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A canonical feature of the constraint satisfaction problems in NP is approximation hardness, where
in the worst case, finding sufficient-quality approximate solutions is exponentially hard for all known
methods. Fundamentally, the lack of any guided local minimum escape method ensures both exact
and approximate classical approximation hardness, but the equivalent mechanism(s) for quantum
algorithms are poorly understood. For algorithms based on Hamiltonian time evolution, we explore
this question through the prototypically hard MAX-3-XORSAT problem class. We conclude that
the mechanisms for quantum exact and approximation hardness are fundamentally distinct. We
review known results from the literature, and identify mechanisms that make conventional quantum
methods (such as Adiabatic Quantum Computing) weak approximation algorithms in the worst
case. We construct a family of “spectrally filtered” quantum algorithms that escape these issues,
and develop analytical theories for their performance. We show that, for random hypergraphs in
the approximation-hard regime, if we define the energy to be E = Nunsat −Nsat, spectrally filtered
quantum optimization will return states with E ≤ qmEGS (where EGS is the ground state energy) in
sub-quadratic time, where conservatively, qm ≃ 0.59. This is in contrast to qm → 0 for the hardest
instances with classical searches. We test all of these claims with extensive numerical simulations.
We do not claim that this approximation guarantee holds for all possible hypergraphs, though our
algorithm’s mechanism can likely generalize widely. These results suggest that quantum computers
are more powerful for approximate optimization than had been previously assumed.
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I. INTRODUCTION

Combinatorial optimization of constraint satisfaction
problems (CSPs) is an enormously important–and often,
enormously difficult–area of modern computer science [1].
Specifically, a huge array of problems in optimization, cy-
bersecurity, machine learning, and more amount to find-
ing low-energy configurations of large collections of M
few-body constraints over N binary variables, see Fig. 1.
Generically, the energy landscape of these cost functions
is extremely rough (see Fig. 3) with exponentially many
local minima, making it very difficult to find the true
ground state or even a sufficiently low energy configura-
tion.
From the point of view of statistical physics these cost

functions are often equivalent to the Hamiltonian of a
disordered spin glass, and the core hardness mechanism
comes from the inability of the system to efficiently es-
cape local minima by flipping small numbers of spins at
each step [2–13]. In the hardest problems–and often,
even, in the typical case–the time to find the solution
grows exponentially for all known classical and quantum
methods. Remarkably, these problems are not only hard
to solve, but also hard to approximate, where approxi-
mation is defined as finding any configuration within a
defined fraction of the global optimum [14]. And while
a host of clever algorithms have been proposed over the
years to attack these problems, supplemented by rapid
growth in computing power since the invention of inte-
grated circuits, the exponential worst-case difficulty scal-
ing remains, and is believed (in the as yet unproven state-
ment that P ̸= NP) by most computer scientists to be a

fundamental and insurmountable fact of our reality, at
least for classical computers.
To make further progress, a host of heuristic quantum

algorithms have been developed, such as analog quan-
tum annealing [15–21], and its closed system and dig-
ital cousins, adiabatic quantum computing (AQC) [22,
23] and quantum approximate optimization algorithms
(QAOAs) [24]. In all of these methods the spin glass
problem Hamiltonian (diagonal in the computational z
basis) is combined with a transverse field term (typ-
ically, but not exclusively, a uniform field along x),
which allows the system to escape from local minima
through collective quantum fluctuations. In many cases
this takes the form of multiqubit tunneling, a collective
process where large clusters of qubits all change con-
figuration simultaneously to tunnel from one minimum
to another [25]. In some artificial problem instances
these processes have been shown to produce exponen-
tial speedups compared to classical simulated annealing,
with polynomial speedups observed in experiment for
short-ranged graphs [21, 26–29]. However, generally ap-
plicable beyond-quadratic speedups for NP optimization
problems have not been realized, and given the present
noisy state of quantum hardware and the projected severe
overhead of error correction [30], this degree of speedup
is insufficient for practical advantage over classical ma-
chines.
In this work, we approach the question of approxi-

mation hardness with the goal of identifying both core
intuitive mechanisms ensuring it, and opportunities for
exponential quantum advantage. In particular, for MAX-
3-XORSAT (a particularly difficult CSP class, defined in
detail in section IID), we argue the following:

• The hardness mechanism(s) for directly finding the
ground state of a given problem Hamiltonian HP

with heuristic quantum methods can be readily
identified, and likely cannot be circumvented in the
worst cases.

• Unlike classical algorithms based on local updates,
the mechanisms which ensure that it is hard to find
the ground state do not generalize to ensure ap-
proximation hardness for quantum algorithms.

• However, there are good reasons to believe that
traditional quantum approaches such as AQC or
QAOA are not effective approximators (e.g. re-
liably returning low energy states in polynomial
time) in the worst case. We present relatively large
scale numerical simulations that support this ex-
pectation.

• Understanding why this is the case suggests a
novel spectrally filtered quantum optimization strat-
egy, that transforms HP through the application
of nonlinear filter functions and then solves the
transformed Hamiltonian through more traditional
means. For some variations the performance of
spectrally filtered quantum optimization can be



3

predicted analytically and promises an efficient ap-
proximation guarantee for an extremely large frac-
tion of instances, well into the classically hard
regime. For random hypergraphs in this regime,
spectrally filtered quantum optimization provides
an exponential speedup for returning low energy
states.

We support these claims with extensive theoretical
analysis and numerical tests of all core predictions, to
the largest feasible system sizes for simulating quantum
algorithms, and to the largest sizes needed to ensure
asymptotic scaling has been reached for classical algo-
rithms. In doing so, we define instance construction
rules that ensure classical approximation hardness, at
least for algorithms based on local updates, and numeri-
cally establish that high depth Trotterized AQC (TAQC)
does not exhibit meaningful quantum advantage in find-
ing either exact or approximate solutions to these hard
instances. We analytically and numerically show that
spectrally filtered quantum optimization can efficiently
approximate these problems, in practice in a linearly or
sub-quadrically growing number of cost function evalu-
ations, depending on formulation. We present all these
results as constructive evidence in support of our core
conjecture:
Core conjecture: Quantum approximability

of random MAX-3-XORSAT instances – Let
P (NC , N, ϵ) be the set of all MAX-3-XORSAT instances
with NC unique three-body constraints (with no nega-
tions), N binary variables, and where the optimal con-
figurations G satisfy (1− ϵ)NC constraints in total. Let
E (s) = −NC (nsat (s)− nunsat (s)) be our definition of
the classical energy of configuration s. Let ϵ ≪ 1 be a
small constant, let the density of constraints NC/N ≡
dC ≫ 1 be large, and let qm > 0 be a constant indepen-
dent of ϵ and dC . Finally, let HP be a random instance
drawn from P (NC , N, ϵ). Then, with high probability,
but not guaranteed for all instances, a quantum com-
puter with O (N) noise-free qubits can return string(s)
with E ≤ qmE (G) in O

(

N2
CN

2polylog (N)
)

or fewer to-
tal gates. We further conjecture that qm ≥ 0.6, and that
for ϵ≪ 1 and dC ≫ 1 it is likely close to 1.
We present two algorithms which would prove this con-

jecture true if the analytically predicted scaling of either
one holds asymptotically as N → ∞. The algorithms
are both based on spectral filtering, but their structure,
and the methods used to predict performance, are very
different; we see the fact that two very different calcula-
tions based on different methods return similar results as
further suggestive that our conjecture is true.
The central observation underlying both approaches is

that if one is focused on finding approximate solutions
using quantum time evolution, the difficulty is controlled
mostly by global statistical properties of the problem,
many of which are hypergraph-independent. For a “di-
rect” implementation of the MAX-3-XORSAT cost func-
tion, these properties imply an exponential time to so-
lution. However, by optimizing a filtered cost function,

f (HP ) (where f (E) is any real scalar function of the
classical energy), one can tune the most important sta-
tistical properties and there are straightforward choices
of f (E) that lead to low-order polynomial scaling, at
least for random hypergraphs. We state the above claim
as a conjecture rather than a proved statement owing to
the fact that both analytical calculations rely on approx-
imation steps to make them tractable, and while these
approximations are well-supported theoretically and the
final results are matched by numerics up to the largest
system sizes we could computationally access, we err on
the side of caution nonetheless.
This paper is structured as follows. In section II, we

first provide an overview of classical and quantum ap-
proximation hardness and the MAX-3-XORSAT prob-
lem, define the construction rules for the problems stud-
ied in this work, and state the principles which guide
the parameter choices we make in formulating our algo-
rithms. In section III, we define spectrally filtered quan-
tum optimization and propose three optimization algo-
rithms based on it. Then, in section IV, we develop novel
theoretical tools capable of predicting the performance of
these algorithms, and establish an approximation guar-
antee for random hypergraphs. To verify all of these
claims, in section V, we present extensive numerical tests
and simulations for a variety of algorithms and problem
parametrizations. A summary of the key simulation re-
sults is presented in table I. We finally offer concluding
remarks, and include additional technical details in the
appendices.

II. HARDNESS MECHANISMS, PROBLEM
DEFINITIONS AND PREVIOUS APPROACHES

A. Inability of previous methods to find or even
approach the ground state at large N

To motivate our novel methods, it is important to first
review the qualitative reasons classical and established
quantum approaches are unable to efficiently solve or ap-
proximate these problems. The classical failure mecha-
nism is straightforward: hard problems display a high
density of poor quality local minima, e.g. high energy as
compared to the true ground state. Once a local mini-
mum is reached, as no general mechanism for guided local
minimum escape exists it is impossible to know in gen-
eral how close one is to a ground state, either in energy
or Hamming distance (number of bit flips separating two
states), at least unless the found minimum happens to
satisfy a large fraction of constraints.
We emphasize that we are concerned here with an ap-

proximation guarantee, not just a method that works well
in practice. For completely random problems, one can of-
ten predict the average ground state energy using statisti-
cal physics arguments, such as the famous Parisi solution
to the Sherrington-Kirkpatrick model [31]. If one is able
to find configurations close to this energy in a given in-
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stance, that is not sufficient to rule out the existence of
some other, much deeper minimum far away in configura-
tion space, even if randomly drawing problems with such
deep minima is exponentially unlikely. In other words,
there is no efficient classical algorithm to know if a given
instance is extremal in this way unless P=NP [14] (see
section IID for more details).
Since there are in many cases exponentially many more

poor quality minima than low-lying ones, the basin of
attraction of the true ground state is generally an expo-
nentially small fraction of total configuration space and
thus very hard to find, a phenomenon that has been re-
ferred to as an “entropic barrier” to problem solving [12].
In particular, the authors of [12] showed that for the 3-
XORSAT problem they considered, once a local mini-
mum was found it was more efficient to simply restart the
algorithm from a random state instead of attempting to
climb out of the found minimum through penalized local
operations, as in simulated annealing or parallel temper-
ing [32]. We expect this may be a generic feature in some
of the hardest CSP classes. And interestingly, these ar-
guments apply equally well to approximation hardness,
not just finding the optimal solution. While for a given
class and system size approximation is nominally an eas-
ier problem, given that there are many more valid ap-
proximate solutions, both tasks scale exponentially in the
worst case, for fundamentally the same reason. We now
turn to quantum algorithms, for which the situation is
considerably more complex.

B. Mechanisms for quantum solution hardness:
exponentially small gaps and transverse field chaos

We consider a broad class of heuristic quantum algo-
rithms, which derive from quantum annealing, AQC and
QAOA. These algorithms can be supplemented with ad-
ditional gate model techniques, such as amplitude am-
plification [33], which improve performance but do not
circumvent exponential runtimes. In these algorithms
the system is initialized in the ground state of a trivial
Hamiltonian, which is then slowly interpolated into HP ;
the system is then measured. Other variations based on
energy matching [34–37] initialize a known or planted
low energy state of HP and then use collective quantum
tunneling to try to find other low energy states.
These algorithms are fundamentally distinct from clas-

sical approaches in two ways. The first is the presumed
mechanism for quantum advantage: collective quantum
phase transitions (including multiqubit tunneling), where
local minima can be efficiently escaped through many-
body quantum effects that have no classical analog. Sec-
ond and more subtly, where classical local update algo-
rithms all start from a random high energy state and
attempt to cool to low energy states, the quantum algo-
rithms considered in this work start below the energy of
the problem ground state. They then attempt to transi-
tion into the global minimum and into other low energy

states as the energy of the initial state crosses the target
state from below as the total Hamiltonian changes.
Unfortunately, when compared to other applications

such as quantum simulation or factoring large numbers
with Shor’s algorithm, the realistic performance advan-
tage of these algorithms is generally much more modest.
In the worst case–and for many problem classes, the typ-
ical case–the macroscopic quantum tunneling rate into
the ground state decreases exponentially in N . This is
a fairly generic expectation, as in many cases, including
the MAX-3-XORSAT problem discussed below, the tun-
neling rate at the crossing point can be computed using
Nth order perturbation theory and the convergence of
such a method implies exponential decay.
But let us imagine that one could somehow ensure that

the gap at the paramagnet-to-spin-glass transition decays
polynomially in size of the problem. This occurs nat-
urally in the Sherrington-Kirkpatrick problem [38, 39]
and, likely, for MAXCUT [40, 41], and in other classes
it can sometimes be engineered through clever algorithm
formulation [20, 42–47]. Unfortunately, even this is not
sufficient to ensure that the solution can be found in poly-
nomial time. This is because of a phenomenon known as
transverse field chaos (TFC) [48, 49], where energetic cor-
rections from the transverse field can change the energy
hierarchy of classical minima in the quantum spin glass
phase, potentially pushing local minima below the en-
ergy of the true ground state of HP (when all transverse
terms are turned off). Consequently, optimization meth-
ods will steer the system toward these false ground states
first, with additional phase transitions that occur as the
transverse field is further weakened. As these transitions
occur at weak field values, from the analysis in section IV
they are generically exponentially slow, and indeed, engi-
neering this effect intentionally is an elegant way to craft
hard benchmark problems for quantum algorithms [50].
This effect can be avoided by restricting the algorithm
to unstructured driver Hamiltonians [51] or very weak
transverse fields, but in either case performance is very
poor. The combination of exponentially small gaps and
TFC make it extremely unlikely that any quantum al-
gorithm of this type can reliably and directly find the
ground state of NP-complete problems.

