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Abstract—DNNs are rapidly evolving from streamlined single-
modality single-task (SMST) to multi-modality multi-task
(MMMT) with large variations for different layers and com-
plex data dependencies among layers. To support such models,
hardware systems also evolved to be heterogeneous. The het-
erogeneous system comes from the prevailing trend to integrate
diverse accelerators into the system for lower latency. FPGAs
have high computation density and communication bandwidth
and are configurable to be deployed with different designs
of accelerators, which are widely used for various machine-
learning applications. However, scaling from SMST to MMMT
on heterogeneous FPGAs is challenging since MMMT has much
larger layer variations, a massive number of layers, and complex
data dependency among different backbones. Previous mapping
algorithms are either inefficient or over-simplified which makes
them impractical in general scenarios. In this work, we propose
CHETF to enable efficient implementation of MMMT models in re-
alistic heterogeneous FPGA clusters, i.e. deploying heterogeneous
accelerators on heterogeneous FPGAs (A2F) and mapping the
heterogeneous DNNs on the deployed heterogeneous accelerators
(M2A). We propose CHEF-A2F, a two-stage accelerators-to-
FPGAs deployment approach to co-optimize hardware deploy-
ment and accelerator mapping. In addition, we propose CHEF-
M2A, which can support general and practical cases compared
to previous mapping algorithms. To the best of our knowledge,
this is the first attempt to implement MMMT models in real
heterogeneous FPGA clusters. Experimental results show that the
latency obtained with CHEF is near-optimal while the search time
is 10000X less than exhaustively searching the optimal solution.

Index Terms—multi-modality multi-task (MMMT), heteroge-
neous FPGA clusters.

I. INTRODUCTION

Deep neural networks (DNNs) are increasingly used in
complex machine learning applications, requiring diverse mod-
els and advanced hardware to meet new challenges [I1]. On
one hand, DNNs are rapidly evolving from simple, single-
task systems to more complex, multi-task systems, especially
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in fields like robotics [2], human-computer interactions [3],
[4], virtual reality (VR)/ augmented reality (AR) [5], [6],
etc. Fig. 1 (a) shows an example of an MMMT model
with three modality nets fusing at the end. The circle 1.1
represents the first layer of the first modality. As shown in
Fig. 1 (a), such MMMT models involve complex inter-block
connections between multiple backbones of different sizes [1],
[7]. On the other hand, heterogeneous hardware acceleration
components are increasingly integrated into state-of-the-art
(SOTA) systems. FPGAs, known for their high computing
power and high flexibility, have been widely used for various
machine-learning applications both at the edge level and at
the cloud level [8]-[14]. For example, VMSS [12], an edge
server composed of Xilinx U50+U30 FPGAs is proposed to
build efficient video analytics in smart cities. Compared to
other platforms such as GPUs, TPUs, etc., VMSS can be
reconfigured to satisfy codecs, streaming protocols, specialized
DNNs, and other smart application needs efficiently. At the
cloud level, UIUC XACC [13] has been designed to support
high-performance computing, machine learning, and genomics
applications equipped with modern FPGAs. However, while
deploying SMST DNNs on such multi-accelerator clusters has
been well studied, scaling them into MMMT DNN applica-
tions has not been comprehensively investigated.

Compared with SMST, MMMT is more complex, with
varied layers, a massive number of layers, and intricate data
dependencies, presenting new challenges in accelerator design.
First, MMMT models have much larger variations in terms of
layer type and layer shape. For example, VFS [16], a typical
MMMT model, involves convolutional (Conv) layers, and fully
connected (FC) layers, and contains VGG and VD-CNN back-
bones. The input size of the VGG backbone is 3 x 224 x 224,
while the input size of the VD-CNN backbone is 64 x 1014 x 4.
When calculating the computation-to-communication (CTC)
ratio of all Conv layers on a monolithic accelerator on the
Xilinx U280 FPGA, the CTC ratio for VGG ranges from 48
to 448, while the CTC ratio of Conv layers in VD-CNN ranges
from 274 to 319. Existing multi-accelerator designs for SMST
models [8]-[11] partition available resources for each layer,
and design customized sub-accelerators for different types of
layers. Such layer-wise pipelined dataflow accelerators (DFAs)
can solve the large variation for shallower networks.

Second, since MMMT models contain multiple SMST back-
bones, the number of layers is also multiple times greater
than that found in single DNNs. For example, VES includes
48 Conv and FC layers, while VLocNet [2], another MMMT
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Fig. 1. (a) Abstracted MMMT model with three modalities. A circle
represents a layer of a modality net, and an arrow represents data dependency
between two layers. The index a.b in the circle represents the bth layer of
the ath modality. MMMT models include complex inter-block connections
between multiple backbones. (b) Latency comparison for MAGMA [15] and
CHEF (ours) on VLocNet [2], an MMMT model. MAGMA focuses on
mapping multiple DNNs on multiple accelerators but does not involve cross-
backbone layer dependencies. Compared to MAGMA, CHEF achieves lower
latency for MMMT models with fewer PEs.

model, is composed of 141 layers. The traditional DFAs fail to
address the large variation when the network becomes deeper
because they would necessitate the design of numerous differ-
ent small accelerators under a fixed FPGA resource constraint.
As proved in DNNExplorer [!7], more accelerators lead to
fewer resources for each stage, which eventually leads to lower
performance. DNNExplorer shows that when the number of
Conv layers increases from 13 to 38, the performance of a
38-layer model decreases by 77.8% compared to a shallower
network with 13 Conv layers.

Third, MMMT models include more complex inter-layer
dependency across different SMST backbones. While Her-
ald [18] and MAGMA [15] were developed to alleviate the
previous two challenges by running multiple networks on
multiple accelerators in parallel instead of in pure pipeline
fashion, the complex inter-layer dependency across different
SMST backbones makes them inefficient. Fig. 1 (b) shows
the comparison of the latency of VLocNet, a typical MMMT
model, on MAGMA and our design. MAGMA targets a
small accelerator with 32 x 64 processing elements (PEs)
and a large accelerator with 128 x 64 PEs. CHEF targets
Xilinx U280 (1808 PEs) and U250 (2458 PEs) FPGAs. In
FPGA, 5 digital signal processors (DSPs) conduct a multiply-
accumulate (MAC) operation and can be considered as one PE.
As illustrated in Fig. 1 (b), with fewer PEs, CHEF achieves
lower latency for MMMT models than the SOTA SMST-based
accelerator design.

H2H [1] is the first attempt to map MMMT models to
different FPGA accelerators using an iterative heuristic algo-
rithm. However, H2H cannot work for general scenarios due to
the following limitations. First, H2H relies on the CPU host
memory to store data when the DRAMs of FPGAs cannot
hold all data, which cannot work for edge servers without a
host. Second, in H2H, each FPGA is only deployed with one
accelerator, while in a more general case, one FPGA is feasible

to deploy with one or multiple sub-accelerators. The limited
design space prevents H2H from finding a more optimal
mapping scheme with better resource utilization. M5 [7] is
the second MMMT mapping work but has the following
limitations. First, M5 uses the number of DSPs to approximate
the resource consumption and latency, while the actual rela-
tionship between the resource consumption and latency is not
polynomial. Second, M5 only targets homogeneous clusters
rather than heterogeneous clusters. Therefore, these two works
are over-simplified and fail be applied in more complicated and
practical design scenarios existing in heterogeneous systems.

