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Abstract. Freebase is amongst the largest public cross-domain knowl-
edge graphs. It possesses three main data modeling idiosyncrasies. It
has a strong type system; its properties are purposefully represented in
reverse pairs; and it uses mediator objects to represent multiary relation-
ships. These design choices are important in modeling the real-world. But
they also pose nontrivial challenges in research of embedding models for
knowledge graph completion, especially when models are developed and
evaluated agnostically of these idiosyncrasies. This paper lays out a com-
prehensive analysis of the challenges associated with the idiosyncrasies of
Freebase and measures their impact on knowledge graph link prediction.
The results fill an important gap in our understanding of embedding
models for link prediction as such models were never evaluated using a
proper full-scale Freebase dataset. The paper also makes available several
variants of the Freebase dataset by inclusion and exclusion of the data
modeling idiosyncrasies. It fills an important gap in dataset availability
too as this is the first-ever publicly available full-scale Freebase dataset
that has gone through proper preparation.
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1 Introduction

Knowledge graphs (KGs) encode semantic, factual information as triples of the
form (subject s, predicate p, object o). They can link together heterogeneous data
across different domains for purposes greater than what they support separately.
KGs have become an essential asset to a wide variety of tasks and applications in
the fields of artificial intelligence and machine learning [13,24], including natural
language processing [47], search [46], question answering [22], and recommender
systems [49]. Thus, KGs are of great importance to many technology compa-
nies [17,30] and governments [3,29].
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To develop and robustly evaluate models and algorithms for tasks on KGs,
access to large-scale KGs is crucial. But publicly available KG datasets are often
much smaller than what real-world scenarios render and require [23]. For exam-
ple, FB15k and FB15k-237 [10,39], two staple datasets for knowledge graph
completion, only have less than 15,000 entities in each. As of now, only a few
cross-domain common fact KGs are both large and publicly available, including
DBpedia [7], Freebase [8], Wikidata [41], YAGO [37], and NELL [12].

With more than 80 million nodes, Freebase is amongst the largest public
KGs. It comprises factual information in a broad range of domains. The dataset
possesses several data modeling idiosyncrasies which serve important practical
purposes in modeling the real-world. Firstly, Freebase properties are purposefully
represented in reverse pairs, making it convenient to traverse and query the graph
in both directions [31]. Secondly, Freebase uses mediator objects to facilitate
representation of n-ary relationships [31]. Lastly, Freebase’s strong de facto type
system categorizes each entity into one or more types, the type of an entity
determines the properties it may possess [9], and the label of a property almost
functionally determines the types of the entities at its two ends.

Albeit highly useful, the aforementioned idiosyncrasies also pose nontrivial
challenges in the advancement of KG-oriented technologies. Specifically, when
algorithms and models for intelligent tasks are developed and evaluated agnos-
tically of these data modeling idiosyncrasies, one could either miss the opportu-
nity to leverage such features or fall into pitfalls without knowing. One example
is that for knowledge graph link prediction—the task of predicting missing s
in triple (?, p, o) or missing o in (s, p, ?)—many models [33,42] proposed in
the past decade were evaluated using FB15k, a small subset of Freebase full of
reverse triple pairs. The reverse triples lead to data leakage in model evaluation.
The consequence is substantial over-estimation of the models’ accuracy and thus
faulty and even reversed comparison of their relative strengths [5].

This paper provides four variants of the Freebase dataset by inclu-
sion/exclusion of mediator objects and reverse triples. It also provides a Free-
base type system which is extracted to supplement the variants. It lays out
a comprehensive analysis of the challenges associated with the aforementioned
idiosyncrasies of Freebase. Using the datasets and the type system, it further
measures these challenges’ impact on embedding models (e.g., TransE [10] and
ComplEx [40]) which are most extensively employed for knowledge graph link
prediction. Furthermore, the datasets underwent thorough cleaning in order to
improve their utility and to remove irrelevant triples from the original Free-
base data dump [18]. The methodology, code, datasets, and experiment results
produced from this work, available at https://github.com/idirlab/freebases, are
significant contributions to the research community, as follows.

The paper fills an important gap in dataset availability. To the best of our knowl-
edge, ours is the first-ever publicly available full-scale Freebase dataset that has
gone through proper preparation. Specifically, our Freebase variants were pre-
pared in recognition of the aforementioned data modeling idiosyncrasies, as well
as via thorough data cleaning. On the contrary, the Freebase data dump has
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all types of triples tangled together, including even data about the operation
of Freebase itself which are not common knowledge facts; Freebase86m [51], the
only other public full-scale Freebase dataset, also mixes together metadata (such
as data related to Freebase type system), administrative data, reverse triples,
and mediator objects.

The paper also fills an important gap in our understanding of embedding models
for knowledge graph link prediction. Such models were seldom evaluated using
the full-scale Freebase. When they were, the datasets used (e.g., the aforemen-
tioned Freebase86m) were problematic, leading to unreliable results. The exper-
iments on our datasets inform the research community several important results
that were never known before, including 1) the true performance of link pre-
diction embedding models on the complete Freebase, 2) how data idiosyncrasies
such as mediator objects and reverse triples impact model performance on the
complete Freebase data, and 3) similarly, how the mixture of knowledge facts,
metadata and administrative data impact model performance.

The datasets and results are highly relevant to researchers and practitioners,
as Freebase remains the single most commonly used dataset for link prediction, by
far. Upon examining all full-length publications appeared in 12 top conferences
in 2022, we found 53 publications used datasets commonly utilized for link pre-
diction. The conferences, the papers, and the datasets used in them are listed in
a file “papers.xlsx” in GitHub repository https://github.com/idirlab/freebases.
Amongst these publications, 48 utilized datasets derived from Freebase, only 3
publications used a Freebase dataset at its full scale, specifically Freebase86m,
while 8 made use of datasets from Wikidata. The properly processed full-scale
Freebase datasets from this work can facilitate researchers and practitioners in
carrying out large-scale studies on knowledge graph completion and beyond.

