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AbstractÐWhile the existence of randomness extractors, both
seeded and seedless, has been studied for many sources of ran-
domness, currently, not much is known regarding the existence
of seedless condensers in many settings. Here, we prove several
new results for seedless condensers in the context of three related
classes of sources: Non-Oblivious Symbol Fixing (NOSF) sources,
online NOSF (oNOSF) sources (originally defined as SHELA
sources in [1]), and almost Chor-Goldreich (CG) sources as
defined in [2]. We will think of these sources as a sequence of
random variables X = X1, . . . ,Xℓ on ℓ symbols where at least
g out of these ℓ symbols are ªgoodº (i.e., have some min-entropy
requirement), denoted as a (g, ℓ)-source, and the remaining ªbadº
ℓ− g symbols may adversarially depend on these g good blocks.
The difference between each of these sources is realized by
restrictions on the power of the adversary, with the adversary in
NOSF sources having no restrictions.

Prior to our work, the only known seedless condenser upper or
lower bound in these settings is due to [2], where they explicitly
construct a seedless condenser for a restricted subset of (g, ℓ)-
adversarial CG sources.

The following are our main results concerning seedless con-
densers for each of these sources.

1) oNOSF sources

a) When g ≤ ℓ/2, we prove that condensing with error 0.99
above rate 1

⌊ℓ/g⌋
is impossible. In fact, we show that this

is tight.
b) Quite surprisingly, for g > ℓ/2, we show the existence

of excellent condensers for uniform oNOSF sources. In
addition, we show the existence of similar condensers for
oNOSF sources with only logarithmic min-entropy. Our
results are based on a new type of two-source extractors,
called output-light two-source extractors, that we introduce
and prove the existence of.

2) Adversarial CG sources

a) We observe that uniform adversarial CG sources are
equivalent to uniform oNOSF sources and consequently
inherit the same results.

b) We show that one cannot condense beyond the min-
entropy gap of each block or condense low min-entropy
CG sources above rate 1/2.

3) NOSF sources

a) We show that condensing with constant error above rate
g
ℓ

is impossible for uniform NOSF sources for any g
and ℓ, thus ruling out the possibility of any non-trivial
condensing. This shows an interesting distinction between
NOSF and oNOSF sources.
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Research Fellowship. N.R. supported by NSF GRFP grant DGE ± 2139899,
NSF CAREER Award 2045576 and a Sloan Research Fellowship.

Index TermsÐpseudorandomness, condensers, adversarial
sources, non-oblivious symbol fixing sources, Chor-Goldreich
sources

I. INTRODUCTION

One of the most fruitful lines of research in computer

science has been that of randomness. From the traditionally

more applied areas of algorithm design (e.g., Monte Carlo

simulations), error-correcting codes and cryptography to the

more theoretical areas of property testing, combinatorics, and

circuit lower bounds, randomness has played a key role in

seminal discoveries. In many of these works, the use of high-

quality random bits, or alternatively, a way to convert low-

quality randomness into high-quality randomness, is essential.

In cryptography, the authors of [3] showed that high-quality

randomness is essential for tasks such as bit commitment

schemes and secure two-party computation. On the other hand,

being able to extract uniform bits from low-quality randomness

allows us to simulate randomized algorithms [4].

In most use-cases, randomness takes the form of uniformly

random bits. These motivated the construction of randomness

extractors,1 functions that take low-quality randomness (which

we often like to think of as natural processes) and convert it

into uniformly random bits. It is impossible to extract from

the class of all sources and so extractors are constructed with

respect to a restricted class of sources.

A number of works [4]±[7] have shown that deterministic

extraction is impossible for many natural classes of random-

ness sources. The question that arises for such sources then is

whether any improvement to their randomness can be made.

That is, while it may not be possible to convert a source

into uniform bits, maybe it is possible to condense a source

into another source with a higher density of randomness. The

central focus of our paper is in understanding the possibility of

condensing for various natural models of weak sources where

it is known that extraction is impossible.

We first introduce the way that we measure randomness

and the notions of extractors and condensers. The notion

of randomness that is standard in this line of work is

that of min-entropy. For a source X on n bits, we define

its min-entropy as H∞(X) = minx∈{0,1}n{− log(Pr[X =

1In this paper, when we mention extractors/condensers, we usually mean
seedless extractors/condensers.
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x])}. A source X over n bits with min-entropy at least

k is called an (n, k)-source. Given any two distribu-

tions X and Y on {0, 1}n, we define their statistical

distance or total-variation (TV) distance as |X−Y| =
maxZ⊆{0,1}n |Prx∼X[x ∈ Z]− Pry∼Y[y ∈ Z]|. We also need

the notion of smooth min-entropy: for a source X on {0, 1}n,

it=s smooth min-entropy with smoothness parameter ε is

Hε
∞(X) = maxY:|X−Y|≤ε H∞(Y). Conceptually, smooth

min-entropy asks that the source we are looking at be ε-close

in TV-distance to some other source with the desired amount

of min-entropy. We are now in a position to define randomness

extraction and condensing.

Definition I.1. Let X be a family of distributions over {0, 1}n.

A function Ext : {0, 1}n → {0, 1}m is an extractor for X with

error ε > 0 if for all X ∈ X we have |Ext(X)−Um| ≤ ε.

For extractors to exist, we require all sources in X to have

entropy. When each source in X is an (n, k)-source, we say

that Ext is a (k, ε)-extractor for X . For some classes, an

extractor may not exist (such as for the class of all (n, n−1)-
sources). Consequently, we turn to the looser requirements of

condensing.

Definition I.2. For a family of distributions X over {0, 1}n,

a function Cond : {0, 1}n → {0, 1}m is a condenser

with error ε ≥ 0 if for all X ∈ X we have that

Hε
∞(Cond(X))/m ≥ H∞(X)/n. We say that Cond has

entropy gap ∆ if Hε
∞(Cond(X)) ≥ m − ∆. When X is the

class of (n, k)-sources and k′ = m−∆, we say that Cond is

a (k, k′, ε)-condenser.

Unfortunately, even this notion is too strong as we cannot

condense with error ε from the class of all (n, k)-sources so

that the output entropy rate is larger than k/n. 2 We thus

study condensing from classes of sources which have some

additional structure along with a min-entropy requirement. In

this paper, we explore the possibility of condensing from three

related models of weak sources. These models, some of which

have been studied since the 1980s, are very general and well-

motivated by practical considerations.

The rest of the introduction is organized as follows: In

section I-A, we present the case that condensers have many

applications and are hence a natural direction of study, in

particular when extraction is not feasible. In section I-B, we

discuss the models of weak sources that we study, present

relevant prior work on these models, and discuss our results

for each of them.

A. The utility of condensing

We present two viewpoints in motivating our study of

condensers. We compare what is possible via condensing in

contrast to extracting and consider the utility of condensing

for simulating BPP algorithms.

2Assuming m ≤ n, the output entropy can be shown to be most k+m−

n+ log(1/(1− ε)). See lemma V.20 for a proof of this fact.

1) Condensing vs. extracting: Condensers exist in many

scenarios when it can be provably shown that deterministic

extraction is not possible. Thus, they allow us to obtain

randomness that is more useful than what we began with

in cases where extracting uniform bits is impossible. One

significant example is that of Santha-Vazirani (SV) sources

[5] and their generalization, Chor-Goldreich (CG) sources [6].

Informally, an SV source is a string of random bits such

that the conditional distribution of each bit on the bits that

come before it is guaranteed to have some minimum amount

of min-entropy; a CG source generalizes this to allow each bit

to instead be a symbol in {0, 1}n. It is well known that deter-

ministic extraction is impossible for both SV and CG sources

[5]±[7]. The recent result of [2] with regards to condensing

from CG sources stands in contrast to these impossibility

results for extraction. Other examples of sources for which

deterministic extraction is not possible while deterministic

condensing are the somewhat dependent sources of [8] and

block sources [9].

We briefly mention that seeded condensers are known to

achieve parameters unattainable by seeded extractors [10].

Further, seeded condensers have been extremely useful in

excellent constructions of seeded extractors [11]±[14].

2) Condensing for simulating BPP algorithms: Condensers

with small entropy gap are useful in simulating randomized

algorithms with low overhead [2]. There are two ways one can

go about this. First, there exists an explicit seeded extractor

Ext with seed length d = O(log(∆)) that can extract from

any (n, k)-source X with entropy gap ∆ = n− k [15]. Then,

to simulate a randomized algorithm A in BPP, we instead

sample x ∼ X and take the majority of the output of A on

{Ext(x, s)} where we cycle over all seeds s [16].

For some applications in randomized protocols, cryptog-

raphy and interactive proofs, one cannot afford to compute

Ext all 2d times by cycling through every seed [17]±[20].

Alternatively, we can simulate A using a ªone-shotº method

in which we do not iterate over all seeds. A result from [20]

allows us to simulate A on the condensed source X (with

entropy gap ∆) by reducing the error of A to 2−∆−1 · ε and

then using X directly to simulate random bits in A. Such a

simulation will have error ε.

B. Models of weak sources and our results

We consider three adversarial classes of sources motivated

by weak sources that appear in practice as well as in various

cryptographic settings. These sources are natural generaliza-

tions of the well-studied independent sources wherein we al-

low for an adversarial dependence between sources. Changing

the scope and power of the adversary in natural ways gives rise

to the three different classes of sources that we will consider.

The three randomness sources that we focus on in this work

are all composed of blocks of bits, known as symbols, which

vary in how they are permitted to relate to other symbols in

the source. In these definitions, we will consider sources X =
X1, . . . ,Xℓ of length ℓ where each Xi ∈ {0, 1}n is called a

block. Generally, we will term blocks that have some minimum
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amount of randomness ªgoodº and blocks that are chosen by

an adversary as ªbadº. Next, we discuss these three models

of weak sources, presenting what was known from prior work

and our new results for each of these models.

1) Online non-oblivious symbol fixing sources: The first

class of adversarial sources that we will define is that of

online non-oblivious symbol fixing (oNOSF) sources. While

these are a restriction of general NOSF sources, which we

will define later, we introduce them first since they have the

weakest adversary and, consequently, the strongest positive

results. Formally, we define oNOSF sources as follows.

Definition I.3 (oNOSF sources, [1]). A (g, ℓ, n, k)-oNOSF

source X = X1, . . . ,Xℓ on ({0, 1}n)ℓ is such that g out of

the ℓ blocks are independently sampled (n, k)-sources (i.e.,

good), and the remaining ℓ − g bad blocks only depend on

blocks with smaller indices (i.e., to their left).

If k = n, we call X a uniform (g, ℓ)-oNOSF source.

oNOSF sources form a natural class of sources to study when

an adversary is working in real time and cannot predict the

future. One such real-world example is that of blockchains.

From [21], [22], we know that in a sequence of blocks,

there will be some fraction of blocks that are chosen by

honest players. Moreover, since these honest players are not

working together, their chosen blocks may be considered as

independent, fulfilling the requirement for good blocks for

oNOSF sources. The adversarial players, on the other hand,

can only see blocks added to the blockchain thus far and do

not know which values of blocks will be added in the future,

fulfilling the requirements for bad blocks for oNOSF sources.

For more uses of oNOSF sources, see [1].

Previous work: Prior to our work, the only results for

condensing or extracting from oNOSF sources are due to

[1]. In [1], the authors study Somewhere Honest Entropic

Look Ahead (SHELA) sources, which are exactly convex

combinations of oNOSF sources (see proposition IV.15). They

(1) transform (not uniform) oNOSF sources into uniform

NOSF sources and (2) show that for any γ ∈ (0, 1), there

exists an ℓ such that extraction is not possible for (⌊γℓ⌋ , ℓ)-
oNOSF sources.

Our results: We prove the existence of condensers with

excellent parameters when the majority of the blocks of a

uniform oNOSF source are good.

Theorem I.4 (Informal version of theorem VI.13). For all

constant g, ℓ and all ε such that g > ℓ/2, there exists a

condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any

uniform (g, ℓ)-oNOSF source X, we have Hε
∞(Cond(X)) ≥

m−O(log(m/ε)) where m = n.

For our construction, we introduce a new type of two-source

extractor3 that we call a R-output-light two-source extractor.

Such a two-source extractor 2Ext : {0, 1}n1 × {0, 1}n2 →
{0, 1}m satisfies the additional guarantee that each output

3See definition IV.9 for a definition of two-source extractors

z ∈ {0, 1}m can only be produced by R inputs x ∈ {0, 1}n1 in

the first source (see definition VI.10 for the formal definition).

