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Abstract—While the existence of randomness extractors, both
seeded and seedless, has been studied for many sources of ran-
domness, currently, not much is known regarding the existence
of seedless condensers in many settings. Here, we prove several
new results for seedless condensers in the context of three related
classes of sources: Non-Oblivious Symbol Fixing (NOSF) sources,
online NOSF (oNOSF) sources (originally defined as SHELA
sources in [1]), and almost Chor-Goldreich (CG) sources as
defined in [2]. We will think of these sources as a sequence of
random variables X = X;,..., X, on ¢ symbols where at least
g out of these ¢ symbols are ‘‘good” (i.e., have some min-entropy
requirement), denoted as a (g, £)-source, and the remaining “bad”
{ — g symbols may adversarially depend on these g good blocks.
The difference between each of these sources is realized by
restrictions on the power of the adversary, with the adversary in
NOSF sources having no restrictions.

Prior to our work, the only known seedless condenser upper or
lower bound in these settings is due to [2], where they explicitly
construct a seedless condenser for a restricted subset of (g,¢)-
adversarial CG sources.

The following are our main results concerning seedless con-
densers for each of these sources.

1) oNOSF sources

a) When g < //2, we prove that condensing with error 0.99
above rate ﬁ is impossible. In fact, we show that this
is tight.
Quite surprisingly, for g > ¢/2, we show the existence
of excellent condensers for uniform oNOSF sources. In
addition, we show the existence of similar condensers for
oNOSF sources with only logarithmic min-entropy. Our
results are based on a new type of two-source extractors,
called output-light two-source extractors, that we introduce
and prove the existence of.
2) Adversarial CG sources
a) We observe that uniform adversarial CG sources are
equivalent to uniform oNOSF sources and consequently
inherit the same results.
b) We show that one cannot condense beyond the min-
entropy gap of each block or condense low min-entropy
CG sources above rate 1/2.

3) NOSF sources

a) We show that condensing with constant error above rate
9 is impossible for uniform NOSF sources for any g
and /, thus ruling out the possibility of any non-trivial
condensing. This shows an interesting distinction between
NOSF and oNOSF sources.
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I. INTRODUCTION

One of the most fruitful lines of research in computer
science has been that of randomness. From the traditionally
more applied areas of algorithm design (e.g., Monte Carlo
simulations), error-correcting codes and cryptography to the
more theoretical areas of property testing, combinatorics, and
circuit lower bounds, randomness has played a key role in
seminal discoveries. In many of these works, the use of high-
quality random bits, or alternatively, a way to convert low-
quality randomness into high-quality randomness, is essential.
In cryptography, the authors of [3] showed that high-quality
randomness is essential for tasks such as bit commitment
schemes and secure two-party computation. On the other hand,
being able to extract uniform bits from low-quality randomness
allows us to simulate randomized algorithms [4].

In most use-cases, randomness takes the form of uniformly
random bits. These motivated the construction of randomness
extractors,! functions that take low-quality randomness (which
we often like to think of as natural processes) and convert it
into uniformly random bits. It is impossible to extract from
the class of all sources and so extractors are constructed with
respect to a restricted class of sources.

A number of works [4]-[7] have shown that deterministic
extraction is impossible for many natural classes of random-
ness sources. The question that arises for such sources then is
whether any improvement to their randomness can be made.
That is, while it may not be possible to convert a source
into uniform bits, maybe it is possible to condense a source
into another source with a higher density of randomness. The
central focus of our paper is in understanding the possibility of
condensing for various natural models of weak sources where
it is known that extraction is impossible.

We first introduce the way that we measure randomness
and the notions of extractors and condensers. The notion
of randomness that is standard in this line of work is
that of min-entropy. For a source X on n bits, we define
its min-entropy as Hoo(X) = mingego 13~ {—log(Pr[X

In this paper, when we mention extractors/condensers, we usually mean
seedless extractors/condensers.



z])}. A source X over n bits with min-entropy at least
k is called an (n,k)-source. Given any two distribu-
tions X and Y on {0,1}", we define their statistical
distance or total-variation (TV) distance as |X —Y]|
maxzc(o,1}» |Prz~x[z € Z] — Pryuy[y € Z]|. We also need
the notion of smooth min-entropy: for a source X on {0,1}",
it=s smooth min-entropy with smoothness parameter ¢ is
HE (X) = maxy,x—v|<s Hoo(Y). Conceptually, smooth
min-entropy asks that the source we are looking at be e-close
in TV-distance to some other source with the desired amount
of min-entropy. We are now in a position to define randomness
extraction and condensing.

Definition I.1. Ler X be a family of distributions over {0,1}™.
A function Ext : {0,1}™ — {0,1}™ is an extractor for X with
error € > 0 if for all X € X we have |[Ext(X) — Up,| <e.

For extractors to exist, we require all sources in X’ to have
entropy. When each source in X is an (n, k)-source, we say
that Ext is a (k,¢e)-extractor for X. For some classes, an
extractor may not exist (such as for the class of all (n,n—1)-
sources). Consequently, we turn to the looser requirements of
condensing.

Definition L.2. For a family of distributions X over {0,1}",
a function Cond {0,1} — {0,1}™ is a condenser
with error ¢ > 0 if for all X € X we have that
H: (Cond(X))/m > Hy(X)/n. We say that Cond has
entropy gap A if HZ (Cond(X)) > m — A. When X is the
class of (n, k)-sources and k' =m — A, we say that Cond is
a (k, k' e)-condenser.

Unfortunately, even this notion is too strong as we cannot
condense with error e from the class of all (n, k)-sources so
that the output entropy rate is larger than k/n. > We thus
study condensing from classes of sources which have some
additional structure along with a min-entropy requirement. In
this paper, we explore the possibility of condensing from three
related models of weak sources. These models, some of which
have been studied since the 1980s, are very general and well-
motivated by practical considerations.

The rest of the introduction is organized as follows: In
section I-A, we present the case that condensers have many
applications and are hence a natural direction of study, in
particular when extraction is not feasible. In section I-B, we
discuss the models of weak sources that we study, present
relevant prior work on these models, and discuss our results
for each of them.

A. The utility of condensing

We present two viewpoints in motivating our study of
condensers. We compare what is possible via condensing in
contrast to extracting and consider the utility of condensing
for simulating BPP algorithms.

2 Assuming m < n, the output entropy can be shown to be most k +m —
n +log(1/(1 —¢€)). See lemma V.20 for a proof of this fact.
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1) Condensing vs. extracting: Condensers exist in many
scenarios when it can be provably shown that deterministic
extraction is not possible. Thus, they allow us to obtain
randomness that is more useful than what we began with
in cases where extracting uniform bits is impossible. One
significant example is that of Santha-Vazirani (SV) sources
[5] and their generalization, Chor-Goldreich (CG) sources [6].

Informally, an SV source is a string of random bits such
that the conditional distribution of each bit on the bits that
come before it is guaranteed to have some minimum amount
of min-entropy; a CG source generalizes this to allow each bit
to instead be a symbol in {0,1}™. It is well known that deter-
ministic extraction is impossible for both SV and CG sources
[5]-[7]. The recent result of [2] with regards to condensing
from CG sources stands in contrast to these impossibility
results for extraction. Other examples of sources for which
deterministic extraction is not possible while deterministic
condensing are the somewhat dependent sources of [8] and
block sources [9].

We briefly mention that seeded condensers are known to
achieve parameters unattainable by seeded extractors [10].
Further, seeded condensers have been extremely useful in
excellent constructions of seeded extractors [11]-[14].

2) Condensing for simulating BPP algorithms: Condensers
with small entropy gap are useful in simulating randomized
algorithms with low overhead [2]. There are two ways one can
go about this. First, there exists an explicit seeded extractor
Ext with seed length d = O(log(A)) that can extract from
any (n, k)-source X with entropy gap A = n — k [15]. Then,
to simulate a randomized algorithm A in BPP, we instead
sample x ~ X and take the majority of the output of .4 on
{Ext(z, s)} where we cycle over all seeds s [16].

For some applications in randomized protocols, cryptog-
raphy and interactive proofs, one cannot afford to compute
Ext all 2¢ times by cycling through every seed [17]-[20].
Alternatively, we can simulate A using a “one-shot” method
in which we do not iterate over all seeds. A result from [20]
allows us to simulate A on the condensed source X (with
entropy gap A) by reducing the error of A to 27271 . ¢ and
then using X directly to simulate random bits in .A. Such a
simulation will have error €.

B. Models of weak sources and our results

We consider three adversarial classes of sources motivated
by weak sources that appear in practice as well as in various
cryptographic settings. These sources are natural generaliza-
tions of the well-studied independent sources wherein we al-
low for an adversarial dependence between sources. Changing
the scope and power of the adversary in natural ways gives rise
to the three different classes of sources that we will consider.

The three randomness sources that we focus on in this work
are all composed of blocks of bits, known as symbols, which
vary in how they are permitted to relate to other symbols in
the source. In these definitions, we will consider sources X =
X1,...,Xy of length ¢ where each X; € {0,1}" is called a
block. Generally, we will term blocks that have some minimum



amount of randomness “good” and blocks that are chosen by
an adversary as “bad”. Next, we discuss these three models
of weak sources, presenting what was known from prior work
and our new results for each of these models.

1) Online non-oblivious symbol fixing sources: The first
class of adversarial sources that we will define is that of
online non-oblivious symbol fixing (o0NOSF) sources. While
these are a restriction of general NOSF sources, which we
will define later, we introduce them first since they have the
weakest adversary and, consequently, the strongest positive
results. Formally, we define oNOSF sources as follows.

Definition 1.3 (oNOSF sources, [1]). A (g,¢,n,k)-oNOSF
source X = Xy,..., X, on ({0,1}")" is such that g out of
the £ blocks are independently sampled (n,k)-sources (i.e.,
good), and the remaining ¢ — g bad blocks only depend on
blocks with smaller indices (i.e., to their left).

If k& n, we call X a uniform (g,¢)-oNOSF source.
oNOSF sources form a natural class of sources to study when
an adversary is working in real time and cannot predict the
future. One such real-world example is that of blockchains.
From [21], [22], we know that in a sequence of blocks,
there will be some fraction of blocks that are chosen by
honest players. Moreover, since these honest players are not
working together, their chosen blocks may be considered as
independent, fulfilling the requirement for good blocks for
oNOSF sources. The adversarial players, on the other hand,
can only see blocks added to the blockchain thus far and do
not know which values of blocks will be added in the future,
fulfilling the requirements for bad blocks for oNOSF sources.
For more uses of oNOSF sources, see [1].

Previous work:  Prior to our work, the only results for
condensing or extracting from oNOSF sources are due to
[1]. In [1], the authors study Somewhere Honest Entropic
Look Ahead (SHELA) sources, which are exactly convex
combinations of oNOSF sources (see proposition IV.15). They
(1) transform (not uniform) oNOSF sources into uniform
NOSF sources and (2) show that for any v € (0,1), there
exists an ¢ such that extraction is not possible for (|y¢],¢)-
oNOSF sources.

Our results:  We prove the existence of condensers with
excellent parameters when the majority of the blocks of a
uniform oNOSF source are good.

Theorem 1.4 (Informal version of theorem VI.13). For all
constant g,{ and all & such that g > (/2, there exists a
condenser Cond : ({0,1}")¢ — {0,1}™ such that for any
uniform (g, £)-oNOSF source X, we have HZ (Cond(X)) >
m — O(log(m/e)) where m = n.