The dataset creation was nontrivial. It required extensive inspection and
complex processing of the massive Freebase data dump, for which documents are
scarce. None of the idiosyncrasies, as articulated in Sects. 3 and 4, was defined or
detailed in the data dump itself. Figuring out the details required iterative trial-
and-error in examining the data. To the best of our knowledge, more detailed
description of these idiosyncrasies is not available anywhere else. If one must
learn to examine Freebase and prepare datasets from scratch, the process has a
steep learning curve and can easily require many months. Our datasets can thus
accelerate the work of many researchers and practitioners.

The datasets and experimentation design can enable comparison with non-
conventional models and on other datasets. Our methodology of processing and
analyzing data is extensible to other datasets with similar data modeling idiosyn-
crasies, such as YAGO3-10 and WN18 which have redundant and reverse rela-
tions [5] and Wikidata which represents multiary relationships using statements.
The experiment design could be extended to studying the impact of multi-
ary relationships in Wikidata on various kinds of link prediction models. Fur-
ther, given the datasets and experiment results made available in this paper, it
becomes possible to compare the real performance of conventional embedding
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models and hyper-relational fact models [20,34,44,50] on a full-scale Freebase
dataset that includes multiary relationships (i.e., mediator objects).

2 Freebase Basic Concepts

This section provides a summary of basic terminology and concepts related to
Freebase. We aim to adhere to [9,19,25,31] in nomenclature and notation.

RDF: Freebase is available from its data dumps [18] in N-Triples RDF (Resource
Description Format) [25]. An RDF graph is a collection of triples (s, p, o), each
comprising a subject s, an object o, and a predicate p. An example triple is (
James Ivory, /film/director/film, A Room with a View).

Topic (entity, node): In viewing Freebase as a graph, its nodes can be divided
into topics and non-topics. Topics are distinct entities, e.g., James Ivory in Fig. 1.
An example of non-topic nodes is CVT (Compound Value Type) nodes which are
used to represent n-ary relations (details in Sect. 3). Other non-topic nodes are
related to property, domain and type (see below). Each topic and non-topic node
has a unique machine identifier (MID), which consists of a prefix (either /m/ for
Freebase Identifiers or /g/ for Google Knowledge Graph Identifiers) followed by a
base-32 identifier. For example, the MID of James Ivory is /m/041d94. For better
readability, we use the names (i.e., labels) of topics and non-topics in presenting
triples in this paper. Inside the dataset, though, they are represented by MIDs.

Type and domain: Freebase topics are grouped into types semantically. A topic
may have multiple types, e.g., James Ivory’s types include /people/person and
/film/director. Types are further grouped into domains. For instance, domain
film includes types such as /film/actor, /film/director, and /film/editor.

Property (predicate, relation, edge): Properties are used in Freebase to
provide facts about topics. A property of a topic defines a relationship between
the topic and its property value. The property value could be a literal or
another topic. Property labels are structured as /[domain]/[type]/[label]. The
/[domain]/[type] prefix identifies the topic’s type that a property belongs to,
while [label] provides an intuitive meaning of the property. For example, topic
James Ivory has the property /people/person/date_of birth with value 1928-06-07.
This property is pertinent to the topic’s type /people/person. The topic also has
another property /film/director/film, on which the value is another topic A Room
with a View, as shown in Fig. 1. This property is pertinent to another type of the
topic— /film/director. A relationship is represented as a triple, where the triple’s
predicate is a property of the topic in the triple’s subject. In viewing Freebase as
a graph, a property is a directed edge from the subject node to the object node.
The type of an edge (i.e., edge type) can be distinctly identified by the label of
the edge (i.e., the property label). The occurrences of an edge type in the graph
are edge instances.
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Schema: The term schema refers to the way Freebase is structured. It is
expressed through types and properties. The schema of a type is the collec-
tion of its properties. Given a topic belonging to a type, the properties in that
type’s schema are applicable to the topic. For example, the schema of type /peo-
ple/person includes property /people/person/date_of_birth. Hence, each topic of
this type (e.g., James Ivory) may have the property.

A Room with a
View

SUONBUILIOU PIEME

/10 POJRUIIOU PIEME/PIEME,

10§ pajeurwou

/UOTBUILIOU PIEME/PIEME,

faward/award_nomination/ award/award_category/
award_nominee nominees
James Ivory S cvr €
award/award_nominee/ Jaward/award_nomination/
award_nominations award

BAFTA Award
for Best Film

Fig. 1. A small fragment of Freebase, with a mediator node

3 Idiosyncrasies of Freebase and Challenges They Pose

Freebase is the single most commonly used dataset for the task of link prediction,
as mentioned in Sect. 1. The Freebase raw data dump contains more than 80
million nodes, more than 14,000 distinct relations, and 1.9 billion triples. It has a
total of 105 domains, 89 of which are diverse subject matter domains—domains
describing real-world facts [13]. This section explains several idiosyncrasies of
Freebase’s data modeling design choices, and their impacts on link prediction.

3.1 Reverse Triples

When a new fact was included into Freebase, it would be added as a
pair of reverse triples (s, p, o) and (s, p~', o) where p~! is the reverse
of p. Freebase denotes reverse relations explicitly using a special rela-
tion /type/property/reverse_property [16,31]. For instance, /film/film/directed_by
and /film/director/film are reverse relations, as denoted by a triple (
/film/film/directed by, /type/property/reverse_property, /film/director/film).
Thus, (James Ivory, /film/director/film, A Room With A View) and (A Room With
A View, /film/film/directed by, James Ivory) form reverse triples, shown as two
edges in reverse directions in Fig. 1.