C. Approximation hardness and conventional
AQC/QAOA

Approximation hardness, however, is another story.
For many NP-hard problems guaranteeing an approxi-
mation better than random guessing by a constant frac-
tion is also NP-hard [14, 52, 53]. As TFC involves cross-
ings between states that were close in energy to begin
with, it cannot by itself lead to quantum approximation
hardness at this level. So for example, if the random
state energy of a given class is chosen to be zero and the
ground state −N , a sufficiently general convention, then
any algorithm which could return states in polynomial
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time with energy ≤ −cN for constant c > 0 for all in-
stances would promise a potentially exponential speedup.
Thus, a hypothetical algorithm which always returned
states with energy −N/3 or below in polynomial time
assuming spectral continuity would still promise an ex-
ponential speedup for the hardest problem classes even if
TFC reduced that guarantee to −N/4. In other words,
while TFC can prove ruinous for finding an exact solution
when the problem exhibits a clustering phase [13, 54–60]
and there are exponentially many states very close to the
ground state in energy but well separated from it in Ham-
ming distance, it is not going to push zero energy states
into competition with O (1) fractions of the ground state
energy.1

Exponentially small gaps are a more serious problem,
but those too cannot so easily be assumed to ensure
approximation hardness. This is because the empiri-
cal “difficulty exponents” of phase transitions in low-
order CSPs are often quite small; for random hypergraph
MAX-3-XORSAT instances, the minimum gap at the
paramagnet-spin glass transition scales as approximately
Ω0 (N) ∼ 2−cN with c ≃ 0.125− 0.14 (see section IVB).
Quite generally (see the MSCALE conjecture in Ref.
[61]) this is an asymptotically accurate proxy for the tun-
neling matrix element, which we can use to approximate
the tunneling rate from the paramagnetic initial state
and the dressed excited states of HP . Crucially, while
the fraction of states pE (N) below the approximation
threshold is typically exponentially small, the total num-
ber of such states is exponentially large, ∼ 2N × pE (N).
Thus an optimistic first approximation would be to look
for an energy E where Ω2

0 (N) × 2N × pE (N) stops de-
caying exponentially in N , which should be a relatively
easy task.

But this naive analysis is inaccurate because, as we ex-
plain momentarily, destructive quantum interference and
a weakening transverse field suppress matrix elements
to excited states as compared to ground state mixing,
and the decay exponents grow with excitation energy.
The exponential number of target states in approxima-
tion problems should still allow an algorithm suffering
from both TFC and exponentially decaying matrix ele-
ments to guarantee an efficient approximation, provided,
at least, that those decay exponents are not too large. 2

1 It’s important to note that for some problems where the clas-
sical approximation hardness threshold is relatively close to 1,
such as MAXCUT, TFC might well become a serious obstacle to
achieving quantum advantage for approximation.

2 In a technical sense, the success of the novel spectrally folded
trial minimum annealing algorithm developed in this work pivots
on the mechanism to suppress destructive quantum interference
and maintain a strong transverse field at the transition point,
thus preserving or even improving small tunneling rate exponent
in the estimate above. It is worth noting that a dimensionless
Thouless criterion similar (but distinct) to the rate-based one
above has been advocated as an accurate estimate for the many-
body localization-delocalization transition[62, 63] – localization

Given all this, should we expect that AQC or QAOA
will efficiently approximate NP-hard problems? For-
mally, it has not been proven that these algorithms are
not efficient approximators when the circuit depth is al-
lowed to grow as a low-order polynomial in system size,
though there are good reasons to be doubtful, supported
by a number of recent works [64–67]. Let us consider,
qualitatively, how AQC and related methods solve such
a problem, assuming the limit of quasi-continuous time;
we present a quantiative analysis below in Sec. IVB. The
system is initialized in the paramagnetic ground state of
a uniform transverse field Hamiltonian HD, and the sys-
tem evolves in time interpolating between HD and HP

by lowering the coefficient of one and raising the coeffi-
cient of the other, raising the energy of the paramagnetic
state until it crosses the problem ground state from be-
low. We again emphasize the fundamental distinction of
crossing from below, rather than cooling from above, in
quantum and classical algorithms here. The minimum
gap at the transition is expected to decay exponentially
in N and is approximately given by the overlap of the
dressed problem ground state |GD⟩ with the paramagnet
state |S⟩; we perform this calculation in Sec. IVB. If the
dressings are weak enough that |GD⟩ = |G⟩ (the Grover
limit [68]), then ⟨S|GD⟩ = 2−N/2; however for random
MAX-3-XORSAT problems the perturbative corrections
spread |GD⟩ over a more significant (if still exponentially
small) fraction of Hilbert space and reduce the decay ex-
ponent to around a quarter of that in the Grover case.

Assuming that we evolve time too quickly (e.g. not ex-
ponentially long) and miss the primary phase transition,
we can ask how efficiently |S⟩ will mix with the problem’s
excited states, as these rates ultimately determine the al-
gorithm’s efficacy as an approximator. Calculating them
directly is very difficult, but we can qualitatively predict
that they should be much smaller for two reasons. First,
these crossings occur as the transverse field strength κ is
reduced toward zero, and since the dressings that reduce
the decay exponent all scale with extensive powers of κ,
they will be much reduced by any reduction in κ itself.
Second, when considering a dressed excited state |ED⟩,
the perturbative dressings that come from mixing with
states with lower energy now have opposite sign and de-
structively interfere with other corrections in the overlap
with |S⟩, in contrast to |GD⟩ where all higher order terms

requires the matrix element for tunneling to be smaller than the
level spacing for which inverse density of states is often an ac-
curate proxy. While we generally expect excited states above a
typical local minumum to be (intra-well) delocalized, they are
not inter-well delocalized and so the question of efficient approx-
imability we are interested in is likely closely related to whether
or not we are able to delocalize the many-body dynamics across
different local minima, particularly for the trial minimum an-
nealing formulation in section IIID. Note, however, that of the
two criteria the rate-based one is the more conservative of the
two. We intend to revisit this analogy between approximability
and delocalization in the future.
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are positive definite. Both of these effects can, and do,
considerably worsen the mixing rates with excited states
and make AQC a poor approximator in the worst cases,
and often in practice. That said, we do note a recent en-
couraging result demonstrating an empirical scaling ad-
vantage over classical heuristics in finding approximate
solutions to 2d spin glasses, using real quantum anneal-
ing hardware [29].

D. The MAX-3-XORSAT problem and
approximation-hard instance construction

Given the severe overhead of fault tolerance [30], quan-
tum hardware is expected to exhibit enormous prefactor
disadvantages as compared to parallel silicon, particu-
larly when the comparison is made to hardware with
equivalent financial value (e.g. millions of USD). Quan-
tum algorithms thus have the most promise when the
problem is hard or outright impossible for classical ma-
chines. NP-hard constraint satisfaction problems are no
exception, so when benchmarking a proposed quantum
algorithm it is important to ensure that the problem
classes we consider are sufficiently hard for classical ma-
chines, and in the present NISQ era, exhibit their expo-
nential difficulty at small enough N that numerical sim-
ulations of quantum algorithms can demonstrate mean-
ingful improvements. MAX-3-XORSAT [14] problems
are ideal for benchmarking quantum algorithms because
their exponential difficulty scaling is obvious at small N
for both classical and prior quantum approaches, in con-
trast to other problems where the asymptotic exponential
scaling often does not set in until system sizes that are
prohibitively large for simulation.
The MAX-3-XORSAT problem consists of a hyper-

graph of NC three-body constraint terms, as sketched
in figure 1:

HP = −
NC
∑

ijk

VijkZiZjZk, Vijk = ±1. (1)

A constraint is said to be satisfied if, for a given bitstring,
VijkZiZjZk = 1, and unsatisfied otherwise. A random
state satisfies half the constraints on average and is thus
energy zero. This is called a hypergraph because Vijk has
three indices rather than the usual two found in graph
theory. Thanks to the linearity of the problem, one can
use Gaussian elimination to check if a solution exists that
satisfies all the constraints in O

(

N3
)

time, but if the
problem is not fully satisfiable, finding the lowest energy
state(s) is NP hard.
Further, it was shown by H̊astad [53] that if the true

ground state satisfies a fraction (1− ϵ) of the constraints,
then finding any configuration that satisfies more than
(1/2 + ϵ) of them is also NP-hard (see also [69–71]). The
hardest instances are thus those with small but finite ϵ,
e.g. almost satisfiable problems, as both finding the true
ground state, and even finding an approximate solution,

FIG. 1: Graphical representation of a random 3-uniform hy-
pergraph GH = (V, E) used in the MAX-3-XORSAT problem.
The set of vertices V labelled {v1, . . . , v6} are connected to a
hyperedge (i.e., constraint) from the set E on the right labeled
{c1, . . . , c8} if the vertex is in constraint. Each constraint nec-
essarily contains a random set of three unique vertices. The
legend specifies the value of the variable Vijk = ±1 where the
grey and white filled cj boxes denote a (+1), and (−1) valued
constraint respectively. This example has a constraint density
of NC = 4

3
N for 6 vertices and 8 constraints, although we use

other values of NC throughout this work.

is exponentially difficult. Note that if the problem graph
is sparse (e.g. NC/N is on the order of 1) finding approx-
imate solutions can still be easy, since one can randomly
select a fraction of the constraints < cN (for some O (1)
constant c), and solve that new, much easier problem; so-
lutions to this sub-problem will satisfy half the remaining
constraints, on average.

To ensure that we are studying problems that are both
hard to solve and hard to approximate for all known
methods, inspired by Refs. [69–73] we consider a fam-
ily of instances we call planted partial solution prob-
lems (PPSPs). To construct a PPSP, we choose a small
unsatisfied fraction ϵ and pick a random hypergraph of
NC ≫ N unique triplets; we use ϵ = 0.1 in all simu-
lations here. We then pick a random bitstring G and
randomly select (1− ϵ)NC of the constraints to be satis-
fied in G, by picking the sign of Vijk appropriately, with
the rest unsatisfied. If ϵ is small and NC/N ≫ 1, G will
be the problem ground state with very high probabil-
ity, as the SAT/UNSAT transition for this problem is at
NC/N ∼ 0.92 [74] and at densities much higher than the
SAT/UNSAT threshold ground states for random graphs
satisfy NC/2+O

(√
N ×NC

)

constraints. When we refer
to random hypergraph problems throughout this work,
we refer to this construction rule: a random, potentially
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fairly dense, hypergraph where one can optionally ran-
domly chose an anomalously large fraction of constraints
to be satisfied by matching the signs to a randomly cho-
sen ground state bitstring. We note that [71] recently
discovered a hardness threshold at NC ∝ N3/2, where at
higher densities the problem again becomes amenable to
classical optimization.

Our PPSP construction is necessary because truly ap-
proximation hard problems–where the practical polyno-
mial time approximation difficulty approaches the ran-
dom guessing limit of the complexity class separation–
are rare in the space of all possible instances. Suffi-
ciently sparse problems are approximation-easy, and for
denser random problems one can always find strings that
satisfy NC/2 +O

(√
N ×NC

)

constraints in polynomial
time [73, 75], with a smaller prefactor in front of the√
N ×NC than the prefactor in the average satisfied in

the ground state. We formulated our PPSP construc-
tion to ensure our algorithm was being benchmarked
on instances with a plausible claim to true classical ap-
proximation hardness. We note that commonly stud-
ied 3-regular problems [12, 76] do not display strong ap-
proximation hardness, as they are sparse, and can be
solved efficiently if satisfiable. And intriguingly, we show
that, by some metrics, the performance of our novel al-
gorithm progressively improves with increasing NC/N in
this regime, at constant ϵ.

Finally it is important to note an important phe-
nomenological difference between truly random problems
and random approximation-hard instances drawn from
P (NC , N, ϵ), for which our PPSPs are merely an effi-
cient construction method. As already mentioned, for
truly random problems with large dC , the true ground
state G satisfies NC

2 + O
(√
NCN

)

constraints, and the
system exhibits clustering physics in the sense that there
are exponentially many well-separated local minima with
similar scaling, e.g. close to the energy of G. Find-
ing any one cluster is not difficult, so these instances
are not approximation-hard in practice, though finding
the optimal solution (which may be highly degenerate)
is generally hard. In contrast, for random instances with
sufficiently large dC and small ϵ, it is overwhelmingly
likely that G is unique, and indeed it may not even be
possible for a proper clustering phase to emerge near
the ground state energy. However, if we look at ener-
gies well above EG we find that these problems do ex-
hibit clustering physics and tend to have exponentially
many well-separated local minima satisfying the same
NC

2 +O
(√
NCN

)

as in random problems. We refer to this
as the clustering energy throughout this work; the core
phenomenological difference between these instances and
random problems is thus that one minimum is extensively
lower than all the others, and finding it, or configurations
close to it in energy, is the goal of our algorithms. That
the clustering energy in PPSPs matches that of random
problems is consistent with the fact that deciding if a
given instance is a truly random problem or a PPSP (in
our language) is itself classically hard [70–72].