For our construction, we introduce a new type of two-source
extractor’ that we call a R-output-light two-source extractor.
Such a two-source extractor 2Ext : {0,1}"* x {0,1}"2 —
{0,1}™ satisfies the additional guarantee that each output

3See definition IV.9 for a definition of two-source extractors
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z € {0,1}™ can only be produced by R inputs x € {0, 1}™ in
the first source (see definition VI.10 for the formal definition).
The existence of such extractors is not obvious, and we show
that output-light two-source extractors exist with strong pa-
rameters in lemma VI.11. Our proof uses the observation that
R-output-lightness is implied by the notion of R-invertibility,
which simply bounds ||Cond(X)]| , by R (see definition VI.18
for a formal definition). Incidentally, this latter notion has
been recently used in a different context, to construct ex-
plicit random access linear codes with constant rate and
distance [23]. While we are unable to explicitly construct such
output-light two-source extractors, we do construct an explicit
output-light seeded extractor, which we use to condense from
uniform (2, 3)-oNOSF sources and more.

In fact, we can achieve a stronger result and show existence
of condensers for oNOSF sources with only logarithmic min-
entropy guarantee in the good blocks.

Theorem L.5 (Informal version of corollary VI.14). For any
constant g,¢ and all € such that g > (/2 + 1, there exists
a condenser Cond : ({0,1}™)¢ — {0,1}™ such that for any
(9,¢,n,k)-oNOSF source X with k > 2log(n/c) we have
HZ (Cond(X)) > m — O(log(m/e)) where m = Q(k).

To accomplish this, we transform logarithmic min-entropy
oNOSF sources to uniform oNOSF sources and then apply the
condenser for uniform oNOSF sources. We transform logarith-
mic min-entropy oNOSF sources to uniform oNOSF sources
by modifying the construction of a somewhere-extractor for
high min-entropy SHELA sources by [1]. These results imply
that oNOSF sources can be useful for low overhead simulation
of BPP algorithms. Furthermore, taken in tandem with the
result that for all v > 0 there exists a large enough ¢ such
that one cannot extract from uniform (|v¢] , £)-oNOSF sources
from [1], we have shown that oNOSF sources are one of the
natural classes of sources that admit seedless condensing but
not seedless extraction. This adds oNOSF sources to the short
list of such natural sources mentioned in section [-Al.

In contrast, condensing in the regime of ¢ < (/2 is
more nuanced: some non-trivial condensing beyond rate ¢ is
possible provided g does not divide ¢, but condensing to a
significantly higher rate is not possible.

Theorem 1 (theorem V.1, restated). For any function f :
({0,1}™)¢ — {0,1}™ and & > 0, there exists a constant §
and uniform (g,0)-oNOSF source X with g < (/2 such that
HE (f(X)) < (grgy -m + 0.

[¢/g]

This partially resolves* a conjecture of [1]: they conjectured
that (g, £)-oNOSF sources cannot be transformed into uniform
(¢',¢')-NOSF sources with % > 9. Our condensing impos-

sibility implies % < ﬁ for any such transformation. This
negative result is tight and we are able to condense uniform

(g,£)-oNOSF sources up to rate Lé}gj’

4Our result on the existence of condensers falls short of completely
resolving their conjecture as it does not transform uniform oNOSF sources
into uniform NOSF sources.



Theorem 2. (Informal version of theorem VI.3) For any
constant g,¢ and ¢ such that [£/g] = r and /g # T,
there exists a condenser Cond : ({0,1}")¢ — {0,1}™
such that for any uniform (g,{)-oNOSF source X we have
HE (Cond(X)) > L. m — O(log(m/c)) where m = Q(n).

As before in theorem 2, we can convert a logarithmic min-
entropy oNOSF source to a uniform oNOSF source and then
apply theorem 2. This yields:

Theorem 3. (Informal version of theorem VI.1) For all con-

£—1 -1
stant g,¢ and € such that il =T and o1 % r, there

exists a condenser Cond : ({0,1}™)¢ — {0,1}™ such that
for any (g,¢,n, k)-oNOSF source X with k > 2log(n/e), we
have that H5 (X) > 1 - m — O(log(m/e)) with m = Q (k).

We note that theorem 1.4 and theorem 1.5 are special cases
of theorem 2 and theorem 3 in the case that |{/g| =r =1,
allowing us to state all of our condensing possibility results
succinctly.

Put together, our results demonstrate a sharp threshold
at ¢ = ¢/2 for condensing from oNOSF sources with a
small entropy gap. To our knowledge, there is no other
set of sources that exhibits such behavior, making oNOSF
sources unique among both adversarial sources and general
randomness sources.

2) Adversarial Chor-Goldreich sources: Next, we consider
a generalization of oNOSF sources, termed adversarial Chor-
Goldreich (CG) sources, that we obtain by strengthening the
adversary’s power. Adversarial CG sources share the moti-
vation from oNOSF sources that the adversary cannot predict
the future. Rather than forcing the adversary to have its blocks
only depend on blocks in the past (those with smaller indices),
aCG sources require that good blocks have some entropy
conditioned on all blocks that came before them. In other
words, bad blocks cannot expose all of the entropy of future
good blocks.

Definition 1.6 (Adversarial CG (aCG) sources, [2], [6]). We
define a (g,¢,n,k)-aCG source X = Xi,...,X; to be a
distribution on ({0,1}")" such that there exists a set of good
indices G C [{] of size at least g for which Hyo(X; | X1 =
Z1,..., X1 = T;—1) > k for all i € G and all prefixes
L1yeoey Lji—1-

As before, if k = n, then we say that X is a uniform (g, ¢)-
aCG source. Observe that because the good blocks of a oONOSF
source are independent of all blocks before it, ONOSF sources
are trivially aCG sources as well. As a consequence, our
condensing impossibility results from theorem 1 immediately
apply to aCG sources as well. Moreover, a convenient fact
that we later show in proposition IV.17 and will rely on is
that uniform (g,¢)-aCG sources and uniform (g, ¢)-oNOSF
sources are equivalent.

CG sources are a well-studied class of sources introduced
by [6] as a generalization of Santha-Vazirani sources [5].
Hence, the majority of the work done on CG sources has
been in the non-adversarial setting in which g = £. Adver-
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sarial CG sources that contain bad blocks were only recently
introduced in [2] (although they use the terminology “almost”
CG sources), in which the authors show several condensing
results for CG and adversarial CG sources. Our work can then
be seen as a meaningful addition to this long line of research
on CG sources and their generalizations.

Previous work:  The impossibility of extraction from both
oNOSF sources and aCG sources due to [1], [6] naturally
raises the question of whether there is a distinction between
these two sources with regards to randomness condensing.

For CG sources, [24] showed that errorless condensing is
impossible. In contrast, [2] proved several possibility results
regarding condensing with error for CG sources. Their results
assume that the size of each block is very small (almost
constant) compared to the number of blocks.

We also note that the authors of [2] considered various other
relaxations of the definition of aCG sources that we do not
consider here. These include good blocks having only smooth
min-entropy conditioned on previous blocks instead of the
stronger condition of min-entropy, having smooth min-entropy
conditioned on a constant fraction of prefixes of previous
blocks instead of all prefixes, and having a Shannon entropy
requirement instead of min-entropy requirement.

Our results: In [2], the authors pose the question of
whether it is possible to condense from aCG sources with
a constant entropy gap.” We give a partially positive answer
to this by showing that we can condense from uniform (g, £)-
aCG sources with g > £/2 with logarithmic entropy gap since
uniform (g, £)-aCG sources are equivalent to uniform (g, ¢)-
oNOSF sources and we can defer to theorem 2. Of course,
all of theorem 2 applies to uniform aCG sources, so we can
condense any uniform (g, ¢)-aCG source to rate %. The
generalization of these results in theorem 1.5 do not hold
for non-uniform aCG sources since non-uniform aCG sources
need not be oNOSF sources. Before our work, no non-trivial
condensing was known for uniform (g, £, n)-aCG sources even
in the case of ¢ = ¢ — 1. It is important to note that our
results hold for comparatively large block sizes n = 2¢(9), in
contrast to the results of [2] that hold for constant block sizes
and increasing /.

As previously mentioned, since oNOSF sources are a sub-
class of aCG sources, our condensing impossibility results
from theorem 1 transfer over. Thus, in the g < /2 regime, we
give a negative answer to the question of [2] by showing that
good condensers do not exist for uniform (g, ¢)-aCG sources,
let alone condensers with a constant entropy gap. Note that
unlike our condensing possibility results that only apply to
uniform aCG sources, our impossibility result applies to non-
uniform aCG sources as well.

In addition, we prove various condensing impossibility
results that work even when there are no bad blocks (i.e., for
non-adversarial, or just regular, CG sources): the first result of
theorem 4 is based on a reduction from general (n, k)-sources

SIn their paper, they phrase it as removing the requirement of suffix-
friendliness.



to CG sources and the second result uses a reduction from
uniform oNOSF sources to low min-entropy CG sources.

Theorem 4 (Informal version of theorem V.21 and theo-
rem V.22). For all A > 0 and for every function f :
({0,1}™) — {0,1}™, there exists an (£,£)-aCG source X
satisfying either of the following with ¢ = 0.99:
o The good blocks have min-entropy at least n — A —
log(¢)—O(1) conditioned on all fixings of previous blocks
and HE (f(X)) <m — A — max(m — ¢n,0) + O(1).
e The good blocks have min-entropy at least n/¢—1log({)—
O(1) conditioned on all fixings of previous blocks and
HE(f(X)) < & -m+ O(1).

It is important to note that the first bullet above does not
subsume the second. In particular, the second bullet point from
above gives a stronger result than the first in the setting when
m is much larger than n.

We note that these results do not contradict the condens-
ing result from [2] as in the parameter regimes for which
theorem 4 works, the condenser of [2] does not result in an
entropy increase. This also shows a separation between aCG
sources and oNOSF sources since theorem 3 can condense
from oNOSF sources in this parameter regime.

3) Non-oblivious symbol fixing sources: Finally, we
strengthen the adversary one last time by letting the bad blocks
depend arbitrarily on all the good blocks. This gives rise to
NOSF sources which themselves generalize the setting of non-
oblivious bit-fixing (NOBF) sources [25] where each block is
a bit (i.e., n =1).

Definition 1.7 (NOSF sources). A (g,¢,n,k)-NOSF source
X = Xy,...,X; on ({0,1}")¢ is such that g out of the ¢
blocks are independently sampled (n, k)-sources (i.e., “good”)
while the other { — g bad blocks may depend arbitrarily on
the good blocks.

When k£ = n and n is clear from context, we simply call X a
uniform (g, ¢)-NOSF source. The adversary in NOSF sources
clearly has a significant amount of power; every single good
block is sampled before the adversary gets to decide what to
place in the bad blocks. As NOSF sources are in the setting in
which the adversary is the strongest, they are also the sources
for which we are most motivated to be able to extract or
condense as they are the most general. We note that much of
the progress on explicit constructions of two-source extractors
and condensers [9], [26], a major problem in the area of
randomness extraction, is based on constructing extractors and
condensers for NOSF sources (in a parameter regime where
it was existentially known that extraction is possible). This
further motivates our exploration of condensing from NOSF
sources in a more general parameter setting.