Several previous studies discussed the pitfalls in including reverse relations
in datasets used for knowledge graph link prediction task [4,5,15,39]. The popu-
lar benchmark dataset FB15k (a relatively small subset of Freebase), created
by Bordes et al. [10], was almost always used for this task. Toutanova and
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Chen [39] noted that FB15k contains many reverse triples. They constructed
another dataset, FB15k-237, by only keeping one relation out of any pair of
reverse relations. The pitfalls associated with reverse triples in datasets such as
FB15k can be summarized as follows. 1) Link prediction becomes much easier on
a triple if its reverse triple is available. Hence, the reverse triples led to substan-
tial over-estimation of model accuracy, which is verified by experiments in [5].
2) Instead of complex models, one may achieve similar results by using statistics
of the triples to derive simple rules of the form (s, pi, o) = (o, p2, s) where p;
and po are reverse. Such rules are highly effective given the prevalence of reverse
relations [5,15]. 3) The link prediction scenario for such data is non-existent in
the real-world at all. For such intrinsically reverse relations that always come
in pair, there is not a scenario in which one needs to predict a triple while its
reverse is already in the knowledge graph. More precisely, this is a case of exces-
sive data leakage—the model is trained using features that otherwise would not
be available when the model needs to be applied for real inference.

For all reasons mentioned above, there is no benefit to include reverse triples
in building link prediction models. If one still chooses to include them, care
must be taken to avoid the aforementioned pitfalls. Particularly, a pair of reverse
triples should always be placed together in either training or test set.

TransE TransE TransE

----- FB+CVT-REV +sst FB-CVT-REV —— FB+CVT+REV
e FB+CVT+REV. e FB+CVT-REV w—— Freebase86m

Fig. 2. Impact of reverse Fig. 3. Impact of mediator Fig.4. Impact of non-
triples on MRR'of embed- nodes on MRR'of embed- subject matter triples on
ding models ding models MRR'of embedding models

The impact of reverse triples was previously only examined on small-scale
datasets FB15k and FB15k-237 [4,5,15,39]. Our corresponding experiment
results on full-scale Freebase thus answer an important question for the first
time. While the full results and experiment setup are detailed in Sect. 7 (specif-
ically Table7 and Fig.5), here we summarize the most important observations.
Figure2 compares the performance of several representative link predication
models on a commonly used performance measure MRR!, using two new full-
scale Freebase datasets created by us (details of dataset creation in Sect.6).
FB+CVT+REYV is obtained after cleaning the Freebase data dump and remov-
ing irrelevant data, and in FB4+CVT-REV reverse relations are further removed
by only keeping one relation out of each reverse pair. Similar to the comparison
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Table 1. Link prediction perfor-
mance (MRR') on FB+CVT-REV
vs. FB+CVT+REV

Table 2. Link prediction performance (MRR')
on FB-CVT-REV vs. FB+CVT-REV

FB-CVT-REV FB+CVT-REV
FB+CVT-REV | FB+CVT+REV . . -
— — — — Model binary | concatenated |all | binary | multiary | all
Model unidir | bidir | all | unidir | bidir | all
- TransE  [0.60 |0.90 0.67/0.57 |0.96 0.57
TransE 0.72 |0.56 | 0.57]0.75 |0.89 |0.88 -
- - - . DistMult [0.64 |0.89 0.700.61 |0.77 0.61
DistMult | 0.65 |0.60 0.61|0.70 |0.94 |0.92
- . . - ComplEx | 0.66 | 0.90 0.71]0.62 |0.80 0.62
ComplEx | 0.67 |0.61 0.62/0.69 |0.94 |0.92 — -
— - . TransR  [0.58 |0.92 0.66 |0.63 | 0.87 0.64
TransR | 0.66 |0.63 | 0.64 0.75 |0.94 |0.93 , - b
- . . - RotatE  [0.76 |0.92 0.80/0.73 |0.88 0.73
RotatE 0.67 |0.74 | 0.73]0.73 10.96 0.94

results on small-scale FB15k vs. FB15k-237, the results on the full-scale datasets
also show drastic decrease of model accuracy after removal of reverse triples and
thus overestimation of model performance due to reverse triples.

We further break down the results by categorizing all relations into two
groups—unidirectional relations (denoted as “unidir” in Table1 and Table 3)
which do not have reverse relations and bidirectional relations (denoted “bidir”)
which have reverse relations in the original Freebase data dump. In Tablel,
the columns labeled “all” correspond to Fig.2 and are for both categories of
relations together. As the table shows, while the performance degradation is
universal, the drop is significantly more severe for bidirectional relations due to
removing reserve triples.

Table 3. Link prediction results on FB15k-237 vs. FB15k

FB15k-237
Model  |MRR' (unidir) |[MRR' (bidir) |MRR' (all) |MR' | Hitsei' Hitse3' Hitse10'
TransE | 0.35 0.22 0.24 257.75 | 0.14 0.28 0.44
DistMult | 0.31 0.23 0.24 385.12|0.14 0.27 0.43
ComplEx | 0.30 0.22 0.23 425.380.14 0.25 0.42
TransR | 0.54 0.58 0.57 196.99 | 0.52 0.59 0.67
RotatE | 0.39 0.22 0.24 288.43 | 0.16 0.26 0.42
FB15k
Model | MRR'(unidir) |MRR'(bidir) |MRR'(all) |[MR' | Hitsei' Hitse3' Hitse10'
TransE | 0.56 0.63 0.63 46.55 | 0.49 0.73 0.83
DistMult | 0.60 0.69 0.68 59.92 |0.57 0.76 0.86
ComplEx | 0.59 0.76 0.74 66.37 | 0.66 0.81 0.88
TransR | 0.63 0.66 0.66 66.09 | 0.57 0.72 0.80
RotatE | 0.63 0.68 0.68 50.28 | 0.57 0.75 0.85