E. Parameter choices for algorithm formulation
and benchmarking

Before presenting our main theoretical and numerical
results, we want to discuss the principles that guide how
we choose parameters when formulating and testing our
novel algorithms. Our choices of the runtime scaling,
and other parameters such normalizing the ground state
to −N in the classical problem, and the timestep dt, are
motivated by the desire to carefully separate fundamen-
tal limitations on algorithm performance from incidental
ones. Here, we consider fundamental limitations to be
the core physics of the problem, principally exponentially
small transition rates; these are the limitations that we
wrote this paper to explore and which require new theo-
retical and algorithmic insight to address. Conversely, in-
cidental limitations are more prosaic effects that degrade
performance, such as Trotter error from larger timesteps,
or the proliferation of local excitations by varying param-
eters too quickly. These limitations are more generic, and
have easier solutions such as smaller timesteps and slower
parameter variation, though determining optimal param-
eter choices (particularly when noise must be taken into
account) can still be challenging. However, it is often not
straightforward to determine, in practice, why a given al-
gorithm is not performing as expected, particularly when
the only useful information available at the end is a set
of probabilities of finding various target states.
The parameter choices throughout this work are

guided by the goal of having the most easily interpretable
results, to check the basic veracity our theories. We
did not try to determine the optimal use of quantum
resources for a given problem. By far the most impor-
tant consideration in this vein is the runtime per shot.
Obviously, the choice of optimal runtime scaling in any
algorithm is often subtle, and our core conjecture–that
random hypergraph MAX-3-XORSAT instances can with
high probability be efficiently approximated in quantum
polynomial time–is somewhat loose on the degree of the
polynomial scaling. Our choice of generally linear scaling
is motivated by the fundamental physics of the problems
under consideration.
Specifically, all of the algorithms in this work consist

of parameter sweeps, where states in a target manifold
T are found through collective phase transitions from a
trivial initial state as it energetically crosses the states
in T . In the case of multi-stage filtered optimization
(MSFO), T is simply the classical problem ground state,
where for the folded optimization algorithms T includes
all states near the approximation target AEGS (both al-
gorithms are detailed in the next section). Following the
arguments in [61], the total success probability for run-
time tF (N) is expected to scale as

P (tF ) ∝
∑

j∈T

∣

∣Ω2
0j

∣

∣

Wj (N)
tF (N) , (2)

where Ω0j is the matrix element to transition to state j
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in T . If the algorithm proceeds by varying dimensionless
control parameter s, then the energy scaleWj (N) is pro-
portional to the slope of ∂ (E0 − Ej) /∂s in the vicinity
of the transition

Wj ∝
∣

∣

∣

∣

⟨0| ∂H
∂s

|0⟩ − ⟨j| ∂H
∂s

|j⟩
∣

∣

∣

∣

. (3)

Here, |0⟩ is our initial state and |j⟩ is the target state,
with Eq. 3 measured in the vicinity of the avoided cross-
ing but not precisely at it, where that expression formally
vanishes. Near a single transition at s = sc, the energy
gap ∆ (s) is typically expected to scale as

∆ (s) ∝ 2
√

Ω2
0j +W 2

j (s− sc)
2
, (4)

and can be extracted by fitting to this form. For the
problems and energy scales chosen in this work, all Wj

are asymptotically O (N) in all studied cases.
This scaling, in our estimation, immediately sets a floor

of tF (N) ∝ N . Even in a very “easy” problem where Ω0j

is constant with N , for algorithms of this type for any
runtime tF (N) that scales sublinearly P (tF ) will subse-
quently decay with system size. Further, for sufficiently
fast ramps, one needs to consider local diabatic heat-
ing that arises from varying Hamiltonian parameters too
quickly, as a process where the system successfully tran-
sitions into a target state in T but is then excited out of
it by creating local excitations similarly reduces P (tF ),
causing it to decay more quickly than Eq. 2 predicts. For-
tunately, for a system which is locally gapped on either
side of the phase transition (as a PPSP is, though not
necessarily with spectral filtering added), linear runtime
is generally enough to make this issue negligible.
Runtimes longer than linear, in contrast, present their

own interpretational challenges. For the MSFO defined
in the next section, the prediction of constant P (tF ) with
tF (N) ∝ N1.46 comes from a calculation capable of pre-
dicting that precise scaling, but for folded optimization
with an approximation target A < 1 (see below for defi-
nitions) our predictions are not able to predict the degree
of polynomial scaling directly. For instance, the choice of
A ≥ 0.6 in the spectral folding TMA formulation comes
from a calculation with many approximations expected
to underestimate performance, and the empirical decay
exponents for finding approximate solutions below the
achievable approximation ratio qa are often quite small.
Given that these algorithms are not amenable to more
efficient classical simulation techniques such as tensor
network methods, owing to their relatively high circuit
depths and nonlocal structure, and the need to average
over many instances to get good statistics, we were lim-
ited to system sizes in the high twenties at most in nu-
merical simulations. This can make it tricky to resolve
small exponents from transient polynomial scaling when
trying to determine qa. Our choice of linear scaling in
this respect is further motivated by the fact that in the

folded regime, both
〈

|Ω0j |2
〉

j
and the number of states in

T tend to exhibit simple exponential decay and growth,
respectively, and consequently polynomial prefactors in
P (tF ) are expected to be minimized for tF (N) ∝ N
since Wj (N) scales linearly as well.

Further, though this is not a rigorous comparison, the
very simplest classical improvement on random guessing–
greedy or quasi-greedy steepest descent–usually takes
O (N) steps to halt, and if restricted to a constant num-
ber of cost function evaluations per shot, will asymptot-
ically return an approximation ratio qa = 0 regardless of
dC and ϵ as N → ∞. This is true even if the problem
is convex, and more complex methods generally involve
longer per-shot runtimes. And as remarked earlier, so-
phisticated mathematical analyses have provided similar
worst-case performance bounds for QAOA and TAQC at
constant depth for k-XORSAT problems [64–67], though
these restrictions do not apply if we allow the circuit
depth to grow with system size. For all these reasons, we
thus used exclusively linear runtimes for all numerical ex-
periments directly probing approximation hardness, and
subquadratic runtimes for MSFO as guided by a rigorous
theoretical prediction.

Finally, we want to address the guiding principles we
used for tuning the schedules and other hyperparameters
of our algorithms. It has been known since the adiabatic
formulation of Grover’s algorithm [68] that schedule fine
tuning can produce a quadratic speedup over a uniform
sweep, and more general variational approaches such as
ADAPT-QAOA [77] (which use large fine-tuned angles
and draw operators at each step from a much larger
set) can potentially offer more significant speedups, al-
beit with the challenge of a much larger search space
for optimizing control parameters. And for many prob-
lems, these algorithms exhibit concentration, where the
set of angles that is optimal for one randomly generated
instance is close to optimal for another with high proba-
bility [39, 66].

We do not employ such fine tuning in this work for four
reasons. First, as argued in [61], quadratic speedups from
schedule fine tuning are fragile (at least, for gaps that
decay exponentially) and unlikely to be viable at large
N except in very narrow circumstances. Second, as the
truly approximation hard instances of MAX-3-XORSAT
(and we suspect, many other CSPs) are extremal in the
space of random problems, it is less obvious that con-
centration arguments would apply to the cases we con-
sider. So even if, for example, these instances exhibit
concentration and some set of angles is near-optimal for
a specific ϵ and dC = NC/N scaling, we do not think it
can be easily assumed that those angles would generalize
to other extremal parametrizations. Third, we are inter-
ested in results we can explain, and extrapolate to larger
N , through analytical arguments, and beyond-quadratic
performance improvements from angle fine tuning are
very difficult to understand in this respect. And finally,
the overhead of fine tuning for specific problem instances
or classes can be both severe and difficult to calculate
a priori. If such fine tuning is necessary for good algo-
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rithmic performance its overhead needs to be carefully
accounted for when estimating the degree of quantum
speedup. We are not aware of any results showing sig-
nificant quantum speedups for MAX-3-XORSAT using
QAOA and angle fine tuning.
We thus restrict all of our simulations in this work to

employ schedules governed by smooth, simple functions
to control the relative magnitudes of HD and HP . Un-
surprisingly, the best scaling and prefactor choices differ
somewhat for Trotterized AQC (TAQC) and variations of
spectrally filtered optimization, and the results here are
not optimal for any specific algorithm variation or PPSP
subclass, but rather represent a decent choice, found by
intuition and trial and error, for a broad set of parame-
ters.

III. SPECTRALLY FILTERED QUANTUM
OPTIMIZATION ALGORITHMS

A. Key preliminaries – filter functions

The core idea of spectrally filtered quantum optimiza-
tion is to modify how the Hamiltonian is applied to the
quantum state through the introduction of a filter func-
tion, somewhat analogous to the methods used in [78, 79],
though our goals and filtering choices are very differ-
ent. Specifically, the algorithms we consider solve prob-
lems through simulating the time evolution of a quan-
tum state, as |ψ⟩ → e−iH(t)dt |ψ⟩, with the exponen-
tiated Hamiltonian discretized as a series of layers e.g.
eiaHDeibHP . The driver Hamiltonian, and any other ad-
ditional Hamiltonian terms, are not changed by spectral
filtering, so we will ignore them for now and focus on the
problem Hamiltonian itself. Specifically, we write |ψ⟩ in
the computational basis as |ψ⟩ =

∑2N−1
m=0 cm |m⟩, where

m is the decimal integer representation of a given bit-
string. Then, for (arbitrary) control angle γ, the wave-
function expressed in the computational Z basis evolves
as

eiγHP |ψ⟩ =
2N−1
∑

m=0

eiγE(m)cm |m⟩ , (5)

E (m) = ⟨m|HP |m⟩ = −
NC
∑

ijk

⟨m|VijkZiZjZk |m⟩ . (6)

In other words, the phase of each component state ad-
vances proportionally to its energy under the problem
Hamiltonian, and that energy is computed at each step
by applying a sequence of gates to implement each con-
straint.
In spectrally filtered optimization, the phase of each

component instead advances proportional to an arbitrary
function f of the diagonal HP ,

|ψ⟩ → eiγf(HP ) |ψ⟩ =
2N−1
∑

m=0

eiγf(E(m))cm |m⟩ . (7)

This can be accomplished by introducing a register of
auxiliary qubits, applying a gate sequence that maps the
sum of the constraint terms to a fraction of that regis-
ter to store E, using a second fraction of that register to
compute f (E), applying a sequence of controlled-phase
gates to advance the phase by f (E), and then uncomput-
ing the previous steps to return the register to its initial
state. The entire process is sketched in Fig. 2. Provided
f is a relatively simple function, this adds a multiplica-
tive overhead which is polylogarithmic in N , since E (m)
is bounded by a polynomial in N and each arithmetic
operation takes O (logN) steps.3

The algorithms we consider in this work use two classes
of filter function, which we call nonlinear folding and
warping transformations, both of which assume that the
classical problem has been normalized 4 so that −N ≤
E ≤ N . We define the nonlinear folding transformation
as:

Ff (E,N,A, x) ≡ N sign (E)

(

1−
∣

∣

∣

∣

∣

∣

∣

∣

E

N

∣

∣

∣

∣

−A

∣

∣

∣

∣

x)

. (8)

Here, A ≤ 1 sets the approximation target of this algo-
rithm, and x sets the (continuous) degree of the fold; the
choice Ff (E,N, 1, 1) applied to the normalized HP has
no physical or algorithmic consequences. Critically, it is
defined using the conventions that random states have
energy zero, so returning a state with energy AEGS ap-
proximates, by a factor of A, the degree to which the true
ground state itself improves on random states. These
normalization choices ensure that the energy difference
between the new ground states of the folded problem,
and random states, is N as in the original renormalized
problem. Making this choice simplifies the analysis signif-
icantly. We similarly define the warping transformation
as:

Fw (E,N,w) ≡ N1−w × sign (E)× |E|w . (9)

A good choice of A is important for spectrally folded
quantum optimization to succeed; if (absent warping)
A is chosen to be too close to 1, then we risk failing
to well-approximate HP due to the interference effects
mentioned in section IIC. A choice of A which is too
small will return a suboptimal approximation ratio, and
if A is too close to zero, cause instabilities from having

3 We note that for any choice of f more complex than multiplying
E by a constant (something that does not require auxiliary qubits
to begin with), any spatial locality the graph might have is lost in
this step, since E (m) is a global quantity which we are deforming
with f .

4 Formally, this choice assumes that we know the fraction of the
NC constraints which are satisfied in the ground state, some-
thing that we cannot know in advance of running our quantum
optimization algorithm! However, we can simply repeatedly run
the algorithm with different normalization choices to guess its
value, a prefactor overhead of at most O (NC).



10

1

binary

signed 

adder 

Primary

ancillae

computation of 

1

binary 

signed 

adder 

1

binary

signed 

adder 

un-

computation of 

FIG. 2: A schematic for implementing spectrally deformed time evolution U = exp(if(HP )dt). A set of gates maps the value of
each of the NC constraints to adding or subtracting 1 to a register of ancilla qubits, using binary signed adder circuits controlled
by the value of VijkZiZjZk. A sequence of additional gates computes f (E) from E (likely using more ancilla qubits), and then
a set of local Z rotations is applied to the register storing f (E) to advance the phase of each component of |ψ⟩ proportionally.
The computation of f (E) and entangling with “constraint-controlled” gates are then uncomputed, returning the ancillas to
their initial state and disentangling them from the N primary qubits over which the problem is defined. The net result of
this entire process is to enact the operation in Eq. 7, evolving time under an arbitrary function of the diagonal Hamiltonian
(transverse field layers and other operations on the primary qubits are not shown). For relatively simple functions, the net
overhead of this entire process (compared to enacting exp (iHP dt) directly) is polylogarithmic in N .

a poorly defined problem to solve. Fortunately, for ran-
dom hypergraph MAX-3-XORSAT instances drawn from
P (NC , N, ϵ) we can predict the threshold A for which we
expect a polynomial depth TMA circuit to return states
with E ≃ AEGS from first principles. The ideal value of
A depends both on the problem class and on the varia-
tion of spectral folding employed; for MAX-3-XORSAT,
A ≥ 0.6 is achievable as derived below in section IVC2.
This is a significant leap over the best known classical
approximation algorithm for this problem [73], which of-
fers a weaker guarantee with much more restricted vi-
ability, in the worst case, equivalent to A → 0 in our
notation. It is also a significant leap over recent quan-
tum approaches to this problem [80, 81]. We note that

minimizing (H − E)
2
is not itself a novel idea and has

been used in classical and quantum algorithms for find-
ing states close to specific energies in chemical and many-
body systems [82–88]. To our knowledge, however, the
use of spectral folding for approximate optimization of
CSPs is novel, both in concept and in the analysis we
present below to choose A and understand at a deeper
level why it presents significant advantages over optimiz-
ing the problem HP directly. We similarly are not aware
of any previous work employing non-quadratic folding, or
where a warping transformation as in Eq. 9 is applied to
optimize a classical CSP.

From hereon, we letHfold be the spectrally folded prob-
lem Hamiltonian. Having defined it, there are a number
of ways we can attempt to find its ground states. We
present three – first, for completeness, the direct con-
ventional approach, inspired by AQC, and then two new
protocols.

B. Direct method

The simplest choice, and one that performs well em-
pirically, is AQC-inspired state preparation, where we in-
terpolate in Trotterized evolution between the transverse
field driver and the folded problem over a time tF :

H (t) = f (t)HD + g (t)Hfold, HD = −
∑

j

Xj , (10)

f (0) = g (tF ) = 1, f (tF ) = g (0) = 0. (11)

To simulate this prescription classically, it is easiest to
simply construct the phase oracle as a diagonal operator
applied to the N qubit state at each timestep. As we
shall show later, with x = 2, A = 0.75, and tF growing
linearly with N , this algorithm performs well in practice
with numerical simulation, though we cannot predict its
performance analytically. To achieve a better approxi-
mation of the ground state–and, crucially, a formulation
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where performance can be predicted from first principles–
we need to apply a warping filter as well, or consider
tunneling between a spin glass minimum and the folded
ground state band.

