiang et al., 2023) and Mixtral-8x7B-Instruct-v0.1 model
(Jiang et al., 2024). The PPL result on wikitext shows that AWQ
can achieve superior quantization performance on different model
architectures including LLMs with GQA and Mixture-of-Experts
(MoE) models.

2020) dataset in order not to overfit to a specific down-
stream domain. We used a grid size of 20 to search for the
optimal « in Equation 5.

Models. We benchmarked our method on LLaMA (Tou-
vron et al., 2023a) and OPT (Zhang et al., 2022) families.
There are other open LLMs like BLOOM (Scao et al., 2022),
but they are generally worse in quality, so we do not include
them in our study. We further benchmark an instruction-
tuned model Vicuna (Chiang et al., 2023) and visual lan-
guage models OpenFlamingo-9B (Awadalla et al., 2023)
and LLaVA-13B (Liu et al., 2023a) to demonstrate the gen-
erability of our method.

Evaluations. Following previous literature (Dettmers
et al., 2022; Xiao et al., 2022; Frantar et al., 2022; Dettmers
& Zettlemoyer, 2022; Yao et al., 2022), we mainly profiled
the quantized models on language modeling tasks (perplex-
ity evaluation on WikiText-2 (Merity et al., 2016)) since per-
plexity can stably reflect the LLM’s performance (Dettmers
& Zettlemoyer, 2022).

Baselines. Our primary baseline is vanilla round-to-
nearest quantization (RTN). It is actually quite strong when
using a small group size like 128 (Frantar et al., 2022;
Dettmers & Zettlemoyer, 2022). We also compare with
a state-of-the-art method GPTQ (Frantar et al., 2022) for

INT3/g128 M Quantized Win Tie Quantized Lost
RTN 3 71 9 57
GPTQ M1 75 6 57
AWQ 5 52 11 47

0 20 40 60 80 0 20 40 60 80
(a) Vicuna-7B (b) Vicuna-13B

Figure 5. Comparing INT3-g128 quantized Vicuna models with
FP16 counterparts under GPT-4 evaluation protocol (Chiang et al.,
2023). More winning cases (in blue) indicate better performance.
AWAQ consistently improves the quantized performance compared
to RTN and GPTQ (Frantar et al., 2022), showing generalization
to instruction-tuned models.

LLM weight quantization. For GPTQ, we also compare
with an updated version that uses a “reorder” trick (denoted
as GPTQ-Reorder or GPTQ-R). Other techniques like Ze-
roQuant (Yao et al., 2022), AdaRound (Nagel et al., 2020),
and BRECQ (Li et al., 2021) rely on backpropagation to up-
date the quantized weights, which may not easily scale up to
large model sizes; they also do not outperform GPTQ (Fran-
tar et al., 2022), thus not included for study.

5.2 Evaluation

Results on LLaMA models. We focus on LLaMA mod-
els (LLaMA (Touvron et al., 2023a) and Llama-2 (Touvron
et al., 2023b)) due to their superior performance compared
to other open-source LLMs (Zhang et al., 2022; Scao et al.,
2022); it is also the foundation of many popular open-source
models (Taori et al., 2023; Chiang et al., 2023). We evalu-
ate the perplexity before and after quantization in Table 4.
AWQ consistently outperforms round-to-nearest (RTN) and
GPTQ (Frantar et al., 2022) (w/ and w/o reordering) across
different model scales (7B-70B) and generations.

Results on Mistral / Mixtral models. We also evalu-
ated AWQ on the Mistral and Mixtral models, which are
among the most popular open-source LLMs and Mixture-
of-Experts (MoE) models, respectively (Jiang et al., 2023;
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COCO (CIDEr 1) 0-shot 4-shot 8-shot 16-shot 32-shot A(32-shot)
FP16 - 63.73 72.18 76.95 79.74 81.70 -
INT4 RTN 60.24 68.07 72.46 74.09 77.13 -4.57
2128 GPTQ 59.72 67.68 72.53 74.98 74.98 -6.72
AWQ 62.57 71.02 74.75 78.23 80.53 -1.17
INT3 RTN 46.07 55.13 60.46 63.21 64.79 -16.91
2128 GPTQ 29.84 50.77 56.55 60.54 64.77 -16.93
AWQ 56.33 64.73 68.79 72.86 74.47 -7.23

Table 6. Quantization results of a visual language model OpenFlamingo-9B (Awadalla et al., 2023) on COCO Captioning datasets. AWQ
outperforms existing methods under zero-shot and various few-shot settings, demonstrating the generability to different modalities and
in-context learning workloads. AWQ reduces the quantization degradation (32-shot) from 4.57 to 1.17 under INT4-g128, providing 4 x

model size reduction with negligible performance loss.