To put the discussion in context, we reproduced the results on FB15k and
FB15k-237 using DGL-KE [51], which is the framework we used in this study
for experiments on large-scale datasets. The results (Table 3) are mostly consis-
tent with previously reported results using frameworks for small-scale datasets
(e.g., LibKGE [11]), barring differences that can be attributed to implementa-
tions of different frameworks. Comparing Table1 and Table 3, we can observe
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that models’ performance on full-scale datasets is significantly higher than the
small-scale counterpart, unsurprisingly given the much larger datasets. What
are common for both small-scale and large-scale datasets are the performance
degradation due to removal of reverse triple as well as the observations regarding
unidirectional vs. bidirectional relations.

3.2 Mediator Nodes

Mediator nodes, also called CVT nodes, are used in Freebase to represent n-ary
relationships [31]. For example, Fig. 1 shows a CVT node connected to an award,
a nominee, and a work. This or similar approach is necessary for accurate model-
ing of the real-world. Note that, one may convert an n-ary relationship centered
at a CVT node into (72’) binary relationships between every pair of entities, by
concatenating the edges that connect the entities through the CVT node. While
such a transformation may help reduce the complexity of algorithmic solutions,
it results in loss of information [44] and is irreversible [33], and thus it may
not always be an acceptable approach as far as data semantics is concerned.
Nevertheless, most prior studies of knowledge graph link prediction use Free-
base datasets without CVT nodes, e.g., FB15k and FB15k-237, which applied
the aforementioned transformation. Though lossful for Freebase-like KGs, the
insights gained using such datasets could be more applicable toward graphs with
only binary relationships.

When multiary relationships (i.e., CVT nodes) are present, link prediction
could become more challenging as CVT nodes are long-tail nodes with limited
connectivity. Nonetheless, impact of CVT nodes on the effectiveness of current
link prediction approaches is unknown. This paper for the first time presents
experiment results in this regard, on full-scale Freebase datasets. While Sect. 7
presents the full results, here we highlight the most important observations.

Figure 3 shows the performance (MRR') of various models on two of our new
datasets, FB-CVT-REV and FB+CVT-REV (dataset details in Sect. 6). In both
datasets, reverse relations are removed by keeping only one relation out of every
reverse pair so that we can solely focus on the impact of CVT nodes. CVT nodes
are kept in FB4+CVT-REV but removed from FB-CVT-REV by the concatena-
tion approach discussed in Sect. 6. All models performed worse when CVT nodes
are present, verifying our earlier analysis.

We further broke down the results by categorizing all relations into two
groups—binary relations and multiary (or concatenated) relations. Binary rela-
tions are between two regular entities. While multiary relations in FB+CVT-
REV connect regular entities with CVT nodes, concatenated relations in FB-
CVT-REV are the binary relations converted from multiary relations. In Table 2,
the columns labeled “all” correspond to Fig.3 and are for both categories of
relations together. These results show that most models perform better on con-
catenated relations than multiary relations, further verifying the aforementioned
challenges posed by CVT nodes. Furthermore, for all models and datasets, the
models’ accuracy on concatenated/multiary relations are substantially higher
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than that on binary relations. This could be due to different natures of binary
and multiary relations in the datasets and is worth further examination.

3.3 Metadata and Administrative Data

As stated in [13], Freebase domains can be divided into 3 groups: implemen-
tation domains, Web Ontology Language (OWL) domains, and subject matter
domains. Freebase implementation domains such as /dataworld/ and /freebase/
include triples that convey schema and technical information used in creation
of Freebase. According to [18], /dataworld/ is “a domain for schema that deals
with operational or infrastructural information” and /freebase/ is “a domain to
administer the Freebase application.” For example, /freebase/mass_data_operation
in the /freebase/ domain is a type for tracking large-scale data tasks carried out
by Freebase data team. OWL domains contain properties such as rdfs:domain
and rdfs:range for some predicates p. rdfs:domain denotes to which type the sub-
ject of any triple of predicate p belongs, and rdfs:range denotes the type of the
object of any such triple [6]. For example, the domain and range of the predicate
film/director/film are director and film, respectively.

Different from implementation domains and OWL domains, subject matter
domains contain triples about knowledge facts. We call (s, p, o) a subject matter
triple if s, p and o belong to subject matter domains. Computational tasks and
applications thus need to be applied on this category of domains instead of the
other two categories. However, about 31% of the Freebase86m [51] triples fall
under non-subject matter domains, more specifically implementation domains
since OWL domains were removed from Freebase86m. These domains are listed
in Table4, to show concretely what they are about. The purposes of some of
these domains were explained earlier in this section. We have created 4 datasets
in which only the triples belonging to subject matter domains are retained. We
also provide the information related to type system as discussed in Sect. 3. The
details of this process are discussed in Sect. 6.

Table 4. Statistics of imple-

mentation domains in Free-

base86m Table 5. Link prediction performance (MRR') on
Freebase86m and FB4+CVT+REV

Domain #Triples | %Total
/common/ | 48,610,556 | 14.4 Freebase86m FB+CVT+REV
/type/ 26,541,747 | 7.8 Model subj matter | non-subj matter | all | all
Jbase/ 14,253,028 | 4.2 TransE | 0.74 0.68 0.720.88
Jfrecbase/ | 7,705,605 | 2.3 DistMult | 0.91 0.64 0.830.92

ComplEx | 0.91 0.64 0.83/0.92
/dataworld/ | 6,956,819 | 2.1 TransR | 0.76 0.39 0.650.93
/user/ 322215 0.1 RotatE | 0.92 0.56 0.820.94

/pipeline/ | 455,377 0.1
Jkp_lw/ 1,034 0.0003
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Figure 4 shows the impact of non-subject matter triples by comparing the per-
formance (MRR!) of link prediction models on Freebase86m and our new dataset
FB+CVT+REV, which includes only subject matter triples. The figure shows
the adverse effect of non-subject matter triples. Table 5 further breaks down the
results separately on subject matter and non-subject matter triples. The results
clearly show that the models struggled on non-subject matter triples.