The existence of such extractors is not obvious, and we show

that output-light two-source extractors exist with strong pa-

rameters in lemma VI.11. Our proof uses the observation that

R-output-lightness is implied by the notion of R-invertibility,

which simply bounds ∥Cond(X)∥∞ by R (see definition VI.18

for a formal definition). Incidentally, this latter notion has

been recently used in a different context, to construct ex-

plicit random access linear codes with constant rate and

distance [23]. While we are unable to explicitly construct such

output-light two-source extractors, we do construct an explicit

output-light seeded extractor, which we use to condense from

uniform (2, 3)-oNOSF sources and more.

In fact, we can achieve a stronger result and show existence

of condensers for oNOSF sources with only logarithmic min-

entropy guarantee in the good blocks.

Theorem I.5 (Informal version of corollary VI.14). For any

constant g, ℓ and all ε such that g > ℓ/2 + 1, there exists

a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any

(g, ℓ, n, k)-oNOSF source X with k ≥ 2 log(n/ε) we have

Hε
∞(Cond(X)) ≥ m−O(log(m/ε)) where m = Ω(k).

To accomplish this, we transform logarithmic min-entropy

oNOSF sources to uniform oNOSF sources and then apply the

condenser for uniform oNOSF sources. We transform logarith-

mic min-entropy oNOSF sources to uniform oNOSF sources

by modifying the construction of a somewhere-extractor for

high min-entropy SHELA sources by [1]. These results imply

that oNOSF sources can be useful for low overhead simulation

of BPP algorithms. Furthermore, taken in tandem with the

result that for all γ > 0 there exists a large enough ℓ such

that one cannot extract from uniform (⌊γℓ⌋ , ℓ)-oNOSF sources

from [1], we have shown that oNOSF sources are one of the

natural classes of sources that admit seedless condensing but

not seedless extraction. This adds oNOSF sources to the short

list of such natural sources mentioned in section I-A1.

In contrast, condensing in the regime of g ≤ ℓ/2 is

more nuanced: some non-trivial condensing beyond rate g
ℓ is

possible provided g does not divide ℓ, but condensing to a

significantly higher rate is not possible.

Theorem 1 (theorem V.1, restated). For any function f :
({0, 1}n)ℓ → {0, 1}m and ε > 0, there exists a constant δ
and uniform (g, ℓ)-oNOSF source X with g ≤ ℓ/2 such that

Hε
∞(f(X)) ≤ 1

⌊ℓ/g⌋ ·m+ δ.

This partially resolves4 a conjecture of [1]: they conjectured

that (g, ℓ)-oNOSF sources cannot be transformed into uniform

(g′, ℓ′)-NOSF sources with g′

ℓ′ > g
ℓ . Our condensing impos-

sibility implies g′

ℓ′ ≤ 1
⌊ℓ/g⌋ for any such transformation. This

negative result is tight and we are able to condense uniform

(g, ℓ)-oNOSF sources up to rate 1
⌊ℓ/g⌋ .

4Our result on the existence of condensers falls short of completely
resolving their conjecture as it does not transform uniform oNOSF sources
into uniform NOSF sources.
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Theorem 2. (Informal version of theorem VI.3) For any

constant g, ℓ and ε such that ⌊ℓ/g⌋ = r and ℓ/g ̸= r,

there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m

such that for any uniform (g, ℓ)-oNOSF source X we have

Hε
∞(Cond(X)) ≥ 1

r ·m−O(log(m/ε)) where m = Ω(n).

As before in theorem 2, we can convert a logarithmic min-

entropy oNOSF source to a uniform oNOSF source and then

apply theorem 2. This yields:

Theorem 3. (Informal version of theorem VI.1) For all con-

stant g, ℓ and ε such that
⌊
ℓ−1
g−1

⌋
= r and ℓ−1

g−1 ̸= r, there

exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that

for any (g, ℓ, n, k)-oNOSF source X with k ≥ 2 log(n/ε), we

have that Hε
∞(X) ≥ 1

r ·m−O(log(m/ε)) with m = Ω(k).

We note that theorem I.4 and theorem I.5 are special cases

of theorem 2 and theorem 3 in the case that ⌊ℓ/g⌋ = r = 1,

allowing us to state all of our condensing possibility results

succinctly.

Put together, our results demonstrate a sharp threshold

at g = ℓ/2 for condensing from oNOSF sources with a

small entropy gap. To our knowledge, there is no other

set of sources that exhibits such behavior, making oNOSF

sources unique among both adversarial sources and general

randomness sources.

2) Adversarial Chor-Goldreich sources: Next, we consider

a generalization of oNOSF sources, termed adversarial Chor-

Goldreich (CG) sources, that we obtain by strengthening the

adversary’s power. Adversarial CG sources share the moti-

vation from oNOSF sources that the adversary cannot predict

the future. Rather than forcing the adversary to have its blocks

only depend on blocks in the past (those with smaller indices),

aCG sources require that good blocks have some entropy

conditioned on all blocks that came before them. In other

words, bad blocks cannot expose all of the entropy of future

good blocks.

Definition I.6 (Adversarial CG (aCG) sources, [2], [6]). We

define a (g, ℓ, n, k)-aCG source X = X1, . . . ,Xℓ to be a

distribution on ({0, 1}n)ℓ such that there exists a set of good

indices G ⊆ [ℓ] of size at least g for which H∞(Xi | X1 =
x1, . . . ,Xi−1 = xi−1) ≥ k for all i ∈ G and all prefixes

x1, . . . , xi−1.

As before, if k = n, then we say that X is a uniform (g, ℓ)-
aCG source. Observe that because the good blocks of a oNOSF

source are independent of all blocks before it, oNOSF sources

are trivially aCG sources as well. As a consequence, our

condensing impossibility results from theorem 1 immediately

apply to aCG sources as well. Moreover, a convenient fact

that we later show in proposition IV.17 and will rely on is

that uniform (g, ℓ)-aCG sources and uniform (g, ℓ)-oNOSF

sources are equivalent.

CG sources are a well-studied class of sources introduced

by [6] as a generalization of Santha-Vazirani sources [5].

Hence, the majority of the work done on CG sources has

been in the non-adversarial setting in which g = ℓ. Adver-

sarial CG sources that contain bad blocks were only recently

introduced in [2] (although they use the terminology ªalmostº

CG sources), in which the authors show several condensing

results for CG and adversarial CG sources. Our work can then

be seen as a meaningful addition to this long line of research

on CG sources and their generalizations.

Previous work: The impossibility of extraction from both

oNOSF sources and aCG sources due to [1], [6] naturally

raises the question of whether there is a distinction between

these two sources with regards to randomness condensing.

For CG sources, [24] showed that errorless condensing is

impossible. In contrast, [2] proved several possibility results

regarding condensing with error for CG sources. Their results

assume that the size of each block is very small (almost

constant) compared to the number of blocks.

We also note that the authors of [2] considered various other

relaxations of the definition of aCG sources that we do not

consider here. These include good blocks having only smooth

min-entropy conditioned on previous blocks instead of the

stronger condition of min-entropy, having smooth min-entropy

conditioned on a constant fraction of prefixes of previous

blocks instead of all prefixes, and having a Shannon entropy

requirement instead of min-entropy requirement.

Our results: In [2], the authors pose the question of

whether it is possible to condense from aCG sources with

a constant entropy gap.5 We give a partially positive answer

to this by showing that we can condense from uniform (g, ℓ)-
aCG sources with g > ℓ/2 with logarithmic entropy gap since

uniform (g, ℓ)-aCG sources are equivalent to uniform (g, ℓ)-
oNOSF sources and we can defer to theorem 2. Of course,

all of theorem 2 applies to uniform aCG sources, so we can

condense any uniform (g, ℓ)-aCG source to rate 1
⌊ℓ/g⌋ . The

generalization of these results in theorem I.5 do not hold

for non-uniform aCG sources since non-uniform aCG sources

need not be oNOSF sources. Before our work, no non-trivial

condensing was known for uniform (g, ℓ, n)-aCG sources even

in the case of g = ℓ − 1. It is important to note that our

results hold for comparatively large block sizes n = 2ω(ℓ), in

contrast to the results of [2] that hold for constant block sizes

and increasing ℓ.
As previously mentioned, since oNOSF sources are a sub-

class of aCG sources, our condensing impossibility results

from theorem 1 transfer over. Thus, in the g ≤ ℓ/2 regime, we

give a negative answer to the question of [2] by showing that

good condensers do not exist for uniform (g, ℓ)-aCG sources,

let alone condensers with a constant entropy gap. Note that

unlike our condensing possibility results that only apply to

uniform aCG sources, our impossibility result applies to non-

uniform aCG sources as well.

In addition, we prove various condensing impossibility

results that work even when there are no bad blocks (i.e., for

non-adversarial, or just regular, CG sources): the first result of

theorem 4 is based on a reduction from general (n, k)-sources

5In their paper, they phrase it as removing the requirement of suffix-
friendliness.
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to CG sources and the second result uses a reduction from

uniform oNOSF sources to low min-entropy CG sources.

Theorem 4 (Informal version of theorem V.21 and theo-

rem V.22). For all ∆ > 0 and for every function f :
({0, 1}n)ℓ → {0, 1}m, there exists an (ℓ, ℓ)-aCG source X

satisfying either of the following with ε = 0.99:

• The good blocks have min-entropy at least n − ∆ −
log(ℓ)−O(1) conditioned on all fixings of previous blocks

and Hε
∞(f(X)) ≤ m−∆−max(m− ℓn, 0) +O(1).

• The good blocks have min-entropy at least n/ℓ− log(ℓ)−
O(1) conditioned on all fixings of previous blocks and

Hε
∞(f(X)) ≤ 1

2 ·m+O(1).

It is important to note that the first bullet above does not

subsume the second. In particular, the second bullet point from

above gives a stronger result than the first in the setting when

m is much larger than n.

We note that these results do not contradict the condens-

ing result from [2] as in the parameter regimes for which

theorem 4 works, the condenser of [2] does not result in an

entropy increase. This also shows a separation between aCG

sources and oNOSF sources since theorem 3 can condense

from oNOSF sources in this parameter regime.

3) Non-oblivious symbol fixing sources: Finally, we

strengthen the adversary one last time by letting the bad blocks

depend arbitrarily on all the good blocks. This gives rise to

NOSF sources which themselves generalize the setting of non-

oblivious bit-fixing (NOBF) sources [25] where each block is

a bit (i.e., n = 1).

Definition I.7 (NOSF sources). A (g, ℓ, n, k)-NOSF source

X = X1, . . . ,Xℓ on ({0, 1}n)ℓ is such that g out of the ℓ
blocks are independently sampled (n, k)-sources (i.e., ªgoodº)

while the other ℓ − g bad blocks may depend arbitrarily on

the good blocks.

When k = n and n is clear from context, we simply call X a

uniform (g, ℓ)-NOSF source. The adversary in NOSF sources

clearly has a significant amount of power; every single good

block is sampled before the adversary gets to decide what to

place in the bad blocks. As NOSF sources are in the setting in

which the adversary is the strongest, they are also the sources

for which we are most motivated to be able to extract or

condense as they are the most general. We note that much of

the progress on explicit constructions of two-source extractors

and condensers [9], [26], a major problem in the area of

randomness extraction, is based on constructing extractors and

condensers for NOSF sources (in a parameter regime where

it was existentially known that extraction is possible). This

further motivates our exploration of condensing from NOSF

sources in a more general parameter setting.

Previous work: We can trace back study of extracting from

NOBF sources to the seminal work of Ben-Or and Linial in

[27].6 They made the connection between NOBF extractors

6They used the terminology ªcollective coin flipping protocolº instead of
ªNOBF extractorº.

and the influence of sets of variables on Boolean functions.

Together with the work of Kahn, Kalai, and Linial in [28],

in which they demonstrated lower bounds on the influence of

variables on Boolean functions, these works show that it is not

possible to extract from uniform (g, ℓ)-NOBF sources when

the number of bad bits is b = ℓ − g = Ω(ℓ/ log ℓ). While no

analogous result is known for NOSF sources,7 the extraction

impossibility result from [1] for oNOSF sources also applies

for NOSF sources: for any γ > 0 there exists a large constant ℓ
such that it is impossible to extract even one bit from uniform

(γℓ, ℓ)-NOSF sources.