Model (Accuracy?) VQAv2 GQA VizWiz SQA-I VQA-T POPE MME MMB SEED llava-bench MM-Vet
VILA-7B 803 631 596 680 626 863 14894 698 617 75.2 35.1
VILA-7B-AWQ 80.1 630 578 680 619 853 14863 688 61.3 75.8 35.9
VILA-13B 80.5 636 631 705 640 863 15536 738  62.8 78.3 42.6
VILA-13B-AWQ 804 636 630 712 635 870 15529 736 622 77.6 42.0

Table 7. INT4-g128 results of VILA-7B and VILA-13B (Lin et al., 2024) on 11 visual-language benchmarks. AWQ consistently
shows lossless performance on all benchmarks. Benchmark names are abbreviated due to space limits. VQA-v2 (Goyal et al., 2017);
GQA (Hudson & Manning, 2019); VisWiz (Gurari et al., 2018); SQA!: ScienceQA-IMG (Lu et al., 2022); VQAT: TextVQA (Singh et al.,
2019); POPE (Li et al., 2023d); MME (Fu et al., 2023); MMB: MMBench (Liu et al., 2023b); MMB®N: MMBench-Chinese (Liu et al.,
2023b); SEED: SEED-Bench (Li et al., 2023a); LLaVA": LLaVA-Bench (In-the-Wild) (Liu et al., 2023a); MM-Vet (Yu et al., 2023).

2024). The results indicate that AWQ achieves superior
performance on both the Mistral and Mixtral models. This
demonstrates that AWQ is effective across various model
architectures.

Quantization of instruction-tuned models. Instruction
tuning can significantly improve the models’ performance
and usability (Wei et al., 2021; Sanh et al., 2021; Ouyang
et al., 2022; Chung et al., 2022). It has become an essential
procedure before model deployment. We further benchmark
our method’s performance on a popular instruction-tuned
model Vicuna (Chiang et al., 2023) in Figure 5. We used the
GPT-4 score to evaluate the quantized models’ performance
against the FP16 counterpart on 80 sample questions (Chi-
ang et al., 2023). We compare the responses with both orders
(quantized-FP16, FP16-quantized) to get rid of the ordering
effect (we found GPT-4 tends to increase the rating of the
first input), leading to 160 trials. AWQ consistently im-
proves the INT3-g128 quantized Vicuna models over RTN
and GPTQ under both scales (7B and 13B), demonstrating
the generability to instruction-tuned models.

Quantization of multi-modal language models. Large
multi-modal models (LMMs) or visual language models
(VLMs) are LLMs augmented with vision inputs (Alayrac
et al., 2022; Li et al., 2023b; Koh et al., 2023; Driess et al.,
2023; Zhang et al., 2023; Liu et al., 2023a). Such models are
able to perform text generation conditioned on image/video
inputs. Since our method does not have the overfitting issue

MBPP (7B) pass@1 pass@10 GSM8K 7B 13B 70B

FP16 38.53 49.77 FP16 13.87 26.16 56.41
RTN 37.51 4849 RTN 11.07 21.23 53.98
GPTQ 31.97 4475 GPTQ 12.13 24.26 56.03
AWQ 40.64 49.25 AWQ  13.57 25.25 56.40
Table 8. INT4-g128 quantization results of CodelLlama-7b-

Instruct-hf on MBPP dataset and Llama-2 (7B/13B/70B) on
GSMBSK dataset. AWQ outperforms existing methods on program-
ming and math datasets, demonstrating the generability to different
scenarios and evaluation settings. Notably, AWQ under the INT4-
2128 configuration demonstrates comparable performance to the
original FP16 model across both datasets.