4 Freebase Type System

Freebase categorizes each topic into one or more types and each type into one
domain. Furthermore, the triple instances satisfy pseudo constraints as if they
are governed by a rigorous type system. Specifically, 1) given a node, its types
set up constraints on the labels of its properties; the /[domain]/[type] segment in
the label of an edge in most cases is one of the subject node’s types. To be more
precise, this is a constraint satisfied by 98.98% of the nodes—we found 610,007
out of 59,896,902 nodes in Freebase (after cleaning the data dump; more to be
explained later in Sect. 6) having at least one property belonging to a type that is
not among the node’s types. 2) Given an edge type and its edge instances, there
is almost a function that maps from the edge type to a type that all subjects in
the edge instances belong to, and similarly almost such a function for objects.
For instance, all subjects of edge comedy/comedian/genres belong to type /com-
edy/comedian and all their objects belong to /comedy/comedy_genre. Particularly,
regarding objects, the Freebase designers explained that every property has an
“expected type” [9]. For each edge type, we identified the most common entity
type among all subjects and all objects in its instances, respectively. To this
end, we filtered out the relations without edge labels in Freebase data dump,
since the type of a property is known by its label. Given 2,891 such edge types
with labels out of 3,055 relations in our dataset FB-CVT-REV (explained in
Sect. 6), for 2,011, 2,510, 2,685, and 2,723 edge types, the most common entity
type among subjects covers 100%, 99%, 95%, and 90% of the edge instances,
respectively. With regard to objects, the numbers are 2,164, 2,559, 2,763, and
2,821, for 100%, 99%, 95%, and 90%, respectively.

Given the almost true constraints reflected by the aforementioned statistics,
we created an explicit type system, which can become useful when enforced in
various tasks such as link prediction. Note that Freebase itself does not explicitly
specify such a type system, even though its data appear to follow guidelines that
approximately form the type system, e.g., the “expected type” mentioned earlier.
Our goal in creating the type system is to, given an edge type, designate a required
type for its subjects (and objects, respectively) from a pool of candidates formed
by all types that the subjects (objects, respectively) belong to. As an exam-
ple, consider edge type /film/film/performance and the entities o at the object
end of its instances. These entities belong to types {/film/actor, /tv/tv_actor,
/music/artist, /award/award_winner, /people/person}, which thus form the can-
didate pool. We select the required type for its object end in two steps, and
the same procedure is applied for the subject/object ends of all edge types.
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In step 1, we exclude a candidate type t if P(o € t) < «, i.e., the proba-
bility of the object end of /film/film/performance belonging to ¢ is less than
a threshold a. The rationale is to keep only those candidates with sufficient
coverage. In the dataset, P(o € /film/actor) = 0.9969, P(o € /tv/tv_actor) =
0.1052, P(o € /music/artist) = 0.0477, P(o € /award/award_winner) = 0.0373,
and P(o € /people/person) = 0.998. Using threshold o« = 0.95, /tv/tv_actor,
/music/artist and /award/award_winner were excluded. In step 2, we choose the
most specific type among the remaining candidates. The most specific type is
given by argming >, P(o € tlo € t'), where ¢ and ¢’ are from remaining can-
didates. P(o € tlo € ') is the conditional probability of a Freebase entity
o belonging to type t given that it also belongs to type t’. In the dataset,
P(o € /people/person | o € /film/actor) = 0.9984 and P(o € /film/actor | o €
/people/person) = 0.1394. Thus, we assigned /film/actor as the required entity
type for objects of edge type /film/film/performance because it is more specific
than /people/person, even though /people/person had slightly higher coverage.

The type system we created can be useful in improving link prediction. A few
studies in fact employed type information for such a goal [21,45]. Particularly,
embedding models can aim to keep entities of the same type close to each other in
the embedding space [21]. Further, type information could be a simple, effective
model feature. For instance, given the task of predicting the objects in (James
Ivory, /film/director/film, 7), knowing the object end type of /film/director/film
is /film/film can help exclude many candidates. Finally, type information can be
used as a constraint for generating more useful negative training or test examples.
For instance, a negative example (James Ivory, /film/director/film, BAFTA Award
for Best Film) has less value in gauging a model’s accuracy since it is a trivial
case, as BAFTA Award for Best Film is not of type /film/film.

5 Defects of Existing Freebase Datasets

Over the past decade, several datasets were created from Freebase. This section
reviews some of these datasets and briefly discusses flaws associated with them.
FB15k [10] includes entities with at least 100 appearances in Freebase that
were also available in Wikipedia based on the wiki-links database [14]. Each
included relation has at least 100 instances. 14,951 entities and 1,345 relations
satisfy these criteria, which account for 592,213 triples included into FB15k.
These triples were randomly split into training, validation and test sets. This
dataset suffers from data redundancy in the forms of reverse triples, duplicate
and reverse-duplicate relations. Refer to [5] for a detailed discussion of such.
FB15k-237 [39], with 14,541 entities, 237 relations and 309,696 triples, was
created from FB15k in order to mitigate the aforementioned data redundancy.
Only the most frequent 401 relations from FB15k are kept. Near-duplicate and
reverse-duplicate relations were detected, and only one relation from each pair
of such redundant relations is kept. This process further decreased the number
of relations to 237. This step could incorrectly remove useful information, in
two scenarios. 1) False positives. For example, hypothetically place_of birth and
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place_of_death may have many overlapping subject-object pairs, but they are not
semantically redundant. 2) False negatives. The creation of FB15k-237 did not
resort to the accurate reverse relation information encoded by reverse_property
in Freebase. For example, /education/educational_institution/campuses and /educa-
tion/educational_institution_campus/educational_institution are both in FB15k-237
but they are reverse relations according to reverse_property.