Compared to H2H and M5 which are the only two existing
works scheduling MMMT models on multiple FPGAs, our
work targets more general and practical scenarios for the
MMMT scheduling problem. It will be explained in Sec. III
in detail. Our main contributions are as follows.

e We propose CHEF-A2F (Sec. 1V), a
accelerators-to-FPGAs  deployment  approach  to
efficiently deploy heterogeneous accelerators to
heterogeneous FPGAs supporting diverse accelerator
types (DAT) (Feature (D)) and search for an efficient
solution in a nonlinear, multi-dimensional, multiple-
knapsack (MDMK) design space (Feature (2)).

o We propose CHEF-M2A (Sec. V), an efficient mapping
algorithm to map the MMMT models to the deployed
accelerators considering both the variation among hetero-
geneous layers and the inter-layer dependency. Compared
to H2H and M5, CHEF-M2A supports more compli-
cated scenarios as shown in Fig. 2 (b) incorporating
intra-FPGA bandwidth (BW) sharing (Feature (3)), inter-
FPGA-communication (Feature 3)), DRAM budget dur-
ing mapping (Feature (O)), and addressing cross-backbone
data dependencies (Feature (©)).

o Based on the CHEF algorithm, we develop a simulator
to estimate the latency of MMMT models for different
clusters. To the best of our knowledge, we are the
first to attempt to validate the simulator with end-to-end
implementation (Feature (7)). Experimental results show
that the deviation of the simulation result is only —7.81%
compared to the end-to-end on-board measurement result,
which validates that the estimated latency of CHEF is
relatively accurate. Therefore, our work can be used as
a benchmark for future mapping algorithms either in
simulation or implementation.

two-stage

II. RELATED WORKS
A. Evolving from SMST to MMMT

The development of DNNs enables easier fusing from
different input signals, which makes it appealing to evolve
from streamlined SMST models to MMMT models for better
accuracy [19]. Currentlyy, MMMT models are promising to
be applied in various applications such as robotics, human-
computer interaction, and VR/AR for better performance [2]-
[6], [20]. For example, VLocNet, a novel convolutional neural
network (CNN) architecture has been proposed which takes
two consecutive monocular images as input and regresses the
6-DoF global pose and 6-DoF odometry simultaneously and
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outperforms task-specific localization models [2]. In the 3D
autonomous driving scenario, FULLER takes both the point
cloud and image as inputs and achieves precision improvement
in both map segmentation and 3D detection [21]. However,
apart from better prediction accuracy, it is also necessary to
reduce the inference implementation with the help of diverse
accelerators. Compared with implementing SMST, implement-
ing MMMT has larger layer variation, a massive number of
layers, and more complex inter-layer dependency, which in-
creases the difficulties of efficiently deploying MMMT models
on hardware platforms.

B. Effectiveness of Heterogeneous Accelerators in SMST Im-
plementation and Limitations to be Applied in MMMT Imple-
mentation

To solve the large variation in DNN layer shapes, hetero-
geneous accelerators are designed for better utilization and
low latency [8]-[11], [15], [18]. Table I compares SOTA
heterogeneous accelerator designs considering the 7 features
mentioned in Sec. . CHARM [8] provides a system-design
methodology for composing heterogeneous matrix multiply
(MM) accelerators on the Versal ACAP chip. Since the map-
ping targets a single FPGA with resource constraints including
PEs and on-chip BRAMs, the design space can be represented
as a multi-dimensional, single-knapsack problem (MDSK).
To efficiently map diverse sizes of MM layers on multiple
accelerators, it partitions the MM layers of different workloads
and generates resource partition candidates based on the
workload assignment. BLAST-R [9] explores heterogeneous
FPGA-based designs to effectively leverage both task and
data parallelism to achieve the minimum cost while satisfying
timing constraints. It models a CNN as a task graph and
partitions Conv layers into pipeline stages by inserting buffers.
Since it involves multiple FPGAs, the design space expands
to MDMK which is more complex to find an optimal solution.
However, the partition algorithms in CHARM and BLAST-R
only focus on the monotone type of layers, while an MMMT
model can be composed of Conv, FC, long short-term memory
(LSTM) layers, etc. To implement MMMT models, a more
general resource allocation approach supporting diverse layer
types is needed.

Dlastic-DF [10] and Algean [! 1] have achieved full end-to-
end multi-FPGA implementations for traditional SMST mod-
els on the clusters with 100 Gb/s network. They involve inter-
FPGA data communication. However, Algean only targets
resource-abundant FPGA clouds whose on-chip memory can
hold all data but have not considered the memory budget
for resource-constrained edge clusters. Dlastic-DF implements
SMST models in a pipelined manner. However, as mentioned
in Sec. I, such a pipelined manner suffers from fewer resources
for each stage, especially for MMMT DNNs involving multi-
ple times of layers compared to SMST DNNS.

To support evolved networks with multiple inputs, Her-
ald [18] and MAGMA [15] have been developed to deploy
multiple SMST DNNs on multiple accelerators, achieving
better utilization for heterogeneous layers. Unlike previous
DFAs [8]-[11], such approaches can address the former two

challenges of MMMT models: layer variation and massive
number of layers. However, unlike real MMMT models, the
heterogeneous SMST models are independent of each other.
As shown in Fig. 1, ignoring the last challenge, i.e. data
dependency among different backbones will lead to sub-
optimal solutions.

C. Deploying MMMT Models on Multi-FPGA Systems

To the best of our knowledge, H2H [I] and M5 [7] are
the only two works to map MMMT models to multi-FPGA
systems. H2H provides an iterative heuristic algorithm to map
MMMT models on heterogeneous off-the-shelf FPGA-based
accelerators with 4 steps including Computation Prioritized
Mapping under zero local DRAM assumption, Weight Locality
Optimization buffering parts of weights to local DRAM,
Activation Transfer Optimization reducing immediate feature
transmission latency for adjacent layer allocated on the same
accelerator, and Data Locality Aware Re-mapping to reduce
inter-FPGA data communication overhead. Different from
H2H which only assigns one accelerator on one FPGA board,
MS5 explores flexible accelerator configurations and possi-
ble resource sharing among layers. However, the algorithms
of these works have not been validated on real hardware
platforms. The limitations mentioned in Sec. I prevent both
algorithms from being applied in practical scenarios. The
proposed CHEF will address these limitations which will be
discussed in Sec. III in detail. The main advantages of CHEF
compared with all existing works are presented in Table I.

III. MOTIVATION

As introduced in Sec. II-C, H2H and M5 are the only
two works addressing the MMMT models to multi-FPGAs
scheduling problem. However, the limitations in Sec. I prevent
them from being used in a practical and general system. This
section will first introduce the general system case and show
how the H2H and M5 fail in the case. Then, the overview
of CHEF is shown including the challenges and solutions to
achieve MMMT models to heterogenous FPGAs scheduling
in the general case.

FPGA 1
Accl

Fig. 2. (a) The architecture for the heterogeneous cluster in H2H [1]. It
contains multiple FPGAs, and one FPGA is deployed with an accelerator.
All FPGAs are connected to a main host with unlimited memory. (b) A more
general architecture is implemented in CHEF. Different from H2H, one FPGA
can be deployed with one or multiple accelerators. We only store weights and
immediate features on local DRAMsS, and the memory constraint is considered.
(D represents the intra-FPGA communication scheme. We support two inter-
FPGA communication schemes: @) the direct P2P communication between
two FPGAs without a host CPU, and (3) the FPGAs are connected via a host.