to the calibration set, it can be directly applied to VLMs
to provide accurate and efficient quantization. We perform
experiments with the OpenFlamingo-9B model (Awadalla
et al., 2023) (an open-source reproduction of (Alayrac et al.,
2022)) on COCO captioning (Chen et al., 2015) dataset (Ta-
ble 6). We measured the average performance of 5k samples
under different few-shot settings. We only quantize the lan-
guage part of the model since it dominates the model size.
AWQ outperforms existing methods under zero-shot and
various few-shot settings, demonstrating the generability to
different modalities and in-context learning workloads. It
reduces the quantization degradation (32-shot) from 4.57 to
1.17 under INT4-g128, providing 4 x model size reduction
with negligible performance loss. To further demonstrate
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Sometimes | just look at pictures of
the earth from space and | marvel at
how beautiful it allis.

Question: Can you explain this meme in detail?

INT4-g128 RTN: The meme in the image features a plate of food, likely fried chicken, with a unique twist. There
are small pictures of the Earth and other planets placed on top of the food, creating an interesting and amusing
visual. Alongside the plate, a caption reads, "Sometimes I look at pictures of the Earth from space and I marvel at
how beautiful it all is." This combination of food and planet images adds a touch of humor and curiosity, making
the viewer wonder about the context and intent behind the meme.

INT4-g128 AWQ: The meme in the image is a lighthearted and humorous take on the concept of looking at
pictures of the Earth from space. A plate of fried food, specifically chicken nuggets, is presented with the caption,
"Sometimes I look at pictures of the Earth from space and I marvel at how beautiful it all is." The playful
combination of a food item and an Earth-related context creates a fun and entertaining visual.

Figure 6. Visual reasoning examples from LLaVA-13B model (Liu et al., 2023a). AWQ improves over the round-to-nearest (RTN)
baseline, providing more reasonable answers. We color the text to show the correct or wrong responses.

W4-RTN: A model W4-RTN: A man is W4-RTN: A man
airplane flying in N i holding a baby elephant and a dog walking
the sky. ¢ in his arms. past some bushes.
W4-AWQ: Two toy W4-AWQ: A man and W4-AWQ: Two

dogs are walking
on the street.

his daughter pose with
an elephant.

airplanes sit on a
grass field.

Figure 7. Qualitative results of quantized OpenFlamingo-9B (Awadalla et al., 2023) on COCO captioning dataset (4-shot, INT4-g128
quantization). Our method significantly improves the captioning quality compared to the round-to-nearest (RTN) baseline. We color the

text to show the correct or wrong captions.

OPT (Wiki PPL|) 1.3B 27B  6.7B 13B 30B

FP16 14.62 1247 10.86 10.13 9.56
RTN 10476 193210 7622 17564 8170
GPTQ 46.67 28.15 16.65 16.74 11.75
AWQ +GPTQ 3571 25.70 15.71 13.25 11.38

Table 9. Our method is orthogonal to GPTQ: it further closes the
performance gap under extreme low-bit quantization (INT2-g64)
when combined with GPTQ. Results are WikiText-2 perplexity of
OPT models.

the generability of AWQ, we also evaluated AWQ on one of
the SoTA multi-image visual language models: VILA. The
result in Table 7 shows that AWQ achieves lossless quanti-
zation performance on 11 visual-language benchmarks. We
further provide some qualitative captioning results in Fig-
ure 7 to show our advantage over RTN. Our method provides
a push-the-button solution for LMM/VLM quantization. It
is the first study of VLM low-bit quantization to the best of
our knowledge.

Visual reasoning results. We further provide some qual-
itative visual reasoning examples of the LLaVA-13B (Liu
et al., 2023a) model in Figure 6. AWQ improves the re-
sponses compared to round-to-nearest (RTN) for INT4-g128
quantization, leading to more reasonable answers. In this
first example, the AWQ model can understand the meme as
it resembles the Earth when looking from space, while RTN
produces wrong descriptions (marked in red).