Previous work:  We can trace back study of extracting from
NOBF sources to the seminal work of Ben-Or and Linial in
[27].° They made the connection between NOBF extractors

%They used the terminology “collective coin flipping protocol” instead of
“NOBF extractor”.
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and the influence of sets of variables on Boolean functions.
Together with the work of Kahn, Kalai, and Linial in [28],
in which they demonstrated lower bounds on the influence of
variables on Boolean functions, these works show that it is not
possible to extract from uniform (g, £)-NOBF sources when
the number of bad bits is b = ¢ — g = Q(¢/log ¢). While no
analogous result is known for NOSF sources,’ the extraction
impossibility result from [1] for oNOSF sources also applies
for NOSF sources: for any « > 0 there exists a large constant ¢
such that it is impossible to extract even one bit from uniform
(¢, £)-NOSF sources.

To attempt to match these lower bounds on extraction,
resilient functions, introduced by [31], have yielded the cur-
rent best results. The resilient function of Ajtai and Linial
in [32] and its explicit versions constructed by [26], [33]
achieve extractors for uniform (g,?¢)-NOBF sources when
b = O(¢/log? (), leaving a 1/log¢ gap between the lower
and upper bounds.

Noting that a uniform (g, ¢, n)-NOSF source is a uniform
(ng,n?)-NOBF source, these results imply extractors when
g > (1 —1/Clog?(nt)), for some large enough constant C.
This still leaves open whether condensing is possible for most
settings of parameters.

Related to this, the work of [34] explores what they call ex-
tracting multimergers, which we may consider as extractors for
uniform NOSF sources. For seedless extracting multimergers,
their result implies that extracting from uniform (2, 3)-NOSF
sources is impossible.

Our results: As oNOSF sources are also NOSF sources,
our condensing impossibility result in theorem 1 also applies
to (g,¢)-NOSF sources when g < ¢/2. However, we are able
to show an even stronger result for any setting of g and ¢ and
thus extend existing lower bounds of extraction to condensing.

Theorem 5 (corollary V.10 restated). For all constant g,{ €
N, there exist constant £, > 0 so the following holds: for all
a,m,n € N and all functions f : ({0,1}")** — {0,1}™,
there exists a uniform (ag,al)-NOSF source X such that
HE(f(X)) < §-m+6.

By varying a above, we extend our result for any g and /¢
to any rate g/¢ uniform NOSF source. These results together
put NOSF sources in stark contrast with adversarial CG and
oNOSF sources since they can both be condensed in a useful
manner for simulating BPP algorithms, while we have shown
that NOSF sources cannot be condensed in such a manner.

II. PROOF OVERVIEW

We present the main ideas and techniques for proving our
main condensing impossibility results in section II-A and
possibility results in section II-B. In this version of our paper,
we do not provide full proofs and instead refer the reader to the
full version of our paper at https://arxiv.org/abs/2312.15087.

7 Although one is conjectured in [29] that attempts to recover what was
initially proposed in [30].



A. Impossibility results

In this subsection, we will go over the main techniques used
in proving the condensing impossibility result for the case that
g < £/2 in section II-A1, the condensing impossibility result
for uniform NOSF sources when g > ¢/2 in section II-A2,
and the condensing impossibility result for low min-entropy
CG sources in section II-A3.

1) Impossibility of condensing from uniform (g,{)-oNOSF
sources for g < £/2: We prove that when the number of good
blocks g is not more than half of the total number of blocks
¢, then condensing beyond rate ﬁ is impossible. Formally,
we will prove the following statement.

Theorem II.1 (theorem V.1, restated). For all e, there exists
a 6 such that for all g,¢ € N with g < £/2 and for all
f:({0,1}")¢ = {0,1}™, there exists a uniform (g, £)-oNOSF
source X such that HE (f(X)) < 72— -m + 4.

[¢/g]

The steps we take to achieve the result of theorem II.1 are,
broadly, as follows:

1) We first reduce proving the theorem to only proving
it for the special case of ¢ = 1. We show that if it
is possible to condense uniform (g, £)-oNOSF sources
to entropy-rate more than L’/%’ then it is possible
to condense uniform (1, ¢')-oNOSF sources to rate be-
yond Lf’lﬁ 7 where ¢/ [¢/g]. We do this
by transforming any uniform (1, ¢')-oNOSF source to a
uniform (g, £)-oNOSF source.

We prove the theorem for the special case of ¢ = 1
and arbitrary /. We do this by using an “induct or
win” argument. We show either condensing from uniform
(1, £)-oNOSF sources is impossible (win) or we reduce to
the case of condensing from uniform (1,¢ — 1)-oNOSF
sources (induct). Either we will win at some point in our
reduction or we will reach the base case of g = ¢ =1
where the claim trivially holds. Let f be a candidate con-
denser and take cases on whether there exists a fixing of
the first block in f such that the partial function obtained
by fixing f to that values will have small support. If such
a fixing exists, then we reduce the problem to condensing
from uniform (1, ¢ — 1)-oNOSF sources. If not, then we
directly construct a uniform (1, ¢)-oNOSF source where
f fails to condense from by reducing to a graph problem.
The graph problem we reduce to in the “win” case is
the following: Let G = (U, V) be a bipartite graph with
U = [N],V = [M] and such that deg(u) > c¢oM? for all
u € U where § > 0 is some constant. Then, show there
exists D C V such that [Nbr(D)| > ¢1N and |D| <
¢o - M=% where cp, C1,Co are some universal constants.

2)

3)

We expand on these three steps and prove them.

Step 1:  In this step, we transform any uniform (1,¢')-
oNOSF source X to a uniform (g, ¢)-oNOSF source Y where
¢ = [{/g]|.Divide £ by ¢’ so that { = al'+r where 0 < r < {'.
We compute that a > g. We split the blocks of X as evenly as
possible: split up the first » blocks of X into a + 1 blocks and
the remaining ¢’ — r blocks into a blocks. These al’ +r =/
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blocks that we obtained by splitting X will form Y. If a block
in X is uniform, then all the split up blocks will also be
uniform. Similarly, if a block in X is bad and only depended
on blocks appearing before it, so will all the blocks formed
after splitting it. Also, as at least one block in X is good, Y
must have at least a > g good blocks in it. Hence, Y is indeed
a uniform (g, £)-oNOSF source.

Step 2:  In this step, we execute our induct or win argument.
Fix a candidate condenser function f : ({0,1}")¢ — {0,1}™.
We proceed by contradiction and assume f can condense from
uniform (1,¢)-oNOSF sources beyond rate 1/¢. We either
directly construct a uniform (1, ¢)-oNOSF source X where
f will fail to condense from or we show how using f, we
can obtain a condenser for uniform (1, ¢ — 1)-oNOSF sources,
which is a contradiction.

Case 1. There exists a fixing of the first block x; such
that ‘f(xla Yi, .- 7y€71)‘(y17 s ,W—l) € {Oa 1}n,(€71)| <
2m(1=1/6)  Then, by appropriately relabeling outputs, we
can define h ({0,131 = {0,1}m0-1/0 g5
h(y1, - ye—1) = f(z1,y1,...,Yye—1). We now show that h
will be a condenser for uniform (1,¢ — 1)-oNOSF sources.
Let Y be arbitrary uniform (1,¢ — 1)-oNOSF source. We
transform Y into a uniform (1, £)-oNOSF sourceY’ by letting
the first block of Y’ be fixed to z; and the remaining
¢ — 1 blocks behave as Y. By assumption, f can condense
Y’ so that output entropy is more than % - m. However

[
this implies h can condense Y to have entropy more than

+-m= 75 -m(1—1/¢). As h outputs m(1 — 1/¢) bits, this
is a contradiction.

Case 2. For every fixing of the first block
x1 If(z1, 91, pem1)] > 2m0-YO To show f
fails to condense from X, it suffices to show that

with constant probability, f(X) will lie in a small set
D C {0,1}™ where |[D| = O (2m1/9) (see claim V.3

for a formal version of this). Consider the bipartite
graph H = (U = ({0,1}™),V = {0,1}™) where
edge (u,v) is included if there exist yi,...,ys—1 such

that f(z1,y1,...,Ye-1) v. By assumption, for all
u e U deg(u) > 2m0=19_ Our graph theoretic
dominating set lemma from Item 3. guarantees that there
exists D C {0,1}™ such that |[D| < ¢u2™1/9 and
[Nbr(D)| > ¢12™ where cg, 1 are universal constants. Now,
let X be uniform (1, £)-oNOSF source where the first block
is uniform and the remaining ¢ — 1 blocks are adversarial
where the value of those £ — 1 blocks (depending on the value
of the first block) is set so that f outputs an element from D
if possible. By the construction of the bipartite graph and the
construction of X, with probability ¢;, f(X) will output an
element in D. Hence, as f outputs an element from a small
set, D, with high probability, it fails to condense from X.

Step 3:  We prove the dominating set lemma for bipartite
graph in this step to conclude the proof of the “win” argument.
We construct D by repeatedly adding the vertex from V' that
has the highest degree, removing vertices incident to that
vertex, and stopping until at least ¢; N many vertices from



U are incident to some vertex from D. Whenever we attempt
to add a vertex to D, the graph will have at least (1 — ¢1) N
many vertices and so at least (1 — ¢;)N - ¢p - M™% many
edges. This implies there will always be a vertex v € V' such
that deg(v) > co(1 — ¢1) - 5. This is true at each stage and
we repeat this until at least ¢c; N many vertices are covered.
Hence, |D| < ¢o - M 1=0 for some universal constant co as
desired.

2) Impossibility of condensing from uniform NOSF sources:
We prove much stronger condensing impossibility result for
uniform NOSF sources: we prove that no non-trivial condens-
ing is possible. We are able to do so since the bad blocks have
no restrictions and can arbitrarily depend on any good block.
Formally, we show the following:

Theorem I1.2 (corollary V.10 restated). For all fixed g,¢ € N,
there exist fixed ,6 > 0 so that the following holds: for all
a,m,n € N and all functions f : ({0,1}")* — {0,1}™,
there exists a uniform (ag,al)-NOSF source X such that
HE (f(X)) <9 -m+4.

We prove theorem II.2 using the following strategy:
1) We reduce the general case to the special case of a = 1
and g > (/2.
2) Our high level strategy for this step is same as in item 2
from section II-Al. We perform an “induct or win”
argument to show it is impossible to condense from
uniform (g, ¢)-NOSF sources where g > ¢/2 beyond
rate g/¢. As earlier, we show either condensing from
uniform (g, ¢)-NOSF sources is impossible (win) or we
reduce to the case of condensing from uniform (g, ¢ — 1)-
NOSF sources (induct). So, we recursively apply this
argument and either win at some point or reach a base
case of g = ¢ where the claim trivially holds. Let f be
a candidate condenser and take cases on whether there
exists a block position p such that for constant fraction
of fixings of all other blocks, the partial function obtained
by fixing f to those values will have large support. If this
holds, then we use the almost-dominating set argument
from item 3 (from section II-A1) to reduce to the case
of condensing from uniform (g, ¢ — 1)-NOSF sources. If
such a position p with these fixings do not exist, then we
directly construct a uniform (g, £)-oNOSF source where
f fails to condense from by reducing to a hypergraph
problem.
The hypergraph problem we reduce to in the “win” case
is the following: Let H = (V1,...,V;, E) be a t-uniform
t-partite hypergraph with V7 = --- =V, = [N],|E| =
coIN*t. Let the edges of H be colored in M colors in a
‘locally light” way: such that for every position p € [T,
and every (¢t — 1) tuples: (v1,...,Vp—1,Vpy1,...,0¢) €
[N]=L, the number of distinct colored edges as en-
tries in position p vary is < ¢, M?. Formally,
IX(U1, - Up 1, Yy Upi1s -5 0e) Y € [N]| < er MO,
Then, there exists D C [M] such that |D| < ¢y - M*
and at least c3N* edges in H are colored in one of the
colors from D. Here, cg, c1, c2, c3 are some constants.