In H2H, it is limited to only one accelerator connection
topology with a host shown in Fig. 2 (a) and ignores how to
deploy different heterogeneous accelerators to heterogeneous
FPGAs, which prevents the algorithm from being applied
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TABLE I
COMPARISONS WITH SOTA HETEROGENEOUS ACCELERATORS DESIGNS

Features @ DAT | @ Knapsack | @ Intra-FPGA | @ Inter-FPGA | (O DRAM budget | ® Cross-backbone | () Implementation
CHARM [&] X MDSK v X X X v
BLAST-R [Y] X MDMK X v X X X

Elastic-DF [10] v MDMK v v X X v
Algean [11] v MDMK X v X X v
Herald [15] v MDSK v X X X X

MAGMA [15] v MDSK v X X X X

H2H [1] v Fixed X v v v X

M5 [7] v SDMK X v X v X
CHEF (ours) v MDMK v v v v v

in general FPGA systems. First, in Fig. 2 (a), H2H only
targets the situation in which all FPGAs are connected to
the main host. The host stores weights and immediate data
in the main memory and conducts data swapping between
two FPGAs. However, numerous general cases are beyond
H2H’s capabilities. For example, in the cases of edge servers
like VMSS, BLAST-R, etc., FPGAs can directly communicate
with each other via diverse connection approaches such as
Ethernet, PCle, high-speed serial (HSS), etc., (i.e. @ in Fig. 2
(b)). The lack of main host memory makes it necessary to
store all data in the local DRAM of each FPGA. Some
clusters like UIUC XACC [13] and UCLA VAST [14] can
communicate with each other either via the main host (3 in
the figure) or directly via the PCle driver without requiring
access to the host CPU (). Second, H2H maps multi-
modal models to off-the-shelf accelerators. However, different
acceleration designs adopt different scheduling methodologies,
computation patterns, and communications patterns, so there
is no guarantee that these accelerators can be compatible with
each other. In addition, H2H only deploys one accelerator on
one FPGA, which is not flexible and leads to sub-optimal
mapping schemes. Different from H2H, CHEF targets a more
practical and general design situation, where users have some
compatible accelerator design intellectual properties (IPs) with
self-developed analytical models. An IP is an accelerator
design that can be deployed on an FPGA with a given
parallelism degree. This scenario is common in system design.
For example, Xilinx has developed a group of parameterizable
IP cores called deep-learning processor units (DPUs) which
are pre-implemented on FPGAs [22]. Since our work requires
finding an optimized scheduling scheme during the design time
before hardware implementation, an accurate analytical model
including the resource costs and latency for specific layers is
also indispensable. Given one or multiple FPGA platforms,
users can select IPs and deploy them to the system based on
application requirements. As shown in Fig. 2 (b), an FPGA is
flexible to either accommodate one big accelerator or multiple
smaller accelerators that can execute independent layers in
parallel.

MS5 [7] is the second work to deploy the MMMT model
on multiple FPGAs but is oversimplified and only targets
homogeneous clusters. First, M5 is oversimplified which only
uses the utilized DSPs for each accelerator to profile the
resource consumption and latency. In practical system design,
the relationship between latency and resource costs is not poly-
nomial, which makes the mapping problem more complicated.

Second, M5 only targets homogeneous clusters of FPGAs,
while mapping heterogeneous models to heterogeneous clus-
ters of FPGAs introduces a larger design space. To sum up,
H2H and MS fail to be applied in more complicated design
scenarios existing in heterogeneous systems.

Compared to H2H and M5 which are the only two existing
works scheduling MMMT models on multiple FPGAs, our
work targets more general and practical scenarios. As shown
in Fig. 2 (b), we have a cluster with heterogeneous FPGAs, and
each FPGA has a particular on-chip resource constraint, i.e.
available DSPs and block RAMs (BRAMs). Each FPGA also
has a fixed DRAM size and on-chip to off-chip communication
scheme (I). All the data are stored in DRAMs and different
FPGAs can achieve peer-to-peer (P2P) communication directly
@. The host is only used to call the functions for the on-chip
accelerator kernels. It should be noted that this architecture can
be extended to solve the architecture in Fig. 2 (a) by using half
of the bandwidth parameter in 3) as the P2P communication
bandwidth, i.e. data between two FPGAs are relayed via the
main CPU host. Therefore, this architecture can support gen-
eral scenarios including cloud, edge, and on-device clusters.
Given the clusters, users have developed different compatible
candidate template accelerator IPs with diverse computation
resource costs and performance models. Unlike M5, which
relies on a simple performance model only considering the
computation parallelism of MAC based on the number of
DSPs, our performance model involves accurate profiling of
on-chip computation and on-chip to off-chip communication.
The model can be calibrated during on-board experiments.

The main goal of this study is to optimize both hardware
setup and accelerator mapping to ensure the efficient inference
performance of multi-task DNNs. Therefore, we introduce
CHEF, a framework designed for the effective deployment
of varied accelerators to FPGAs (CHEF-A2F) and for map-
ping complex DNNs to these accelerators (CHEF-M2A). The
overview is shown in Fig. 3.

In the general and practical case shown in Fig. 2 (b), we aim
to select efficient accelerators to be deployed on heterogeneous
FPGAs under hardware constraints and then map the MMMT
model to the deployed accelerators for low latency. As shown
in Fig. 3, the deploying and mapping problems need to be
co-optimized. We use a running example of scheduling VFS
on VMSS to illustrate CHEF.

There are two main challenges. The first is how to co-
optimize the hardware deployment and accelerator mapping in
the cluster. An FPGA can be deployed with one big accelerator
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CHEF

Challenge 2: how to map MMMT
DNNs with large layer variations,
huge layer numbers, and complex
data dependencies on the deployed
accelerators?

Challenge 1: how to co-optimize
the hardware deployment and
MMMT mapping in the cluster?

CHEF-A2F CHEF-M2A
ion and C

Aware Mapping

Coarse-Grained Initial Deploying s

Idle Aware Re-deploying Data Locality Aware Re-mapping
n f

L |

Fig. 3. The overview of CHEF. It includes CHEF-A2F to deploy hetero-
geneous accelerators on different FPGAs and CHEF-M2A to map MMMT
DNNs on the deployed accelerators. CHEF-A2F includes 2 steps: Coarse-
Grained Initial Deploying and Idle Aware Re-deploying. CHEF-M2A includes
2 steps: Computation and Communication Aware Mapping and Data Locality
Aware Re-mapping. CHEF-M2A mapping is conducted in every deploying
to re-deploying iteration of CHEF-A2F. The 4 steps form a close-loop opti-
mization workflow and work iteratively until no more beneficial scheduling
scheme is acquired.

or multiple small accelerators running in parallel. Different
deployment leads to different mapping results, which is shown
in Fig. 5. Balancing between accelerator architectures and
available hardware resources is a trade-off. To address this
challenge, we propose CHEF-A2F, a two-stage accelerators-to-
FPGAs deployment approach. It starts mapping with Coarse-
Grained Initial Deploying and then conducts Idle Aware Re-
deploying based on the mapping results. It supports diverse
layer types (Feature (I)) and models the search space as
an MDMK problem (Feature (2)). This approach will be
introduced in detail in Sec. IV.