To attempt to match these lower bounds on extraction,

resilient functions, introduced by [31], have yielded the cur-

rent best results. The resilient function of Ajtai and Linial

in [32] and its explicit versions constructed by [26], [33]

achieve extractors for uniform (g, ℓ)-NOBF sources when

b = O(ℓ/ log2 ℓ), leaving a 1/ log ℓ gap between the lower

and upper bounds.

Noting that a uniform (g, ℓ, n)-NOSF source is a uniform

(ng, nℓ)-NOBF source, these results imply extractors when

g > ℓ(1− 1/C log2(nℓ)), for some large enough constant C.

This still leaves open whether condensing is possible for most

settings of parameters.

Related to this, the work of [34] explores what they call ex-

tracting multimergers, which we may consider as extractors for

uniform NOSF sources. For seedless extracting multimergers,

their result implies that extracting from uniform (2, 3)-NOSF

sources is impossible.

Our results: As oNOSF sources are also NOSF sources,

our condensing impossibility result in theorem 1 also applies

to (g, ℓ)-NOSF sources when g ≤ ℓ/2. However, we are able

to show an even stronger result for any setting of g and ℓ and

thus extend existing lower bounds of extraction to condensing.

Theorem 5 (corollary V.10 restated). For all constant g, ℓ ∈
N, there exist constant ε, δ > 0 so the following holds: for all

a,m, n ∈ N and all functions f : ({0, 1}n)aℓ → {0, 1}m,

there exists a uniform (ag, aℓ)-NOSF source X such that

Hε
∞(f(X)) ≤ g

ℓ ·m+ δ.

By varying a above, we extend our result for any g and ℓ
to any rate g/ℓ uniform NOSF source. These results together

put NOSF sources in stark contrast with adversarial CG and

oNOSF sources since they can both be condensed in a useful

manner for simulating BPP algorithms, while we have shown

that NOSF sources cannot be condensed in such a manner.

II. PROOF OVERVIEW

We present the main ideas and techniques for proving our

main condensing impossibility results in section II-A and

possibility results in section II-B. In this version of our paper,

we do not provide full proofs and instead refer the reader to the

full version of our paper at https://arxiv.org/abs/2312.15087.

7Although one is conjectured in [29] that attempts to recover what was
initially proposed in [30].
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A. Impossibility results

In this subsection, we will go over the main techniques used

in proving the condensing impossibility result for the case that

g ≤ ℓ/2 in section II-A1, the condensing impossibility result

for uniform NOSF sources when g > ℓ/2 in section II-A2,

and the condensing impossibility result for low min-entropy

CG sources in section II-A3.

1) Impossibility of condensing from uniform (g, ℓ)-oNOSF

sources for g ≤ ℓ/2: We prove that when the number of good

blocks g is not more than half of the total number of blocks

ℓ, then condensing beyond rate 1
⌊ℓ/g⌋ is impossible. Formally,

we will prove the following statement.

Theorem II.1 (theorem V.1, restated). For all ε, there exists

a δ such that for all g, ℓ ∈ N with g ≤ ℓ/2 and for all

f : ({0, 1}n)ℓ → {0, 1}m, there exists a uniform (g, ℓ)-oNOSF

source X such that Hε
∞(f(X)) ≤ 1

⌊ℓ/g⌋ ·m+ δ.

The steps we take to achieve the result of theorem II.1 are,

broadly, as follows:

1) We first reduce proving the theorem to only proving

it for the special case of g = 1. We show that if it

is possible to condense uniform (g, ℓ)-oNOSF sources

to entropy-rate more than 1
⌊ℓ/g⌋ , then it is possible

to condense uniform (1, ℓ′)-oNOSF sources to rate be-

yond 1
⌊ℓ′/1⌋ = 1

ℓ′ where ℓ′ = ⌊ℓ/g⌋. We do this

by transforming any uniform (1, ℓ′)-oNOSF source to a

uniform (g, ℓ)-oNOSF source.

2) We prove the theorem for the special case of g = 1
and arbitrary ℓ. We do this by using an ªinduct or

winº argument. We show either condensing from uniform

(1, ℓ)-oNOSF sources is impossible (win) or we reduce to

the case of condensing from uniform (1, ℓ− 1)-oNOSF

sources (induct). Either we will win at some point in our

reduction or we will reach the base case of g = ℓ = 1
where the claim trivially holds. Let f be a candidate con-

denser and take cases on whether there exists a fixing of

the first block in f such that the partial function obtained

by fixing f to that values will have small support. If such

a fixing exists, then we reduce the problem to condensing

from uniform (1, ℓ− 1)-oNOSF sources. If not, then we

directly construct a uniform (1, ℓ)-oNOSF source where

f fails to condense from by reducing to a graph problem.

3) The graph problem we reduce to in the ªwinº case is

the following: Let G = (U, V ) be a bipartite graph with

U = [N ], V = [M ] and such that deg(u) ≥ c0M
δ for all

u ∈ U where δ > 0 is some constant. Then, show there

exists D ⊂ V such that |Nbr(D)| ≥ c1N and |D| ≤
c2 ·M

1−δ where c0, c1, c2 are some universal constants.

We expand on these three steps and prove them.

Step 1: In this step, we transform any uniform (1, ℓ′)-
oNOSF source X to a uniform (g, ℓ)-oNOSF source Y where

ℓ′ = ⌊ℓ/g⌋. Divide ℓ by ℓ′ so that ℓ = aℓ′+r where 0 ≤ r < ℓ′.
We compute that a ≥ g. We split the blocks of X as evenly as

possible: split up the first r blocks of X into a+1 blocks and

the remaining ℓ′ − r blocks into a blocks. These aℓ′ + r = ℓ

blocks that we obtained by splitting X will form Y. If a block

in X is uniform, then all the split up blocks will also be

uniform. Similarly, if a block in X is bad and only depended

on blocks appearing before it, so will all the blocks formed

after splitting it. Also, as at least one block in X is good, Y

must have at least a ≥ g good blocks in it. Hence, Y is indeed

a uniform (g, ℓ)-oNOSF source.

Step 2: In this step, we execute our induct or win argument.

Fix a candidate condenser function f : ({0, 1}n)ℓ → {0, 1}m.

We proceed by contradiction and assume f can condense from

uniform (1, ℓ)-oNOSF sources beyond rate 1/ℓ. We either

directly construct a uniform (1, ℓ)-oNOSF source X where

f will fail to condense from or we show how using f , we

can obtain a condenser for uniform (1, ℓ− 1)-oNOSF sources,

which is a contradiction.

Case 1. There exists a fixing of the first block x1 such

that
∣∣f(x1, y1, . . . , yℓ−1)|(y1, . . . , yℓ−1) ∈ {0, 1}n(ℓ−1)

∣∣ ≤
2m(1−1/ℓ). Then, by appropriately relabeling outputs, we

can define h : ({0, 1}n)ℓ−1 → {0, 1}m(1−1/ℓ) as

h(y1, . . . , yℓ−1) = f(x1, y1, . . . , yℓ−1). We now show that h
will be a condenser for uniform (1, ℓ− 1)-oNOSF sources.

Let Y be arbitrary uniform (1, ℓ− 1)-oNOSF source. We

transform Y into a uniform (1, ℓ)-oNOSF sourceY′ by letting

the first block of Y
′ be fixed to x1 and the remaining

ℓ − 1 blocks behave as Y. By assumption, f can condense

Y
′ so that output entropy is more than 1

ℓ · m. However

this implies h can condense Y to have entropy more than
1
ℓ ·m = 1

ℓ−1 ·m(1− 1/ℓ). As h outputs m(1− 1/ℓ) bits, this

is a contradiction.

Case 2. For every fixing of the first block

x1 : |f(x1, y1, . . . , yℓ−1)| > 2m(1−1/ℓ). To show f
fails to condense from X, it suffices to show that

with constant probability, f(X) will lie in a small set

D ⊂ {0, 1}m where |D| = O
(
2m(1/ℓ)

)
(see claim IV.3

for a formal version of this). Consider the bipartite

graph H = (U = ({0, 1}n), V = {0, 1}m) where

edge (u, v) is included if there exist y1, . . . , yℓ−1 such

that f(x1, y1, . . . , yℓ−1) = v. By assumption, for all

u ∈ U : deg(u) > 2m(1−1/ℓ). Our graph theoretic

dominating set lemma from Item 3. guarantees that there

exists D ⊂ {0, 1}m such that |D| ≤ c02
m(1/ℓ) and

|Nbr(D)| ≥ c12
n where c0, c1 are universal constants. Now,

let X be uniform (1, ℓ)-oNOSF source where the first block

is uniform and the remaining ℓ − 1 blocks are adversarial

where the value of those ℓ−1 blocks (depending on the value

of the first block) is set so that f outputs an element from D
if possible. By the construction of the bipartite graph and the

construction of X, with probability c1, f(X) will output an

element in D. Hence, as f outputs an element from a small

set, D, with high probability, it fails to condense from X.

Step 3: We prove the dominating set lemma for bipartite

graph in this step to conclude the proof of the ªwinº argument.

We construct D by repeatedly adding the vertex from V that

has the highest degree, removing vertices incident to that

vertex, and stopping until at least c1N many vertices from
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U are incident to some vertex from D. Whenever we attempt

to add a vertex to D, the graph will have at least (1 − c1)N
many vertices and so at least (1 − c1)N · c0 · M1−δ many

edges. This implies there will always be a vertex v ∈ V such

that deg(v) ≥ c0(1− c1) ·
N
Mδ . This is true at each stage and

we repeat this until at least c1N many vertices are covered.

Hence, |D| ≤ c2 · M1−δ for some universal constant c2 as

desired.

2) Impossibility of condensing from uniform NOSF sources:

We prove much stronger condensing impossibility result for

uniform NOSF sources: we prove that no non-trivial condens-

ing is possible. We are able to do so since the bad blocks have

no restrictions and can arbitrarily depend on any good block.

Formally, we show the following:

Theorem II.2 (corollary V.10 restated). For all fixed g, ℓ ∈ N,

there exist fixed ε, δ > 0 so that the following holds: for all

a,m, n ∈ N and all functions f : ({0, 1}n)aℓ → {0, 1}m,

there exists a uniform (ag, aℓ)-NOSF source X such that

Hε
∞(f(X)) ≤ g

ℓ ·m+ δ.

We prove theorem II.2 using the following strategy:

1) We reduce the general case to the special case of a = 1
and g > ℓ/2.

2) Our high level strategy for this step is same as in item 2

from section II-A1. We perform an ªinduct or winº

argument to show it is impossible to condense from

uniform (g, ℓ)-NOSF sources where g > ℓ/2 beyond

rate g/ℓ. As earlier, we show either condensing from

uniform (g, ℓ)-NOSF sources is impossible (win) or we

reduce to the case of condensing from uniform (g, ℓ− 1)-
NOSF sources (induct). So, we recursively apply this

argument and either win at some point or reach a base

case of g = ℓ where the claim trivially holds. Let f be

a candidate condenser and take cases on whether there

exists a block position p such that for constant fraction

of fixings of all other blocks, the partial function obtained

by fixing f to those values will have large support. If this

holds, then we use the almost-dominating set argument

from item 3 (from section II-A1) to reduce to the case

of condensing from uniform (g, ℓ− 1)-NOSF sources. If

such a position p with these fixings do not exist, then we

directly construct a uniform (g, ℓ)-oNOSF source where

f fails to condense from by reducing to a hypergraph

problem.

3) The hypergraph problem we reduce to in the ªwinº case

is the following: Let H = (V1, . . . , Vt, E) be a t-uniform

t-partite hypergraph with V1 = · · · = Vt = [N ], |E| =
c0N

t. Let the edges of H be colored in M colors in a

‘locally light’ way: such that for every position p ∈ [T ],
and every (t − 1) tuples: (v1, . . . , vp−1, vp+1, . . . , vt) ∈
[N ]t−1, the number of distinct colored edges as en-

tries in position p vary is ≤ c1M
δ . Formally,

|χ(v1, . . . , vp−1, y, vp+1, . . . , vt) : y ∈ [N ]| ≤ c1M
δ .

Then, there exists D ⊆ [M ] such that |D| ≤ c2 · M tδ

and at least c3N
t edges in H are colored in one of the

colors from D. Here, c0, c1, c2, c3 are some constants.

We expand on these three steps and prove them.

Step 1: We show how to reduce to the case of a = 1.

We do this using the same argument as in item 1 from

section II-A1: we transform uniform (g, ℓ)-NOSF sources into

uniform (ag, aℓ)-NOSF sources by splitting up blocks; this

way, a condenser for uniform (ag, aℓ)-NOSF sources will also

condense from uniform (g, ℓ)-NOSF sources.