3)
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We expand on these three steps and prove them.

Step 1: We show how to reduce to the case of a = 1.
We do this using the same argument as in item 1 from
section II-A1: we transform uniform (g, £)-NOSF sources into
uniform (ag, a?)-NOSF sources by splitting up blocks; this
way, a condenser for uniform (ag, a?)-NOSF sources will also
condense from uniform (g, £)-NOSF sources.

We next carefully examine the argument made in item 2
and see that the induct or win argument made there can be
generalized to show the following: either condensing from
uniform (g, £)-NOSF source is impossible or we reduce to
the case of condensing from uniform (g, ¢ — ¢g)-NOSF source.
Applying this recursively to arbitrary g, ¢, we either win and
show impossibility at some step or we end up reducing to
showing impossibility for condensing from uniform (g, ¢)-
NOSF sources where g > £/2.

Combining these two steps, we reduce the general case to
the special case of a =1 and g > ¢/2.

Step 2:  In this step, we execute our induct or win argument.
We fix a candidate condenser function f : ({0,1}")* —
{0,1}™. Proceed by contradiction and assume f can condense
from uniform (g, ¢)-NOSF sources beyond rate g/¢. We either
directly construct a uniform (g, £)-NOSF source X where f
will fail to condense from or we show how using f, we
can obtain a condenser for uniform (g, ¢ — 1)-NOSF sources,
which is a contradiction. For p € [€], let S, be the set of £ —1
tuples (x1,...,Zp—1,Tpt1,--.,T¢) such that

S (1, .. swe) 1y € {0,1}"}] = 2™/

Case 1. There exists p € [/] such that |S,| > ¢;2"(F~1)
where ¢; > 0 is a small constant. Without loss of generality
let p = 1. Construct a bipartite graph G = (U,V) where
U=51,V ={0,1}" and edge (u,v) if there exists a fixing
y of block p such that f(u,y) = v. Then, we see that G
satisfies the requirement for item 3 and hence, there exists
D C {0,1}™ such that |D| < 2™(1=1/8 which neighbors at
least 032"“*1) vertices from U. For the sake of presentation,
assume c¢; = cg = 1. In the full proof, c;,c3 > 0 are small
constants and we need to induct using a stronger inductive
hypothesis. Now, define A : {0, 1}"(~1) — {0,1}m(1=1/9) a5
h(yi,---,ye—1) = f(x1,y1,.-.,Ye—1) where x1 is such that
f@1,y1,...,ye—1) € D (as ¢; = ¢3 = 1, such z; always
exists). The output domain of h can be made {0,1}"(1~1/0
instead of D by appropriately relabeling the output. We then
show, similar to proof of case 1 of item 2, h will be a
condenser for uniform (g,¢ — 1)-NOSF sources and get a
contradiction.

Case 2. For all p € [0, |S,| < ¢2"¢~D. We say =
(x1,...,2¢) € {0,1}™ is bad if for some p € [¢], removing
position p from = makes it an element of S),. Let B be set of
such bad strings. Then, |B| < ¢1¢-2"¢. Let H = (V1,..., ;)
where V; = {0,1}" be {-uniform ¢-partite hypergraph where
edge v = (v1,...,vp) is in H if v & B. Then, H has at least
(1 — ¢1£)2™ edges. By an averaging argument, there exists
z = (v1,...,70-4) € {0,1}"=9) such that the number of

5 Lp—15Y, Tpt1y .- -



edges in H containing that z is at least (1— ¢ £)2™9. Consider
uniform (g, £)-oNOSF source Y where the first £ — g blocks
always output x and the remaining g blocks are uniform. To
show f fails to condense from X, it suffices to show: constant
probability, f(X) will lie in a small set D C {0,1}" where

|D| = O (2m9/9)) (see claim IV.3 for a formal version of
this).
Let H = (Uy,...,U,) where U; = {0,1}" be g-uniform g-

partite hypergraph where edge u = (u1,...,uq) is in H' if
(1,...,o—g,u1,...,uq) is in H. Then, H' has at least (1 —
c1£)2™9 edges. Now, color H' into 2™ colors by coloring edge
(u1,...,ug) as f(x1,...,T¢—g,U1,...,uq). By definition of
S, and construction of H’, we see that for every £—1 tuples u
in {0,1}"(*~1)_ the number of distinct colors in H’ is at most
co-2™/¢. We apply the hypergraph lemma to H’ and infer that
there exists D C {0,1}™ such that |D| < ¢y - 2™(9/9) at least
cg - 2™9 edges in in H' are colored in one of the colors from
D. Hence, we found a small set D such that with constant
probability, f(X) lies in D as desired.

Step 3:  We finally solve the hypergraph problem to con-
clude the proof of the “win” argument. We repeatedly pick the
color which covers the most edges to D until the number of
edges covered is at least c3- N, At the last step of the process,
H must have at least (co — c3) - N* edges. We show that at
that stage, the chosen a color will cover at least ¢y Nt /M 2
edges. This implies at each step before this, the chosen color
must cover at least that many edges and hence, |D| < éM &6
as desired.

So, our goal is to show that in a ¢-uniform ¢-partite hy-
pergraph H = (Vi,...,V;) having at least c5 N edges and
colored in M colors in a ‘locally light” manner - on fixing
any t — 1 tuple, the number of colors adjacent to it as last
entry varies is at most ¢; - M?, there exists a color v covering
at least Q(Nt/M*9) edges. We induct on ¢ and show this. We
sketch the idea below for bipartite graphs.

For every va € Vs, let C,, C [M] be the set of colors that
have at most cg - (N/M?) where cg is a very small constant.
We remove edge (v1,v2) from H if (v1,vs) € C,,. For each
V9, We remove at most cicg - N edges incident to it. Overall,
we end up removing at most cicg - N2 edges from H and it
still has (c5 — c1c6) N2 edges. Doing this ensures that every
color incident to every vertex vy in V5 has at least cg- (N/M?)
edges incident to it. We finally find such a popular color by
doing the following: By averaging argument, let v € V; and
~v* € [M] be such that the number of edges incident to v
with color v is at least =% . (N/M?). Let Nbr, (v]) =
{va € Vo : (vi,vq) is colored with color v}. Moreover, for
every vp € Nbr,(v]), the number of edges incident to them
with color v is at least c - N/M?. We are done as at least
cg- B N2 /M = Q(N?/M?) edges in H colored with
color 7.

3) Impossibility of condensing from low min-entropy aCG
sources: We provide two impossibility result for (¢, ¢)-aCG
source, we only sketch proof for one of them as they both
share many ideas. Our impossibility result theorem V.21 is

based on reduction from general (n,k)-sources and the fact
that it is impossible to condense from such sources.

Here, we sketch a proof of the second impossibility result
where we show that it is impossible to condense from non-
adversarial CG sources when each block’s min-entropy, con-
ditioned on previous blocks, is roughly bounded by n/(¢+1).

Theorem II.3 (theorem V.22 restated). For all 0 < ¢ < 1
there exists a 6 > 0 such that the following holds: for every
function f : ({0,1}")¢ — {0,1}™, there exists a (£,()-aCG
source X where the good blocks have min-entropy at least
"7“;_,_% conditioned on all fixings of previous blocks and
HL(f(X)) < 5 -m+0.

The bulk of the proof is based on a transformation from a
uniform (1, 2)-oNOSF source X = X, X5 to a source Y =
Yi,..., Y, that is £/2-close to an (¢,¢)-aCG source. With
this transformation, applying theorem II.1 with ¢ = 2 and £/2
to X then allows us to infer that we also cannot condense
from Y with error €. Thus, we focus on how to construct Y
next.

Briefly, to construct Y, we will take substrings of X; and
X3 to place into each block of Y. From X5, we will take

constant sized chunks of size {5 = %&24/7) where v = 5

to place into each Y;, and from X; we will take blocks (2‘)1;“
increasing size i-t; — 1 to place into each Y; where t; = to+
log(1/7). Our proof then finishes with an inductive argument
to claim that Y is indeed ¢/2-close to an (¢, ¢)-aCG source

source, as required.

B. Possibility results

In this subsection, we will present our existential construc-
tion of condensers for oNOSF sources and uniform aCG
sources. We begin by describing the construction of our
condenser for uniform (g,¢)-oNOSF sources and uniform
(g,¢)-aCG source in the setting of g > ¢/2 in section II-B1.
Then we generalize this result to any setting of g and ¢ in
section II-B2. Finally, we deal with logarithmic min-entropy
oNOSF sources in section II-B3.

1) Condensing from uniform (g,¢)-oNOSF sources for g >
¢/2: Before we dive into the actual proof, it is instructive to
see why a random function fails to be a condenser for uniform
(g, £)-oNOSF sources. In particular, let us consider uniform
(2,3)-oNOSF sources. For a random function f : {0,1}3" —
{0, 1}™, with high probability over z1, 25 € {0,1}", we have
|f(z1,22,-)| = 2™. Hence, if the adversary is in position 3,
then it can depend on z; and x5 to ensure the output of f
always lies in a small set. To overcome this, one can consider
restricting the number of choices adversary has when it is in
position 3. This intuition indeed works out and we give further
details.

Theorem I1.4 (theorem VI.13 restated). For all g, ¢ such that
g > /2 and ¢, there exists a condenser Cond : ({0,1}")¢ —
{0,1}™ such that for any uniform (g,£)-oNOSF source X,
HZ (Cond(X)) > m — (579 — 3) log(gn/e) where m =n —
2(5¢79 — 1) log(gn).
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Our construction relies on a (k1, ka, £)-two-source extractor
Ext : {0,1}" x {0,1}" — {0,1}™ with a property that
we term output-lightness, the definition and importance of
which we will see soon, and a clever choice of a partition
and prefixes of our input source X. We do not currently know
of a construction of a two-source extractor with our desired
min-entropy and error parameters that is also output-light, so
our construction is currently based on an existential output-
light two-source extractor that we show in lemma VI.11. In
particular, if we write X = X;y,...,X, and we take Y; to
be the prefix of X; containing the first 5% -4log(gn/¢) bits,
then we define our two inputs to Ext as Z; = Xy,...,X,
and Z; = Ygi1,...,Y, Thus, our condenser becomes
Cond(X) = EXt(Zl, ZQ)

There are only two cases we must consider: when the
adversary places at least one good block in X, 1,...,X, and
when all of X, 1,...,X, are adversarial (so Xy,...,X, is
uniform). In the latter case, we have that Z; is just the uniform
distribution on gn bits and Z, is fully controlled by the
adversary. For Ext(Z1, Z2) to condense then, we would require
that no element h € {0,1}™ have too much weight placed on
it by the adversary. Recalling that Z is uniform in this case,
this statement is equivalent to asking that the sum over all
settings 27 of Z; of the number of 29 such that Ext(z1,22) = h
is not larger than R = 2™ tn2—m+0W) Thjs is precisely our
definition of R-output-lightness (see definition VI.10 for a
formal definition). With this property, we use claim IV.5 to
get that HS_(Cond(X)) > n; = log(R/¢).