The second challenge is that, unlike traditional streamlined
DNNs, MMMT models have large layer variations, huge
layer numbers, and complex data dependencies, so it is non-
trivial to map MMMT DNNs on multiple FPGAs considering
both computation and communication patterns. Given both
computation and communication constraints, previous MMMT
mapping algorithms [1], [7] are oversimplified. Therefore, we
propose CHEF-M2A, a novel MMMT models-to-accelerators
mapping algorithm. It generalizes H2H by considering the
following additional configurations. Firstly, one FPGA can be
deployed with one or multiple accelerators, so accelerators can
communicate with each other via intra-board communication
(Feature (3)) or inter-board communication (Feature @)). Sec-
ondly, without relying on the host memory to buffer weights
and intermediate data, the mapping algorithm will consider the
impacts of local DRAM size (Feature (O)). Compared to the 4
steps in H2H, CHEF-M2A achieves lower latency with only 2
steps: the Computation and Communication Aware Mapping
and Data Locality Aware Re-mapping. This mapping algorithm
will be introduced in Sec. V.

As illustrated in Fig. 3, the optimizations in CHEF-A2F and
CHEF-M2A form a close-loop optimization workflow. During
the initial deployment and each iteration of re-deploying in
CHEF-A2F, CHEF-M2A mapping is conducted to update
the mapping scheme based on the new accelerator-to-FPGA
deployment. CHEF stops until no more beneficial mapping
and deploying schemes can be obtained.

IV. CHEF-A2F

In this section, we propose CHEF-A2F, a two-stage
accelerators-to-FPGAs deployment approach to address the
first challenge discussed in Section III. The overall co-optimize
problem can be formulated as follows. Given ¢ = 1,....m
FPGAs with available DSPs and BRAMSs constraints, i.e.
DSP; and BRAM,; for FPGA;, we have already designed
t = 1,...,n types of accelerator IPs, e.g. A; Conv IPs, A
FC 1IPs, A3 LSTM IPs, etc. (Feature (I)). Each IP has an
analytical model which is composed of a resource and a
performance model [23], [24]. The resource model is used
to estimate its DSPs and BRAMs cost: e.g. DSFP,—1.. 4,
and BRAM,—1 .. a, for Conv IPs. The performance model
estimates the latency for a DNN layer of the same type. The
optimization problem can be illustrated in (1). The deployment
scheme is shown as ({X;ta} 1 <a < Ay, 1<t <n, 1<i<
m), where X4, is the number of ath IP for the tth accelerator
type deployed to FPGA;, and {X;;,} is a list of X;;, for
all IPs. The goal of the optimization problem is to minimize
the overall mapping latency of the deployed accelerators. The
first two constraints indicate that for each FPGA i, the sum of
DSPs and BRAMs costs of the deployed accelerators should
not exceed the available DSPs and BRAMs for each FPGA.
Constraint 3 indicates that the number of accelerators deployed
on each FPGA for each IP should be a non-negative integer,
and the same IPs can be selected multiple times. The last
constraint ensures that for each type of accelerator, at least
one IP should be selected and deployed in the multi-FPGA
cluster.

min CHEF — M2A Mapping({Xita}, 1 <a < Ay,
1<t<n, 1<i<m)
S S DSPuy - Xiw < DSP,Vi
S A BRAMt, - Xira < BRAM;, Vi
Xita > 0 and integer
Sy Yt Xita = 1,V

It is apparent that (1) can be represented as a nonlinear,
MDMK problem, which is NP-hard and cannot be solved
in polynomial time. Since the mapping function is also non-
polynomial, directly applying traditional knapsack-solving al-
gorithms like dynamic programming (DP) to find an optimal
solution is time-consuming. Therefore, we propose a two-stage
accelerators-to-FPGAs deployment approach, CHEF-A2F, to
search for an efficient deploying scheme in an acceptable time
for this MDMK problem (Feature ().

The overview of CHEF-A2F is shown in Fig. 4. It first
allocates accelerators from the candidate IPs to the FPGA
cluster in a Coarse-Grained manner. Then, an Idle Aware
Re-deploying algorithm is proposed to remove and replace
some accelerators for better utilization. The Gantt charts of
the mapping scheme are shown in Fig. 5.

(D
s.t.

A. Coarse-Grained Initial Deploying

Since the Mapping function in (1) is non-polynomial, it
is time-consuming to directly apply knapsack-solving algo-
rithms. Therefore, we provide a coarse-grained approach to
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Fig. 5. Gantt Charts of scheduling VFS on VMSS under 15 GB/s before
re-deployment and after re-deployment. The *16_32’ means the parallelism
for the input channels is 16, while that for output channels is 32 for a Conv
layer. Different bar colors represent layers from different modalities. (a) The
mapping scheme after Coarse-Grained Initial Deploying. (b) The mapping
scheme after Idle Aware Re-deployment.

select the most powerful accelerators combination with the
maximum overall throughput as an initial deploying strategy.
For each tth type of accelerator IP ta deployed in FPGA
i, we estimate the maximum throughput the accelerator can
achieve for each layer of the MMMT model thp;;,. Then,
we approximate the mapping results in (1) using the sum
of the estimated maximum throughput for all the deployed
accelerators. The optimization goal after approximation is
shown in (2), while the constraints remain unchanged.

n m A
maz Y Y > thpita - Xita @

t=1 i=1a=1
This problem is changed to a standard linear programming
(LP) problem and can be solved by off-the-shelf LP tools.
In this work, PuLP [25] is used as the LP solver. After the
LP-based deployment, we apply the CHEF-M2A mapping
algorithm in Section V to get an initial estimated latency.
Current mapping scheme of the VFS running example is

shown in Fig. 5 (a).

B. Idle Aware Re-deployment

In Sec. IV-A, we use the maximum throughput to approxi-
mate the mapping performance for each deployed accelerator.

However, the accelerators cannot achieve the best performance
since some of them will be idle for some layers after CHEF-
M2A mapping. For example, in Fig. 5 (a), ’accl’ is idle
after 0.06s. Therefore, we redeploy some accelerators based
on the mapping results. We found that after removing idle
accelerators (i.e. ’accl’ in Fig. 5 (a)) we can leave space
to replace smaller accelerators with lower parallelism degrees
(i.e. ’accO’ in Fig. 5 (a)) to bigger ones with higher parallelism
degrees (i.e. accO in Fig. 5 (b)). Based on this observation,
we propose an idle-aware re-deployment after getting the
initial deployment scheme, mapping, and estimated initial
latency Lat. We search for an optimized deployment scheme
by iteratively removing accelerators with longer idle time
and then replacing small accelerators with larger and more
powerful ones. We check the latency after mapping every time
a replacement is conducted and only accept the replacement
with shortened latency. The proposed re-deploying algorithm
adopts the duty cycle to measure if an accelerator is under-
utilized and idle.