C. Multi-stage filtered optimization

We now present a more complex, and more powerful,
formulation that we call multi-stage filtered optimzation
(MSFO). We will first state the steps of the algorithm,
then in section IVB provide a detailed explanation and
analysis of its stages, and expected performance. As
mentioned earlier, we assume that we know the fraction
ϵ of clauses which are unsatisfied in the ground state,
so we can properly set the normalization of HP so that
the ground state energy is −N and random states have
energy zero. In the worst case, there is an overhead of
O (NC) for guessing this value; the analysis below pro-
ceeds for the trials where it was guessed correctly. MSFO
follows the following sequence, per-shot:

• First, we initialize the uniform superposition |S⟩,
the ground state of HD = −κ∑j Xj ; here κ is the
transverse field strength. We use κ = 1 for simula-
tions later in this work but other O (1) choices can
of course be used. For the first stage, we optimize
the following cost function, comprised of two com-
posed spectral filters defined in Eqs. (8,9) applied
successively to HP (see FIG. 4 for an illustration),
with parameters x ≥ 2 and w < 1:

Hx,w
cost =

2N−1
∑

n=0

Fw (Ef (n) , N,w) |n⟩ ⟨n| , (12)

Ef (n) ≡ Ff (E (n) , N, 1, x) .

• We then choose a time T1 and timestep dt for the
first stage, as well as a function s (t) which ramps
from 0 to 1 over the time T1. In this work, we
choose the simplest possible choice s (t) = t/T1,
but undoubtedly benefits can be gained by further
tuning. In this stage, we evolve time in Trotterized
evolution from t = 0 to t = T1 by iterating

|ψ (t+ dt)⟩ = e−2πidtκHDe−2πidts(t)Hx,w
cost |ψ (t)⟩ . (13)

• We have now concluded stage 1. For stage 2, we
pick a new duration T2, and two new functions
sx (t) and sw (t). These functions are used to ramp
off the nonlinear folding and warping transforma-
tions, so that at the end of stage 2, the classical
cost function is physically equivalent to the un-
filtered HP . Both of these functions are defined
such that sx (0) = 1, sx (T2) = 1/x and sw (0) = 1,
sw (T2) = 1/w. We evolve time from t = 0 to t = T2
by iterating:

|ψ (t+ dt)⟩ = e−2πidtκHDe−2πidtH
xsx(t),wsw(t)
cost |ψ (t)⟩ .(14)

• In practice, linear interpolation is completely suf-
ficient for the second stage. The nonlinear fold-
ing and warping transformations have now been
smoothly turned off. For our final stage, we pick a
third evolution time T3, and evolve time as in the
previous stages, this time ramping down the trans-
verse field strength κ to zero. We then measure the
system in the computational basis, and this shot is
concluded.

The simple linear schedules mentioned above are not op-
timal, but they do not need to be. In the next section we
show that, forHP as defined in our core conjecture, T1 in-
creasing subquadratically with N , and provided that we
can ignore transverse field chaos, e.g. corrections pushing
local minima of Hx,w

cost below G and consequently steering
the system toward those states first, evolution in the first
stage will find the quantum ground state of HD +Hx,w

cost

with O (1) probability. The runtime of this stage is set
by the scaling of a single transition that occurs when
E0,D ≃ −κN crosses EG,D, the energy of the dressed
ground state |GD⟩ of Hx,w

cost, and the minimum gap scales
proportionally to ⟨SD|GD⟩, where |SD⟩ is ground state
of HD as dressed by corrections from Hx,w

cost. As discussed
in section IVB, the first stage forms the bottleneck of the
algorithm and subsequent stages are much easier, both
to understand conceptually and in their minimum gate
count. The asymptotic gate count of this algorithm de-
pends on the choice of x and w and is considered in sec-
tion IVB.

D. Spectrally folded trial minimum annealing

For our third and final algorithm, we consider trial
minimum annealing (TMA), originally proposed in [89].
We explore the TMA formulation in depth because we
can predict its scaling analytically. In this scheme, a
simple classical algorithm is used to find an initial lo-
cal minimum of HP ; the quality of the minimum does
not matter and for approximation-hard instances we as-
sume it is far above the true ground state energy, in the
worst case asymptotically approaching random guessing.
Let this classical minimum state be |L⟩. We will use the
linear folding prescription (x = 1, no warping transfor-
mation applied) in Eq. 8 for HP itself, and add to it a
new, diagonal lowering Hamiltonian HL which has |L⟩ as
its ground state, and assign to it a time-dependent coef-
ficient C (t). Finally, we choose an approximation target
A ≤ 1 that specifies the energy −AN (where EGS = −N
is negative in our conventions) that our algorithm aims
to find states near. Our total cost function Hamiltonian
is

Hcost (t) =
|HP +AN |

A
+ C (t)HL. (15)

This folding form is a simplification of the generalized
nonlinear folding function Eq. 8, with x = 1; the sym-



12

metrization there is unnecessary in practice for the values
of A ≥ 0.6 considered in this work.

To go further, we need to specify a form for HL. For
this analysis will choose a new random hypergraph of NC

triples which, critically, has no correlation to the hyper-
graph of HP ; we choose the same NC as the problem
for convenience here but any O (N) quantity should be
fine. We choose the signs of the new constraints so that
|L⟩ satisfies all of them. HL is not included in the fold-
ing procedure so applied separately in time evolution.
We then choose C (t = 0) such that the initial energy of
|L⟩ (defined by Hfold + C (t)HL) is well below −N but
remains O (N). Our algorithm simulates appropriately
discretized time evolution in the following sequence:

• Initialize |L⟩, with Hcost always on, and evolve
time smoothly ramping up the transverse field from
0 to κ in time tr. We assume tr increases lin-
early with N and choose κ ≤ κc; κc ≃ 1.29 for
MAX-3-XORSAT but can vary for other problems,
and we expect weak variation from one instance to
the next. We want to choose κ at or just below
this value, so we remain in the dressed problem
phase (DPP, defined in section IV) at all times.
Leaving and then re-entering the DPP does not
mean the algorithm will fail but makes predictions
harder. This smoothly evolves the state to |LD⟩,
the dressed version of |L⟩.

• Evolve time for a total time T , likely also O (N),
where C (t) is smoothly ramped down to zero, en-
suring that |L⟩ crosses the hyperspherical shell of
ground states of Hfold = |HP +AN | /A. Note that
this crossing occurs when the ground state energy
of C (t)HL is O (−N), and if we assume the initial
minimum was uncorrelated with the true ground
state |G⟩, the mean Hamming distance between |L⟩
and any of the ground states of the folded Hamil-
tonian is N/2 flips. Consequently, HL adds an

O
(√

N
)

energy uncertainty to these states that

has no meaningful impact on the approximation
ratio. The algorithm succeeds if, at this stage, the
many-body state transitions into any state near the
fold energy through a collective tunneling process,
and we predict the dynamics and scaling of this
stage in the next section.

• Finally, ramp the transverse down to zero smoothly
over tr and measure the system in the z basis.
For an appropriate O (1) choice of A and a ran-
dom problem hypergraph, this algorithm will re-
turn states with energies close to AEGS with con-
stant probability. We can optionally repeat the al-
gorithm many times, starting from different choices
of |L⟩, to ensure a fairer sampling of states in that
energy range.

E. Resource estimates for spectrally folded trial
minimum annealing

The total gate count of this algorithm is as follows. We
have a factor of O (N +NC polylog (N)) per timestep
for the layers of transverse field, Hfold and HL terms,
which we simplify to NC polylog (N). We obtain, in
the worst case, a factor of O (NC) for the number of
guesses one needs to make to correctly set the normal-
ization for a chosen A. We assume, on empirical grounds,
that the total quantum evolution time is O (N), for the
reasons discussed in section II E. Finally, in the worst
case we expect dt may need to decrease polynomially at
large N , but dt constant or increasing logarithmically is
empirically and intuitively fine in the typical case (see
also [90]). Taken together, and we emphasize assuming
that the algorithm is capable of returning states with
E < AEGS in constant probability, we estimate a to-
tal runtime between O

(

N2
CN

2 polylog (N)
)

in the worst
case and O (NCN polylog (N)) in more typical cases. As-
suming constant per-shot success probability, the asymp-
totic runtimes of MSFO and TMA are thus similar. Jus-
tifying that assumption for both algorithms is in some
sense the core task of this paper, which we now begin.

IV. ANALYTICAL PERFORMANCE
PREDICTIONS

We are now ready to present the main results of this
paper: analytical performance predictions for MSFO and
spectrally folded TMA. For all the reasons that we spec-
ified in the previous sections, we consider approximate
optimization to be a much more promising objective for
achieving exponential speedups with quantum algorithms
than attempts to directly find the exact ground state of
hard CSPs. But this too would seem to be an enormously
difficult task, given the complexity of performing a rig-
orous calculation for any individual disordered problem
hypergraph. We make this challenge tractable through
the following methods. We first narrow our focus to ran-
dom instances drawn from the space of those which are
formally approximation-hard, which allows us to take ad-
vantage of certain statistical properties of these random
hypergraphs. Second, we present two algorithmic ap-
proaches which, by design, are constructed to minimize
the influence of specific details of any given instance on
final results.
The two approaches are very different. MSFO uses a

sequence of composed filtering transformations to over-
come the first order transition that makes more tradi-
tional attempts to find the ground state with quantum
time evolution take exponential time, at the cost of po-
tentially worsening TFC. For this algorithm we can pre-
dict the time to solution scaling through analogy to mean
field models, a claim we subsequently verify in numerical
simulation. In contrast, TMA applies a folding transfor-
mation to promote an exponentially large band of excited
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FIG. 3: Illustration of the spectral folding procedure. (Top)
Sketch of the rough energy landscape of an approximation-
hard CSP, with a single deep minimum whose basin of at-
traction is an exponentially small fraction of the configuration
space. Directly optimizing this cost function through quan-
tum approaches often misses the deep minimum entirely, due
to mechanisms proposed in section II and confirmed numeri-
cally in section VC. (Bottom) Spectrally folded energy land-
scape in Eq. (8), where the problem Hamiltonian energies are
mirrored around an approximation target E = AEGS. This
can be implemented in a gate model algorithm with modest
overhead, as shown in the text. Doing so promotes the states
near the fold to an exponentially large ground state band
while eliminating an interference effect that reduces tunnel-
ing into them from trivial initial states; for a wide range of
problem instances (and likely, low-order problem classes), this
works out to an approximation guarantee. Detailed perfor-
mance predictions, and numerical benchmarking, are shown
in the text.

states to ground states of the transformed cost function,
and then finds them through collective tunneling, at the
cost of being unable to find any lower energy states di-
rectly. To predict the scaling and parameter choices of
this algorithm, we have developed a somewhat novel re-
summed extensive order perturbation theory based on
previous forward approximation results [25, 34, 91–95].

A. Cost per flip curve

Underpinning both the formulation of our novel al-
gorithms, and our analysis of their performance, is an
asymptotically exact, hypergraph-independent [78] pre-
diction of the average energy Eavg (x) for x random clas-
sical bit flips away from the ground state. Specifically,
for MAX-3-XORSAT, our problem is defined as a hyper-
graph of NC p-body constraints (e.g. VijkZiZjZk) over
N variables, where p = 3 here, and each constraint re-
turns ±1 and flips to the opposite value when any one
of the spins flips. Let us say the system is in some
classical configuration s; the energy is then given by
E (s) = NC (nunsat − nsat), where a sat constraint re-
turns 1 in this notation, and n implies a density.
Now we flip one spin at random. Each spin participates

in, on average, pNC/N constraints, and consequently, the
average energy change for a single spin flip is

∆Eavg = +2p
NC

N
(Nsat −Nunsat) = −2pE. (16)

This is an exact statement, though again it applies only
to averages. Now imagine we have flipped x spins from
our initial configuration. If we flip one more spin at ran-
dom, once again ∆Eavg (x) = −2pE (x)∆x. However, we
have already flipped x spins, so when we flip one more
at random, with probability x/N we have flipped a spin
back and are computing the energy change associated
with reducing x by 1. Consequently

(

1− 2x

N

)

∆Eavg (x)

∆x
= −2pEavg (x) . (17)

If we combine this with Eavg (0) = E (G) and
Eavg (N/2) = 0 (as N/2 flips reaches fully random and
uncorrelated configurations), we can interpret this as a
differential equation discretized over N/2 steps. This dif-
ferential equation has a straightforward solution: starting
from the ground state G, for x unique random flips away
the average energy is

Eavg (x) = E (G)

(

1− 2x

N

)p

. (18)

Note that this statement is hypergraph independent, and
is only an average; individual trajectories will of course
display substantial variations. It is a rederivation of a
familiar result for dense hypergraphs with Gaussian dis-
tributed constraint energies [34, 96], but is applicable in



14

0.1 0.2 0.3 0.4 0.5
m/N

-1.0

-0.8

-0.6

-0.4

-0.2

〈Hcost(m)/N〉

FIG. 4: Visualization of the composed spectral filters in
Eq. 12, as a function of m random flips away from the
ground state G, normalized so that the ground state energy is
Hcost(m = 0)/N = −1. Blue curve: unfiltered, hypergraph-
independent mean energy Eq. 18. Gold curve: same energy
with a nonlinear fold (Eq. 8) applied, with A = 1 and x = 2.
Green curve: applies a spectral warping filter (Eq. 9) after
the nonlinear fold, with w = 0.6; it is this cost function which
is optimized in the first stage of our novel multi-stage opti-
mization algorithm.

much broader contexts and is easy to confirm numeri-
cally.
We do caution however that Eq. 18 is only asymptoti-

cally exact, owning to the discretization into single flips
in Eq. 17. At small N , deviations from it can be mean-
ingful, particularly for larger p; see appendix A for more
details. Throughout this work, we rescale all problems
by a multiplicative constant so that the ground state en-
ergy is −N . This rescaling assumes that we can correctly
guess the fraction ϵ of unsatisfied constraints in G, as
mentioned earlier.

B. Multi-stage filtered optimization performance
analysis

1. First stage scaling

With this result in hand, we can now predict the scal-
ing of MSFO, beginning with the first stage. To demon-
strate that we find the ground state of HD + Hx,w

cost, we
must predict the scaling of the quantum phase transi-
tion that occurs during the ramp up of the cost function
Hamiltonian. Such transitions are governed by energetics
of flip sequences in the neighborhood of G. The cost per
flip a few flips away from the ground state determines the
location of the transition (as a function of κ and t/T1).
For example, in the unfiltered problem,

EG,D ≃ −N
(

1 +
κ2

2p
+

κ4

8p3
+ ...

)

. (19)

This crosses the energy of the paramagnetic state, which
is −Nκ and minimally perturbed by the problem Hamil-
tonian, at κc ≃ 1.29 for our family of p = 3 PPSPs.