Results on programming and math tasks To fur-
ther evaluate the performance of AWQ on tasks in-

volving complex generations, we also tested AWQ on
MBPP (Austin et al., 2021) and GSM8K (Cobbe et al.,
2021). MBPP (Austin et al., 2021) consists of around 1,000
Python programming problems, designed to be solvable by
entry level programmers, covering programming fundamen-
tals, standard library functionality, etc. GSM8K (Cobbe
et al., 2021) was created to support the task of question an-
swering on basic mathematical problems that require multi-
step reasoning. We quantize CodeLlama-7b-Instruct-hf and
Llama-2 to INT4-g128 and perform experiments on pro-
gramming and math datasets (Table 8). AWQ outperforms
existing methods on both datasets, demonstrating the gener-
ability to complex generation. AWQ under the INT4-g128
configuration demonstrates comparable performance to the
original FP16 model on both datasets.

Extreme low-bit quantization. We further quantize LLM
to INT2 to accommodate limited device memory (Table 9).
RTN completely fails, and AWQ brings significant perplex-
ity improvement on top of GPTQ.Our method is orthogonal
to GPTQ. We can combine our method with GPTQ to fur-
ther improve the INT2 quantization performance, making it
a more practical setting.

5.3 Data Efficiency and Generalization

Better data-efficiency for the calibration set. Our
method requires a smaller calibration set since we do not
rely on regression/backpropagation; we only measure the
average activation scale from the calibration set, which is
data-efficient. To demonstrate the idea, we compare the per-
plexity of the OPT-6.7B model with INT3-g128 quantization
in Figure 8 (a). AWQ needs a much smaller calibration to
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Figure 8. Left: AWQ needs a much smaller calibration set to reach a good quantized performance. It can achieve better perplexity using
10x smaller calibration set compared to GPTQ. Right: Our method is more robust to the calibration set distribution. Overall, using the
same calibration and evaluation distribution works the best (PubMed-PubMed, Enron-Enron). But when using a different calibration
distribution (PubMed-Enron, Enron-PubMed), AWQ only increases the perplexity by 0.5-0.6, while GPTQ has 2.3-4.9 worse perplexity.
All experiments are done with the OPT-6.7B model under INT3-g128 quantization.

Huggingface (FP16) M Ours (FP16) [ Ours (AWQ, W4A16)

2 g
— ]
g 2
% 0 0 2
ﬁ Llama-2  Llama-2 MPT MPT Falcon Llama-2  Llama-2 MPT MPT Falcon Llama-2 Llama-2 MPT  Falcon
(7B) (13B) (7B) (30B) (7B) (7B) (13B) (7B) (30B) (7B) (7B) (13B) (7B) (7B)
(a) RTX 4090 desktop GPU (b) Jetson Orin mobile GPU (c) RTX 4070 laptop GPU

Figure 9. TinyChat provides a turn-key solution to transform the theoretical memory footprint reduction into a quantifiable speedup. As a
result, TinyChat is up to 3.9x and 3.5 faster than the FP16 implementation from Huggingface on 4090 (desktop GPU) and Orin (mobile
GPU), respectively. AWQ also democratizes Llama-2-13B deployment on laptop GPUs (4070) with merely 8GB memory.

reach a good quantized performance; it can achieve better Model (Throughput?) Precision A100 4090 Orin

perplexity using 10x smaller calibration set compared to VILA-7B FP16 316 585 115

GPTQ (16 sequences v.s. 192 sequences). VILA—7B—AWQ W4A16 155.3 168.1 35.6
VILA-13B FP16 485 OOM 6.1

Robust to the calibration set distributions. Our method
is less sensitive to the calibration set distribution since we
iny measu.re the average actiyation scale fr(')m the calibra- Table 10. TinyChat also enables seamless deployment of
tion set, which is more generalizable across different dataset VILA (Lin et al., 2024), a state-of-the-art visual-language model,
distributions. We further benchmarked the effect of the dif-  on multiple GPU platforms. Leveraging our 4-bit AWQ quantiza-
ferent calibration set distributions in Figure 8(b). We took  tion, TinyChat accelerates VILA-7B by up to 3.1x and VILA-13B
two subsets from the Pile dataset (Gao et al., 2020): PubMed by up to 2.9x.