The algorithm consists of the following steps: Step 1, for
the accelerator of each type, starting from the accelerator with
the least duty cycle, the algorithm will attempt to remove the
accelerator from the located FPGA if the accelerator is not
the only accelerator of the same type. For example, in Fig. 5
(a), there are two accelerator types: Conv and FC. "acc2’ is the
only FC accelerator, while "accl’ has the lowest duty cycle for
all Conv accelerators. Step 2, For the remaining accelerators on
the same FPGA, the algorithm attempts to pick one and replace
it with another candidate IP as long as the DSPs and BRAMs
constraints are met (e.g. replace *acc0’ on 'b0’ in Fig. 5 (a) to
“acc0’ in Fig. 5 (b). Step 3, for each replacement in Step 2, we
re-map the MMMT DNN using CHEF-M2A and choose the
deployment parameters {X;;,} with the lowest latency (e.g.
the lowest Lat is shortened from 0.222s to 0.188s in Fig. 5
(b). Step 4, if the overall latency is shortened after Steps 1, 2,
and 3, we accept such replacement. The re-deploying scheme,
re-mapping scheme, and Lat are updated. Then, we return to
Step 1 using the updated duty cycle for the next re-deploying
iteration. If the latency is not shortened after the replacement,
we will remove another accelerator with the second least-
duty cycle and repeat Steps 2 and 3. If no accelerator can
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Fig. 6. Gantt Charts of scheduling VFS on VMSS under 15 GB/s before
re-mapping and after re-mapping under Coarse-Grained Initial Deploying. (a)
The mapping scheme after Computation and Communication Aware Mapping.
(b) The mapping scheme after Data Locality Aware Re-mapping.

be removed for lower resultant latency, (e.g. Lat cannot be
shorter than that in Fig. 5 (b)), the algorithm will stop.

V. CHEF-M2A

This section will introduce the details of CHEF-M2A,
which maps MMMT models to the accelerators obtained in
Section IV. The input of the CHEF-M2A algorithm includes
the model graph G,,,4e; and accelerator-to-FPGA deploying
information {F;{Acc;}}. The nodes in Ginoqer represent
the layers of the MMMT model, while the edges represent
layer dependencies. Unlike SMST, G,,,04¢; involves multiple
branches with complex data dependency. We use the same
running example to illustrate the CHEF-M2A algorithm, and
the Cantt charts are shown in Fig. 6.

Unlike H2H which only lists the performance models
for each accelerator, CHEF-M2A models the accelerators-to-
FPGAs deploying information {F;{Acc;}} which is obtained
from ({Xito} 1 <a <A, 1<t<mn, 1<i<m).For
each FPGA Fj}, it includes the list of deployed accelerators
{Acc;}, the number of DDR/HBM channels, and available
DRAM size. Acc; is the jth accelerator deployed in F;. Each
accelerator Acc; records which IP it is applied to which FPGA
and has a performance model Perf; using the layer infor-
mation, bandwidth between the FPGA chip and the DRAM
BWppranm (.e. @D in Fig. 2 (c)), and the inter-accelerators
bandwidth BWy e, (i.e. @ or 3) in Fig. 2 (¢)) as inputs. The
output of the mapping algorithm is a multi-accelerator graph
Giys = {Gcc, }» where each accelerator j holds a mapping
graph Gj&ccj representing the hardware dependency for each
layer. Each node of G7. . has the information on which layer
the accelerator is mapped to, the start time of the layer, and the
end time, while the edges show the dependencies and orders of
these mapped layers. An example of G, . is shown in Fig. 6.
The mapping latency Lat is the maximum value of the end
time in G, ;. Our goal is to minimize Lat.

As introduced in Sec. III, H2H has 4 processes: Com-
putation Prioritized Mapping, Weight Locality Optimization,
Activation Transfer Optimization, and Data Locality Aware
Re-mapping. It assumes all data are stored in the host memory
which is hypothetically unlimited in the first process and then
buffers only a proportion of these data to the local DRAMs in
the second and third processes to remove the data transmission

latency. However, in a more general case without host memory,
the zero local DRAM assumption cannot be applied, so
data transmission between layers should be involved at the
beginning. Therefore, compared to H2H, CHEF-M2A first
conducts Computation and Communication Aware Mapping,
which considers weights locality and activation transmission
together. After that, Data Locality Aware Re-mapping is
applied to further shorten the overall latency.

A. Computation and Communication Aware Mapping

Since MMMT models involve cross-backbone dependency,
each layer will have multiple predecessors and successors
(Feature (©)). To tackle this, in the initial mapping, we first
consider all unmapped nodes without predecessors in the
model graph and find the best mapping combinations, and
then the mapped nodes are removed from the graph. The
detailed steps are as follows. In step 1, for all the unmapped
nodes without predecessors in G,,04e1, We enumerate all the
mapping combinations to allocate these nodes on {F;{Acc;}}.
Unlike H2H which assumes zero DRAM locality by storing
all weights and immediate features in the host memory at the
beginning and moving a proportion of these data to DRAM
under the DRAM budget later, CHEF-M2A stores all data
in DRAM. Therefore, CHEF needs to guarantee the DRAM
budget can hold all data during mapping. Thus, in step 2,
we conduct DRAM budget check (Feature (9)), i.e. for each
mapping candidate, we check if the current DRAM budget for
FPGA is possible to accommodate weights and features for the
rest of the layers. Only if for all layer types, the DRAM cost
for the rest of the layers of the same type is smaller than the
DRAM size for the FPGAs deployed with corresponding types
of accelerators, and the FPGA with maximum DRAM budget
can hold the data of the layer with maximum DRAM cost,
CHEF-M2A will accept current mapping candidate and move
to the next step.

Step 3 is to calculate the latency increment ALat for all
the accepted mapping candidates. Assume layer [ is mapped
to accelerator Acc;, and its predecessor layer [ " in the MMMT
model is mapped to accelerator Acc; . For layer [, its layer
latency (e.g. the length of a box in Fig. 6) involves the
intra-accelerator latency estimated by Perf; and the data
transmission latency among accelerators. Unlike H2H, we
store weights of [ in the local DRAM of F;, so there is no
weight transmission. For feature transmission, the situation is
also more complicated since we consider the fact that multiple
accelerators are located on one FPGA. The detailed analysis
is as follows (Features @ and @). First, if Acc; and Accjr
share the same DDR/HBM bank of the same FPGA, there is no
feature transmission latency, but BWpgraas will be divided by
the number of accelerators sharing the same bank. Second, if
they are on the same FPGA but connect to different banks,
features are transmitted among banks via the FPGA chip.
Third, if Acc; and Accj/ are located on different FPGAs, the
feature transmission latency is calculated via BWp,se,. ALat
is the maximum layer latency of these unmapped nodes. In step
4, we select the mapping candidate that results in the minimum
A Lat and remove the mapped nodes from the MMMT model

graph. G7, ; is also updated with new mapped nodes.
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B. Data Locality Aware Re-mapping

Next, CHEF-M2A conducts a re-mapping operation that
reallocates a layer from its source accelerator to a new
destination accelerator, on which its neighbors (predecessors
or successors) are mapped with the following steps. Step 1,
for all the nodes in G,04¢i, if its neighbor is not on the same
accelerator, we attempt to re-map the node to its neighbor’s
accelerator (e.g. the circled layer on ’accO’ in Fig. 6 (a) is
moved to ’accl’ in Fig. 6 (b)). Step 2, for each re-mapping
attempt, we conduct the DRAM budget check. The latency
after re-mapping is calculated only if the DRAM budget is
satisfied. Step 3, the re-mapping attempt is accepted if the
MMMT model latency is shortened (e.g. Lat in Fig. 6 is
shortened from 0.224s to 0.222s). G, is also updated. Steps
1-3 are repeated until no node can be re-mapped for better
results.

VI. SIMULATOR

Based on CHEF-A2F and CHEF-M2A, we develop a sim-
ulator to estimate the latency of MMMT models for different
clusters. The simulator is composed of 4 parts: the configura-
tion of the FPGA cluster, resources and performance models
for accelerator IPs, the definition of the MMMT model, and
our CHEF scheduling algorithm.