In contrast, the high energy structure of states far from
G can significantly influence the scaling of the minimum
gap, as it is the overlap of the two competing states that
determines the width of the resulting avoided crossing.

We first consider the low energy properties of Hx,w
cost

in Eq. 12, as the precise location of the transition for
any given HP will determine the magnitudes of the
high-energy wavefunction corrections that ultimately set
whether or not the system can successfully make the tran-
sition into the ground state of HD + Hx,w

cost in time T1.
As stated in our core conjecture, we are concerned with
approximating random instances from the space of prob-
lems where classical approximation is hard both formally
and, we presume, in practice: almost-satisfiable instances
(ϵ ≪ 1) with high densities of constraints dC ≫ 1. We
can therefore assume a random hypergraph, and if we
draw constraints from the set of

(

N
3

)

unique triples (for
a total of dCN constraints), then the distribution of the
number of constraints each variable participates in is well
approximated as Poissonian, with mean 3dC constraints
per variable. Since the hardest instances to approximate
are those where dC is large but most constraints are satis-
fied inG, we can therefore infer that the local distribution
of the cost per flip away from G is also (approximately)
Poissonian,5 with mean 6 (reflecting the normalization of
ground state energy −N) and variance 2/ (dC (1− 2ϵ)).
Large (e.g. extensive in N) fractional fluctuations in the
cost per flip, are, in other words, highly suppressed for
random approximation-hard instances. Obvious poten-
tial exceptions to this are instances with either small dC
or larger ϵ, but both of those conditions push us away
from the realm of approximation hard instances, at least
in practice.

That said, our goal is to confidently predict the struc-
ture of the phase transition, and even small (percentage-
wise) variations in the ratio of the coefficients of HD and
Hx,w

cost can meaningfully impact the scaling of the tran-
sition. The structure of the composed spectral filters
Eq. 12 is chosen to further wash out the influence of
the details of HP on the transition into the ground state
of HD + Hx,w

cost. Specifically, the when x = 2 the mean
classical cost per flip cost drops to O (1/N) about G,

and O (1) energies are not reached until O
(√

N
)

classi-

cal flips, at which point superpolynomially many states
are already contributing to the many-body wavefunction.
One can also, for instance, choose x = 3 in the filter func-
tion Eq. 8, at which point the mean classical excitation

5 Formally the distribution is not exactly Poissonian, owing to the
fact that no triples are repeated in the hypergraph. At large
dC we expect this will further suppress the tail of the Poisson
distribution, as if we construct the hypergraph by drawing con-
straints randomly one by one, the number of unique additional
constraints to draw decreases with local degree. If anything this
will further reduce the local degree variance, and it is the sup-
pression of local variance with dC which is important to our
claims.
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energy near G is O
(

1/N2
)

and O (1) energies are not

reached until O
(

N2/3
)

flips; the performance of these
two formulations is qualitatively similar at reasonably
large dC . Given a filtered local excitation energy which
decays as O (1/N) or faster, and the exponential suppres-
sion of extensive variations in the local excitation energy
for random HP drawn from P (NC , N, ϵ), we can assert
the following:

Claim 1 (regularity of phase transitions under spec-
tral filtering): for a given choice of x ≥ 2 and w < 1
in Eqs. 8-12, and a unit coefficient in front of Hx,w

cost so
that the energy difference between G and random con-
figurations is N , let κc be the average transverse field
strength where the phase transition from the paramagnet
|SD⟩ into the dressed problem ground state |GD⟩ occurs,
as determined by the position of the minimum gap. Then,
with very high probability, but not guaranteed for all in-
stances, for a given random instance HP drawn from
P (NC , N, ϵ), the transverse field strength κ where the
phase transition occurs will be equal to κc up to correc-
tions that scale as O

(

1/Nd
)

for some d that depends on
x and w.

To further motivate this claim, we make the follow-
ing observation. The critical transverse field strength
κc is defined to be the value of κ, for unit prefactor
Hx,w

cost, where ES,D = EG,D. Since ⟨S|Hcost |S⟩ = 0 and
⟨G|HD |G⟩ = 0, the shifts to these two energies that set
κc come entirely from the higher order corrections to each
state induced by the other Hamiltonian. And if we use
second order perturbation theory as an intuitive guide
(but not, we emphasize, as a rigorous calculational tool
here), we can see that ES,D is very modestly perturbed
by Hcost, whereas the shifts to EG,D from HD are signif-
icant. For simplicity, let w = 1, and first let x = 1 as
well, so that our filtering has no physical consequence.
Respecting our normalization choice that the energy dif-
ference between EG and random configurations is −N ,
the value of each Vijk in HP is ± (dC (1− 2ϵ))

−1
, which

is ≪ 1 for the approximation-hard problems we are con-
cerned with. With this fact in hand, we can readily com-
pute the shift to ES,D using second order perturbation
theory, using HD as the base Hamiltonian and Hcost as
the perturbation:

ES,D ≃ −N
(

κ+
1

6κdC (1− 2ϵ)
2

)

. (20)

We observe that the correction here is hypergraph inde-
pendent to this order (for given ϵ and dC) and vanishes
as dC becomes large. If we now let x = 2 (but keep
w = 1), Hcost can be expressed in terms of powers of
HP , and now contains O

(

d2CN
2
)

terms with mean coef-

ficient N−1 (dC (1− 2ϵ))
−2

, and the resulting corrections
to ES,D scale as d−2

C and thus vanish even faster for large
dC . For non-integer x or w ̸= 1 the analysis becomes
more technical, but the same qualitative result holds:
corrections to the energy of the paramagnetic state are

very weak in the approximation hard regime.6

In contrast, the corrections to EG,D from the trans-
verse field HD are more significant. For x = w = 1 we
find

EG,D ≃ −N − κ2
N−1
∑

j=0

1

∆E1,j
, (21)

where ∆E1,j is the cost to flip spin j starting from G and
has mean value +6 in our normalization. These correc-
tions do not vanish at large dC and can be quite sensitive
to problem structure, at least before any filtering is ap-
plied. It is this observation that motivates our filtering
choice of x ≥ 2. While a simple second order pertur-
bative analysis no longer applies since ∆E1,j ∝ 1/N in
that limit, making the local cost per flip vanish strongly
suppresses the per-instance variation of the classical en-
ergy landscape around G, and therefore variations in κc.
Combined with the statistical suppression of variations in
the local density of constraints for random instances, we
can therefore conclude that per-instance variations in κc
will be negligible with high probability, again for random
problems drawn from P (NC , N, ϵ) with dC large and ϵ
very small.
We now turn to the high energy structure. As men-

tioned above, the minimum gap at the phase transition is
Ω0 ∝ ⟨SD|GD⟩, where |GD⟩ is the dressed ground state
of the filtered Hcost, and |S⟩ is the uniform superposi-
tion ground state7 of HD. Since HD is stoquastic all
components of |GD⟩ will have the same sign, and add
constructively in computing Ω0:

Ω0 ∝ 1

2N/2

2N−1
∑

n=0

⟨n|GD⟩ . (22)

As observed in [97], while the location of the transition
is more sensitive to the low energy structure of Hcost, its
scaling with N is more sensitive to the high energy struc-
ture, since most components of |S⟩ are near N/2 flips
away from G and thus at energies that are O (N) above
G. And while the individual amplitude of any such state
in |GD⟩ will be exponentially small, there are exponen-
tially many of them and they all add constructively in
Eq. 22 since they are positive definite for a stoquastic
HD [98]. This becomes most obvious if we rewrite Eq. 22

6 At small dC or larger ϵ this may not be the case, of course. For
instance, for satisfiable (ϵ = 0) three-regular instances, where
every spin participates in exactly three constraints, it is easy to
show from this analysis that κc = 1 as the magnitudes of the
shifts to the two states are identical.

7 For simplicity, we ignore the perturbative dressings of |S⟩ by
Hx,w

cost
, which may be difficult to calculate in practice, particularly

when x > 1 and w < 1; these expressions are intended to be
illustrative and not exact. The actual prediction of Ω0 for MSFO
later in this work relies on a series of well-justified mean field
assumptions and does not involve evaluation Eq. 22 directly.
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by grouping the components of |GD⟩ by their Hamming
distance from G itself:

Ω0 ∝ 2−N/2
N
∑

m=0

(

N

m

)

ũ (κc, x, w,m) , (23)

where ũ (κc, x, w,m) is the average of ⟨n|GD⟩ over all
states |n⟩ which are m flips away from G. For the
unfiltered case x = w = 1 we can do this calcula-
tion (at least on average), by computing the pertur-
bative corrections to |GD⟩, to high orders. Again us-
ing Eq. (18), if we let

∣

∣G(i,j,k...)
〉

≡ XiXjXk... |G⟩, and
Ẽavg (k) ≡ Eavg (k)−EG, at the transition point we have

|GD⟩ ≃ |G⟩+ κc

Ẽavg(1)

∑

j

∣

∣G(j)
〉

+2!
κ2
c

Ẽavg(1)Ẽavg(2)

∑

i ̸=j

∣

∣G(i,j)
〉

+3!κ3c
∏3

m=1
1

Ẽavg(m)

∑

i ̸=j ̸=k

∣

∣G(i,j,k)
〉

+ ... (24)

The factorials come from the combinatorics of ordering
the m spin flips to reach each term. Now, since all states
are present in |S⟩ with equal amplitude 2−N/2 and all
terms in |GD⟩ are positive definite, we can immediately
conclude

Ω0(N)≃ 2−N/2

(

1 +

N
∑

m=1

κmc

(

N

m

)

m!

m
∏

n=1

1

Ẽavg (n)

)

.(25)

For κc = 1.29, this function is well fit by Ω0 = a
√
N2−bN ,

where b ≃ 0.14, in decent agreement with the result for
a mean-field p = 3-spin ferromagnet derived in [99]. And
despite being a very simple calculation, it is a quantita-
tively good predictor of the scaling for TAQC in finding
ground states of PPSPs, as shown numerically later on
in section VC.
We emphasize that this prediction is only an approx-

imate average, of course. And for a filtering choice of
x ≥ 2, a more sophisticated method is needed to compute
ũ (κc, x, w,m), as we can no longer use a simple pertur-
bation expansion about G owing to the vanishing local
gap. But it illustrates something important, and non-
perturbative: the scaling of Ω0 is set by the amplitudes
in |GD⟩ of exponentially many configurations extensive
distances away from G.
These amplitudes are functions of both κc–which we

have already argued should be stable across most ap-
propriately normalized instances–and the mean energy
Ẽavg (m). And this mean energy is a graph-independent
quantity, given by Eq. 18 (as modified by our filtering
process, of course). Since MAX-3-XORSAT is an odd
cost function, and our filtering choices are sign preserv-
ing, the density of states will be approximately Gaus-
sian distributed around a peak at E = 0 and m = N/2

(with width O
(√

N
)

), and one can argue from the law

of large numbers that significant fluctuations about this
average are proportionally rarer (and thus less relevant)
with increasing m. Further, for random HP drawn from

P (NC , N, ϵ), the largest possible string-to-string devi-
ations from the average Eq. 18, uncorrelated with G,
will scale as O

(

N/
√
dC
)

and are thus progressively more
suppressed the more approximation-hard our random in-
stances become. Distant configurations at each m whose
energy exhibits extensive deviations from Eq. 18 are thus
a superpolynomially small fraction of the total, with
global magnitude suppressed by a factor proportional to
1/
√
dC . Coupled with the regularization of the low en-

ergy landscape (which can influence the relative weight
of configurations that have particularly high or low in-
termediate energies that must be crossed to reach them,
starting from G), we therefore assert:

Claim 2 (accuracy of mean field calculations): for a
random HP drawn from P (NC , N, ϵ), with high probabil-
ity, but not guaranteed for all instances, the minimum
gap Ω0 in the first stage of filtered optimization with
x ≥ 2 and w ≤ 1 is well approximated by Ωmf (N), the
result computed using a mean field cost function (Eq. 18)
for HP .

The ability to predict Ω0 from mean field analysis is
a powerful tool, since we can massively pare down the
Hilbert space to just N + 1 states by employing per-
mutation symmetry [99], and predict Ωmf (N) using ex-
act diagonalization for thousands of spins without much
trouble. This allows us to reliably access the real asymp-
totic behavior of this system, at least in the regime for
which we claim these approximations are valid. And we
note that, given the arguments above, these approxima-
tions become progressively better the further we are into
the approximation-hard regime. The resulting functions,
plotted in FIG. 5, are well behaved, and it is in their
structure that the need for the warping transformation
becomes obvious. Namely, for w = 1 and any value of
x ≥ 1, the transition into the quantum spin glass ground
state is first order and Ωmf (N) decays exponentially in
N . For x = 2 and w = 1 the derived scaling exponent is
smaller than for the unfiltered problem with x = w = 1,
but the decay of Ωmf (N) is still obviously exponential.

The crossover to polynomial scaling occurs when we
choose a warping exponent w < 1, or more specifically,
w < 2/p for a p-body spin glass cost function. This is
inspired by the observation that, for the sign preserving
fractional power implemented in Eq. 9, the first order
transition becomes second order when w < 2/p (at ex-
actly 2/p the scaling may be stretched exponential for
our sign-symmetric cost function), effectively replacing p
with wp in Eq. 18. The intuitive mechanism for the re-
moval of exponential decay is that higher energy states
are pushed closer to G in energy, in a nontrivial way that
does not alter the overall normalization of a difference of
−N between G and random states. This in turn increases
their weight in |GD⟩; we think it notable that the largest
fractional changes to the magnitudes of the eigenvalues
of Hx,w

cost are to energies near zero, where of course the
density of states is exponentially largest. Note that this
sequence of transformations (with A = 1 in Eq. 8) does
not change the energetic hierarchy of any classical states,
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only their scales; local and global minima of HP are still
local and global minima of Hx,w

cost.
Of course, if we choose w to be too small, we expect

performance to worsen, as when w → 0 we lose the abil-
ity to discriminate G from states with even tiny negative
(but nonzero) energies. In real disordered problems this
could manifest, among other issues, as worsening TFC,
as local minima are pushed closer to G and it is there-
fore easier (in principle) for transverse field corrections
to push them below the ground state. As remarked ear-
lier, and made increasingly clear over the course of this
section, we see TFC as a much more fundamentally dif-
ficult problem than first order transitions, but not one
that a priori limits quantum advantage for approxima-
tion given worst case classical thresholds that approach
random guessing.
Choosing w to be too small can also increase inciden-

tal performance degradations, as defined in section II E,
such as local heating, since the local excitation energies
about G continuously decrease with decreasing w. We
therefore want to choose w to be small enough to clearly
be out of the exponential decay regime for Ωmf (N), but
not smaller; empirically, values in the range of 0.5-0.65
work well for this purpose, depending on protocol choice.
For the simple mean-field p-spin ferromagnet considered
in [99], the lower limit to w, below which further reduc-
tions are counterproductive, can be established as ≃ 1/p.
The local gap will steadily decrease at this point (leading
to local heating unless runtime increases) without any
corresponding improvement in the global minimum gap.
For the disordered problems we consider here, we expect
it to be somewhat higher than this, with an optimal value
likely controlled by the clustering energy, though we do
not presently have the mathematical tools to set an ap-
proximate bound. For concreteness, we choose w = 0.6
in this work, but other values below 2/3 are effective as
well. For w = 0.6, as seen in FIG. 5, Ωmf (N) ∝ N−0.23

in numerical fitting. The entropic barrier is permeable.
This concludes the first stage of our algorithm, the

stage which required the most conceptual work and anal-
ysis and which introduced a novel speedup mechanism,
at least in our estimation. Having found the ground state
of HD +Hx,w

cost, we now want to convert that into a good
approximation, or even solution, to HP , our underlying
problem Hamiltonian, and to do so, we turn to stages 2
and 3.