We next carefully examine the argument made in item 2

and see that the induct or win argument made there can be

generalized to show the following: either condensing from

uniform (g, ℓ)-NOSF source is impossible or we reduce to

the case of condensing from uniform (g, ℓ− g)-NOSF source.

Applying this recursively to arbitrary g, ℓ, we either win and

show impossibility at some step or we end up reducing to

showing impossibility for condensing from uniform (g, ℓ)-
NOSF sources where g > ℓ/2.

Combining these two steps, we reduce the general case to

the special case of a = 1 and g > ℓ/2.

Step 2: In this step, we execute our induct or win argument.

We fix a candidate condenser function f : ({0, 1}n)ℓ →
{0, 1}m. Proceed by contradiction and assume f can condense

from uniform (g, ℓ)-NOSF sources beyond rate g/ℓ. We either

directly construct a uniform (g, ℓ)-NOSF source X where f
will fail to condense from or we show how using f , we

can obtain a condenser for uniform (g, ℓ− 1)-NOSF sources,

which is a contradiction. For p ∈ [ℓ], let Sp be the set of ℓ−1
tuples (x1, . . . , xp−1, xp+1, . . . , xℓ) such that

|{f(x1, . . . , xp−1, y, xp+1, . . . , xℓ) : y ∈ {0, 1}n}| ≥ c02
m/ℓ

Case 1. There exists p ∈ [ℓ] such that |Sp| ≥ c12
n(ℓ−1)

where c1 > 0 is a small constant. Without loss of generality

let p = 1. Construct a bipartite graph G = (U, V ) where

U = S1, V = {0, 1}m and edge (u, v) if there exists a fixing

y of block p such that f(u, y) = v. Then, we see that G
satisfies the requirement for item 3 and hence, there exists

D ⊂ {0, 1}m such that |D| ≤ 2m(1−1/ℓ) which neighbors at

least c32
n(ℓ−1) vertices from U . For the sake of presentation,

assume c1 = c3 = 1. In the full proof, c1, c3 > 0 are small

constants and we need to induct using a stronger inductive

hypothesis. Now, define h : {0, 1}n(ℓ−1) → {0, 1}m(1−1/ℓ) as

h(y1, . . . , yℓ−1) = f(x1, y1, . . . , yℓ−1) where x1 is such that

f(x1, y1, . . . , yℓ−1) ∈ D (as c1 = c3 = 1, such x1 always

exists). The output domain of h can be made {0, 1}m(1−1/ℓ)

instead of D by appropriately relabeling the output. We then

show, similar to proof of case 1 of item 2, h will be a

condenser for uniform (g, ℓ− 1)-NOSF sources and get a

contradiction.

Case 2. For all p ∈ [ℓ], |Sp| ≤ c12
n(ℓ−1). We say x =

(x1, . . . , xℓ) ∈ {0, 1}nℓ is bad if for some p ∈ [ℓ], removing

position p from x makes it an element of Sp. Let B be set of

such bad strings. Then, |B| ≤ c1ℓ · 2
nℓ. Let H = (V1, . . . , Vℓ)

where Vi = {0, 1}n be ℓ-uniform ℓ-partite hypergraph where

edge v = (v1, . . . , vℓ) is in H if v ̸∈ B. Then, H has at least

(1 − c1ℓ)2
nℓ edges. By an averaging argument, there exists

x = (x1, . . . , xℓ−g) ∈ {0, 1}n(ℓ−g) such that the number of
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edges in H containing that x is at least (1−c1ℓ)2
ng . Consider

uniform (g, ℓ)-oNOSF source Y where the first ℓ − g blocks

always output x and the remaining g blocks are uniform. To

show f fails to condense from X, it suffices to show: constant

probability, f(X) will lie in a small set D ⊂ {0, 1}m where

|D| = O
(
2m(g/ℓ)

)
(see claim IV.3 for a formal version of

this).

Let H ′ = (U1, . . . , Ug) where Ui = {0, 1}n be g-uniform g-

partite hypergraph where edge u = (u1, . . . , ug) is in H ′ if

(x1, . . . , xℓ−g, u1, . . . , ug) is in H . Then, H ′ has at least (1−
c1ℓ)2

ng edges. Now, color H ′ into 2m colors by coloring edge

(u1, . . . , ug) as f(x1, . . . , xℓ−g, u1, . . . , ug). By definition of

Sp and construction of H ′, we see that for every ℓ−1 tuples u
in {0, 1}n(ℓ−1), the number of distinct colors in H ′ is at most

c0 ·2
m/ℓ. We apply the hypergraph lemma to H ′ and infer that

there exists D ⊂ {0, 1}m such that |D| ≤ c2 · 2
m(g/ℓ) at least

c3 · 2
ng edges in in H ′ are colored in one of the colors from

D. Hence, we found a small set D such that with constant

probability, f(X) lies in D as desired.

Step 3: We finally solve the hypergraph problem to con-

clude the proof of the ªwinº argument. We repeatedly pick the

color which covers the most edges to D until the number of

edges covered is at least c3 ·N
t. At the last step of the process,

H must have at least (c0 − c3) · N
t edges. We show that at

that stage, the chosen a color will cover at least c4N
t/M tδ

edges. This implies at each step before this, the chosen color

must cover at least that many edges and hence, |D| ≤ 1
c4
M tδ

as desired.

So, our goal is to show that in a t-uniform t-partite hy-

pergraph H = (V1, . . . , Vt) having at least c5N
t edges and

colored in M colors in a ‘locally light’ manner - on fixing

any t − 1 tuple, the number of colors adjacent to it as last

entry varies is at most c1 ·M
δ , there exists a color γ covering

at least Ω(N t/M tδ) edges. We induct on t and show this. We

sketch the idea below for bipartite graphs.

For every v2 ∈ V2, let Cv2 ⊂ [M ] be the set of colors that

have at most c6 · (N/M δ) where c6 is a very small constant.

We remove edge (v1, v2) from H if (v1, v2) ∈ Cv2
. For each

v2, we remove at most c1c6 ·N edges incident to it. Overall,

we end up removing at most c1c6 ·N
2 edges from H and it

still has (c5 − c1c6)N
2 edges. Doing this ensures that every

color incident to every vertex v2 in V2 has at least c6 ·(N/M δ)
edges incident to it. We finally find such a popular color by

doing the following: By averaging argument, let v∗1 ∈ V1 and

γ∗ ∈ [M ] be such that the number of edges incident to v∗1
with color γ is at least c5−c1c6

c1
· (N/M δ). Let Nbrγ(v

∗
1) =

{v2 ∈ V2 : (v∗1 , v2) is colored with color γ}. Moreover, for

every v2 ∈ Nbrγ(v
∗
1), the number of edges incident to them

with color γ is at least c6 · N/M δ . We are done as at least

c6 ·
c5−c1c6

c1
·N2/M2δ = Ω(N2/M2δ) edges in H colored with

color γ.

3) Impossibility of condensing from low min-entropy aCG

sources: We provide two impossibility result for (ℓ, ℓ)-aCG

source, we only sketch proof for one of them as they both

share many ideas. Our impossibility result theorem V.21 is

based on reduction from general (n, k)-sources and the fact

that it is impossible to condense from such sources.

Here, we sketch a proof of the second impossibility result

where we show that it is impossible to condense from non-

adversarial CG sources when each block’s min-entropy, con-

ditioned on previous blocks, is roughly bounded by n/(ℓ+1).

Theorem II.3 (theorem V.22 restated). For all 0 < ε < 1
there exists a δ > 0 such that the following holds: for every

function f : ({0, 1}n)ℓ → {0, 1}m, there exists a (ℓ, ℓ)-aCG

source X where the good blocks have min-entropy at least
n−ℓ log(2ℓ/ε)

ℓ+1 conditioned on all fixings of previous blocks and

Hε
∞(f(X)) ≤ 1

2 ·m+ δ.

The bulk of the proof is based on a transformation from a

uniform (1, 2)-oNOSF source X = X1,X2 to a source Y =
Y1, . . . ,Yℓ that is ε/2-close to an (ℓ, ℓ)-aCG source. With

this transformation, applying theorem II.1 with ℓ = 2 and ε/2
to X then allows us to infer that we also cannot condense

from Y with error ε. Thus, we focus on how to construct Y

next.

Briefly, to construct Y, we will take substrings of X1 and

X2 to place into each block of Y. From X2, we will take

constant sized chunks of size t2 = n−ℓ log(2ℓ/γ)
ℓ+1 where γ = ε

2ℓ
to place into each Yi, and from X1 we will take blocks of

increasing size i · t1−1 to place into each Yi where t1 = t2+
log(1/γ). Our proof then finishes with an inductive argument

to claim that Y is indeed ε/2-close to an (ℓ, ℓ)-aCG source

source, as required.

B. Possibility results

In this subsection, we will present our existential construc-

tion of condensers for oNOSF sources and uniform aCG

sources. We begin by describing the construction of our

condenser for uniform (g, ℓ)-oNOSF sources and uniform

(g, ℓ)-aCG source in the setting of g > ℓ/2 in section II-B1.

Then we generalize this result to any setting of g and ℓ in

section II-B2. Finally, we deal with logarithmic min-entropy

oNOSF sources in section II-B3.

1) Condensing from uniform (g, ℓ)-oNOSF sources for g >
ℓ/2: Before we dive into the actual proof, it is instructive to

see why a random function fails to be a condenser for uniform

(g, ℓ)-oNOSF sources. In particular, let us consider uniform

(2, 3)-oNOSF sources. For a random function f : {0, 1}3n →
{0, 1}m, with high probability over x1, x2 ∈ {0, 1}n, we have

|f(x1, x2, ·)| = 2m. Hence, if the adversary is in position 3,

then it can depend on x1 and x2 to ensure the output of f
always lies in a small set. To overcome this, one can consider

restricting the number of choices adversary has when it is in

position 3. This intuition indeed works out and we give further

details.

Theorem II.4 (theorem VI.13 restated). For all g, ℓ such that

g > ℓ/2 and ε, there exists a condenser Cond : ({0, 1}n)ℓ →
{0, 1}m such that for any uniform (g, ℓ)-oNOSF source X,

Hε
∞(Cond(X)) ≥ m− (5ℓ−g − 3) log(gn/ε) where m = n−

2(5ℓ−g − 1) log(gn).
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Our construction relies on a (k1, k2, ε)-two-source extractor

Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m with a property that

we term output-lightness, the definition and importance of

which we will see soon, and a clever choice of a partition

and prefixes of our input source X. We do not currently know

of a construction of a two-source extractor with our desired

min-entropy and error parameters that is also output-light, so

our construction is currently based on an existential output-

light two-source extractor that we show in lemma VI.11. In

particular, if we write X = X1, . . . ,Xℓ and we take Yi to

be the prefix of Xi containing the first 5ℓ−i ·4 log(gn/ε) bits,

then we define our two inputs to Ext as Z1 = X1, . . . ,Xg

and Z2 = Yg+1, . . . ,Yℓ. Thus, our condenser becomes

Cond(X) := Ext(Z1,Z2).
There are only two cases we must consider: when the

adversary places at least one good block in Xg+1, . . . ,Xℓ and

when all of Xg+1, . . . ,Xℓ are adversarial (so X1, . . . ,Xg is

uniform). In the latter case, we have that Z1 is just the uniform

distribution on gn bits and Z2 is fully controlled by the

adversary. For Ext(Z1,Z2) to condense then, we would require

that no element h ∈ {0, 1}m have too much weight placed on

it by the adversary. Recalling that Z1 is uniform in this case,

this statement is equivalent to asking that the sum over all

settings z1 of Z1 of the number of z2 such that Ext(z1, z2) = h
is not larger than R = 2n1+n2−m+O(1). This is precisely our

definition of R-output-lightness (see definition VI.10 for a

formal definition). With this property, we use claim IV.5 to

get that Hε
∞(Cond(X)) ≥ n1 = log(R/ε).

In the case that there is at least one good block among

Xg+1, . . . ,Xℓ, then we notice that there must be one good

block among X1, . . . ,Xg because g > ℓ/2, so H∞(Z1) ≥ n.