The configuration of the cluster. In this part, we first define
the FPGAs that are used in the cluster. The information on
each FPGA includes the frequency of the FPGA, the number of
on-chip DSPs and BRAMs, the number of DDR/HBM banks
in the off-chip DRAM, the size of each DDR/HBM bank, and
the DDR/HBM bandwidth BWpgran. Second, we include
the P2P bandwidth between arbitrary two FPGAs BW,ter.
If FPGA 1 and FPGA 2 in Fig. 2 (b) are connected via ),
BW,pter 1s the PCle bandwidth. If they are connected via
), which is the same as Fig. 2 (a), BWj,ter is half of the
FPGA-to-host bandwidth.

Accelerator IPs. Our simulator enables users to design
customized accelerator IPs with self-developed resource and
performance models. Currently, we have established model
templates for Conv IPs and FC IPs based on XFER [24] and
LSTM IPs based on [26] with different parallelism degrees.
For each template, the resource model estimates the number
of DSPs, BRAMs costs under their parallelism degree, and
the DRAM costs for each layer. The performance model
calculates the latency for each layer both including the features
transfer with the predecessor layers and without inter-layer
data communication.

Definition of the MMMT model. In each MMMT model,
we first define layer information including the layer type and
the layer parameters for each layer. For Conv layers, the layer
parameters include the number of output channels, the number
of input channels, output feature column size, output feature
row size, weight kernel size, stride, and padding size. For
FC layers, the parameters only involve the number of output
channels and the number of input channels. For LSTM layers,
embedded vector dimension, the number of hidden states, and
the number of LSTM cells are involved. Second, the data
dependency between different layers is defined.

TABLE 11
MMMT DNNs
Model Backbone Layer Types | Layers
VLocNet [?] ResNet-50 variants CNN, FC 141
CASUA-SURF [27] ResNet-18 variants CNN 44
VES [16] VGG and VD-CNN variants | CNN, FC 48
FaceBag [28] ResNet variants CNN, FC 51
CNN-LSTM [29] | ConvNet and LSTM variants | CNN, LSTM 20

CHEF scheduling algorithm. Based on the algorithms in-
troduced in Sec. IV and Sec. V, we generate the optimized
scheduling strategy given the FPGA clusters, accelerator IPs,
and the MMMT model. CHEF-AZ2F records the accelerator-to-
FPGA deploying information { F;{Acc;}} indicating which IP
is deployed to which FPGA and how many accelerators of this
IP are on the FPGA. Given the accelerator deployment, CHEF-
M2A records the mapping scheme G, including which layer
is mapped to which accelerator, and the start and end times
for each layer. The resultant inference latency Lat is the end
time of the last layer.

VII. EXPERIMENTS

In this section, we first implement the MMMT model on
the public XACC server and compare the end-to-end latency
with that estimated by the simulator to validate the correctness
of the algorithm. Secondly, we analyze the effectiveness of re-
deploying and re-mapping optimization steps in CHEF on 3
practical FPGA clusters both at the edge level and at the cloud
level. Then, we show the overall effectiveness of CHEF by
comparing it with the SOTA MMMT models to heterogeneous
clusters scheduling algorithm H2H. Finally, a series of ablation
studies for search time and latency are presented to validate the
effectiveness and efficiency of CHEF-A2F and CHEF-M2A.

A. Experimental Setup

TABLE III
HETEROGENEOUS EDGE CLUSTERS
Name Used in Configuration
VC707+ZCU102+ZC706+XCKU060+
Cluster 1 | H2H [1] XC7Z045+VCU118
Cluster 2 | VMSS [12] US0LV+U30
Cluster 3 | XACC [13] U280+U250

Heterogeneous Cluster of FPGAs. Table III summarizes
3 heterogeneous FPGA clusters that have been applied in
previous research and industrial applications. Cluster 1 adopts
m = 6 different Xilinx FPGAs that are applied in H2H with 6
developed IPs. Cluster 2 uses the VMSS edge server developed
by Xilinx for smart cities (m = 2) with 12 IPs. The XACC in
Cluster 3 is a public multi-FPGA cloud server established by
UIUC (m = 2) with 8 IPs. H2H uses a CPU host to connect
all FPGAs via Ethernet, while VMSS is equipped with PCle
interfaces for direct P2P communication. XACC supports both
P2P communication and host-to-FPGA communication. To
show the training performance on various P2P communication
bandwidths, we test CHEF on these clusters with different
BWinier = 0.125 GB/s, 3 GB/s, 15 GB/s. 0.125 GB/s
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represents a low BW communication approach such as Gigabit
Ethernet [30] (1Gbps=0.125GB/s), while 3 GB/s represents a
medium BW connection such as PCle (tested in Sec. VII-B).
15 GB/s represents a high BW. For example, with TCP/IP
stack, the 100 GbE Smart NICs achieve around 100-140 Gbps
BW with an average of 15 GB/s [31].

Heterogeneous MMMT models. Table II summarizes 5 het-
erogeneous DNNs used in the evaluation, spanning different
domains. The models use CNNs, FCs, or LSTMs as backbones
(Feature () and typically involve 3 or 4 backbones with cross-
backbone data dependencies Feature (6)). For VLocNet, VFS,
FaceBag, and CNN-LSTM, the number of layer types n = 2,
while n = 1 for CASUA-SURF.

Baselines.

o To show the effectiveness of the re-deploying and re-
mapping optimizations in Sec. VII-C, we compare the
resultant latency with the following steps: Step 1 is the
latency with initial deploying in CHEF-A2F and initial
mapping in CHEF-M2A, Step 2 is the latency with re-
mapping during the initial deploying, and Step 3 is the
latency with both re-deploying in CHEF-A2F and re-
mapping in CHEF-M2A.

o To show the overall effectiveness of CHEF in Sec. VII-D,
we compare it with the SOTA work H2H.

o In the ablation studies in Sec. VII-E, to validate the
effectiveness of CHEF-A2F, we compare our deployment
search approach with DP, which is a commonly used
search algorithm to find optimal solutions for Knapsack
problems. To validate the effectiveness of CHEF-M2A,
the optimal solution is provided by enumerating all
possible layer-to-accelerator mapping combinations.

B. End-to-End Implementation (Feature (1))

The proposed work is evaluated on the public UIUC HACC
Cluster [13] with one U280 and one U250 FPGA shown in
Fig. 2 (b). The working frequency for U280 is 200MHz, while
U250 works on 150MHz. The U280 is equipped with 32 HBM
banks, while the U250 is equipped with 4 DDR banks. We
first measure the on-board BWpraar. The HBM bandwidth
is around 12 GB/s under 200MHz, and the DDR bandwidth
is around 8 GB/s under 150MHz. Then, we test the PCle-
based P2P communication bandwidth BW,,,;c,, and BW;,ier
is measured to be 3 GB/s. To validate the accuracy and cor-
rectness of CHEF, we conduct end-to-end implementation on
the CASUA-SUREF [27], VES [16], and FaceBag [28] models,
and each model contains more than 40 layers. We developed
8 candidate IPs and established analytical models. Each IP is
designed and coded with TAPA [32]. The obtained IP cores
have bitstream generated in Xilinx Vitis (v2022.2). For each IP,
we compare the latency estimated by the performance model
and that measured on-board. The deviations for estimated
latency compared to on-board tested latency for these IPs range
from -0.94% to -6.66%, which proves that the performance
models are accurate for latency estimation.