2. Second and third stages

To find solutions to HP , we need to ramp down our
transverse field HD to zero. The two filtering transfor-
mations we nested to minimize instance-dependent prop-
erties and eliminate the exponentially scaling first order
transition both have the effect of reducing the local gap
around G, and if we want to avoid local heating as we
ramp the field down, we need to ramp the field down over
a time T2 (N) growing faster than O

(

N2
)

as the average
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FIG. 5: Mean field minimum gap Ωmf (N) in the first
stage of MSFO, for nonlinear fold parameter x = 2, trans-
verse field strength κ = 1, and warp parameter w =
{1, 0.83, 0.75, 0.7, 2/3, 0.6} (blue through brown, and mono-
tonically increasing). For w > 2/3, Ωmf (N) displays clearly
exponential decay with N , with an exponent that steadily de-
creases with decreasing w. Conversely, for w = 0.6 the best
fit is to simple polynomial decay, Ωmf (N) ∝ N−0.23, show-
ing that the spectral warping transformation is capable of
softening the exponential decay of the paramagnet-spin glass
transition in this problem to low-order polynomial scaling.

local gap scales as 1/N , with its minimum value across
the lattice potentially decaying more quickly given varia-
tions in the density of constraints. While this doesn’t of
course erase an exponential speedup, if getting into the
basin of attraction of G, or finding any states sufficiently
close to it in energy, takes exponential time classically,
it’s suboptimal and can easily be improved upon. The
room for improvement lies in the fact that despite Hx,w

cost

being classically gapless, Hx,w
cost+κHD has an O (1) gap on

either side of the phase transition, as does the unfiltered
HP + κHD.
To achieve a faster time to solution, we therefore add

two additional stages to the algorithm, though in princi-
ple they may be able to be combined into a single extra
stage. The key observation motivating these stages is
that G is a gapped, presumably unique ground state of
HP , and the ground state of HD +Hx,w

cost is spread across
a much larger range of configurations, centered around G
and with the largest amplitudes in its basin of attraction.
If however we are well below κc, which we expect to be for
κ = 1 and p = 3, then if we smoothly reduce x to 1 and
increase w to 1, turning off the filtering transformations,
then there is no a priori reason that a phase transition
should be crossed, and indeed, the gap does not close at
the mean field level when this is done. Assuming this is
done sufficiently slowly–and here, we use the same scal-
ing with N as the first stage, though this is likely more
than necessary as the gap doesn’t close–we are now in
the quantum spin glass ground state of HP + κHD. Had
we not implemented any of the filtering transformations,
and instead attempted to find the ground state of HP

directly, this step would have taken exponential time, as
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predicted in Eq. 25 and confirmed later in our TAQC
simulations.
Finally, in stage 3, we ramp κ down to zero and mea-

sure the system. For large dC , the classical problem is
locally gapped with high probability, since the variance
of the local gap decreases with increasing dC , and so this
step too can be done quickly. Assuming we remained
in the ground state in stages 1 and 2, we will reach the
ground state in this stage and can halt and measure the
system. That said, while at large dC and small ϵ the
classical G is locally gapped with high probability, this
is obviously not the case for all possible instances, and
instance-dependent variations can impede performance
in these steps. We also expect that, in practice, stages 2
and 3 can be combined into a single step (where κ → 0,
w → 1 and x → 1 all occur simultaneously), but focus
on the full three stage version in this work.

3. Time to solution scaling

Assuming claims 1 and 2 hold, it is straightforward to
predict the time to solution scaling of MSFO. Specifically,
assuming that the first stage is the most computationally
challenging step, P (tF ) is constant if we choose

tF (N) ∝W (N) Ωmf (N)
−2
. (26)

For algorithm parameters x = 2 and w = 0.6, the asymp-
totic scaling of Ωmf (N) is Ωmf (N) ∝ N−0.23, and as-
suming W (N) ∝ N this leads to an asymptotic run-
time scaling of O

(

N1.46
)

, again for the normalization
that the ground state of Hcost is −N and random states
have mean energy zero. Given the polynomial scaling and
transition stability assumption stated above, this could
likely be further improved through schedule fine tuning,
or through choosing a slightly smaller value of w. We
note that this is an asymptotic estimate, and for the rela-
tively small N values accessible to numerical simulation,
the scaling remains polynomial with roughly the same
degree, but there are additional complexities to consider
to obtain accurate predictions. We take up this issue in
section VIC.
To get the total gate count of the algorithm, we need to

incorporate a few additional factors. First is a factor of
O (NC) that comes from the need to guess the satisfied
fraction ϵ to set the energy scale for the two nonlinear
folding and warping transformations; there are of course
only O (NC) possible values that this can take so at worst
case we can just rerun the entire algorithm O (NC) times
with different choices and take the best result. There
is likewise a factor of O (NC × polylog (N)) that comes
from computing Hcost = Fw (Ff (HP , N, 1, x) , N,w) at
each timestep using ancillary qubits, as sketched in
FIG. 2. Finally, to avoid heating from Trotter error,
we may asymptotically need to reduce the timestep dt
with increasing N , or make the circuit more complex at
each timestep. In either case we expect a worst case
factor sublinear in N . Putting all these considerations

together, we arrive at the time to solution scaling of
O
(

N2N2
C × polylog (N)

)

in our core conjecture.

C. Spectrally folded trial minimum annealing
performance analysis

Our multi-stage algorithm employed a sequence of
composed filters, with the goal of reaching a single ground
state (or at least, states near it in energy and/or ham-
ming distance). If we instead focus only on finding states
below a given approximation threshold A, the warping
transformation is not necessary and a simple linear fold-
ing procedure is sufficient to find approximate solutions
quickly. To further support our core conjecture, we now
present a second algorithm, which employs only a lin-
ear folding transformation and, starting from a poor
quality local minimum found through simple classical
methods, can find good approximate solutions to HP

through collective quantum tunneling processes. This
is the spectrally folded trial minimum annealing algo-
rithm (TMA for the remainder of this section) presented
in section IIID. The performance of these two algorithms
is comparable, but they arrive at solutions through com-
pletely different mechanisms and the calculations predict-
ing scaling are substantially different.
As outlined in section IIID, the TMA calculation

starts by employing a simple classical algorithm to find
a local minimum state of HP . In this work, we use the
quasi-greedy algorithm in section VB for this purpose,
but essentially any simple method can be used; all that
matters is that it’s a local minimum and the initial energy
of this state does not matter. We assume that our prob-
lem HP is approximation-hard in practice (as if it isn’t,
there’s no reason to use any of these new methods), and
the energy of our initial state is much higher than that
our approximation target −AN , for control parameter
A ≤ 1. Once again we assume we have normalized HP

so that its ground state energy is −N . We assume that
it is uncorrelated with G and thus M ∼ N/2 flips away
from it. We let this initial state be |L⟩, and apply a classi-
cal lowering Hamiltonian HL to lower it into competition
with the folded ground state band. We let the set of all
states in or near this band be T . The transverse field is
then turned on, HL is slowly ramped down to zero, and
in the process, states in the folded ground state band are
found through collective tunneling processes.
Our performance prediction for TMA is set up as a

stability calculation: specifically, we ask if the dressed
state |LD⟩ (|L⟩ dressed by transverse field corrections) is
asymptotically stable as it crosses the band center of T .
If is unstable and decays, as the only states in energetic
competition are those in T , that means the algorithm
has found an approximate solution to HP . The stabil-
ity calculation itself uses a standard Fermi’s Golden Rule
analysis and predicts the decay rate by multiplying the
average squared per-state decay matrix element

〈

Ω2
0,Lj

〉

j

by the total number of states in T ; if the exponential de-
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cay of
〈

Ω2
0,Lj

〉

j
is balanced or exceeded by the exponen-

tial growth of targets in T , |LD⟩ is unstable and solutions
will be found quickly. Given that Eq. 18 is asymptotically
exact, predicting the density of states in T is easy,8 but
predicting the average per-state tunneling rate required
the development of a new high-order perturbation theory
framework. We begin that calculation now.

1. Calculation of the per-state tunneling rate

As in the MSFO calculation, the key ingredients of the
per-state tunneling rate are the average cost per flip away
from either minimum and the transverse field strength κ.
Given a ground state energy −N , we assume that κ < κc,
the critical value for which |LD⟩ would transition to a
paramagnetic ground state, estimated to be κc ≃ 1.29
earlier. We need to choose κ to be less than this value to
ensure we remain in the dressed problem phase (DPP)
and the calculations performed here are valid.
The average cost per flip curve takes a little more work

to determine, but is ultimately also straightforward. As
our goal in this section is to compute the average multi-
qubit tunneling matrix element between |LD⟩ and a ran-
domly chosen state |jD⟩ near the fold in T , starting from
one of the two states we need to differentiate between
flips that move closer to the other state, and flips that
move further away. We call these processes flips of pri-
mary and secondary spins, respectively; a primary spin is
one whose value changes between the classical strings |L⟩
and |j⟩, and a secondary spin is one that does not. We
note that the typical state in T is M ≃ N/2 flips away
from |L⟩ (we address the issue of varying Hamming dis-
tance later on), and assume that |LD⟩ crosses the band
center of T , where the density of states is exponentially
largest, when the classical energy of both states is ≃ −N .
We revisit this assumption later on.
The mean cost per flip curve away from |L⟩ is trivially

given by Eq. 18, as HL is a random 3-XORSAT problem
Hamiltonian. For flips away from |T ⟩, we note that the
average state at or near the fold is xA flips away from
G. To find xA we can invert Eq. 18 to find the mean
number of flips xAN for which ⟨E (xAN)⟩ = −AN . To
be specific,

xA =
1−A1/3

2
. (27)

We can therefore assume that the typical state in T is
xAN flips away from |G⟩. If we consider the sequences of

8 Throughout this calculation, we assume a single ground state G.
The way the calculation is structured, additional deep minima
simply add additional targets and make the problem easier; our
predictions here are thus in some sense a worst case estimate, at
least for random HP drawn from P (N,NC , ϵ) as specified in our
core conjecture.

primary spin flips connecting |jD⟩ and |LD⟩, the typical
flip sequence starts xAN flips away from |G⟩, and notice
that with probability 1 − xA an additional random flip
towards |L⟩ will also move closer to |G⟩. Taking all these
effects and the division by A into account, so that the
bare unperturbed energy of both |j⟩ and |L⟩ when they
cross are both ∼ −N , a bit of algebra shows that for y
flips away from a ground state of the folded Hamiltonian,
not only is the total average cost ∆E (y) A-independent,
it is precisely equal to the cost given by Eq. (18). We
note that all of the arguments about the statistical regu-
larity of random-hypergraph problems from the previous
section apply here as well.
We can are now ready to define the bare classical en-

ergy, with no corrections from transverse fields. We start
from one of the two states, and consider a state which is
m+n random flips away from it. We let m of these flips
be ones which move toward the other minimum (e.g. re-
duce the Hamming distance to it), and the n flips be flips
that move away from it. Then the bare average energy

E
(0)
m,n is given by:

E(0)
m,n = −N

[(

1− 2
m+ n

N

)p

+

(

2
m− n

N

)p]

. (28)

We assume that the transverse field strength κ is be-
low κc, the p-dependent critical point where a transi-
tion to the paramagnetic state occurs. The ground states
are thus the symmetric and antisymmetric combinations
of the two dressed classical minima, with splitting 2Ω0,
where Ω0 decays exponentially in N and our goal in this
section is to predict its decay rate.
Computing Ω0 proceeds through the following steps:

• We compute the renormalized cost per flip away
from either minimum, incorporating transverse
field corrections, which we will then use in the
energy denominators of our Mth order perturba-
tion theory. This step is analogous to commonly
used resummation schemes in diagrammatic quan-
tum field theory, where self-energy corrections are
incorporated into the propagators used to compute
higher order processes.

• We divide the system between primary spins, which
flip between the classical minima, and secondary
spins, which do not. We then compute the dressed
states |LD⟩ and |jD⟩ that comprise all the primary
flip sequences up to orderM/2 away from each min-
imum. It is at this order that the two states have
nonzero overlap.

• These dressed states are then normalized; incorpo-
rating this normalization, their overlap gives the
primary spin contribution to the tunneling rate,

Ω
(p)
0 .

• We then compute the secondary spin contributions
to tunneling, which take two forms: an increase
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of the tunneling rate from the constructive contri-
bution of many additional tunneling sequences in
which secondary spins participate, and a decrease
from normalization corrections and the spread of
the classical minima away from the core classical
configurations from which the tunneling calculation
begins.

• Incorporating both sets of secondary spin contribu-
tions gives us a closed form expression for Ω0 which
can then be evaluated numerically and compared to
exact diagonalization.