Without loss of generality, we also assume that we only have

one good block Xj for j ∈ {g + 1, . . . , ℓ}. Consequently, we

can define A = Yg+1, . . . ,Yj−1 and B = Yj+1, . . .Yℓ so

that Z2 = A ◦Yj ◦ B where the adversary controls both A

and B but not Yj . Since X is a oNOSF source, Yj remains

uniform regardless of any fixing of A, so H∞(Yj | A) =
H∞(Yj) = 5ℓ−j · 4 log(gn/ε). In addition, since we chose

A to be logarithmically small in n, the min-entropy chain

rule (lemma IV.4) gives us that, with high probability over

the fixings of A, the min-entropy of Z1 is not decreased by

too much more than the length of A which is at most n2.

In particular, for any of these good fixings a ∈ Supp(A), we

chose k1 to be such that H∞(Z1 | A = a) ≥ k1. Then if

we temporarily make the assumption that B is uniform, we

have that H∞(Z2 | A = a) = H∞(a,Yj ,B | A = a) =∑ℓ
i=j 5

ℓ−j · 4 log(gn/ε) = (5ℓ−i+1 − 1) log(gn/ε). Since we

can choose k2 to be smaller than H∞(Z2 | A = a), we get that

Ext(Z) is ε-close to Um. Of course, B may be adversarially

chosen. To take this into account, we use lemma VI.16, which

says that if only a few bits of a source are adversarially

controlled then we can still condense, to reduce our output

entropy by the length of B and multiplicatively increase our

error by 2length(B). Finally, because we constructed B to have∑ℓ
i=j+1 5

ℓ−j · 4 log(gn/ε) = (5ℓ−i − 1) log(gn/ε) bits, it is

still short enough in comparison Yj to allow us to condense

with our desired error.
2) Condensing from uniform (g, ℓ)-oNOSF sources for any

g and ℓ: While we can condense from uniform (g, ℓ)-oNOSF

sources for g > ℓ/2 as we saw above (theorem II.4), we know

from theorem II.1 that when g ≤ ℓ/2 we cannot condense

from uniform (g, ℓ)-oNOSF sources above rate 1
⌊ℓ/g⌋ . Here,

we sketch the argument for a matching bound showing that

this is indeed tight by generalizing theorem II.4.

Theorem II.5 (theorem VI.3 restated). For any g, ℓ, ε such

that ⌊ℓ/g⌋ = r and r < ℓ/g, there exists a condenser

Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ)-
oNOSF source X we have Hε

∞(Cond(X)) ≥ 1
r ·m−2(5ℓ−g−

1) log(gn/ε) where m = r(n− 2(5ℓ−g − 1) log(gn)).

Satisfyingly, we need no new tools to construct this con-

denser. Instead, we use r instances of the condenser from

theorem II.4. We will prove this inductively on r, so let us

consider the base case of r = 1. Notice that r = 1 implies

that g > ℓ/2, so we are exactly in a position to use the

condenser Cond1 : ({0, 1}n)ℓ → {0, 1}m1 from theorem II.4

without modification. Thus, we define our output block as

O = O1 = Cond1(X).
To generalize to larger values of r, we perform induction

on r and take the inductive hypothesis of r − 1 to be true.

We consider two cases. Beginning with the case that all of

X1, . . . ,Xg are bad, we notice that Xg+1, . . . ,Xℓ is a uniform

(g, ℓ− g)-oNOSF source with
⌊
ℓ−g
g

⌋
= r−1 and ℓ−g

g ̸= r−1.

Our inductive hypothesis then gives us r − 1 output blocks

O2, . . . ,Or on ({0, 1}mr )r−1 where at least one is condensed.

On the other hand, consider when at least one of X1, . . . ,Xg

is good and take Cond1 to be an instance of the condenser from

theorem II.4 for X, and define O1 to be Cond1(X) truncated

to its first mr bits. Observe that if Cond1(X) succeeds and

condenses X to some min-entropy k source, then H∞(O1) ≥
k − (m1 − mr), so we only lose as many bits of entropy

in O1 as we truncate from Cond1(X), which we show in

lemma VI.17, and m1 −mr is still constant in g and ℓ. Then

in this case we again get that O1 must be properly condensed

by 2Ext1 being output-light when all of X1, . . . ,Xg are good

or by 2Ext1 being a two-source extractor when at least one

of X1, . . . ,Xg is good. Thus, if we let our output be O =
O1, . . . ,Or, then at least one block is always condensed in

any case.
3) Condensing from logarithmic min-entropy (g, ℓ)-oNOSF

sources: We can extend theorem II.4 and theorem II.5 to

logarithmic min-entropy oNOSF source by converting a log-

arithmic min-entropy oNOSF source into a uniform oNOSF

source via the following theorem.

Theorem II.6 (theorem VI.2 restated). For any g, ℓ, ε, there

exists a function f : ({0, 1}n)ℓ → ({0, 1}m)ℓ−1 with

m = k
8ℓ such that for any (g, ℓ, k)-oNOSF source X with

k ≥ 2 log(n/ε) there exists a uniform (g − 1, ℓ− 1)-oNOSF

source Y such that |f(X)−Y| ≤ ε.

Thus, if we take a (g, ℓ, n, k)-oNOSF source X such that

g > ℓ/2+1 so g−1 > (ℓ−1)/2, we can simply apply f from
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theorem II.6 to X and then pass the result to our condenser

from theorem II.5 to condense from logarithmic min-entropy

oNOSF source.

Theorem II.7 (theorem VI.1 restated). For all g, ℓ, r ∈ N

and ε such that
⌊
ℓ−1
g−1

⌋
= r and r < ℓ−1

g−1 , there exists a

condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any

(g, ℓ, n, k)-oNOSF source X with k ≥ 2 log(n/ε), we have

that Hε
∞(X) ≥ 1

r ·m − 2(5ℓ−g − 1) log
(

(g−1)k
8ℓε

)
with m =

r
(

k
8ℓ − 2(5ℓ−g − 1) log

(
(g−1)k

8ℓ

))
.

All that is left then is to show how we convert a low

min-entropy oNOSF source to a uniform oNOSF source in

theorem II.6. Our method here is based on the somewhere

extractor for low-entropy oNOSF source from [1] with two

important modifications. First, we use a two-source extractor

instead of a seeded extractor which enables us to handle

logarithmic min-entropy in the good blocks of a oNOSF source

instead of just linear. Second, we require that the output of our

function is not just somewhere random, but instead a uniform

oNOSF source. To achieve this, we decrease the output length

of our two-source extractor (which decreases the block length

of our resulting uniform oNOSF source) to show that the

good blocks in our resulting source are independent from all

adversarial blocks before them.

The construction of f from theorem II.6 is quite straight-

forward. For every i ∈ {2, . . . , ℓ}, we use the same existential

two-source extractor from lemma VI.11 that we used in

the proof of theorem II.4 to define 2Exti : ({0, 1}n)i−1 ×
{0, 1}n → {0, 1}m where m = k

8ℓ and k ≥ 2 log(n/ε)
is the min-entropy requirement of each good block in our

(g, ℓ, n, k)-oNOSF source X = X1, . . . ,Xℓ. We then define

our ℓ− 1 output blocks as Oi = 2Exti((X1, . . . ,Xi−1),Xi),
so f(X) = O2, . . . ,Oℓ. Because there are g good blocks in X

at indices G1, . . . , Gg , we are guaranteed that OG2
, . . . ,OGg

are the outputs of a two-source extractor with a good block

in each source. The crux of our argument then is to show

that OG2
, . . . ,OGg

are close to uniform and independent of

the adversarial blocks before them. This part of our argument

follows that of [1] closely, so we do not expand on it here

except to note that shortening the length of our output blocks

from m = O(k), not depending on ℓ, in [1] to m = k/8ℓ is

what allows us to show that good output blocks are uniform

and independent of output blocks before them.

III. OPEN QUESTIONS

There are several natural questions that are raised by our

work. A few immediate open questions are:

1) Explicitly construct output-light two-source extractor.

This would immediately imply explicit condensers

for oNOSF sources and uniform aCG sources by

lemma VI.12.

2) In our condensing possibility results for uniform oNOSF

sources and uniform aCG sources in theorem II.4 and

theorem II.5, and our possibility results for logarithmic

min-entropy oNOSF sources in theorem II.7, we require

ℓ = o(log(n)), that our block size to be much smaller

than the total number of blocks. It would be interesting

to extend these results to smaller block sizes, such as the

regime achieved for almost CG sources in [2].

3) Is it possible to improve our condenser for uniform aCG

sources in theorem II.4 to have constant entropy gap?

4) Can our condensing impossibility result for CG sources

in theorem V.22 be strengthened to close the gap with

the results in [2]?

IV. PRELIMINARIES

We will generally denote distributions or sources in a bold

font, such as X, and reserve Um to be the uniform distribution

on m bits. When these sources are actually a sequence of

sources, we use subscripts to denote blocks of that source as

X = X1, . . . ,Xℓ. In addition, since we often consider binary

strings of length n and m, we let N = 2n and M = 2m.

Often it is convenient to consider strings as labels, in which

case we use the notation [N ] = {1, 2, . . . , N}.

A. Basic probability lemmas

Here, we first state a few basic probability facts that will

be useful to us throughout. Our first one is a direct reverse

Markov style inequality.

Claim IV.1 (Reverse Markov). Let X be a random variable

taking values in [0, 1]. Then, for 0 ≤ d < E[X], it holds that

Pr[X > d] ≥
E[X]− d

1− d

We will use the following version of the Chernoff bound:

Claim IV.2 (Chernoff Bound). Let X1, . . . ,Xn be indepen-

dent random variables taking values in {0, 1}. Let X =∑
i Xi. Let µ = E[X]. Then, for all δ ≥ 0, the following

holds:

Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/(2 + δ))

Several of our impossibility results rely on a simple TV

distance bound.

Claim IV.3 (TV distance lower bound). Let X ∼ {0, 1}n

and S ⊂ {0, 1}n be such that Prx∼X[x ∈ S] ≥ p. Then, for

0 < ε < p, it holds that Hε
∞(X) ≤ log

(
|S|
p−ε

)
.

We will utilize the very useful min entropy chain rule in

our constructions.

Lemma IV.4 (Min-entropy chain rule). For any random

variables X ∼ X and Y ∼ Y and ε > 0,

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log |Supp(Y)| − log(1/ε)]

≥ 1− ε.

Lastly, we will later utilize a consequence of upper bounds

on smooth min-entropy.

Claim IV.5 (Lemma 8.8 from [12]). Let X ∼ {0, 1}n be such

that Hε
∞(X) < k. Then, there exists D ⊂ Supp(X) such that

|D| < 2k and Pr[X ∈ D] ≥ ε.
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B. Extractors

Let A ≈ε B mean that A and B are ε close in statistical

distance. Recall the definition of a seeded extractor.

Definition IV.6. A (k, ε)-seeded extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m satisfies the following: for every (n, k)-
source X, and every Y = Ud,

Ext(X,Y) ≈ε Um.

d is called the seed length of Ext. Ext is called strong if

Ext(X,Y),Y ≈ε Um,Y.

A useful fact about strong seeded extractors that they work

even when the seed is not fully uniform. (See for example

Lemma 6.4 from [35] for a proof.)

Lemma IV.7. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a

strong (k, ε)-seeded extractor. Let X be a (n, k)-source and

let Y be a (d, d− λ)-source. Then,

|Ext(X,Y),Y −Um,Y| ≤ 2λε.

We will use the following construction of seeded extractors:

Theorem IV.8 (Theorem 1.5 in [14]). For all constant α > 0
and all n, k, ε, there exists an explicit (k, ε)-seeded extractor

sExt : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log(n/ε))
and m ≥ (1− α)k.

In addition, we will use a generalization of seeded ex-

tractors, two-source extractors, that only require the second

source to be independent from the first and not necessarily be

uniform.

Definition IV.9. A function 2Ext : {0, 1}n1 × {0, 1}n2 →
{0, 1}m is a (k1, k2, ε)-two-source extractor if for every

(n1, k1)-source X1 and (n2, k2)-source X2 where X1 and

X2 are independent of each other, we have

2Ext(X1,X2) ≈ε Um.

It is said to be strong in the first argument if

2Ext(X1,X2),X1 ≈ε Um,X1.

Similarly, one can define 2Ext that is strong in the second

argument. If 2Ext is strong in both arguments, we simply say

that it is strong. We use the fact that inner product function is

a good two source extractor:

Theorem IV.10. [6], [36], [37] Let X,Y ∼ {0, 1}n with

H∞(X) = k1, H∞(Y) = k2. Let m = n
r for some r ∈ N. Let

IP(x, y) : {0, 1}2n → {0, 1}m be the function that interprets

x, y as elements of Fr
2m and outputs the m bit string corre-

sponding to x ·y. Then, |IP(X,Y)−Um| ≤ 2(n+m−k1−k2)/2.