Freebase86m is created from the last Freebase data dump and is employed
in evaluating large-scale knowledge graph embedding frameworks [28,51]. It
includes 86,054,151 entities, 14,824 relations and 338,586,276 triples. No infor-
mation is available on how this dataset was created. We carried out an extensive
investigation to assess its quality. We found that 1) 31% of the triples in this
dataset are non-subject matter triples from Freebase implementation domains
such as /common/ and /type/, 2) 23% of the dataset’s nodes are mediator nodes,
and 3) it also has abundant data redundancy since 38% of its triples form reverse
triples. As discussed in Sect. 3, non-subject matter triples should be removed;
reverse triples, when not properly handled, lead to substantial over-estimation of
link predication models’ accuracy; and the existence of mediator nodes presents
extra challenges to models. Mixing these different types of triples together, with-
out clear annotation and separation, leads to foreseeably unreliable models and
results. Section 7 discusses in detail the impact of these defects in Freebase86m.

6 Data Preparation

Variants of the Freebase Dataset. We created four variants of the Freebase
dataset by inclusion/exclusion of reverse triples and CVT nodes. Table 6 presents
the statistics of these variants, including number of entities, number of rela-
tions, and number of triples. The column “CVT” indicates whether each dataset
includes or excludes CVT nodes, and the column “reverse” indicates whether
the dataset includes or excludes reverse triples. Correspondingly, the dataset
names use +/— of CVT/REV to denote these characteristics. The type system
we created is also provided as auxiliary information. Metadata and adminis-
trative triples are removed, and thus the variants only include subject matter
triples. The rest of this section provides details about how the variants were
created from the original Freebase data dump, which is nontrivial largely due to
the scarcity of available documentation.

Table 6. Statistics of the four variants of Freebase

Variant CVT | reverse | #Entities | #Relations | #Triples

FB-CVT-REV | x X 46,069,321 | 3,055 125,124,274
FB-CVT+REV | x v 46,077,533 | 5,028 238,981,274
FB+CVT-REV | v x 59,894,890 | 2,641 134,213,735
FB+CVTH+REV | v v 59,896,902 | 4,425 244,112,599
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URI Simplification. In a Freebase triple (subject, predicate, object), each
component that is not a literal value is identified by a URI (uniform resource
identifier) [25]. For simplification and usability, we removed URI prefixes
such as “<http://rdf.freebase.com/>", “<http://rdf. freebase.com/ns/>" and
“<http://www.wd.org/[0-9]*/[0-9]*/[0-9]*-*>7. We only retained URI segments
corresponding to domains, types, properties’ labels, and MIDs. These segments
are dot-delimited in the URI. For better readability, we replaced the dots by ”/”.
For example, URI <http://rdf. frecbase.com/ns/film.director. film> is simplified to
/film/director/film. Likewise, <http://rdf.freebase.com/ns/award. award_winner>
and <http://rdf.freebase.com/ns/m.0zbgpbf >, which are the URISs of a Freebase
type and an MID, are simplified to /award /award_winner and /m/0zbgpbf. The map-
ping between original URIs and simplified labels are also included in our datasets
as auxiliary information.

Extracting Metadata. The non-subject matter triples are used to extract
metadata about the subject matter triples. We created a mapping between Free-
base entities and their types using predicate /type/object/types. Using predicate
/type/object/name, we created a lookup table mapping the MIDs of entities to
their labels. Similarly, using predicate /type/object/id, we created lookup tables
mapping MIDs of Freebase domains, types and properties to their labels.

Detecting Reverse Triples. As discussed in Sect. 3, Freebase has a prop-
erty /type/property/reverse_property for denoting reverse relations. A triple (r1,
/type/property /reverse_property, r2) indicates that relations r1 and r2 are reverse
of each other. When we remove reverse triples to produce FB-CVT-REV and
FB+CVT-REV, i.e., triples belonging to reverse relations, we discard all triples
in relation r2.

Detecting Mediator Nodes. Our goal is to identify and separate all medi-
ator (CVT) nodes. It is nontrivial as Freebase does not directly denote CVT
nodes although it does specify 2,868 types as mediator types. According to
our empirical analysis, a mediator node can be defined as a Freebase object
that belongs to at least one mediator type but was given no label. One
example is object /m/011tzbfr which belongs to the mediator type /com-
edy/comedy_group_membership but has no label. Once we found all CVTs, we
created Freebase variants with and without such nodes. The variants without
CVTs were produced by creating concatenated edges that collapse CVTs and
merge intermediate edges (edges with at least one CVT endpoint). For instance,
the triples (BAFTA Award for Best Film, /award/award_category/mnominees, CVT)
and (CVT, /award/award_nomination/award nominee, James Ivory) in Fig.1
would be concatenated to form a new triple (BAFTA Award for Best Film,
/award /award_category /nominees—/award/award_nomination/award_nominee, James
Ivory). Note that, in converting n-ary relationships to binary relationships, the
concatenation does not need to be carried out along edges in the same direc-
tion. For each pair of reverse triples only one is kept, and the choice of which
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one to keep is random. Two edges connected to the same CVT node thus can
have various combinations of directions, depending how their reverse edges were
randomly removed. Moreover, the performance of the models cannot be affected
by these random selection of reverse triple removal.