In the case that there is at least one good block among
Xg+1,--+,Xy, then we notice that there must be one good
block among X, ..., X, because g > £/2, so Hy(Z1) > n.
Without loss of generality, we also assume that we only have
one good block X; for j € {g+1,...,£}. Consequently, we
can define A = Y uq,...,Y;_1and B =Y, 1,... Y, s0
that Z; = A o Y; o B where the adversary controls both A
and B but not Y. Since X is a oNOSF source, Y; remains
uniform regardless of any fixing of A, so Hy (Y, | A) =
Hoo(Y;) = 579 - 4log(gn/e). In addition, since we chose
A to be logarithmically small in n, the min-entropy chain
rule (lemma IV.4) gives us that, with high probability over
the fixings of A, the min-entropy of Z; is not decreased by
too much more than the length of A which is at most 7.
In particular, for any of these good fixings a € Supp(A), we
chose k; to be such that Hy(Z; | A = a) > k. Then if
we temporarily make the assumption that B is uniform, we
have that Hyo(Zy | A = a) = Hx(a,Y;,B | A = a)
Zf:j 577 - 4log(gn/e) = (571 — 1) log(gn/¢). Since we
can choose ko to be smaller than Ho(Zs | A = a), we get that
Ext(Z) is e-close to U,,. Of course, B may be adversarially
chosen. To take this into account, we use lemma VI.16, which
says that if only a few bits of a source are adversarially
controlled then we can still condense, to reduce our output
entropy by the length of B and multiplicatively increase our
error by 2'en8th(B) Finally, because we constructed B to have
Zf:jﬂ 577 . 4log(gn/c) = (57" — 1)log(gn/e) bits, it is
still short enough in comparison Y; to allow us to condense

1459

with our desired error.

2) Condensing from uniform (g, {)-oNOSF sources for any
g and £: While we can condense from uniform (g, ¢)-oNOSF
sources for g > £/2 as we saw above (theorem I1.4), we know
from theorem IL.1 that when g < ¢/2 we cannot condense
from uniform (g, ¢)-oNOSF sources above rate r77-r. Here,
we sketch the argument for a matching bound showing that
this is indeed tight by generalizing theorem II.4.

Theorem IL.5 (theorem V1.3 restated). For any g,{,c such
that |¢/g| = r and r < [(/g, there exists a condenser
Cond : ({0,1}™)¢ — {0,1}™ such that for any uniform (g, £)-
oNOSF source X we have H (Cond(X)) > -m—2(5¢79 —
1)log(gn/e) where m = r(n — 2(5°=9 — 1) log(gn)).

Satisfyingly, we need no new tools to construct this con-
denser. Instead, we use r instances of the condenser from
theorem II.4. We will prove this inductively on r, so let us
consider the base case of » = 1. Notice that » = 1 implies
that ¢ > ¢/2, so we are exactly in a position to use the
condenser Cond; : ({0,1})¢ — {0,1}™ from theorem IL.4
without modification. Thus, we define our output block as
0= 01 = Condl(X).

To generalize to larger values of r, we perform induction
on r and take the inductive hypothesis of » — 1 to be true.
We consider two cases. Beginning with the case that all of
Xy,...,X, are bad, we notice that X, 1, ..., X, is a uniform
(g9, ¢ — ¢)-oNOSF source with V*TQJ =r—1and 5779 #r—1.
Our inductive hypothesis then gives us » — 1 output blocks
O,,...,0, on ({0,1}™ )"~ where at least one is condensed.
On the other hand, consider when at least one of X;,...,X,
is good and take Cond; to be an instance of the condenser from
theorem I1.4 for X, and define O; to be Cond; (X) truncated
to its first m, bits. Observe that if Cond;(X) succeeds and
condenses X to some min-entropy k source, then H,(01) >
k — (m1 — m,), so we only lose as many bits of entropy
in O; as we truncate from Cond;(X), which we show in
lemma VI.17, and m; — m,. is still constant in ¢ and ¢. Then
in this case we again get that O; must be properly condensed
by 2Ext; being output-light when all of X, ..., X, are good
or by 2Ext; being a two-source extractor when at least one

of Xi,...,X, is good. Thus, if we let our output be O =
0O4,...,0,, then at least one block is always condensed in
any case.

3) Condensing from logarithmic min-entropy (g, ¥)-oNOSF
sources: We can extend theorem II.4 and theorem IL.5 to
logarithmic min-entropy oNOSF source by converting a log-
arithmic min-entropy oNOSF source into a uniform oNOSF
source via the following theorem.

Theorem IL.6 (theorem V1.2 restated). For any g,/, ¢, there
exists a function f ({0,1}M¢ — ({0,1}™)1 with
m 5 such that for any (g,?,k)-oNOSF source X with
k > 2log(n/e) there exists a uniform (g — 1, — 1)-oNOSF
source Y such that |f(X) - Y| <e.

Thus, if we take a (g, ¢, n, k)-oNOSF source X such that
g>{/2+1s0g—1> (£—1)/2, we can simply apply f from



theorem I1.6 to X and then pass the result to our condenser
from theorem IL.5 to condense from logarithmic min-entropy
oNOSF source.

Theorem IL.7 (theorem VI.1 restated). For all g,¢,r € N

and ¢ such that {% %,
condenser Cond : ({0,1}")¢ — {0,1}™ such that for any

(g9,¢,n,k)-oNOSF source X with k > 2log(n/e), we have
that HS (X) > % -m —2(5'79 — 1) log ((9—1)k

=rand r < there exists a

= 8le
r (& - 2059 — Dtog (Lo5E)).

All that is left then is to show how we convert a low
min-entropy oNOSF source to a uniform oNOSF source in
theorem II.6. Our method here is based on the somewhere
extractor for low-entropy oNOSF source from [1] with two
important modifications. First, we use a two-source extractor
instead of a seeded extractor which enables us to handle
logarithmic min-entropy in the good blocks of a oONOSF source
instead of just linear. Second, we require that the output of our
function is not just somewhere random, but instead a uniform
oNOSF source. To achieve this, we decrease the output length
of our two-source extractor (which decreases the block length
of our resulting uniform oNOSF source) to show that the
good blocks in our resulting source are independent from all
adversarial blocks before them.

The construction of f from theorem II.6 is quite straight-
forward. For every ¢ € {2,..., ¢}, we use the same existential
two-source extractor from lemma VI.11 that we used in
the proof of theorem IL4 to define 2Ext; : ({0,1}")"~! x
{0,1}" — {0,1}™ where m = £ and k > 2log(n/c)
is the min-entropy requirement of each good block in our
(g9,¢,n,k)-oNOSF source X = Xj,...,X,. We then define
our { — 1 output blocks as O; = 2Ext; ((Xy,...,X;-1),X;),
so f(X) = Og, ..., Oy. Because there are g good blocks in X
at indices G, ..., Gy, we are guaranteed that Og,, ..., Og,
are the outputs of a two-source extractor with a good block
in each source. The crux of our argument then is to show
that Og,,...,Og, are close to uniform and independent of
the adversarial blocks before them. This part of our argument
follows that of [1] closely, so we do not expand on it here
except to note that shortening the length of our output blocks
from m = O(k), not depending on ¢, in [1] to m = k/8¢( is
what allows us to show that good output blocks are uniform
and independent of output blocks before them.

) with m =

III. OPEN QUESTIONS

There are several natural questions that are raised by our

work. A few immediate open questions are:

1) Explicitly construct output-light two-source extractor.
This would immediately imply explicit condensers
for oNOSF sources and uniform aCG sources by
lemma VI.12.

2) In our condensing possibility results for uniform oNOSF
sources and uniform aCG sources in theorem II.4 and
theorem II.5, and our possibility results for logarithmic
min-entropy oNOSF sources in theorem II.7, we require
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¢ = o(log(n)), that our block size to be much smaller
than the total number of blocks. It would be interesting
to extend these results to smaller block sizes, such as the
regime achieved for almost CG sources in [2].

3) Is it possible to improve our condenser for uniform aCG
sources in theorem II.4 to have constant entropy gap?

4) Can our condensing impossibility result for CG sources
in theorem V.22 be strengthened to close the gap with
the results in [2]?

IV. PRELIMINARIES

We will generally denote distributions or sources in a bold
font, such as X, and reserve U,, to be the uniform distribution
on m bits. When these sources are actually a sequence of
sources, we use subscripts to denote blocks of that source as
X = Xjy,...,X,. In addition, since we often consider binary
strings of length n and m, we let N = 2" and M = 2™.
Often it is convenient to consider strings as labels, in which
case we use the notation [N] = {1,2,...,N}.

A. Basic probability lemmas

Here, we first state a few basic probability facts that will
be useful to us throughout. Our first one is a direct reverse
Markov style inequality.

Claim IV.1 (Reverse Markov). Let X be a random variable
taking values in [0,1]. Then, for 0 < d < E[X], it holds that
EX]—d

1-d

We will use the following version of the Chernoff bound:
Claim IV.2 (Chernoff Bound). Let X;,...,X,, be indepen-
dent random variables taking values in {0,1}. Let X =
> Xi. Let = E[X]. Then, for all 6 > 0, the following
holds:

Pr[X > d] >

Pr[X > (14 6)u] < exp(—02p/(2+6))

Several of our impossibility results rely on a simple TV
distance bound.

Claim IV.3 (TV distance lower bound). Let X ~ {0,1}"
and S C {0,1}"™ be such that Pry.x[x € S| > p. Then, for
0 <& <p, it holds that HZ,(X) < log ( 151 )

p—e
We will utilize the very useful min entropy chain rule in
our constructions.

Lemma IV4 (Min-entropy chain rule). For any random

variables X ~ X and Y ~Y and € > 0,

P Hoo(X Y =y) > Hoo(X) —log [Supp(Y)| — log(1/e)]
>1—c.

Lastly, we will later utilize a consequence of upper bounds
on smooth min-entropy.

Claim IV.5 (Lemma 8.8 from [12]). Let X ~ {0, 1}" be such
that HE (X) < k. Then, there exists D C Supp(X) such that
|D| < 2% and Pr[X € D] > .



B. Extractors

Let A ~. B mean that A and B are ¢ close in statistical
distance. Recall the definition of a seeded extractor.

Definition IV.6. A (k,¢)-seeded extractor Ext : {0,1}" x
{0,1}¢ — {0,1}™ satisfies the following: for every (n,k)-
source X, and every Y = Uy,

Ext(X,Y) =, Uy,.
d is called the seed length of Ext. Ext is called strong if
Ext(X,Y),Y ~. U, Y.

A useful fact about strong seeded extractors that they work
even when the seed is not fully uniform. (See for example
Lemma 6.4 from [35] for a proof.)

Lemma IV.7. Let Ext : {0,1}" x {0,1}¢ — {0,1}™ be a
strong (k,e)-seeded extractor. Let X be a (n,k)-source and
let Y be a (d,d — \)-source. Then,

|Ext(X,Y),Y — U,,, Y| < 2.
We will use the following construction of seeded extractors:

Theorem IV.8 (Theorem 1.5 in [14]). For all constant oo > 0
and all n, ke, there exists an explicit (k,)-seeded extractor
sExt : {0,1}" x {0,1}¢ — {0,1}™ with d = O(log(n/¢))
and m > (1 — a)k.