For a proof of the above theorem, see Theorem 2.5.3 in

[38].

C. Randomness sources relevant to our work

We now formally introduce the randomness sources that

are relevant to our work. We begin with NOSF sources, which

have no restrictions on the adversary producing the bad blocks.

Definition IV.11 (NOSF source). A (g, ℓ, n, k)-NOSF source

(NOSF) X with symbols in Σ = {0, 1}n and length ℓ is

over Σℓ, written as X = X1, . . . ,Xℓ, and has the following

property: There exists a set of good blocks G ⊆ [ℓ] such

that |G| ≥ g and the random variables in {Xi}i∈G are each

independently sampled (n, k)-sources. We say that a block Xi

is good if i ∈ G and bad otherwise.

Note that we have no restrictions on how bad blocks may

depend on the good blocks. If k = n, we say that X is a

uniform (g, ℓ, n)-NOSF source. When n is implicit or not

relevant, we simply call X a uniform (g, ℓ)-NOSF source.

Next, we introduce oNOSF sources by restricting the NOSF

adversary.

Definition IV.12 (Online NOSF source). A (g, ℓ, n, k)-oNOSF

source X with symbols in Σ = {0, 1}n and length ℓ is

over Σℓ, written as X = X1, . . . ,Xℓ, and has the following

property: There exists a set of good blocks G ⊆ [ℓ] such

that |G| ≥ g and the random variables in {Xi}i∈G are

each independently sampled (n, k)-sources such that Xi is

independent of X1, . . . ,Xi−1. We say that a block Xi is good

if i ∈ G and bad otherwise.

Remark IV.13. Online NOSF sources are also NOSF sources

because the adversary in oNOSF sources is strictly weaker

than that of NOSF sources.

These oNOSF sources are special cases of the SHELA

sources from [1]. We now introduce SHELA sources in their

full generality.

Definition IV.14 (SHELA source [1]). A distribution X over

({0, 1}n)ℓ is a (g, ℓ, n, k)-Somewhere Honest Entropic Look

Ahead (SHELA) source if there exists a (possibly randomized)

adversary A such that X is produced by sampling g out of

ℓ indices to place independently sampled (n, k)-sources and

then placing adversarial blocks in the other ℓ− g indices that

may depend arbitrarily on any block that comes before it.

Concretely, there must exist random variables 1 ≤ I1 <
I2 < · · · < Ig ≤ ℓ with arbitrary joint distribution,

denoting the indices of the independent (n, k)-sources, and

g independent (n, k)-sources Z1,Z2, . . . ,Zg such that X is

generated in the following manner:

1) Sample (i1, i2, . . . , ig) ∼ (I1, I2, . . . , Ig).
2) For all j ∈ [g] set Bij = Zj .

3) For all i ∈ [ℓ] \ {i1, i2, . . . , ig], the adversary sets Bi =
A(B1, . . . ,Bi−1, i1, . . . , ig}.

4) Finally, let X = (B1, . . . ,Bℓ).

We will generally call the blocks Z1, . . . ,Zg the ªgoodº blocks

and the remaining blocks ªbadº blocks.

Similar to NOSF sources, when k = n we will simply say

X is a (g, ℓ, n)-uniform SHELA source, and when n is implicit

we will simplify further to a uniform (g, ℓ)-SHELA source.

While working over oNOSF sources is easier than working

over general SHELA sources, all of our results still apply
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to general SHELA sources since SHELA sources are convex

combinations of oNOSF sources.

Proposition IV.15. Every (g, ℓ, n, k)-SHELA source X is a

convex combination of (g, ℓ, n, k)-oNOSF sources.

Lastly, we define adversarial Chor-Goldreich (CG) sources,

which have an adversary like that of oNOSF sources that

can depend arbitrarily on past blocks, but the adversary of

adversarial CG sources can have some effect on future blocks,

unlike that of oNOSF sources.

Definition IV.16 (Adversarial CG source). A (g, ℓ, n, k)-aCG

source X with symbols in Σ = {0, 1}n and length ℓ is over Σℓ,

written as X = X1, . . . ,Xℓ, and has the following property:

There exists a set of good blocks G ⊆ [ℓ] such that |G| ≥ g
and the random variables in {Xi}i∈G have the property that

for all prefixes (a1, . . . , ai−1) ∈ ({0, 1}n)i−1,

H∞(Xi | X1, . . . ,Xi−1 = a1, . . . , ai−1) ≥ k.

As before, if k = n then we simply call X a uniform

(g, ℓ, n)-aCG source, and we omit n when it is implicit.

We have introduced all of these definitions since our results

resolve open questions for each. The relationship between all

these definitions is necessary to clearly see how our lower and

upper bounds apply. In line with this, we show an equivalence

between uniform oNOSF sources and uniform aCG sources.

Proposition IV.17. A source X is a uniform oNOSF source

if and only if it is a uniform aCG source.

Therefore, when we prove a condensing impossibility result

by constructing a oNOSF source, that same result applies to

NOSF sources and aCG sources sources as well. On the other

hand, our condensing possibility results for uniform oNOSF

sources also apply to uniform aCG sources, but our results for

non-uniform oNOSF sources may not apply to non-uniform

aCG sources.

V. IMPOSSIBILITY RESULTS

In this section, we prove condensing impossibility results for

uniform NOSF sources and uniform oNOSF sources. First, in

section V-A we demonstrate condensing impossibility results

for all three classes of sources when g ≤ ℓ/2. Then, in

section V-B we show a condensing impossibility result for

uniform (g, ℓ)-NOSF sources for arbitrary settings of g and

ℓ. Finally, we use a result from section V-A to show the

impossibility of condensing from low min-entropy CG sources

in section V-C.

A. Impossibility of condensing when g ≤ ℓ/2

We will prove that for g ≤ ℓ/2, it is impossible to condense

from uniform (g, ℓ)-oNOSF sources to rate more than 1
⌊ℓ/g⌋ .

As we noted in remark IV.13 and proposition IV.17, these

results apply to uniform NOSF sources and uniform aCG

sources as well.

Theorem V.1. For all ε > 0, there exists a δ > 0 such that

for all g, ℓ ∈ N with g ≤ ℓ/2 and for all f : ({0, 1}n)ℓ →

{0, 1}m, there exists a uniform (g, ℓ)-oNOSF source X so that

Hε
∞(f(X)) ≤ 1

⌊ℓ/g⌋ ·m+ δ.

This implies that for the special case when g divides ℓ, any

non-trivial condensing is impossible.

Corollary V.2. For all ε > 0, g, ℓ ∈ N with g | ℓ, there

exists a δ > 0 such that: for all functions f : ({0, 1}n)ℓ →
{0, 1}m, there exists a uniform (g, ℓ)-oNOSF source X such

that Hε
∞(f(X)) < g

ℓ ·m+ δ.

The proof of theorem V.1 involves two ingredients. First, we

show that for the special case of g = 1, condensing above rate
1
ℓ is impossible for uniform (1, ℓ)-oNOSF sources. Second,

we extend these results to uniform (g, ℓ)-oNOSF sources with

g ≤ ℓ/2 by showing that if it is impossible to condense

from uniform (1, ℓ′)-oNOSF sources, then it is impossible to

condense above rate 1
ℓ′ from uniform (g, ℓ)-oNOSF sources

when g
ℓ ≤ 1

ℓ′ .

Formally, these two lemmas are as follows:

Lemma V.3. For all ε > 0, there exists a δ > 0 such that for

all functions f : ({0, 1}n)ℓ → {0, 1}m, there exists a uniform

(1, ℓ)-oNOSF source X so that Hε
∞(f(X)) < 1

ℓ ·m+ δ.

Lemma V.4. Let g, ℓ, ℓ′, n′, n,m ∈ N be such that ℓ′ ≤ ℓ, g
ℓ ≤

1
ℓ′ , ⌈ℓ/ℓ

′⌉n < n′. Let 0 < ε < 1, δ > 0 be such that: for any

function f : ({0, 1}n
′

)ℓ
′

→ {0, 1}m, there exists a uniform

(1, ℓ′)-oNOSF source Y so that Hε
∞(f(Y)) < 1

ℓ′ · m + δ.

Then, for any function h : ({0, 1}n)ℓ → {0, 1}m, there exists

a uniform (g, ℓ)-oNOSF source X such that Hε
∞(h(X)) ≤

1
ℓ′ ·m+ δ.

Our main theorem follows by combining these two lemmas.

We defer the proof of lemma V.4 until section V-D. In the next

subsubsection, we will focus on proving lemma V.3.

1) Proving main theorem for the case of g = 1: We prove

this lemma by showing that if one cannot condense from

uniform (g, ℓ)-oNOSF sources, then one cannot condense from

uniform (g, ℓ+ g)-oNOSF sources.

Lemma V.5. Let c0, c1, ε, δ ∈ R and g, n, ℓ ∈ N be such that

g ≤ ℓ, 0 < c0 < 1, ε < c1 < 1. Assume that for all A ∈ N and

function f : ({0, 1}n)ℓ → [A], there exists a uniform (g, ℓ)-
oNOSF source (uniform (g, ℓ)-NOSF source, respectively) X

such that Hε
∞(f(X)) ≤ g

ℓ · log(A) + δ. Then, for all M ∈ N

and every function h : ({0, 1}n)ℓ+g → [M ], there exists

a uniform (g, ℓ+ g)-oNOSF source (uniform (g, ℓ)-NOSF

source, respectively) Y such that Hε
∞(h(Y)) ≤ g

ℓ+g ·m+ δ′

where δ′ = max
(
log

(
c1

(1−c1)c0(c1−ε)

)
, δ + log(c0)g

ℓ

)
and

m = log(M).

We remark that lemma V.5 paves the way for an inductive

argument and we instantiate it to prove lemma V.3.

2) Recursive impossibility lemma: To prove lemma V.5, we

find a dominating set in dense bipartite graphs with left degree

lower bound. We will use it to construct a uniform oNOSF

source that will serve as a counterexample for a candidate

condenser.

1462



Lemma V.6 (Small Dominating Set in Bipartite Graph). Let

c0 > 0, 0 < c1 < 1, δ > 0 ∈ R, N,M ∈ N be arbitrary. Let

G = (U, V,E) be a bipartite graph with |U | = N , |V | = M ,

such that for all u ∈ U : deg(u) ≥ c0 ·M
δ . Then, there exists

D ⊆ V with |D| ≤ c1
(1−c1)c0

· M1−δ such that |Nbr(D)| ≥
c1N .

Using this dominating set lemma, we are able to prove

lemma V.5.

B. Impossibility of condensing from uniform (g, ℓ)-NOSF

sources

Our main theorem in this subsection is that it is impossible

to condense from uniform (g, ℓ)-NOSF sources where g ≥
ℓ
2 + 1. Using it and previous results, we obtain impossibility

results for all g, ℓ.

Theorem V.7. There exists a universal constant c > 0 such

that for all g, ℓ,m, n ∈ N with ℓ/2 < g < ℓ, there exist

ε =
(

1
cℓ

)ℓ−g
, δ = c · ℓ2 log(ℓ) so that the following holds: for

any function f : ({0, 1}n)ℓ → {0, 1}m, there exists a uniform

(g, ℓ)-NOSF source X such that Hε
∞(f(X)) ≤ g

ℓ ·m+ δ.

We also infer the following useful corollary that shows that

uniform (g, ℓ)-NOSF sources cannot be condensed beyond rate

1 − 1/ℓ′ with error O(1/ℓ′) where ℓ′ is the smallest integer

such that g/ℓ ≤ 1− 1/ℓ′.

Corollary V.8. There exists a universal constant c such that

the following holds: For all g, ℓ, ℓ′,m, n ∈ N where ℓ′ is the

smallest integer such that
g
ℓ ≤ ℓ′−1

ℓ′ , there exist ε = 1
cℓ′ , δ =

c · (ℓ′)
2
log(ℓ′) so that the following holds: for all functions

f : ({0, 1}n)ℓ → {0, 1}m, there exists a uniform (g, ℓ)-NOSF

source X such that Hε
∞(f(X)) ≤ 1

ℓ′ ·m+ δ.

We also get a stronger impossibility result for uniform

(g, ℓ)-NOSF sources (compared to condensing impossibility

for uniform (g, ℓ)-oNOSF sources proved in theorem V.1) for

the regime g ≤ ℓ/2.