7 Experiments

Task. The link prediction task as described in [10] is particularly widely used
for evaluating different embedding methods. Its goal is to predict the missing h
or t in a triple (h, r, t). For each test triple (h, r, t), the head entity h is replaced
with every other entity h’ in the dataset, to form corrupted triples. The original
test triple and its corresponding corrupted triples are ranked by their scores
according to a scoring function. The scoring function takes learned entity and
relation representations as input. The rank of the original test triple is denoted
ranky. The same procedure is used to calculate rankt for the tail entity t. A
method with the ideal performance should rank the test triple at top.

Evaluation Measures. We gauge the accuracy of embedding models by sev-
eral commonly used measures in [10] and follow-up studies, including Hitse1',
Hitse3!, Hitse10!, MR} (Mean Rank), and MRR! (Mean Reciprocal Rank). An
upward /downward arrow beside a measure indicates that methods with greater/
smaller values by that measure possess higher accuracy. Instead of directly
using the above-mentioned raw metrics’, we use their corresponding filtered met-
rics [10], denoted FHitse1!, FHitse3!, FHitse10!, FMR!, and FMRR'. In calculating
these measures, corrupted triples that are already in training, test or validation
sets do not participate in ranking. In this way, a model is not penalized for
ranking other correct triples higher than a test triple.

Models. We trained and evaluated five well-known link prediction embed-
ding models—TransE [10], TransR [27], DistMult [48], ComplEx [40], and
RotatE [38]—on the four variant datasets of Freebase discussed in Sect.6.
TransE, RotatE and TransR are three representative translational distance
models. DistMult and ComplEx are semantic matching models that exploit
similarity-based scoring functions [51].

Experiment Setup. Multi-processing, multi-GPU distributed training frame-
works have recently become available to scale up embedding models [26,51,52].
Our experiments were conducted using one such framework, DGL-KE [51], with
the settings and hyperparameters suggested in [51]. The experiments used an
Intel-based machine with a Xeon E5-2695 processor running at 2.1 GHz, Nvidia
Geforce GTX1080Ti GPU, and 256 GB RAM. The datasets were randomly
divided into training, validation and test sets with the split ratio of 90/5/5, as
in [51]. In our two datasets with CVT nodes, we made sure that a CVT node
present in the test or validation set is also present in the training set. More details
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on experiment setup as well as training and inference time logs are available from
our GitHub repository.

TransE TransE

=1 FB-CVT-REV ==si FB-CVT-REV axs1 FB-CVT-REV
m— FB-CVT+REV m= FB-CVT+REV m== FB-CVT+REV
----- FB+CVT-REV «ssss FB+CVT-REV «=ss+ FB+CVT-REV
= FB+CVT+REV = FB+CVT+REV = FB+CVT+REV

(a) MRR! (b) MR} (c) Hitse1!

Fig. 5. Link prediction performance on our four new variants of Freebase

Results on Full-Scale vs. Small-Scale Freebase Datasets. The experiment
results are reported in Table7 and Fig.5. Link prediction results on full-scale
Freebase datasets have never been reported before, barring results on problem-
atic datasets such as Freebase86m which we explained in Sect. 3.3. Our datasets
FB-CVT-REV and FB-CVT+REV can be viewed as the full-scale counterparts
of FB15k-237k and FB15k (of which the results are in Table3), respectively.
Comparing the results on the full-scale and small-scale datasets shows that mod-
els have much stronger performance on the full-scale datasets. Our goal is not to
compare different models or optimize the performance of any particular model.
Rather, the significant performance gap between the full-scale and small-scale
Freebase datasets is worth observing and not reported before. This accuracy
difference could be attributed to the dataset size difference, as is the case in
machine learning in general. Results like these suggest that our datasets can
provide opportunities to evaluate embedding models more realistically.

Impact of Reverse Relations. The impact of reverse relations at the scale of
the full Freebase dataset was never studied before. This paper thus fills the gap.
As Fig.5 and Table 7 show, results on the two variants without CVT nodes—
FB-CVT-REV (reverse relations excluded) and FB-CVT4+REV (reverse rela-
tions included)—present substantial over-estimation of link prediction models’
accuracy when reverse triples are included. So do the results on the two variants
with CVT nodes—FB+CVT-REV and FB+CVT+REV.