With the configuration of the FPGA cluster, the acceleration
IPs, and the definition of the MMMT model, we apply CHEF
to acquire the scheduling information including the accelerator

TABLE IV
END-TO-END RUNTIME OF MMMT MODELS ON HACC: MODELING VS.
ON-BOARD MEASUREMENT.

Model Modeling (s) | On-board Measurement(s) | Error Rate
CASUA-SURF 0.0307 0.0336 -8.63%
VES 0.1475 0.1600 -7.81%
FaceBag 0.0159 0.0168 -5.36%

deploying information {F;{Acc;}} and the mapping scheme
Gy, s automatically generated by the simulator. The simulator
also generates an estimated latency Lat. Then, we implement
end-to-end inference of the three models on the cluster using
the scheduling information and measure the on-board execu-
tion latency. As shown in Table IV, the deviation for the end-
to-end testing of each complete model is less than 10% which
validates that the estimated latency of CHEF is relatively
accurate. After validating the correctness of the CHEF and the
accuracy of its simulator, we use the simulator for a series of
comparisons and ablation studies in the following experiments.

C. Effectiveness of Re-deploying and Re-mapping

Fig. 7 shows the system latency of the MMMT models
listed in Table II. The X-axis represents different optimization
steps in CHEEF, i.e. without re-deploying or re-mapping, with
only re-mapping, and with both re-deploying and re-mapping.
We test the latency of the 3 clusters listed in Table III under
various P2P bandwidths. It can be seen that the re-deploying in
CHEF-A2F and re-mapping in CHEF-M2A can significantly
reduce the overall latency in these cases. For example, in Fig. 7
(a) for Cluster 1, the maximum latency reductions caused by
the combination of re-deploying and re-mapping are 84%,
87%, and 88% under low, medium, and high P2P bandwidth,
respectively.Re-deploying and re-mapping effectively improve
the inference performance for different FPGA clusters under
various P2P bandwidths.

D. Comparison with H2H []]

Fig 8 shows the inference latency speedup of the MMMT
models compared to H2H [1]. We compare the latency on
the three heterogeneous cluster platforms under low, medium,
and high bandwidth. H2H adopts fixed accelerators, while our
work searches optimized accelerator combinations and deploys
them on the clusters. The inference latency achieved by CHEF
is significantly shortened compared to the H2H baseline.

The speedup comes from two aspects. On one hand, H2H
deploys one fixed accelerator on one FPGA, while our pro-
posed CHEF is flexible to deploy one or multiple accelerators
on each FPGA. Take Cluster 2 under the low P2P bandwidth
as an example, CHEF deploys 3 accelerators for VLocNet and
5 accelerators for CASUA-SURF. Compared to H2H, CHEF
considers a larger design space, and it is feasible to search for
a beneficial deployment scheme with superior mapping results.

On the other hand, H2H suffers from an intenser inter-FPGA
communication bottleneck compared to CHEF. In CHEF, all
weights are stored in local DRAM, while H2H stores parts
of weights in the host memory which leads to extra weights
transfer workload (Feature (3)). Besides, immediate features
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Fig. 7. Latency comparison of re-deploying and re-mapping. The X-axis represents three optimization steps: Step 1 is after initial deploying and initial
mapping, Step 2 is after the re-mapping under the initial accelerator deployment, and Step 3 is the final result after both re-deploying and re-mapping. (a)
Comparisons for Cluster 1. (b) Comparisons for Cluster 2. (¢) Comparisons for Cluster 3. The re-deploying in CHEF-A2F and re-mapping in CHEF-M2A

can significantly decrease the resultant inference latency for these clusters.
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Fig. 8. The latency speedup compared to H2H. (a) The speedup in Cluster
1. (b) The speedup in Cluster 2. (c) The speedup in Cluster 3. Compared
to H2H, the proposed CHEF achieves 1.09-49.43 inference speedup in these
clusters.

are transmitted back and forth via the CPU host if adjacent
layers are not located on the same accelerators. However,
as mentioned in Sec V, in CHEF, features do not need to
be moved as long as two adjacent layers share the same

HBM/DDR bank (Feature (). If data-dependent layers are
not allocated to the same memory bank but are mapped to
accelerators on the same FPGA, features are transmitted via
the FPGA chip. The on-chip transmission is more efficient
than FPGA-to-FPGA transmission. Only when adjacent layers
mapped to different FPGAs, the inter-board feature trans-
mission is required (Feature @)). Therefore, as presented in
Fig 8, CHEF achieves significant speedup, especially under
lower P2P bandwidth. To further validate that Features (3)-
® of CHEF successfully reduces communication overhead,
we present the inter-accelerator communication ratio of CHEF
and H2H in Table V. The ratio is calculated using the sum of
the accelerator-to-accelerator communication latency divided
by the accumulation of layer time costs for each accelerator.

As illustrated in Table V, the inter-accelerator communi-
cation ratio is less than 15% under various P2P bandwidths
for different clusters, while the ratio for H2H is severely
impacted by the P2P bandwidth. For example, under low
bandwidth, the inter-accelerator communication takes up 22%-
91% of the accumulated inference latency. Compared to H2H,
CHEEF suffers less from the cross-accelerator communication
overhead.

E. Analysis of CHEF-A2F and CHEF-M2A Algorithms

As mentioned in Sec. IV, finding an optimal solution is
time-consuming, so we propose a two-stage accelerators-to-
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TABLE V
INTER-ACCELERATOR COMMUNICATION RATIO BETWEEN H2H AND
CHEF (OURS)

Cluster 1 Cluster 2 Cluster 3

Model | P2P BW o CHEF [ H2H [ CHEF | H2H |CHEF
Tow |54.01% |14.07% |82.76% | 2.22% | 83.22% | 0.05%

VLocNet | medium | 11.76% | 2.88% |12.83% | 5.62% | 13.20% | 4.04%
high | 2.87% | 0.61% | 2.86% | 1.85% | 2.95% |0.41%

CASUA |_low_[49.16% | 5.40% |75.44%| 11.43% | 7133% |5.82%
“SURE | medium [ T1.22% | 0.94% |11.34%] 4.30% | 9.39% |1.89%
high | 2.88% | 0.80% | 2.50% | 0.93% | 2.03% |0.61%

Tow |49.97%| 3.72% |82.60% | 9.74% |79.86% | 0.30%

VES [medium | 6.11% | 0.74% |17.75% | 3.12% | 15.85% |0.58%

high | 1.60% | 0.24% | 3.98% | 0.84% | 3.30% |0.33%

Tow |80.92% | 3.19% [90.84% | 0.00% |89.21% | 0.00%

FaceBag | medium | 22.74% | 0.89% |28.55% | 1.82% |24.99% | 1.70%
high | 6.61% | 0.23% | 7.10% | 0.52% | 5.99% |0.04%

CNN. |_Jow _[2247%] 0.10% |79.36%| 0.10% | 76.51%0.06%

LSTM | medium [ %:98% | 0.83% | 13.85% | 0.00% |11.95% 0.00%
high | 1.07% | 0.17% | 3.11% | 0.04% | 2.65% |0.00%

FPGAs deployment approach to co-optimize hardware de-

can achieve near-optimal performance for all the scenarios,
while searching for an optimal deploying scheme demands a
great mass of time. For example, when the number of FPGAs
increases to 4, DP takes nearly 27 hours to find an optimal
solution for a sub-network of VFS with 10 layers, which is
10378 times compared to CHEF-A2F. Thus, searching for an
optimal solution via DP for the whole VFS with 48 layers
is estimated to take around 5 days, which is inefficient in
practical applications. Compared to DP, CHEF-A2F can find
a near-optimal solution for the whole VFS in 15.6s. It should
be noted that we only consider 3 IP candidates. When we
increase the IPs to 4, DP fails to complete the search within
15 days even for sub-networks, while CHEF is efficient in
searching for complete MMMT models with more IPs in an
acceptable time. The search time will be discussed in detail
in Fig. 9.