Corollary V.9. There exists a universal constant c such that

for all ℓ, g, r,m, n ∈ N with ℓ mod g = r, there exist ε =(
1

c(g+r)

)r

, δ = c · (r + g)2 log(g + r) so that the following

holds: for all functions f : ({0, 1}n)ℓ → {0, 1}m, there exists

a uniform (g, ℓ)-NOSF source X such that Hε
∞(f(X)) ≤ g

ℓ ·
m+ δ.

We obtain impossibility result for all uniform (ag, aℓ)-
NOSF sources where g and ℓ are constants and a ∈ N is

arbitrarily large.

Corollary V.10. For all fixed g, ℓ ∈ N, there exist constants

ε, δ > 0 so that the following holds: for all a,m, n ∈ N

and for all functions f : ({0, 1}n)aℓ → {0, 1}m, there exists

a uniform (ag, aℓ)-NOSF source X such that Hε
∞(f(X)) ≤

g
ℓ ·m+ δ.

We also record the special case of when the total number

of blocks ℓ is a constant.

Corollary V.11. For all fixed g, ℓ ∈ N, there exist constants

ε, δ > 0 so that the following holds: For all m,n ∈ N and for

all functions f : ({0, 1}n)ℓ → {0, 1}m, there exists a uniform

(g, ℓ)-NOSF source X such that Hε
∞(f(X)) ≤ g

ℓ ·m+ δ.

We prove our main theorem using the following general

version of the theorem which we denote as our main lemma:

Lemma V.12. There exists universal constants c such that for

all c0 > 0, g, ℓ,M, n ∈ N with ℓ/2 < g < ℓ, and for all

A ⊂ ({0, 1}n)ℓ with |A| = c0(2
n)ℓ, the following holds: for

any function f : ({0, 1}n)ℓ → [M ], there exists a uniform

(g, ℓ)-NOSF source X, A′ ⊂ A ∩ Supp(X) and D ⊂ [M ]

such that f(A′) ⊂ D where |A′| ≥ c0 ·
(

1
cℓ

)ℓ−g
· Ng , and

|D| ≤ (cℓ)
ℓ2
·
(

2
c0

)g

·Mg/ℓ.

Using this main lemma, the theorem follows.

To prove our corollary regarding condensing uniform (g, ℓ)-
NOSF sources where g

ℓ is a large constant, we will use the

following lemma:

Lemma V.13. Let g, ℓ, ℓ′, n′, n,m ∈ N be such that
g
ℓ ≤

ℓ′−1
ℓ′ , ⌈ℓ/ℓ′⌉n < n′. Let 0 < ε < 1, δ > 0 be such that: for

any function f : ({0, 1}n
′

)ℓ
′

→ {0, 1}m, there exists a uniform

(ℓ′ − 1, ℓ′)-NOSF source Y so that Hε
∞(f(Y)) ≤ ℓ′−1

ℓ′ ·m+δ.

Then, for any function h : ({0, 1}n)ℓ → {0, 1}m, there exists a

uniform (g, ℓ)-NOSF source X such that Hε
∞(h(X)) ≤ ℓ′−1

ℓ′ ·
m+ δ.

We will prove this lemma in a later in section V-D. Using

it, the corollary immediately follows.

To prove our corollary regarding condensing uniform

(ag, aℓ)-NOSF sources where g and ℓ are constants and a
is arbitrary, we will use the following lemma that allows us

to generalize the impossibility result:

Lemma V.14. Let g, ℓ ∈ N and 0 < ε < 1, δ > 0 be such

that for all n,m ∈ N and all functions f : ({0, 1}n)ℓ →
{0, 1}m, there exists an uniform (g, ℓ)-NOSF source X such

that Hε
∞(f(X)) ≤ g

ℓ ·m+δ. Then, for all a, n,m ∈ N and all

functions f : ({0, 1}n)aℓ → {0, 1}m, there exists an uniform

(ag, aℓ)-NOSF source X such that Hε
∞(f(X)) ≤ g

ℓ ·m+ δ.

We will also prove this lemma in section V-D. Using it, the

corollary immediately follows.

1) Proving the main lemma: Here, we will prove

lemma V.12. We first introduce some helpful notation for this

part. For an edge e ∈ E, let χ(e) denote the color of e in H .

For a vertex x ∈ H , let

NbrH(x) = {y ∈ H : (x, y) ∈ E}.

Similarly, for a vertex x ∈ H , and color γ ∈ [M ], let

NbrH(x, γ) = {y ∈ H : (x, y) ∈ E and χ(x, y) = γ}.

To prove the main lemma, we will utilize the following

special case of the main lemma, corresponding to the case of

g = ℓ− 1, that we prove later:
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Lemma V.15. There exists a universal constant c > 0 such

that for all M,n, ℓ ≥ 3 ∈ N, and A ⊂ ({0, 1}n)ℓ with |A| =
c0(2

n)ℓ, the following holds: for any function f : ({0, 1}n)ℓ →
{0, 1}m, there exists a uniform (ℓ− 1, ℓ)-NOSF source X,

A′ ⊂ A ∩ Supp(X) with |A′| ≥ 1
c · c0

ℓ ·N ℓ−1, and D ⊂ [M ]

with |D| ≤ c · 1
ℓ2 ·

(
2
c0

)ℓ−2

·M (ℓ−1)/ℓ such that f(A′) ⊂ D.

The main lemma follows by an inductive argument where

the special case above is the base case.

Remark V.16. In proof of lemma V.12, one can use g = ℓ
as the base case as well. However, for clarity’s sake we

use g = ℓ − 1 as the base case. For first time readers, it

will be helpful to first read the direct non-inductive proof of

lemma V.15 presented in section V-B2 before reading the proof

of lemma V.12 as both these proofs share a lot of ideas.

2) Proving the main lemma for g = ℓ−1: We will prove our

main lemma for the case of g = ℓ− 1 using a color covering

lemma for dense t-partite t-uniform hypergraphs colored in

some special way:

Lemma V.17 (Small Color Covering for Hypergraphs). Let

0 < c0 ≤ 1, 0 < c1, 0 < ε < c0 be arbitrary.

Let H = (V1, . . . , Vt, E) be a t-uniform t-partite hyper-

graph with V1 = · · · = Vt = [N ], |E| = c0N
t. Let

the edges of H be colored in one of M colors so that

for every position p ∈ [T ], and every (t − 1) tuples:

(v1, . . . , vp1
, vp+1, . . . , vt) ∈ [N ]t−1, the number of distinct

colored edges as entries position p vary is ≤ c1M
δ . Formally,

|χ(v1, . . . , vp−1, y, vp+1, . . . , vt) : y ∈ [N ]| ≤ c1M
δ . Then,

there exists D ⊆ [M ] such that |D| ≤ εc1(c1+1)t(t+1)/2−1

(c0−ε)t ·M tδ

and at least εN t edges in H are colored in one of the colors

from D.

We prove this color covering lemma later. Using it, we are

able to prove our main lemma for the case of g = ℓ− 1.

3) Finding a small color covering in locally-light hyper-

graphs: We consider dense t-uniform t-partite hypergraphs

where all edges are colored and the hypergraph satisfies a

ªlocally-lightº condition: all t−1-tuples are adjacent to a small

number of colors. The covering lemma finds small set of colors

that covers constant fraction of edges in the hypergraph. We

do this by finding a popular color in such a hypergraph.

Lemma V.18 (Popular Color in Locally-Light Hypergraphs).

Let 0 < c0 ≤ 1, 0 < c1 be arbitrary. Let t ≥ 2 ∈ N.

Let H = (V1, . . . , Vt, E) be a t-uniform t-partite hyper-

graph with |V1| = · · · = |Vt| = N, |E| = c0N
t. Let

the edges of H be colored in one of M colors so that

for every position p ∈ [T ], and every (t − 1) tuples:

(v1, . . . , vp1
, vp+1, . . . , vt) ∈ [N ]t−1, the number of distinct

colored edges as entries position p vary is ≤ c1M
δ . For-

mally, |χ(v1, . . . , vp−1, y, vp+1, . . . , vt) : y ∈ [N ]| ≤ c1M
δ .

Then, there exists a color γ ∈ [M ] such that at least
ct0

c1(c1+1)t(t+1)/2−1 ·N
t/M tδ edges in H are colored with color

γ.

Using this lemma, our color covering lemma for hypergraph

follows by repeatedly finding such popular colors.

4) Finding a popular color in locally-light hypergraphs:

For the base case, we find such a popular color in graphs:

Lemma V.19 (Popular Color in Locally-Light Graphs). Let

0 < c0 ≤ 1, 0 < c1 be arbitrary. Let H = (U, V,E) be a

bipartite graph with |U | = |V | = N, |E| = c0N
2. Let the

edges of H be colored in one of M colors so that for every

vertex x ∈ H , the number of distinct colored edges incident

on x is ≤ c1M
δ . Then, there exists a color γ ∈ [M ] such

that at least
c20

(c1+1)2c1
·N2/M2δ edges in H are colored with

color γ.

Using this, we inductively find a popular color in locally-

light hypergraphs.

Finally, we directly argue a popular color exists in dense

locally-light bipartite graphs.

C. Impossibility of condensing from CG sources

We prove two impossibility results regarding impossibility

of condensing from (ℓ, ℓ)-aCG sources. Our first result theo-

rem V.21 states that any candidate condenser cannot decrease

the entropy gap present in the blocks of CG sources. Our

second result in contrast, states that when blocks have linear

entropy, then condenser cannot condense beyond rate 1/2.

The latter result is much stronger than the former in regimes

where m is comparatively larger than n (say m = O(nℓ) and

ℓ = ω(1)).
1) Impossibility of non-trivial condensing beyond min-

entropy gap: We will use the fact that it is impossible to

condense from general (n, k)-sources.

Lemma V.20. For all n, k,m ∈ N and ε > 0 the following

holds: For all functions f : {0, 1}n → {0, 1}m, there exists

an (n, k) source X such that Hε
∞(f(X)) ≤ m − (n − k) +

log(1/(1− ε))−max(m− n, 0).

We believe a result of this form is well-known but we

were unable to find a good reference. Thus, for the sake

of completeness, we prove this lemma at the end of this

subsection. Using this, we prove our impossibility result for

(ℓ, ℓ)-aCG sources.

Theorem V.21. For all 0 < ε < 1,∆ and ℓ,m, n ∈ N, the

following holds: for every function f : ({0, 1}n)ℓ → {0, 1}m,

there exists a (ℓ, ℓ)-aCG source X where the good blocks have

min-entropy at least n−∆− log(ℓ/ε)−O(1) conditioned on

all fixings of previous blocks and Hε
∞(f(X)) ≤ m − ∆ +

log(2/(2− ε))−max(m− ℓn, 0).

Lastly, we proved that no non-trivial condensers exist for

arbitrary (n, k)-sources.

2) Impossibility of condensing beyond rate 1/2: Using con-

densing impossibility result for uniform (1, 2)-oNOSF sources,

we prove a condensing impossibility result for (ℓ, ℓ)-aCG

source (which are just CG sources, with no adversarial blocks)

where the good blocks have min-entropy at least O(n/ℓ)
conditioned on every fixing of previous blocks.
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Theorem V.22. For all 0 < ε < 1 there exists a δ > 0 such

that the following holds: for every function f : ({0, 1}n)ℓ →
{0, 1}m, there exists a (ℓ, ℓ)-aCG source X where the good

blocks have min-entropy at least
n−ℓ log(2ℓ/ε)

ℓ+1 conditioned on

all fixings of previous blocks and Hε
∞(f(X)) ≤ 1

2 ·m+ δ.

Lastly we prove our claim that most fixings of previous

blocks preserve min-entropy in the later block.

D. Deferred proofs of helpful lemmas

The remaining deferred proofs of lemmas follow from the

following results, proofs of which we include in the full

version of our paper.

Lemma V.23. Let g, ℓ, n, g′, ℓ′, n′,m ∈ N be such that g ≤
a · g′ + max(b − (ℓ′ − g′), 0), (a + 1)n ≤ n′ where a, b ∈ N

are unique integers such that ℓ = a · ℓ′ + b where 0 ≤ b <
ℓ′. Let 0 < ε < 1, δ > 0 be such that: for any function

f : ({0, 1}n
′

)ℓ
′

→ {0, 1}m, there exists a uniform (g′, ℓ′)-
oNOSF source (uniform (g′, ℓ′)-NOSF source, respectively) Y

so that Hε
∞(f(Y)) ≤ g′

ℓ′ ·m + δ. Then, for any function h :
({0, 1}n)ℓ → {0, 1}m, there exists a uniform (g, ℓ)-oNOSF

source (uniform (g, ℓ)-NOSF source, respectively) X such that

Hε
∞(h(X)) ≤ g′

ℓ′ ·m+ δ.