We first want to compute the energy shifts, in second
order perturbation theory, to these states. These correc-
tions arise from a single spin being flipped and flipped
back, and are opposite in sign to the cost of the local
flip. Let um,n be the difference between energies of a
state m,n and a ground state, incorporating these cor-
rections. Then

um,n = E(0)
m,n +N

(

1 +
κ2

2p

)

−
(

N

2
− 2m

)

κ2

∂mE
(0)
m,n

−
(

N

2
− 2n

)

κ2

∂nE
(0)
m,n

+O
(

κ4
)

. (29)

Note that ∂mEm,n|m,n=0 = ∂nEm,n|m,n=0 = 2p, so
u0,0 = 0. One can observe that if p = 2, ∂mEm,0 =
4
(

1− 4m
N

)

, and the transverse field corrections to state
energies are m-independent, so that the energy barrier
between the two competing ground states is not renor-
malized by the transverse field. But for p = 3 and higher
these corrections are nontrivial and act to reduce the ef-
fective energy barrier between the states, increasing the
tunneling matrix element. This process is effectively a
resummation of higher order corrections and is necessary
to obtain quantitatively accurate results.
We start by computing the dressed states, summing

over primary spin corrections only. They take the form

|LD⟩ ≡ |L⟩+
∑

j

κ

u1,0
Xj |L⟩+

∑

j,k(j ̸=k)

2κ2

u1,0u2,0
XjXk |L⟩

+
∑

j,k,l(j ̸=k ̸=l)

3!κ3

u1,0u2,0u3,0
XjXkXl |L⟩+ ... (30)

If we ignore the local band structure, the expression for
|jD⟩ is functionally identical. Neglecting this structure
is expected to underestimate the total collective tunnel-
ing rate; we revisit this issue in section C. We stop our
expansion at order M/2, which is the lowest nontrivial
order needed to connect the states. For simplicity we
assume M is even though the argument is easy to gen-
eralize to odd M as well. Note that this state is not
normalized, and in fact the norm of the state written
above is exponentially large, so we will need to incorpo-
rate normalization corrections into the definition of the
states. Thanks to the dressing of the states, we obtain a

primary-spin energy splitting

1

2
(⟨LD|+ ⟨jD|)HP (|LD⟩+ |jD⟩) = 2Ω

(p)
0 ,

1

2
(⟨LD| − ⟨jD|)HP (|LD⟩ − |jD⟩) = 0. (31)

Evaluating these expressions, the degeneracy splitting
from only considering primary spins is:

Ω
(p)
0 =κM

(

M

M/2

)

1

uM/2,0





M

2
!

M/2−1
∏

k=1

1

uk,0





2

×N (p),

N (p) =



1 +

M/2
∑

k=1

(

M

k

)

(

κkk!

k
∏

l=1

1

ul,0

)2




−1

. (32)

Here, Np is the normalization correction. This covers
the primary spin portion of the macroscopic quantum
tunneling rate.
We now turn to the secondary spins. To introduce sec-

ondary spin corrections, consider a single secondary spin
j out of the (N −M) ∼ N/2 total, whose bit value is the
same in both classical minima. Since the same transverse
field is acting on it as all other spins, when we consider
the sum of all processes that connect the two minima, we
can now divide them between those where M/2 primary
spins flip from each minima to meet in the middle, with
secondary spin j unchanged, and a new set of processes
where spin j flips starting from each minimum and the
two wavefunctions overlap at the set of states whereM/2
primary spins have flipped along with j. The first set of
processes is what was considered in Eq. 32; the second is
new, and we want to calculate its matrix element. It is
most useful to express these matrix elements as a ratio of
the new term to the original, primary-spin-only process,
since both decay exponentially in M . Let the primary
spin perturbative matrix element to reach M/2 flips be
ξM/2, so that

ξM/2 = κM/2





M

2
!

M/2
∏

k=1

1

uk,0



 . (33)

To define the analogous process where j flips, we need to
sum over all the points during the perturbative sequence
when that can happen. We thus have:

ξsM/2 = κM/2+1M

2
!

M/2
∑

n=1

n
∏

k=1

1

uk,0

M/2
∏

k=n

1

uk,1
. (34)

And noting that we have to make this insertion in the
matrix elements from both minima, the total tunneling
term is increased by

Ω
(p)
0 →

(

1 +

(

ξsM/2

ξM/2

)2
)

Ω
(p)
0 , (35)

(

1 +

(

ξsM/2

ξM/2

)2
)

≡ γT . (36)
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We now need to consider the rest of the secondary spins.
Formally of course, the additional energy cost of each
secondary spin flip changes as more secondary spins flip,
but since these corrections are fairly weak (though they
are appreciable and necessary for an accurate prediction
of the scaling exponent) the total tunneling rate is going
to be dominated by the set of processes where a com-
paratively small fraction of secondary spins have flipped,
and we can thus approximate them as independent con-
tributions. In this limit, since there are N−M secondary
spins,

Ω
(p)
0 → Ω

(p)
0 γN−M

T . (37)

Alongside this, the secondary spin corrections also
spread the competing ground state wavefunctions out
over Hilbert space, which exponentially reduces the
weight of the core classical configurations from which
the tunneling calculation begins. To be consistent with
the independence approximation made above, we simply
compute all the corrections to the ground state from each
secondary spin independently and multiply them. Noting
that we must apply this calculation to both competing
ground states, this reduces the tunneling rate by

Ω
(p)
0 → Ω

(p)
0

(

γT
γR

)N−M

, γR ≡ 1 +

(

κ

u0,1

)2

. (38)

Note that, if we set the cost per flip of a given secondary
spin to some constant U , independent of the configura-
tion of the other spins, that would imply it is discon-
nected from the primary spins as there are no couplings
to shift the energy. In this limit a direct evaluation of
the two functions shows that γT = γR (for any choice of
U) and this now disconnected spin plays no role in tun-
neling at all. This factorization of disconnected spins is
reassuring, and lends support to the correctness of this
approach. Taking into account all these effects, our total
tunneling rate is

Ω0 = κM
(

M

M/2

)

1

uM/2,0





M

2
!

M/2−1
∏

k=1

1

uk,0





2

×N (p) ×
(

γT
γR

)N−M

. (39)

Taking all of these effects into account yields a highly
accurate prediction of the minimum gap scaling for a
wide range of values for p and κ, with only an O (1)
discrepancy in the prefactor and few percent discrepan-
cies in the scaling exponent (empirically, Eq. 39 tends to
slightly overestimate the decay compared to the exponent
extracted from numerical diagonalization). We refer to
the Appendix A for more details.

2. Achievable approximation ratio with spectrally folded
trial minimum annealing

With this result in hand, we will now predict the
macroscopic quantum tunneling rate–and thus, achiev-
able approximation ratio–for the spectrally folded Hamil-
tonian. From this, we can calculate our target value of A,
assuming that there is a single deep minimum far below
the energy of any local minima. Relaxing this assump-
tion should improve the performance of the algorithm by
virtue of there being many more target states. We con-
sider the protocol in section IIID, with an initial state
|L⟩. We assume that the process of ramping the trans-
verse field up and down is itself at least roughly adiabatic,
i.e., we can assume approximate spectral continuity with
respect to the folding and lowering Hamiltonians, noting

that the lowering Hamiltonian will itself create O
(√

N
)

shifts to the energies of states near the fold. It follows
from our assumption that the ramping process itself does
not meaningfully heat the system. We then consider the
set T of all states within O (1) shifts of −AEGS in HP ,
the states closest to the fold, and compute, as a func-
tion of all our various algorithm parameters, the total
probability of tunneling into any one of them.

Since the tunneling rate into any individual state is
exponentially small, and the time over which we slowly
turn off the lowering Hamiltonian is T ∝ O (N), we can
assume that tunneling will be diabatic with respect to
any individual state. A Fermi’s Golden rule analysis as
in [61] suggests that the total success probability will be
given by Eq. 2, where again W ∼ O (N) is the energy
range swept over by reducing C (t) to 0, and Ω0,Lj is the
tunnel splitting at degeneracy between |LD⟩ and the tar-
get state |jD⟩, which we assume are an average of ∼ N/2
flips apart. To go further, we need to compute the aver-
age value of Ω2

0,Lj , noting that while of course there will
be substantial state-to-state variations, given that there
are exponentially many states in T the average value cal-
culated in Eq. 39 is going to dominate Eq. (2).

This is again only an average, but noting that the clas-
sical cost per flip for any given sequence appears the de-
nominators of equations like (39), variations about it are
more likely to increase the tunneling rate than decrease
it. And as remarked earlier, path-to-path variations
about the average are suppressed by O

(

1/
√
dC
)

and thus
naturally small in the approximation hard regime. And
likewise, since HL is a random 3-XORSAT problem it-
self the mean cost per flip away from |L⟩ is going to be
given by Eq. 18 as well, so Eqns. 27 through 39 can faith-
fully predict the average tunneling rate between |L⟩ and
a randomly chosen ground state of the folded Hamilto-
nian.9 For more discussion of this approximation, see the

9 We expect that using the average cost per flip in Eq. 28 will
if anything underestimate the per-state tunneling rate in real
disordered problems. This is because all of these energy costs
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appendix.
Of course, this rate decays exponentially; assuming

the two states are M ∼ N/2 flips away for κ = 1.29,
Ω0 ∝ 2−bN where b ≃ 0.2. But this is balanced by the
fact that there are on the order of

(

N
xAN

)

target states.
We can further note that out of these states, while the
mean distance to |L⟩ is M ∼ N/2, ones which are k flips
closer have tunneling rates which are larger by a factor of
22bk on average, and though those states are proportion-
ally rare their increased weight is enough to meaningfully
impact our choice of A. Since our total runtime is lin-
ear, simple diabatic scaling predicts that the probability
of tunneling into the typical state M − k flips away is
proportional to Ω2

0, e.g. 2
−4b(M−k).

We now take this result and plug it into Eq. (2), so that
we can determine the choice of A where the returned Ptot

provides an approximation guarantee. If we use Stirling’s
approximation to write the binomial coefficients as expo-
nentials, and ignore slowly varying polynomial factors,
the total number of states in T scales as:

NT ∝ exp (− [xA lnxA + (1− xA) ln (1− xA)]N) . (40)

Likewise, if the average probability of tunneling into a
target state k primary spin flips closer to |L⟩ is increased
by a factor of at least 24bk, the weighted per-state average
of the diabatic tunneling rate into states in T can be
approximated as

log
〈

Ω2
0

〉

−N ≈ 2b ln 2− xA
(

ln
(

1 + 24b
)

− ln 2− 2b ln 2
)

.(41)

Note that this average comes from considering only xAN
flips away from |G⟩ but varying Hamming distance from
|L⟩ and thus neglects the influence of comparatively rarer
states larger distances from |G⟩. Taking all these terms
into account, the probability of returning a state with
E ≃ AEGS as measured relative to the original HP be-
comes constant, or at least stops decaying exponentially,
when

− 2b ln 2− [xA lnxA + (1− xA) ln (1− xA)] +

xA
(

− ln 2− 2b ln 2 + ln
(

1 + 24b
))

= 0. (42)

The achievable approximation ratio is thus determined
by the per-state decay exponent b, computed in sec-
tion IVC1 as a function of N and κ by fitting Eq. (39) to

Ω0 (N) ∝
√
N2−bN , and then choosing xA using Eq. (27)

to solve Eq. (42). This analysis only counts states within
O (1) shifts of AEGS (recall that EGS = −N in our nor-
malization) and ignores low-order polynomial prefactors;

appear in denominators, which leads to likely small asymmetries
in how much the deviations from the average in any individual
flip sequence contribute to the total matrix element, giving lower
energy sequences proportionally higher weight. We do not really
expect this effect to be significant but rather highlight it as an-
other point where our prediction is conservative by design.

for b = 0.2, which again depends on κ = 1.29 in this
calculation, this is solved when xA ≃ 0.08, or A ≃ 0.59.
This means that if the true ground state satisfies a con-

straint fraction F beyond random guessing—e.g. a total
fraction 1/2+F , so F is at most 1/2 here—our algorithm
will return states which satisfy a fraction 1/2+AF with
high probability. If we choose A to be too large com-
pared to the target value established by expressions like
Eq. (42), we risk failing to well-approximate the problem;
conversely, choosing A below it will reduce the returned
approximation ratio to A and thus perform suboptimally.
We do caution that unlike our predictions for MSFO, this
analysis cannot predict the degree of polynomial scal-
ing necessary (and does not formally rule out other sub-
exponential but super-polynomial scaling forms). That
said, based on the reasoning in section II E, and numeri-
cal testing out to the largest accessible system sizes, it is
likely runtimes that scale linearly with N are sufficient.
It strikes us as unlikely that superpolynomial decay will
survive once Eq. 42 predicts a positive exponent, in anal-
ogy to how for exactly w = 2/3 the MSFO minimum gap
may scale as a stretched exponential, but is firmly in the
polynomial scaling regime for w < 2/3. And, we empha-
size again, this prediction assumes a random, potentially
dense hypergraph but is fundamentally independent of
the fraction satisfied in EGS itself and so applies to the
planted partial solution instances we use for numerical
benchmarking below.

3. Further Comments and Caveats

We expect that this analysis underestimates the choice
of A that will return states with E ≤ AEGS with con-
stant probability. This is because our counting here only
counts states very close to the fold, when in reality the
probability of tunneling into states a small extensive frac-
tion larger than AEGS is still going to be appreciable due
to the continued exponential growth of the number of
targets, even if the per-state tunneling rate does tend to
decrease with increasing E due to the interference effect
mentioned earlier, in which perturbative corrections that
mix with states of lower energy have opposite sign. In
addition to this consideration, because the target ground
states and low lying excitations of the folded Hamiltonian
in T very roughly form a hyperspherical shell, any indi-
vidual target state will have other states in T that are
relatively close to it in Hamming distance. Consequently
we expect these states to have a band dispersion, cen-
tered around the mean energy given by the corrections
in Eq. (29). Since we are already assuming off-resonant
tunneling, i.e. a per-state tunneling rate ∝ Ω2

0, and so
summing over squared matrix elements, if we consider
states near the band center where the density is highest
this will alter the average tunneling rate by at most a
prefactor. However, there are good reasons to suspect
that tunneling into extremal states near the bottom of
the band can be substantially enhanced, enough to in-
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crease the optimal value of A. This calculation is diffi-
cult to do quantitatively so we do not attempt it here; we
instead see the approximation of considering only states
near the band center of T as another choice that likely
underestimates the achievable approximation ratio. We
discuss this point in more detail in Appendix C.

We also want to emphasize that this variation is not
necessarily the optimal spectrally folded optimization al-
gorithm, but instead merely the one where we were able
to analytically compute the threshold A. For example,
one can perform trial minimum annealing with a simple
local Z bias lowering Hamiltonian (e.g. HL =

∑

j hjZj),
or standard AQC interpolation using the quadratic fold-
ing procedure in Eq. (8) as the cost function. The linear
lowering Hamiltonian is expected to have equal or bet-
ter tunneling rates to a 3-XORSAT-based minimum as
the overall cost-per-flip curve is shallower, though the lo-
cal energy shifts to the ground states of Hfold from HL

are expected to be larger. The total gate count at each
time step is lower. Empirical performance in testing up
through N = 25 showed fairly similar performance to
3XOR-based HL for all other parameters equal, but with
more significant non-monotonic behaviors that made fit-
ting difficult; see Sec. V for details. That the two schemes
could asymptotically converge to the same achievable ap-
proximation ratios seems plausible to us but we cannot
simulate large enough systems to be sure.