Impact of Mediator Nodes. As articulated in Sect. 3.2, no prior work has
studied the impact of mediator nodes on link prediction, regardless of dataset
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Table 7. Link prediction performance on four =~ Table 8. Triple classification
new Freebase variants and Freebase86m results on FB15k-237
FB-CVT-REV consistent h
Model  |MRR' MR' | Hitsei! Hitse3! Hitse10' Model | Precision | Recall | Acc | F1
TransE | 0.67 |48.49 | 0.61 0.70 0.78 TransE | 0.52 0.59 0.52]0.55
DistMult | 0.70 |70.49 | 0.66 0.72 0.77 DistMult | 0.53 0.51 | 0.53]0.52
ComplEx | 0.71 | 67.74 | 0.68 0.73 0.78 ComplEx | 0.54 0.48 |0.53]0.51
TransR | 0.66 | 58.55 | 0.62 0.68 0.74 RotatE | 0.52 0.53 | 0.52/0.52
RotatE | 0.80 | 75.72/0.78 0.81 0.84 inconsistent h
FB-CVT+REV Model Precision | Recall | Acc | F1
Model  |MRR' MR' | Hitsei! Hitse3! Hitse10' TransE | 0.81 0.69 |0.76  0.74
TransE | 0.94 [6.07 |0.92 0.95 0.97 DistMult | 0.94 0.87 1 0.91/0.90
DistMult |0.95 [9.23 |0.94 0.96 0.97 ComplEx | 0.94 0.88 0.91/0.91
ComplEx | 0.95 | 8.43 |0.95 0.96 0.97 RotatE | 0.89 0.83 | 0.87|0.86
TransR [0.94 |5.98 [0.93 0.95 0.96 consistent t
RotatE | 0.96 | 10.43 |0.95 0.96 0.97 Model Precision | Recall | Acc | F1
FB+CVT-REV TransE | 0.58 0.54 | 0.57|0.56
Model ~ |MRR' MR' | Hitsei! Hitse3! Hitse10' DistMult | 0.59 0.55 |0.580.57
TransE | 0.57 |36.120.49 0.61 0.75 ComplEx | 0.60 0.56 | 0.59|0.58
DistMult | 0.61 |81.84 | 0.56 0.63 0.70 RotatE | 0.60 0.47 0.58|0.53
ComplEx | 0.62 | 83.20 | 0.57 0.64 0.70 inconsistent t
TransR | 0.64 | 47.52 | 0.58 0.66 0.75 Model Precision | Recall | Acc | F1
RotatE | 0.73 | 68.43 | 0.69 0.75 0.80 TransE | 0.90 0.82 | 0.86|0.86
FB+CVT+REV DistMult | 0.95 0.89 0.92/0.92
Model ~ |MRR' MR' | Hitsei! Hitse3' Hitse10' ComplEx | 0.95 0.90 [0.930.92
TransE | 0.88 |5.60 |0.84 0.92 0.96 RotatE | 0.87 0.78 0.83/0.82
DistMult |0.92 |12.92|0.91 0.93 0.95
ComplEx | 0.92 | 13.27 | 0.91 0.93 0.95
TransR  0.93 |6.07 |0.91 0.94 0.96
RotatE | 0.94 | 10.26 | 0.93 0.95 0.96
Freebase86m
Model MRR' |MR' |Hitse1i' |Hitse3' Hitse10'
TransE | 0.72 |23.27|0.65 0.77 0.87
DistMult | 0.83 | 45.54 | 0.81 0.84 0.87
ComplEx | 0.83 |46.55 | 0.81 0.84 0.86
TransR | 0.65 | 71.91 | 0.61 0.68 0.74
RotatE | 0.82 | 65.46 | 0.81 0.82 0.84

scale. Comparing the results on the two variants without reverse triples—FB-
CVT-REV (mediator nodes excluded) and FB4+CVT-REV (mediator nodes
included), as illustrated in Fig.5 and Table 7, shows that the existence of CVT
nodes led to weaker model accuracy. Although the results on FB-CVT+REV and
FB+CVTH+REV are over-estimations since they both retained reverse triples,
similar observation regarding mediator nodes is still made—the models are
slightly less accurate on FB4+CVT+REV (mediator nodes included) than FB-
CVT+REV (mediator nodes excluded). More detailed analyses remain to be
done, in order to break down different impacts of individual factors that con-
tribute to the performance degeneration, such as the factors analyzed in Sect. 3.2.
Our newly created datasets will facilitate research in this direction.
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Freebse86m vs. FB4+CVTHREV. Comparing the results on these two
datasets, as shown in Table 7 and Fig. 4, reveals that the existence of non-subject
matter triples degenerates model performance. In general, non-subject matter
triples and subject-matter triples should be examined separately given their
fundamental difference. Mixing them together hinders robust understanding of
embedding models’ effectiveness in predicting knowledge facts.

Usefulness of the Type System. To demonstrate the usefulness of the Free-
base type system we created (Sect.4), we evaluated embedding models’ perfor-
mance on the task of triple classification [43] using the LibKGE library [11]. This
task is the binary classification of triples regarding whether they are true or false
facts. We needed to generate a set of negative triples in order to conduct this
task. The type system proves useful in generating type-consistent negative sam-
ples. When triple classification was initially used for evaluating models [36,43],
negative triples were generated by randomly corrupting head or tail entities
of test and validation triples. The randomly generated negative test cases are
not challenging as they mostly violate type constraints which were discussed in
Sect. 4, leading to overestimated classification accuracy. Pezeshkpour et al. [32]
and Safavi et al. [35] noted this problem and created harder negative samples.
Inspired by their work, we created two sets of negative samples for test and
validation sets of FB15k-237. One set complies with type constraints and the
other violates such constraints. To generate a type consistent negative triple for
a test triple (b, r, t), we scan the ranked list generated for tail entity predic-
tion to find the first entity t’ in the list that has the expected type for the
objects of relation r. We then add the corrupted triple (b, r, t’) to the set of
type consistent negative triples for tail entities if it does not exists in FB15k-237.
We repeat the same procedure to corrupt head entities and to create negative
samples for validation data. To generate type-violating negative triples we just
make sure the type of the entity used to corrupt a positive triple is different
from the original entity’s type. The results of triple classification on these new
test sets are presented in Table8. Note that Table8 does not include TransR
since it is not implemented in LibKGE. The results in the table show that the
models’ performance on type-consistent negative samples are much lower than
their performance on type-violating negative samples.

8 Conclusion

We laid out a comprehensive analysis of the challenges associated with Free-
base data modeling idiosyncrasies, including CVT nodes, reverse properties, and
type system. To tackle these challenges, we provide four variants of the Freebase
dataset by inclusion and exclusion of these idiosyncrasies. We further conducted
experiments to evaluate various link prediction models on these datasets. The
results fill an important gap in our understanding of embedding models for
knowledge graph link prediction as such models were never evaluated using
a proper full-scale Freebase dataset. The paper also fills an important gap in
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dataset availability as this is the first-ever publicly available full-scale Freebase
dataset that has gone through proper preparation.
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