In addition, we will use a generalization of seeded ex-
tractors, two-source extractors, that only require the second
source to be independent from the first and not necessarily be
uniform.

Definition IV.9. A function 2Ext : {0,1}" x {0,1}"* —
{0,1}™ is a (ki1,k2,e)-two-source extractor if for every
(n1, k1)-source Xy and (ng, ka)-source Xo where X, and
Xg are independent of each other, we have

2Ext(X 1, Xs) & Uy,
It is said to be strong in the first argument if
2EXTZ(}(17 }(2)7 Xl e Um, Xl.

Similarly, one can define 2Ext that is strong in the second
argument. If 2Ext is strong in both arguments, we simply say
that it is strong. We use the fact that inner product function is
a good two source extractor:

Theorem IV.10. [6], [36], [37] Let X, Y ~ {0,1}" with
Hoo(X) = k1, Hoo(Y) = ko. Let m = for some r € N. Let
IP(z,y) : {0,1}2" — {0,1}™ be the function that interprets
x,y as elements of F5,. and outputs the m bit string corre-
sponding to x-y. Then, |IP(X,Y) — U,,| < 2(ntm—ki—k2)/2,

For a proof of the above theorem, see Theorem 2.5.3 in
[38].
C. Randomness sources relevant to our work

We now formally introduce the randomness sources that
are relevant to our work. We begin with NOSF sources, which
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have no restrictions on the adversary producing the bad blocks.

Definition IV.11 (NOSF source). A (g,¢,n, k)-NOSF source
(NOSF) X with symbols in ¥ = {0,1}" and length { is
over S, written as X = Xy, ...,Xy, and has the following
property: There exists a set of good blocks G C [{] such
that |G| > g and the random variables in {X;};cg are each
independently sampled (n, k)-sources. We say that a block X;
is good if i € G and bad otherwise.

Note that we have no restrictions on how bad blocks may
depend on the good blocks. If & = n, we say that X is a
uniform (g,¢,n)-NOSF source. When n is implicit or not
relevant, we simply call X a uniform (g,¢)-NOSF source.
Next, we introduce oNOSF sources by restricting the NOSF
adversary.

Definition IV.12 (Online NOSF source). A (g, ¢, n, k)-oNOSF
source X with symbols in ¥ = {0,1}" and length ( is
over X¢, written as X = Xq1,...,Xy, and has the following
property: There exists a set of good blocks G C [{] such
that |G| > g and the random variables in {X;},cg are
each independently sampled (n,k)-sources such that X; is
independent of X1, ...,X;_1. We say that a block X; is good
if i € G and bad otherwise.

Remark IV.13. Online NOSF sources are also NOSF sources
because the adversary in oNOSF sources is strictly weaker
than that of NOSF sources.

These oNOSF sources are special cases of the SHELA
sources from [1]. We now introduce SHELA sources in their
full generality.

Definition IV.14 (SHELA source [1]). A distribution X over
({0,13") is a (g,¢,n, k)-Somewhere Honest Entropic Look
Ahead (SHELA) source if there exists a (possibly randomized)
adversary A such that X is produced by sampling g out of
¢ indices to place independently sampled (n,k)-sources and
then placing adversarial blocks in the other { — g indices that
may depend arbitrarily on any block that comes before it.

Concretely, there must exist random variables 1 < I; <
L, < < I, < ( with arbitrary joint distribution,
denoting the indices of the independent (n,k)-sources, and
g independent (n,k)-sources Z1,Zs, ..., 2, such that X is
generated in the following manner:

1) Sample (i1,12,...,1g) ~ (I1,Ia,...

2) For all j € [g] set B, = Zj.

3) Forall i € [0\ {i1,i2,...,14], the adversary sets B; =

AB1, ..., Bi_1,81,. .., 0g}

4) Finally, let X = (Byq,...,By).
We will generally call the blocks Z1, . . . , "4, the “good” blocks
and the remaining blocks “bad” blocks.

1 Lg).

Similar to NOSF sources, when k = n we will simply say
X is a (g, £, n)-uniform SHELA source, and when n is implicit
we will simplify further to a uniform (g, ¢)-SHELA source.

While working over oNOSF sources is easier than working
over general SHELA sources, all of our results still apply



to general SHELA sources since SHELA sources are convex
combinations of oNOSF sources.

Proposition IV.15. Every (g,¢,n,k)-SHELA source X is a
convex combination of (g,£€,n, k)-oNOSF sources.

Lastly, we define adversarial Chor-Goldreich (CG) sources,
which have an adversary like that of oNOSF sources that
can depend arbitrarily on past blocks, but the adversary of
adversarial CG sources can have some effect on future blocks,
unlike that of oNOSF sources.

Definition IV.16 (Adversarial CG source). A (g, ¢, n, k)-aCG
source X with symbols in ¥ = {0,1}" and length { is over %Y,
written as X = Xy, ..., Xy, and has the following property:
There exists a set of good blocks G C [{] such that |G| > g
and the random variables in {X;};cg have the property that
for all prefixes (a1, ...,a;_1) € ({0,1})i 1,

HOO(X,L ‘ X17~~-7Xi—1 :al,...,ai_l) 2 k.

As before, if & = n then we simply call X a uniform
(g,¢,n)-aCG source, and we omit n when it is implicit.

We have introduced all of these definitions since our results
resolve open questions for each. The relationship between all
these definitions is necessary to clearly see how our lower and
upper bounds apply. In line with this, we show an equivalence
between uniform oNOSF sources and uniform aCG sources.

Proposition IV.17. A source X is a uniform oNOSF source
if and only if it is a uniform aCG source.

Therefore, when we prove a condensing impossibility result
by constructing a oNOSF source, that same result applies to
NOSF sources and aCG sources sources as well. On the other
hand, our condensing possibility results for uniform oNOSF
sources also apply to uniform aCG sources, but our results for
non-uniform oNOSF sources may not apply to non-uniform
aCG sources.

V. IMPOSSIBILITY RESULTS

In this section, we prove condensing impossibility results for
uniform NOSF sources and uniform oNOSF sources. First, in
section V-A we demonstrate condensing impossibility results
for all three classes of sources when g < ¢/2. Then, in
section V-B we show a condensing impossibility result for
uniform (g, £)-NOSF sources for arbitrary settings of ¢ and
¢. Finally, we use a result from section V-A to show the
impossibility of condensing from low min-entropy CG sources
in section V-C.

A. Impossibility of condensing when g < £/2

We will prove that for g < £/2, it is impossible to condense
from uniform (g, £)-oNOSF sources to rate more than ﬁ.
As we noted in remark IV.13 and proposition IV.17, these
results apply to uniform NOSF sources and uniform aCG
sources as well.

Theorem V.1. For all € > 0, there exists a & > 0 such that
for all g, € N with g < £/2 and for all f : ({0,1}")¢ —
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{0,1}™, there exists a uniform (g, £)-oNOSF source X so that
HE(f(X)) < grgy -m + 6.

[¢/g]
This implies that for the special case when g divides ¢, any
non-trivial condensing is impossible.

Corollary V.2. For all € > 0,9,¢ € N with g | £, there
exists a 6 > 0 such that: for all functions f : ({0,1}")" —
{0,1}™, there exists a uniform (g,¢)-oNOSF source X such
that HE (f(X)) < % -m 4 4.

The proof of theorem V.1 involves two ingredients. First, we
show that for the special case of g = 1, condensing above rate
% is impossible for uniform (1,¢)-oNOSF sources. Second,
we extend these results to uniform (g, £)-oNOSF sources with
g < £/2 by showing that if it is impossible to condense
from uniform (1, ¢")-oNOSF sources, then it is impossible to
condense above rate 4 from uniform (g,/)-oNOSF sources
when % < 71,.

Formally, these two lemmas are as follows:

Lemma V.3. For all € > 0, there exists a 6 > 0 such that for
all functions f : ({0,1}™)¢ — {0,1}™, there exists a uniform
(1,€)-oNOSF source X so that HS, (f (X)) < % -m + 0.

Lemma V4. Let g, ¢, ', n',n,m € N be such that ' < (,9 <
7. [6/0Tn <n'. Let 0 < e < 1,6 > 0 be such that: for any
function f : ({0,1}")¢ — {0,1}™, there exists a uniform
(1,0')-oNOSF source Y so that HS,(f(Y)) < % -m + 6.
Then, for any function h : ({0,1}")¢ = {0,1}™, there exists
a uniform (g, £)-oNOSF source X such that HE (h(X)) <
1

Our main theorem follows by combining these two lemmas.
We defer the proof of lemma V.4 until section V-D. In the next
subsubsection, we will focus on proving lemma V.3.

1) Proving main theorem for the case of g = 1: We prove
this lemma by showing that if one cannot condense from
uniform (g, £)-oNOSF sources, then one cannot condense from
uniform (g, ¢ + ¢)-oNOSF sources.

Lemma V.5. Let ¢, c1,6,6 € R and g,n,? € N be such that
g<l,0<cy<l,e<cy <1 Assume that for all A € N and
function f : ({0,1}")¢ — [A], there exists a uniform (g, £)-
oNOSF source (uniform (g,¢)-NOSF source, respectively) X
such that H5 (f(X)) < 4 -log(A) + 0. Then, for all M € N
and every function h : ({0,1}")'*9 — [M)], there exists
a uniform (g,¢+ g)-oNOSF source (uniform (g,()-NOSF
source, respectively) Y such that HS,(h(Y)) < 7 -m + ¢’

max (log ((1%1)2;(0175)) L0+ log(eco)g) and

where ¢’
m = log(M).

We remark that lemma V.5 paves the way for an inductive
argument and we instantiate it to prove lemma V.3.

2) Recursive impossibility lemma: To prove lemma V.5, we
find a dominating set in dense bipartite graphs with left degree
lower bound. We will use it to construct a uniform oNOSF
source that will serve as a counterexample for a candidate
condenser.



Lemma V.6 (Small Dominating Set in Bipartite Graph). Let
co>00<c; <1,6 >0€R,N,M €N be arbitrary. Let
G = (U,V, E) be a bipartite graph with |U| = N, |V| =
such that for all u € U : deg(u) > co- M®. Then, there extsts
D C V with |D| £ =% M9 such that |Nbr(D)| >
C1N.

Using this dominating set lemma, we are able to prove
lemma V.5.
B. Impossibility of condensing from uniform (g,!)-NOSF
sources

Our main theorem in this subsection is that it is impossible
to condense from uniform (g, £)-NOSF sources where g >
% + 1. Using it and previous results, we obtain impossibility
results for all g, /.

Theorem V.7. There exists a universal constant ¢ > 0 such
that for all g,¢,m,n € N with £/2 < g < {, there exist
e= (i to O=c 12 log(ﬁ) so that the following holds: for
any function f ({0,1})¢ — {0,1}™, there exists a uniform
(9,£)-NOSF source X such that HS (f(X)) < §-m+ 4.

We also infer the following useful corollary that shows that
uniform (g, ¢)-NOSF sources cannot be condensed beyond rate
1 —1/¢ with error O(1/¢') where ¢’ is the smallest integer
such that g/¢ <1—1/¢.