Abstracts and Enron Emails (Klimt & Yang, 2004). We use
each of the subsets as the calibration set and evaluate the
quantized model on both sets (the calibration and evaluation

VILA-13B-AWQ W4A16  102.1  99.0 175

Jetson Orin following the protocol described in exllama *.

sets are split with no overlapping; we used 1k samples for e perform batch size = I inference for all LLMs using a
evaluation). Overall, using the same calibration and evalua-  fixed prompt length of 4 tokens. We generate 200 tokens for
tion distribution works the best (PubMed-PubMed, Enron- each inference run and calculate the median latency as the
Enron). But when using a different calibration distribution final result.

(PubMed-Enron, Enron-PubMed), AWQ only increases the Results. As in Figure 9(a), TinyChat brings 2.7-3.9x

perp.lexity l?y 0.5-0.6, while GPTQ has 2.3-4.9 worse per- speedup to three families of LLMs (Llama-2, MPT and
plexity. This demonstrates the robustness of AWQ to the

A SPESH Falcon) on 4090 compared with the Huggingface FP16 im-
calibration set distribution.

plementation. For Llama-2-7B, we improve the inference
speed from 52 tokens/s to 62 tokens/s through FP16 kernel
5.4 Speedup Evaluation fusion. On top of the stronger FP16 baseline, we further
harvest 3.1x additional speedup from the fast quantized lin-
ear kernels. For Falcon-7B, the official implementation did
not support KV cache correctly during the inference time,

Settings. In Figure 9, we demonstrate the system accel-
eration results from TinyChat. TinyChat optimizes both
linear layers and layers that do not have quantized weights.
We conduct benchmarking experiments on RTX 4090 and https://github.com/turboderp/exllama
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@ (a) Latency comparison on Jetson Orin (64G) mobile GPU

(b) Latency on Raspberry Pi 4

Figure 10. TinyChat offers 1.2-3.0 x speedup over existing systems when running 4-bit quantized Llama models on NVIDIA Jetson Orin.
It also supports a diverse range of general-purpose and coding-specific LLMs with at least 2.6 x speedup over AutoGPTQ, which also
supports all these workloads. Moreover, TinyChat seamlessly operates on Raspberry Pi and enables the deployment of LLMs with up to 7

billion parameters on extremely resource-constrained IoT devices.

and thus it is significantly slower than other models. In this
case, our FP16 optimizations bring about a larger speedup
of 1.6x. On the laptop 4070 GPU with only 8GB memory,
we are still able to run Llama-2-13B models at 33 tokens/s,
while the FP16 implementation cannot fit 7B models. We
also demonstrate visual-language model (Lin et al., 2024)
acceleration results in Table 10. TinyChat brings about 3x
speedup to both VILA-7B and VILA-13B on NVIDIA Jet-
son Orin. Notably, we implement the forward pass for all
AWQ models using native PyTorch APIs, and this code is
reused across various GPU architectures. Hence, TinyChat
offers exceptional extensibility.

Comparisons against other systems. We compare Tiny-
Chat against existing edge LLM inference systems Auto-
GPTQ, llama.cpp and exllama in Figure 10. Our system
achieves up to 1.7 x speedup over llama.cpp on Orin. Fur-
thermore, llama.cpp and exllama exhibit limited adaptability,
primarily tailored for LLaMA and Llama-2 models. In con-
trast, our TinyChat supports a wide range of applications,
including StarCoder (Li et al., 2023c), StableCode (GPT-
NeoX) (Black et al., 2022), Mistral (Jiang et al., 2023), and
Falcon (Penedo et al., 2023) while consistently delivering
significant speedup over AutoGPTQ. TinyChat even democ-
ratizes LLM deployment on extremely resource-constrained
Raspberry Pi 4B, achieving 0.7 tokens/s for 7B models.

6 CONCLUSION

In this work, we propose Activation-aware Weight Quan-
tization (AWQ), a simple yet effective method for low-bit
weight-only LLM compression. Based on the observation
that weights are not equally important in LLMs, AWQ per-
forms per-channel scaling to reduce the quantization loss
of salient weights. AWQ does not over-fit the calibration
set and preserves the generalist abilities of LLMs in various
domains and modalities. It outperforms existing work on
language modeling and is applicable to instruction-tuned
LMs and multi-modal LMs. Our TinyChat system further
translates the theoretical memory savings achieved by AWQ
into 3.2-3.3 x measured speedups over the FP16 implemen-

tations from Huggingface on desktop and mobile GPUs,
democratizing LLM deployment on the edge.
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