The deferred proofs of several lemmas follow from this

result.

VI. CONDENSERS FOR ONOSF SOURCES

We will prove the following main theorem regarding con-

densing from oNOSF sources in this section:

Theorem VI.1. For all g, ℓ, r ∈ N, ε > 0 such that⌊
ℓ−1
g−1

⌋
= r and r < ℓ−1

g−1 , there exists a condenser

Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (g, ℓ, n, k)-
oNOSF source X with k ≥ 2 log(gn/ε), we have that

Hε
∞(X) ≥ 1

r · m − 2(5ℓ−g − 1) log
(

(g−1)k
8ℓε

)
with m =

r
(

k
8ℓ − 2(5ℓ−g − 1) log

(
(g−1)k

8ℓ

))
.

This result is tight up to lower order terms as it asymptoti-

cally matches the impossibility results of theorem V.1.

We prove this theorem in two steps. First, we show how to

transform oNOSF sources to uniform oNOSF sources:

Theorem VI.2. For any g, ℓ, ε, there exists a function f :
({0, 1}n)ℓ → ({0, 1}m)ℓ−1 with m = k

8ℓ such that for

any (g, ℓ, k)-oNOSF source X with k ≥ 2 log(gn/ε) there

exists a uniform (g − 1, ℓ− 1)-oNOSF source Y such that

|f(X)−Y| ≤ ε.

Second, we show how to condense from uniform oNOSF

sources.

Theorem VI.3. For any g, ℓ, ε such that ⌊ℓ/g⌋ = r and r <
ℓ/g, there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m

such that for any uniform (g, ℓ)-oNOSF source X we have

Hε
∞(Cond(X)) ≥ 1

r ·m− 2(5ℓ−g − 1) log(gn/ε) where m =
r(n− 2(5ℓ−g − 1) log(gn)).

Using these two ingredients, our main theorem follows.

A. Transforming low entropy oNOSF sources to uniform

oNOSF sources

We will prove theorem VI.2 in this subsection. We will use

the fact that a random function is a very good two source

extractor.

Lemma VI.4. Let n1, n2, k1, k2,m, ε be such that k1 ≤
n1, k2 ≤ n2,m = k1+k2−2 log(1/ε)−O(1), k2 ≥ log(n1−
k1)+2 log(1/ε)+O(1), and k1 ≥ log(n2−k2)+2 log(1/ε)+
O(1). Then, a random function Ext : {0, 1}n1 × {0, 1}n2 →
{0, 1}m is a (k1, k2, ε)-two source extractor with probability

1− o(1).

We defer proof of this to section VI-C. Using this, we will

prove our main lemma:

Lemma VI.5. Let g, ℓ,m, n ∈ N and k, k1, k2, ε > 0 be

such that k ≥ k1 + ℓm + log(1/ε), k ≥ k2. Suppose there

exists a (k1, k2, ε)-two-source extractor 2Ext : {0, 1}(ℓ−1)·n×
{0, 1}n → {0, 1}m. Then we can construct a function f :
({0, 1}n)ℓ → ({0, 1}m)ℓ−1 such that for any (g, ℓ, n, k)-
oNOSF source X, there exists a uniform (g − 1, ℓ− 1)-oNOSF

source Y such that |f(X)−Y| ≤ 2(g − 1)ε.

Using this main lemma, theorem VI.2 follows.

One can get an explicit version of this transformation, with

polynomial error by using an explicit two-source extractor,

such as the one from [26].

We now focus on proving lemma VI.5. We extend an

argument for a somewhere extractor for low entropy oNOSF

sources from [1]. We do this by using a two source extractor

instead of a seeded extractor in their construction.

To achieve this result, we use the notion of average con-

ditional min-entropy and use some known results about two-

source extractors.

Definition VI.6. For any two distributions X and W, define

the average conditional min-entropy of X given W as

H̃∞(X | W) = − log

(
E

w∼W

[
max

x∈Supp(X)
Pr[X = x | W = w]

])
.

We use this notion of average conditional min-entropy

to define notions of average-case strongness in two-source

extractors:

Definition VI.7. We say that 2Ext is average-case strong if

2Ext(X1,X2),W ≈ε Um,W

for every X1 and W such that H̃∞(X1 | W) ≥ k1 with X2

independent of X1 and W.

One benefit of the average conditional min-entropy in

comparison to conditional min-entropy is that the chain rule

is simpler:

Lemma VI.8. [39] Let A, B, and C be distributions such

that Supp(B) ≤ 2λ. Then H̃∞(A | B,C) ≥ H̃∞(A,B |
C)− λ ≥ H̃∞(A | C)− λ.
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In addition, Lemma 2.3 of [39] shows that two-source

extractors are average-case-two-source extractors with similar

parameters.

Lemma VI.9. [39] For any η > 0, if 2Ext is a (k1, k2, ε)-two-

source extractor, then 2Ext is a (k1 + log(1/η), k2, ε + η))-
average-case-two-source extractor.

We will use it to prove our main theorem in which we

provide a general transformation of low min-entropy oNOSF

sources to uniform oNOSF sources given a two-source extrac-

tor. This transformation is based on a similar transformation

in [1].

B. Condensing from oNOSF sources using output-light two

source extractors

In this subsection, we will prove theorem VI.3. To obtain the

condenser, we will utilize two-source extractors which have an

additional property that we call output-light.

Formally, we define output-light two source extractors as

follows:

Definition VI.10 (Output-light Two Source Extractor).

Let Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m be a

(k1, k2, ε)-two source extractor. Then, Ext is R-

output-light if for every z ∈ {0, 1}m, it holds that

|{x ∈ {0, 1}n1 : ∃y ∈ {0, 1}n2(Ext(x, y) = z)}| ≤ R.

We will show a random function is a output-light two source

extractor with strong parameters and we will use it with the

following parameters:

Lemma VI.11. Let 0 < δ < 1, C ≥ 4 be arbitrary

constants. Let n1, k1, n2, k2, m, εExt, ε be such that n1

is arbitrary, n2 = C (log(n1) + log(1/ε)) , k1 = δn1 −
2n2, k2 = 4 (log(n1) + log(1/ε)) ,m = k1 − 2n2, εExt =
2−k2/4 (note that if k2 is larger than the minimum re-

quirement, then εExt gets proportionally smaller). Then, a

random function Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m is

an R-output-light (k1, k2, εExt) two-source-extractor where

R = 2n1+n2−m+O(1).

We defer proof of their existence in section VI-C. Using

such an extractor, we will prove the following general con-

densing result:

Lemma VI.12. Let g, ℓ, r, n, ε be such that r = ⌊ℓ/g⌋
and r < ℓ/g. Assume that for c ∈ {1, . . . , r}, there ex-

ists an Rc-output-light (k1,c, k2,c, εExtc)-two-source extractor

2Extc : {0, 1}n1,c × {0, 1}n2,c → {0, 1}mc where n1,c = gn,

n2,c = 5ℓ−cg−1
4 · 4 log(gn/ε), k1,c = n − 2n2,c, k2,c =

4 (log(gn) + log(1/ε)), mc = n−2n2,c, εExtc = 2−k2,c/4 and

log(Rc/ε) ≤ n1,c+2n2,c−mc. Then there exists a condenser

Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ)-
oNOSF source X, we have Hε

∞(Cond(X)) ≥ 1
r · m − 2n2,1

here m = r ·mr.

Using this main lemma, the theorem follows. Before we

prove this main lemma, we prove theorem VI.3 for the special

case when g > ℓ/2.

Theorem VI.13. For all g, ℓ, ε such that g > ℓ/2, there

exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that

for any uniform (g, ℓ)-oNOSF source X, Hε
∞(Cond(X)) ≥

m−(5ℓ−g−3) (log(gn) + log(1/ε)) where m = n−2(5ℓ−g−
1) log(gn).

As an application of this theorem, we construct a con-

denser from a low min-entropy (g, ℓ)-oNOSF source with

g > ℓ/2 + 1. We do this by composing our transformation

from theorem VI.2 with the condenser from theorem VI.13.

Corollary VI.14. For all g, ℓ, ε such that g > ℓ/2 + 1, there

exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that

for any (g, ℓ, n, k)-oNOSF source X with k ≥ 2 log(n), we

have Hε
∞(Cond(X)) ≥ m − (5ℓ−g − 3) log

(
(g−1)k
8ℓε

)
where

m = k
8ℓ − 2(5ℓ−g − 1) log

(
(g−1)k

8ℓ

)
.

1) Condensing from (g, ℓ)-oNOSF sources with g > ℓ/2:

We will prove theorem VI.13 that allows us to condense from

uniform (g, ℓ)-oNOSF sources when g > ℓ/2. This theorem

allows us to condense to almost full entropy.

We will prove this theorem using the following general

lemma:

Lemma VI.15. Assume that for some g, n, ε there exists

an R-output-light (k1, k2, εExt)-two-source-extractor Ext :
{0, 1}n1 × {0, 1}n2 → {0, 1}m where n1 = gn, n2 =
5ℓ−g−1

4 · 4 log(gn/ε), k1 = n − 2n2, k2 = 4 log(gn/ε),m =
n − 2n2, εExt = 2−k2/4 (notice that we require that if k2
supplied is larger, then εExt gets proportionally smaller). Then,

there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such

that for any uniform (g, ℓ)-oNOSF source X with g > ℓ/2,

Hε
∞(Cond(X)) = min (m− n2, n1 − log(R/ε)).

Using this, our theorem directly follows.

Towards proving our general lemma, we show that for any

flat distribution X over n bits, if a function f condenses from

X, then f also condenses (with a slight loss in parameters)

from a distribution X
′ which is the same as the distribution

X on most output bits but some output bits are arbitrarily

controlled by an adversary. We note that a lemma similar in

spirit to this one was shown as Lemma 28 in [9].

Lemma VI.16. Let X ∼ {0, 1}n be an arbitrary flat dis-

tribution and let Cond : {0, 1}n → {0, 1}m be such that

Hε
∞(Cond(X)) = k. Let G ⊂ [n] with |G| = n − b.

Let XG ∼ {0, 1}n−b be the projection of X onto G. Let

X
′ ∼ {0, 1}n be the distribution where the output bits

defined by G equal XG and remaining b bits are deterministic

functions of the n− b bits defined by G under the restriction

that Supp(X′) ⊂ Supp(X). Then, Hε′

∞(f(X′)) ≥ k−b where

ε′ = ε · 2b.

We will prove this result later. Using this result, we use

output-light two-source-extractor to prove our general lemma.

We finally prove our useful lemma that states a condenser

for a distribution X still condenses from a tampered version

of X where some output bits are controlled by an adversary.
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2) Condensing from uniform oNOSF sources in all regimes:

We finally prove our main lemma of the section - lemma VI.12.

We will use the following simple claim that guarantees pro-

jections of high-entropy distributions have high-entropy.

Lemma VI.17. Let X be an arbitrary (n, k)-source and π :
{0, 1}n → {0, 1}n−d be a projection onto n−d bits of X (i.e.,

removes d bits of X). Then π(X) is a (n− d, k − d)-source.

We are finally ready to prove the main lemma. The proof

of this main lemma uses a similar strategy as in lemma VI.15.

C. Existence of output-light two-source extractors

In this subsection, we show a random function is an output-

light two-source extractor. Towards showing output lightness,

we introduce a related notion, of R-invertible functions.

Definition VI.18 (R-invertible function). A function f :
{0, 1}n → {0, 1}m is R-invertible if for every z ∈ {0, 1}m, it

holds that |{x ∈ {0, 1}n : f(x) = z}| ≤ R.

We record the observation that R-invertible functions are

also R-output light.

Observation VI.19. Let Ext : {0, 1}n1 ×{0, 1}n2 → {0, 1}m

be a (k1, k2, ε)-two source extractor. If Ext is R-invertible,

then Ext is R-output-light.

We now show that a random function is optimally invertible,

hence concluding a random function is also output light.

Lemma VI.20. Let f : {0, 1}n → {0, 1}m be a random

function where m ≤ n−log n. Then, with probability 1−o(1),
f will be 2n−m+c-invertible where c is a universal constant.
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