Corollary V.8. There exists a universal constant ¢ such that
the following holds: For all g,E E m n € N where ¢’ is the
smallest integer such that g < £ Z' , there exist ¢ = c[,,é =

¢ (0)? log(é’) so that the followmg holds: for all functions
f :({0,1Y)¢ — {0,1Y™, there exists a uniform (g, £)-NOSF
source X such that HS,(f(X)) < & -m+ 6.

We also get a stronger impossibility result for uniform
(g,¢)-NOSF sources (compared to condensing impossibility
for uniform (g, £)-oNOSF sources proved in theorem V.1) for
the regime g < ¢/2.

Corollary V.9. There exists a universal constant ¢ such that
for all Z,ﬂm,m,n € N with ¢ mod g = r, there exist ¢ =

(C(gl_w) ,6 = c-(r+4g)%log(g + r) so that the following

holds: for all functions f : ({0,1}™)¢ — {0,1}™, there exists
a uniform (g, £)-NOSF source X such that HS,(f(X)) < -
m+ 6.

We obtain impossibility result for all uniform (ag, af)-
NOSF sources where g and ¢ are constants and a € N is
arbitrarily large.

Corollary V.10. For all fixed g,¢ € N, there exist constants
e,0 > 0 so that the following holds: for all a,m,n € N
and for all functions f : ({0,1}™)%¢ — {0,1}™, there exists
a uniform (ag, al)-NOSF source X such that HS (f(X)) <
2 -m+0.

We also record the special case of when the total number
of blocks / is a constant.
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Corollary V.11. For all fixed g,¢ € N, there exist constants
€,0 > 0 so that the following holds: For all m,n € N and for
all functions f : ({0,1}™)¢ — {0,1}™, there exists a uniform
(9, £)-NOSF source X such that H (f(X)) < 9 -m 4.

We prove our main theorem using the following general
version of the theorem which we denote as our main lemma:

Lemma V.12. There exists universal constants c such that for
all co > 0,9,4,M,n € N with £/2 < g < {, and for all
A ({0, 13 with |A] = co(2™)", the following holds: for
any function f : ({0,1}™")¢ — [M], there exists a uniform
(g9,¢)-NOSF source X, A’ ¢ AN Supp(X) and D C [M]
such that f(A') C D where |A'| > ¢ - (4 )Z_g - N9, and

cl
02 2 g Yy
1D| < (ct) (7) - M9/,

Using this main lemma, the theorem follows.
To prove our corollary regarding condensing uniform (g, ¢)-
NOSF sources where £ is a large constant, we will use the

’
following lemma:

g

Lemma V.13. Let g,¢,0',n',n,m € N be such that 4 <
%—7,1, [¢/0Tn <n'. Let 0 < e < 1,6 > 0 be such that: for
any function f : ({0,1}") — {0,1}™, there exists a uniform
(¢’ — 1,0')-NOSF source Y so that HZ (f(Y)) < e
Then, for any function h : ({0,1}")¢ — {0,1}™, there exists a
uniform (g, £)-NOSF source X such that HS_ (h(X)) < 1{/[,1 .

m + 0.

We will prove this lemma in a later in section V-D. Using
it, the corollary immediately follows.

To prove our corollary regarding condensing uniform
(ag, al)-NOSF sources where g and ¢ are constants and a
is arbitrary, we will use the following lemma that allows us
to generalize the impossibility result:

Lemma V.14. Ler g,¢ € Nand 0 < ¢ < 1,6 > 0 be such
that for all n,m € N and all functions f : ({0,1}")*

{0,1}™, there exists an uniform (g,£)-NOSF source X such
that HS (f(X)) < %-m+6. Then, for all a,n,m € N and all
functions f : ({0,1}")% — {0,1}™, there exists an uniform
(ag,al)-NOSF source X such that HS (f(X)) < 9 -m +4.

We will also prove this lemma in section V-D. Using it, the
corollary immediately follows.

1) Proving the main lemma: Here, we will prove
lemma V.12. We first introduce some helpful notation for this
part. For an edge e € F, let x(e) denote the color of e in H.
For a vertex € H, let

Nbry(z) ={y € H : (z,y) € E}.
Similarly, for a vertex 2 € H, and color v € |

Nbry (2,7) ={y € H: (z,y) € E and x(z,y) =

M], let

7}

To prove the main lemma, we will utilize the following
special case of the main lemma, corresponding to the case of
g = £ — 1, that we prove later:



Lemma V.15. There exists a universal constant ¢ > 0 such
that for all M,n,¢ >3 € N, and A C ({0,1}")* with |A| =
co(2M)?, the following holds: for any function f : ({0,1}")¢ —
{0,1}™, there exists a uniform (¢ —1,£)-NOSF source X,
A" c AN Supp(X) with |A’'| > 1.2 N1 and D C [M)]

(=2
with |D| < c- 4 - ( ) - M=/ such that f(A') C D.

The main lemma follows by an inductive argument where
the special case above is the base case.

2

Cco

Remark V.16. In proof of lemma V.12, one can use g = /¢
as the base case as well. However, for clarity’s sake we
use g = { — 1 as the base case. For first time readers, it
will be helpful to first read the direct non-inductive proof of
lemma V.15 presented in section V-B2 before reading the proof
of lemma V.12 as both these proofs share a lot of ideas.

2) Proving the main lemma for g = (—1: We will prove our
main lemma for the case of ¢ = ¢ — 1 using a color covering
lemma for dense t-partite t-uniform hypergraphs colored in
some special way:

Lemma V.17 (Small Color Covering for Hypergraphs). Let
0 < < 1,0 < 1,0 < € < «c¢g be arbitrary.
Let H (V,..., Vi, E) be a t-uniform t-partite hyper-
graph with Vy =V, = [N],|E|] = coN% Let
the edges of H be colored in one of M colors so that
for every position p € [T], and every (t — 1) tuples:
(V1y -y Upyy Updy - -, 0t) € [NJP7L, the number of distinct
colored edges as entries position p vary is < ¢1 M?°. Formally,
IX(V15e e Up—1, Y, Vpg1, -y 0e) 1y € [N < 011]\425~1 Then,
there exists D C [M] such that |D| < % Mt
and at least eN*t edges in H are colored in one of the colors
from D.

Co

We prove this color covering lemma later. Using it, we are
able to prove our main lemma for the case of g = ¢ — 1.

3) Finding a small color covering in locally-light hyper-
graphs: We consider dense t-uniform ¢-partite hypergraphs
where all edges are colored and the hypergraph satisfies a
“locally-light” condition: all t—1-tuples are adjacent to a small
number of colors. The covering lemma finds small set of colors
that covers constant fraction of edges in the hypergraph. We
do this by finding a popular color in such a hypergraph.

Lemma V.18 (Popular Color in Locally-Light Hypergraphs).
Let 0 < ¢g < 1,0 < c¢1 be arbitrary. Let t > 2 € N.
Let H = (V4,...,V4, E) be a t-uniform t-partite hyper-
graph with |V1] 4 N,|E| = c¢oNt. Let
the edges of H be colored in one of M colors so that
for every position p € [T], and every (t — 1) tuples:
(V1y ey Upyy Upidy -« 0t) € [NJPTL, the number of distinct
colored edges as entries position p vary is < c1M?®. For-
mally, |x(vV1,...,Vp—1,Y,Vpt1,---,0) 2y € [N]] < e M2,
Then, there exists a color v € [M] such that at least

t
W -N*t/M?® edges in H are colored with color
.
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Using this lemma, our color covering lemma for hypergraph
follows by repeatedly finding such popular colors.

4) Finding a popular color in locally-light hypergraphs:
For the base case, we find such a popular color in graphs:

Lemma V.19 (Popular Color in Locally-Light Graphs). Let
0 < e <1,0 < ¢y be arbitrary. Let H = (U,V, E) be a
bipartite graph with |[U| = |V| = N,|E| = ¢oN?. Let the
edges of H be colored in one of M colors so that for every
vertex x € H, the number of distinct colored edges incident
on x is < ¢y M?. Then, there exists a color v € [M] such
that at least -N?2/M? edges in H are colored with

<
(e1+1)2c1
color 7.

Using this, we inductively find a popular color in locally-
light hypergraphs.

Finally, we directly argue a popular color exists in dense
locally-light bipartite graphs.

C. Impossibility of condensing from CG sources

We prove two impossibility results regarding impossibility
of condensing from (¢, ¢)-aCG sources. Our first result theo-
rem V.21 states that any candidate condenser cannot decrease
the entropy gap present in the blocks of CG sources. Our
second result in contrast, states that when blocks have linear
entropy, then condenser cannot condense beyond rate 1/2.
The latter result is much stronger than the former in regimes
where m is comparatively larger than n (say m = O(nf) and
£ =w(1)).

1) Impossibility of non-trivial condensing beyond min-
entropy gap: We will use the fact that it is impossible to
condense from general (n, k)-sources.

Lemma V.20. For all n,k,m € N and € > 0 the following
holds: For all functions f : {0,1}"™ — {0,1}™, there exists
an (n,k) source X such that HS (f(X)) < m — (n—k) +
log(1/(1 — €)) — max(m — n,0).

We believe a result of this form is well-known but we
were unable to find a good reference. Thus, for the sake
of completeness, we prove this lemma at the end of this
subsection. Using this, we prove our impossibility result for
(¢,£)-aCG sources.

Theorem V.21. For all 0 < ¢ < 1,A and {,m,n € N, the
following holds: for every function f : ({0,1}™)¢ — {0,1}™,
there exists a (¢,£)-aCG source X where the good blocks have
min-entropy at least n — A —log(¢/e) — O(1) conditioned on
all fixings of previous blocks and HS (f(X)) < m — A +
log(2/(2 — ¢)) — max(m — ¢n,0).

Lastly, we proved that no non-trivial condensers exist for
arbitrary (n, k)-sources.

2) Impossibility of condensing beyond rate 1/2: Using con-
densing impossibility result for uniform (1, 2)-oNOSF sources,
we prove a condensing impossibility result for (¢, ¢)-aCG
source (which are just CG sources, with no adversarial blocks)
where the good blocks have min-entropy at least O(n/{)
conditioned on every fixing of previous blocks.



Theorem V.22. For all 0 < € < 1 there exists a § > 0 such
that the following holds: for every function f : ({0,1}")¢ —
{0,1}™, there exists a (¢,£)-aCG source X where the good
blocks have min-entropy at least % conditioned on
all fixings of previous blocks and HE_(f(X)) < % -m + 6.

Lastly we prove our claim that most fixings of previous
blocks preserve min-entropy in the later block.

D. Deferred proofs of helpful lemmas

The remaining deferred proofs of lemmas follow from the
following results, proofs of which we include in the full
version of our paper.

Lemma V.23. Let g,¢,n,g',¢',n',m € N be such that g <
a-g +max(b— (¢ —g),0),(a+ 1)n < n' where a,b € N
are unique integers such that £ = a - £’ +b where 0 < b <
. Let 0 < ¢ < 1,6 > 0 be such that: for any function
I ({0,137 — {0,1}™, there exists a uniform (g',0')-
oNOSF source (uniform (g', ¢')-NOSF source, respectively) Y
so that HE (f(Y)) < %,' -m + 0. Then, for any function h :
({0,13)¢ — {0,1}™, there exists a uniform (g,{)-oNOSF
source (uniform (g, ¢)-NOSF source, respectively) X such that
HE (M(X)) < & -m +6.