TABLE VII
THE MAPPING PERFORMANCE AND SEARCH TIME COMPARISON

ployment as well as accelerator mapping and thus search Optimal CHEF-M2A (ours)
for a near-optimal solution. In this section, we validate the Model | Accs. | Lat. (s) ST (s) Lat. (s) ST (s)
effectiveness and efficiency of CHEF-A2F and CHEF-M2A | " . § 8'82‘5‘; 125895 (21131(;);()) 8'8233 88&; 8'8328
solving the MDMK problem in 1 by comparing the resultant 4100522 [3107 21727X) | 0.0522 (1.00X) [ 0.1430
inference latency (Lat.) and search time (ST) with the optimal CASUA |2 [ 00133 [ 1.23 (87.9X) [ 0.0134 (1.0IX) [0.0140
solution (Feature (2)). Results show that CHEF can achieve -SURF* i 8‘8}%2 ‘éﬁg'j &7 6159))(()) 8'832 883% 8'8%8
near—optimal solutions with signiﬁcantly less searching time. 2 0:0235 275 (131X) 0:0261 (I:IIX) 0:0210
VES* 3 0.0212 157 (1826X) | 0.0246 (1.16X) | 0.0860
TABLE VI 4 0.0212 | 3453 (11472X) 0.0212 (1X) 0.3010
2 0.00120 | 2.68 (223X) |0.00121 (1.01X) | 0.0120
THE DEPLOYMENT PERFORMANCE AND SEARCH TIME COMPARISON FaceBag* 31000109 | 158 @647%) 1 0.00120 (1.T0X) [0.0340
DP (Optimal) CHEF-A2F (ours) 4 10.000997 | 3390 (25299X) | 0.00117 (1.17X) | 0.1340
Model |FPGAs| Lat. (s) ST (s) Lat. (s) ST (s) CNN- 2 0.0104 2.21 (205X) 0.0110 (1.06X) |0.0108
2 0.0446 3.62 (16X) 0.0505 (1.13X) | 0.220 LSTM* 3 0.0104 127 (5799X) 0.0104 (1X) |0.0219
VLocNet* 3 0.0386 223 (326X) 0.0386 (1X) 0.683 4 0.0103 |[2295 (18811X) | 0.0103 (1X) 0.122
4 0.0304 | 1.97E4 (9610X) 0.0304 (1X) 2.05
2 0.0119 3.24 21X) 0.0131 (1.10X) | 0.151 : : . _
CS/;SRLIT:A* 3 000838 156 (261%) 0.00838 (150 10,730 Then, we validate the: effectlven?ss of CHEF-M2A. Ta
) 4 [ 0.00691 | 1.72E4 (9556X) | 0.00691 (1X) | 1.80 ble VII shows the mapping comparison of CHEF-M2A and
2 0.0257 9.27 (22X) 0.0260 (1.01X) 10424 | the optimal solution in terms of estimated system latency
VES* 3 0.0212 810 (323X) 0.0212 (1X) 2.48 :
T 00212 (96254 (10378 00212 (10| 9.27 .and search time when the num!:)er of deI‘)loy?d acce.lerators
3 [0.000955]  3.87 (18X) | 0.00117 (1.23X) |0.220| increases from 2 to 4. The optimal solution is obtained by
FaceBag* [ 3 |0.000888] 226 (309X) [0.00093T (1.05X)[0.732]| enumerating all possible mapping combinations and finding
4 10.000808] 1.93E4 (9650X) | 0.000808 (1X) | 2.00 the one with the shortest system latency. Given N available
CNN- 2 0.0103 2.61 (17X) 0.0110 (1.07X) | 0.154 | d MMMT del with M 1 h
LSTM* 3 0.0103 184 (322X) 00103 (IX) [0572| Aaccelerators and an model wit ayers, the com-
4 0.0103 |1.65E4 (10060X)|  0.0103 (I1X) 1.64 plexity of finding the optimal solution is N . Mapping all

We first validate the effectiveness of the proposed CHEF-
A2F deployment approach. Table VI shows the deployment
comparison of CHEF-A2F and DP. We compare the estimated
system latency and the search time on Cluster 3 with 3
candidate IPs and increase the number of FPGAs m from 2
to 4. For both DP and the proposed CHEF-A2F deployment
approach, we apply the same CHEF-M2A mapping algorithm
to generate the mapping scheme for each iteration of hard-
ware deployment. Since DP searches all possible deployment
schemes and finds an optimal solution, it will be time-
consuming to map all layers of the MMMT models in each
iteration. Therefore, we perform the comparison mapping sub-
networks that contain only 9 or 10 layers for different models,
and we use * to indicate only part of the layers is involved in
the models in later results. As shown in Table VI, CHEF-A2F

layers of MMMT models with 4 accelerator candidates ranging
from 40 layers to 150 layers is time-consuming. Therefore,
we also compare the performance mapping only 9-10 layers
for the MMMT models. As shown in Table VII, CHEF-
M2A achieves near-optimal performance for all the scenarios,
while searching for an optimal mapping scheme requires
tremendous time. For example, deployed with 4 accelerators,
finding an optimal solution mapping a mere 10-layer VLocNet
takes nearly 1 hour, while CHEF-M2A costs only 0.1430s.
CHEF-M2A achieves 21727 times speedup in search time for
mapping. If we search for the optimal solution for the whole
141 layers, the optimal solution is estimated to take 6.4 x 1e78
hours, which is impossible to apply in practical applications,
while CHEF-M2A can find a near-optimal solution in 13.5s.

To further present the overall efficiency of CHEF, we display
the search time when CHEF is applied to schedule complete
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Fig. 9. The search time of CHEF with 8 candidate IPs when the number of
FPGAs increases to 4. The search time ranges from 0.66s to 78s.

MMMT models on m = 4 FPGAs with 8 candidate IPs.
As can be seen in Fig. 9, CHEF searches for near-optimal
deploying and mapping schemes for MMMT models ranging
from 20 layers to 141 layers in minutes or seconds. If new
models are given in the application, our proposed approach is
feasible and efficient to generate the scheduling scheme in an
acceptable design time.

VIII. CONCLUSION

This work proposes CHEF to enable efficient heterogeneous
MMMT models deploying on heterogeneous clusters with
FPGAs. We propose CHEF-A2F, a two-stage accelerators-
to-FPGAs deployment approach to select efficient accelera-
tors IPs and deploy them on given heterogeneous clusters
of FPGAs considering the mapping performance. Then, we
propose CHEF-M2A to map MMMT models to the deployed
accelerators. We are the first attempt to implement end-to-end
MMMT model inference in heterogeneous clusters of FPGAs
which provides benchmarks and baselines for future works.
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