The deferred proofs of several lemmas follow from this
result.

VI. CONDENSERS FOR ONOSF SOURCES

We will prove the following main theorem regarding con-
densing from oNOSF sources in this section:

Theorem VI.1. For all g,¢,r € N,e > 0 such that
=1 (=1
o1 roand r < 1
Cond : ({0,1}™)¢ — {0,1}™ such that for any (g,¢,n, k)-

oNOSF source X with k > 2log(gn/e), we have that

HE(X) > Lom —2(5"9 — 1)log ((ggelg)k) with m =

r (% —2(59 — 1) log (7@;;%)).
This result is tight up to lower order terms as it asymptoti-
cally matches the impossibility results of theorem V.1.

We prove this theorem in two steps. First, we show how to
transform oNOSF sources to uniform oNOSF sources:

there exists a condenser

Theorem VI.2. For any g,(, ¢, there exists a function f :
({0,13)¢ — ({0,1}™)¢ with m % such that for
any (9,4, k)-oNOSF source X with k > 2log(gn/e) there
exists a uniform (g —1,¢ — 1)-oNOSF source Y such that

[f(X)-Y|<e

Second, we show how to condense from uniform oNOSF
sources.

Theorem VL.3. For any g,¢, e such that |¢/g] =1 and r <
/g, there exists a condenser Cond : ({0,1}")* — {0,1}™
such that for any uniform (g,{)-oNOSF source X we have
HE (Cond(X)) > L .-m —2(579 — 1) log(gn/e) where m =
r(n —2(5°79 — 1) log(gn)).

Using these two ingredients, our main theorem follows.
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A. Transforming low entropy oNOSF sources to uniform
oNOSF sources

We will prove theorem V1.2 in this subsection. We will use
the fact that a random function is a very good two source
extractor.

Lemma VI4. Let ni,no, ki,ka,m,e be such that k1 <
niy, ]{32 < No, M = kl +]€2 —210g(1/5) —0(1), kJQ > IOg(’I"Ll -
k1)+2log(1/e)4+O(1), and k1 > log(na—k2)+2log(1/e)+
O(1). Then, a random function Ext : {0,1}"* x {0,1}"2 —
{0,1}™ is a (k1, ko, €)-two source extractor with probability
1—o(1).

We defer proof of this to section VI-C. Using this, we will
prove our main lemma:

Lemma VLS. Let g,¢,m,n € N and k,ky,ka,e > 0 be
such that k > ki + fm + log(1/e),k > ko. Suppose there
exists a (ky, ko, €)-two-source extractor 2Ext : {0,1}(¢=1)m x
{0,1}™ — {0,1}™. Then we can construct a function f :
({0,1}M)% — ({0,1}™)*=Y such that for any (g,f,n,k)-
oNOSF source X, there exists a uniform (g — 1,¢ — 1)-oNOSF
source Y such that |f(X) — Y| <2(g—1)e.

Using this main lemma, theorem VI.2 follows.

One can get an explicit version of this transformation, with
polynomial error by using an explicit two-source extractor,
such as the one from [26].

We now focus on proving lemma VIL5. We extend an
argument for a somewhere extractor for low entropy oNOSF
sources from [1]. We do this by using a two source extractor
instead of a seeded extractor in their construction.

To achieve this result, we use the notion of average con-
ditional min-entropy and use some known results about two-
source extractors.

Definition V1.6. For any two distributions X and W, define
the average conditional min-entropy of X given W as

fNIOC(X|W):—log( E max

{ Pr[X:x\W:w]}).
w~W | z€Supp(X)

We use this notion of average conditional min-entropy
to define notions of average-case strongness in two-source
extractors:

Definition VL.7. We say that 2Ext is average-case strong if
2Ext(X1,X5), W =, U,,, W

for every X1 and W such that 1::[OC (X1 | W) > ky with Xo
independent of X1 and W.

One benefit of the average conditional min-entropy in
comparison to conditional min-entropy is that the chain rule
is simpler:

Lemma VL.8. [39] Let A, B, and C be distributions such

that Supp(B) < 2). Then Hu(A | B,C) > H.(A,B |
C)—A>H(A|C)— A



In addition, Lemma 2.3 of [39] shows that two-source
extractors are average-case-two-source extractors with similar
parameters.

Lemma V1.9. [39] For any > 0, if 2Ext is a (k1, k2, €)-two-
source extractor, then 2Ext is a (k1 + log(1/n), ke, +1))-
average-case-two-source extractor.

We will use it to prove our main theorem in which we
provide a general transformation of low min-entropy oNOSF
sources to uniform oNOSF sources given a two-source extrac-
tor. This transformation is based on a similar transformation
in [1].

B. Condensing from oNOSF sources using output-light two
source extractors

In this subsection, we will prove theorem VI.3. To obtain the
condenser, we will utilize two-source extractors which have an
additional property that we call output-light.

Formally, we define output-light two source extractors as
follows:

Definition VI.10 (Output-light Two Source Extractor).
Let Ext {0,1}" x {0,1}" — {0,1}™ be a
(k1,k2,€)-two  source  extractor. Then, Ext is R-
output-light if for every z € {0,1}™, ir holds rthat
{z € {0,1}™ : 3y € {0,1}"2(Ext(x,y) = 2)}| < R.

We will show a random function is a output-light two source
extractor with strong parameters and we will use it with the
following parameters:

Lemma VL11. Let 0 < 6 < 1,C > 4 be arbitrary
constants. Let ny, ki, no, ko, m, €gx,& be such that n,
is arbitrary, ng = C(log(ny) +log(1/e)), k1 = dny —
2ng,ky = 4(log(ny) +1log(1/e)),m = ki — 2np,cea =
2724 (note that if ky is larger than the minimum re-
quirement, then cgx gets proportionally smaller). Then, a
random function Ext : {0,1}™ x {0,1}"* — {0,1}™ is
an R-output-light (k1,ke,cgx) two-source-extractor where
R = 2n1+n27m+0(1)'

We defer proof of their existence in section VI-C. Using
such an extractor, we will prove the following general con-
densing result:

Lemma VL12. Let g,{,r,n,e be such that r = |{/g]
and v < {/g. Assume that for ¢ € {1,...,r}, there ex-
ists an R-output-light (k1,c, k2,c, €ext, )-tWo-source extractor
2Ext. : {0,1}™c x {0,1}"2c — {0,1}™ where ny . = gn,
Noe = —— 4log(gn/e), k1c = n — 2ng., koo =
4 (log(gn) + log(1/¢)), me = n—2ng.¢, €E, = 2~ F2</* and
log(Rc/€) < ny,c+2n2 . —me. Then there exists a condenser
Cond : ({0,1}™)* — {0,1}™ such that for any uniform (g, ()-
oNOSF source X, we have HE (Cond(X)) > 1 .m — 2ny,
here m =1 -m,.

Using this main lemma, the theorem follows. Before we
prove this main lemma, we prove theorem VI.3 for the special
case when g > £/2.

Theorem VIL.13. For all g,{,c such that g > (]2, there
exists a condenser Cond : ({0,1}™)¢ — {0,1}™ such that
Sfor any uniform (g,£)-oNOSF source X, HE (Cond(X)) >
m— (579 -3) (log(gn) + log(1/¢)) where m = n—2(5¢~9 —
1) log(gn).

As an application of this theorem, we construct a con-
denser from a low min-entropy (g,¢)-oNOSF source with
g > £/2 4+ 1. We do this by composing our transformation
from theorem VI.2 with the condenser from theorem VI.13.

Corollary VL.14. For all g,¢, e such that g > {/2 + 1, there
exists a condenser Cond : ({0,1}")¢ — {0,1}™ such that
for any (g,¢,n,k)-oNOSF source X with k > 2log(n), we

have HZ_ (Cond(X)) > m — (579 — 3)log (%) where
m= & = 2509 — 1) log (5P,

1) Condensing from (g,{)-oNOSF sources with g > £/2:
We will prove theorem VI.13 that allows us to condense from
uniform (g, £)-oNOSF sources when g > ¢/2. This theorem
allows us to condense to almost full entropy.

We will prove this theorem using the following general
lemma:

Lemma VL1S. Assume that for some g,n,c there exists
an R-output-light (k1, ke, €ext)-two-source-extractor Ext

{0,1}™ x {0,1}" — {0,1}™ where ny = gn,ny, =
% -4log(gn/e), k1 = n — 2ng, ko = 4log(gn/e),m =
n — 2N9, gt = 9—ka/4 (notice that we require that if ko
supplied is larger, then gy gets proportionally smaller). Then,
there exists a condenser Cond : ({0,1}")¢ — {0,1}™ such
that for any uniform (g,{)-oNOSF source X with g > (/2,

HZ (Cond(X)) = min (m — ng,ny — log(R/¢)).

Using this, our theorem directly follows.

Towards proving our general lemma, we show that for any
flat distribution X over n bits, if a function f condenses from
X, then f also condenses (with a slight loss in parameters)
from a distribution X’ which is the same as the distribution
X on most output bits but some output bits are arbitrarily
controlled by an adversary. We note that a lemma similar in
spirit to this one was shown as Lemma 28 in [9].

Lemma VL16. Let X ~ {0,1}" be an arbitrary flat dis-
tribution and let Cond : {0,1}" — {0,1}™ be such that
H: (Cond(X)) = k. Let G C [n] with |G| = n —b.
Let Xg ~ {0,1}"% be the projection of X onto G. Let
X' ~ {0,1}™ be the distribution where the output bits
defined by G equal X and remaining b bits are deterministic
functions of the n — b bits defined by G under the restriction
that Supp(X') C Supp(X). Then, H, (f(X')) > k—b where
g =e-2

We will prove this result later. Using this result, we use
output-light two-source-extractor to prove our general lemma.
We finally prove our useful lemma that states a condenser
for a distribution X still condenses from a tampered version
of X where some output bits are controlled by an adversary.
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2) Condensing from uniform oNOSF sources in all regimes:
We finally prove our main lemma of the section - lemma VI.12.
We will use the following simple claim that guarantees pro-
jections of high-entropy distributions have high-entropy.

Lemma VIL.17. Let X be an arbitrary (n, k)-source and w :
{0,1}™ — {0,1}"=% be a projection onto n—d bits of X (i.e.,
removes d bits of X). Then w(X) is a (n — d, k — d)-source.

We are finally ready to prove the main lemma. The proof
of this main lemma uses a similar strategy as in lemma VI.15.

C. Existence of output-light two-source extractors

In this subsection, we show a random function is an output-
light two-source extractor. Towards showing output lightness,
we introduce a related notion, of R-invertible functions.

Definition VIL.18 (R-invertible function). A function f
{0,1}™ — {0,1}™ is R-invertible if for every z € {0,1}™, it
holds that |{z € {0,1}": f(z) =2z} < R.

We record the observation that R-invertible functions are
also R-output light.

Observation VL.19. Ler Ext : {0,1}™ x {0,1}"2 — {0,1}™
be a (ki,ka,e)-two source extractor. If Ext is R-invertible,
then Ext is R-output-light.

We now show that a random function is optimally invertible,
hence concluding a random function is also output light.

Lemma VIL.20. Let f : {0,1}" — {0,1}™ be a random
Sfunction where m < n—logn. Then, with probability 1—o(1),
f will be 2"~™*<_invertible where c is a universal constant.
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