For quadratic folding AQC as in Eq. (10), if we choose
A = 1 the gap is efficiently computable using the meth-
ods in [99] and decays as Ω0 ∼ 2−0.104N . Given that, like
linear folding, the cost per flip curve is A-independent, if
we assume that the tunneling rate per state for A < 1 is
basically equal to this, then the total decay exponent
vanishes if xA ≃ 0.033 and A ≃ 0.8 using the argu-
ments of the previous few paragraphs. We do not think
that can be simply assumed as easily as with tunnel-
ing between semiclassical minima and a linearly folded
problem Hamiltonian, in the DPP, and more theoretical
work is needed here to analytically determine the opti-
mal choice of A. Interestingly however, our simulation
data in Sec. VI roughly supports this conclusion, with
a worst case polynomial time approximation ratio of 0.7
found in our simulations. These simulations show that
this method performs similarly to, or slightly worse than,
the 3XORSAT-TMA algorithm, which is better able to
outperform the approximation guarantee of ∼ 0.6 derived
here.10

Finally, all of the results we obtain here could be fur-
ther improved by employing a spectral warping transfor-

10 For smaller systems we also tested linear folding AQC and
quadratic folding TMA. In very preliminary studies we found
that quadratic AQC modestly outperformed linear AQC, and
linear TMA more significantly outperformed quadratic TMA. So
we chose not to pursue those methods for larger simulations and
do not present those results here, but they may be viable or even
superior for other problem classes.

mation to both HP and HL, which would reduce the ef-
fective degree p toward or even below 2 (where there is no
first order paramagnet-spin glass transition), albeit with
the possibility of worsening TFC. In this limit assum-
ing TFC can be ignored the achievable A could become
arbitrarily close to 1, as in MSFO. We did not explore
this addition in this work, as our goal here was in part
to show that folding alone is sufficient for an exponen-
tial separation in approximating random instances drawn
from P (NC , N, ϵ). Coupled with the fact that our sim-
plifying approximations are all likely to underestimate
rather than overestimate performance (particularly the
band structure, discussed in Appendix C), that a large
constant A is achievable without reaching for additional
algorithmic tools like warping strikes us as further sup-
porting evidence toward the truth of our core conjec-
ture.11

In summary, through a relatively novel resummed ex-
tensive order perturbation theory, we have shown that
random hypergraph MAX-3-XORSAT instances, includ-
ing extremal ones with planted partial solutions, are ef-
ficiently approximable to a fairly large constant fraction
through spectrally filtered quantum optimization algo-
rithms. We do not expect this to be the case for TAQC
(or QAOA), for the reasons discussed earlier in section II
and supported by the numerical evidence we present be-
low. We similarly do not expect such guarantees to be
possible for directly finding global optima (particularly as
dC becomes small or as ϵ approaches 1/2), for the reasons
set forth in the introduction, though in practice MSFO
can often find G in polynomial time when dC is large
and ϵ is small. Evidently, one cannot so easily summit a
mountain in hyperspace, but one can reach the rim of a
crater. We now present a series of numerical simulations
to further support these claims.

V. NUMERICAL TESTS OF APPROXIMATION
HARDNESS FOR TRADITIONAL METHODS

A. Setup and summary of results

To confirm our predictions–or at least, verify that
any serious issues with our calculations and interpreta-
tion of the problem are subtle and not apparent at sys-
tem sizes within reach of present or near-future classical
simulations–we performed a series of numerical simula-
tions of various classical and quantum algorithms applied
to our PPSPs. For all quantum simulation tasks we used

11 We also expect that the average tunneling rate–and thus, achiev-
able approximation ratio–can likely be further increased by us-
ing other, potentially many-frequency, AC methods such as
RFQA [25, 50, 61, 100, 101]. For simplicity, we do not incor-
porate these methods in this work, but they could be a novel
way to further improve the performance of this algorithm and
are worth exploring in future research.
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the Qulacs package [102]. For smaller systems and algo-
rithm prototyping we ran our simulations on local work-
stations and cluster nodes; this includes all the spectral
folding TMA simulations. For all TAQC and spectral
folding AQC simulations presented, we used the Fujitsu
Quantum Simulator, a classical HPC system. This al-
lowed us to probe larger system sizes while still averag-
ing over enough instances to have reliable statistics for
the problem class. Unless otherwise stated, each data-
point represents the average over 960 or 1000 (for the
TAQC and spectral folding AQC results) random prob-
lem instances constructed with the prescriptions outlined
in section IID. In all cases in this work we used an un-
satisfied fraction ϵ = 0.1 for our partial planted solu-
tions; we expect similar phenomenological behavior for
other constant ϵ values, though the thresholds we mea-
sure would vary with ϵ for classical optimization algo-
rithms and TAQC (but not folded optimization, below
its predicted performance floor).

The results of our simulations are summarized in Ta-
ble I, which lists the best per-shot polynomial time
approximation ratio achievable through each algorithm
studied, both classical and quantum. To estimate these
values, we measured the average per-shot probability
Pq (N) = P (E ≤ qEGS) of returning states with ener-
gies at or below qEGS, where q ≤ 1 is the approxima-
tion ratio and EGS is negative in our conventions. These
probabilities were computed by choosing bins of size 0.05
EGS.

To determined the polynomial time hardness thresh-
old, we applied a very simple rule where we fitted Pq (N)
to a simple exponential function, assuming any observed
decay corresponded asymptotically to exponential decay,
and any positive exponents, e.g. exponential growth, rep-
resent small-N growth toward some constant saturation
value. For the greedy algorithm with NC/N = 1.5

√
N we

fitted decay to an exponential in
√
N as discussed below.

The polynomial time approximation hardness threshold
for a given algorithm, unsatisfied fraction ϵ and NC/N
scaling choice is defined to be qa, the largest values of
q for which we do not observe exponential decay. For
NC/N = 3

√
N/2 this threshold is decaying with system

size, and the asterisk next to the result for TAQC is to
highlight the fact that we only ran these simulations out
to N = 28 so are likely not capturing the asymptotic
threshold.

This notation highlights a difference from qm in our
core conjecture; qa corresponds to the best achievable
approximation ratio for a given algorithm and problem
parametrization, where qm is the global minimum value
of qa across all spectrally filtered optimization variations
and problem parametrizations (again restricted to ran-
dom instances drawn from P (NC , N, ϵ)). We also want
to emphasize that qa is a measure of the performance
of an algorithm, whereas the approximation target A in
folded optimization is a control parameter, and qa may
well fall short of it. As discussed elsewhere, the number
of cost function calls is O (N) for all approaches stud-

ied , except MSFO. Cases for which a range is quoted
are where we felt there was some ambiguity to the fit-
ting, and all values are the result of extrapolating fits to
numerical simulations and are naturally somewhat ap-
proximate.

B. Performance of quasi-greedy classical algorithms

To explore the classical difficulty of our PPSPs, we ap-
plied a greedy local search algorithm adapted from [12].
This algorithm is straightforward; we start with a ran-
dom bitstring. Then, beginning at each step, we calcu-
late k = Nsat,j −Nunsat,j associated with each bit j. We
then calculate the fraction of bits, fk, belonging to each
k value. Note that we only care when k > 0 because
these are the cases where flipping a particular bit will
lower the energy. Using some weight function, w(k), we
select a k value with normalized probabilities ∝ w(k)∗fk
and flip a bit with that k value. If there are multiple
bits belonging to the k value chosen, we choose a bit in
this set with uniform probability to flip. This is repeated
until the configuration finds itself in a minimum, and the
algorithm halts.
We found the algorithm performed best with a weight

profile quadratic with k, however this can be experi-
mented with for different results. Notably, [12] found that
when applying a highly optimized version of this search
to 3-regular 3-XORSAT problems it performed well even
when compared to more sophisticated algorithms such
as simulated annealing and parallel tempering. The in-
tuitive reason for this can be inferred from the typical en-
ergy landscapes of these problems, which are rough and
contain exponentially many high energy local minima.
Once one is found, it is more efficient to simply restart
the algorithm from a new random configuration instead
of attempting to “climb out” using penalized operations
in simulated annealing or parallel tempering. As the lo-
cations of these minima are uncorrelated with the true
ground state, finding one provides no useful information
in a ground state search.
This expected inefficiency of simulated anneal-

ing/parallel tempering for this problem can easily be in-
ferred from the results plotted in Figs. 6 and 7. Namely,
in all cases the algorithm will find a single relatively deep
minimum with high probability at each shot, leading to
a super-polynomial cost to escape from it in algorithms
simulating a thermal bath. Interestingly, as NC/N in-
creases for fixed unsatisfied ground state fraction ϵ, we
find that the decay exponent of the per-shot probabil-
ity of finding the ground state, PGS (N), monotonically
decreases, suggesting that the basin of attraction of the
true ground state is widening as the problem becomes
more extremal. In fact, for NC ≥ 2N , we empirically ob-
serve that the per-shot probability of finding the planted
ground state has the approximate scaling

log (PGS (N)) ≃ −cg
N2

NC
. (PPSPs, NC ≥ 2N) (43)
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NC/N Classical TAQC AQC/0.75 AQC/0.85 TMA-3/0.75 TMA-3/0.85 TMA-L/0.75 MSFO
2 0.75-0.8 0.75 0.75 0.75 0.75 0.75 0.7 1*
4 0.55 0.55 0.7 0.7 0.75 0.8 0.75 1*
6 0.45 0.45 0.75 0.7 0.8 0.8 0.75 1*

3
√
N/2 decaying 0.25/decaying* 0.75 0.75 0.8 0.8 0.75-0.8 1*

TABLE I: Approximation hardness thresholds for the classical greedy search, high-depth TAQC and spectral folding variations.
This table lists qa, the largest value of the approximation ratio q before exponential decay is reported, drawn from the numerical
experiments in figures 7 through 11 and 18. Spectral folding results are labeled as protocol/A (where A is the approximation
target); AQC is quadratic spectral folding in the AQC formulation, TMA-3 is trial minimum annealing with a linear folded
Hamiltonian and 3-XORSAT lowering Hamiltonian, and TMA-L is the same with local Z biases for the lowering Hamiltonian.
MSFO is the multi-stage filtered optimization algorithm of section III C; using a runtime that scales approximately as N3/2 (in
contrast to the linear runtimes of all other methods) it is capable of finding the ground state directly with constant probability,
at least for random instances in the parameter ranges simulated. These results–where the threshold decays for traditional
methods but not folded optimization–support the predictions in section IV that random hypergraph problems are efficiently
approximable through spectrally filtered quantum optimization.
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FIG. 6: Per-shot probability of finding the true ground
state with the quasi-greedy classical algorithm defined in sec-
tion VB as adapted from [12], for the four constraint den-
sities studied in this work and planted solution unsatisfied
fraction ϵ = 0.1. The probability decays superpolynomially

with N ; fits are to a2−bN for NC = {2, 4, 6}N and a2−b
√

N

for NC = 1.5N3/2; the scaling matches the empirically ob-
served Eq. (43) fairly well. Each datapoint is the average of
105 shots. As the constraint density increases, the basin of
attraction widens, and the problem becomes easier–though
still exponentially scaling–for local update classical routines.
Each shot consists of O (N) local updates so the time to so-
lution scales essentially as the inverse of this probability.

However, the approximation ratio qa–defined as the min-
imum energy for which the probability of finding states
at or below it stays constant as N increase–steadily wors-
ens. We attribute this to there being a high density of
local minimia with energies ≥ qaEGS (recall EGS is neg-
ative in our conventions), but below that threshold the
number of minima quickly decreases and the probability
of finding one decreases exponentially. This results in
the scaling collapse seen in Fig. 7–for sufficiently low en-
ergy there are no minima aside from the ground state, so

the approximation probability scales nearly identically to
PGS (N). This high energy clustering phase is a feature of
our PPSP construction, and is responsible for its classical
approximation hardness. We again contrast this to prob-
lems near the statistical SAT/UNSAT threshold such as
three-regular instances, where the clustering energy, the
lowest energy where there are still exponentially many
local minima and they are thus easy to find, is close to
EGS and they are not approximation-hard in practice as
a result. We conjecture that high energy clustering be-
havior is a generic feature of low-degree constraint prob-
lem classes that are approximation-hard for local update
algorithms.

As shown in Fig. 7, these construction rules yield in a
set of instances which are hard to approximate in prac-
tice. If we let NC/N grow slowly with N , e.g. as ln (N)

or
√
N , then as N → ∞, the probability of finding any

states with energies any O (1) fraction better than ran-
dom guessing, decays superpolynomially12 in N . And
since the unsatisfied fraction ϵ in the ground state is small
but nonzero, Gaussian elimination cannot be used to ef-
ficiently find the solution, forcing classical computers to
rely on local update algorithms stymied by entropic bar-
riers. It is of course possible that some clever algorithm
could be written to exploit our PPSP structure to effi-
ciently solve or approximate these instances classically;
we merely claim hardness for generic methods based on
local updates. Our PPSP construction rules can easily
be generalized to other CSPs, and we suggest that they
could prove to be a useful tool for exploring practical
approximation hardness in other contexts.

12 We note again the recent result of [71], who showed that for
NC/N > O

(

N1/2
)

the problem can be efficiently approximated

classically; our PPSPs with NC/N = 1.5N1/2 are close to this
threshold but do not cross it.
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FIG. 7: Classical approximation hardness of PPSPs using the quasi-greedy classical algorithm, for constraint densities (clockwise

from top left) NC =
{

2N, 4N, 6N, 1.5N3/2
}

. In each figure we plot the probability that a given shot returns an energy below

qEGS for various choices of q (note varying scales on probability y-axis). For all the fixed NC/N problem classes we find an
empirical approximation threshold q = Ag below which finding states becomes superpolynomially hard, and that this value
decreases as NC/N increases. For the case NC = 1.5N3/2 (bottom left), this value steadily drops, as discussed in the text.

C. Performance of high-depth TAQC for this
problem

To make firm points of comparison, alongside the sim-
ulations of spectrally folded optimization itself we ex-
tensively benchmarked high-depth TAQC on these in-
stances. For our high-depth TAQC simulations, we for-
mulated our algorithm to approximate continuous time
evolution over a total time tF , with:

|ψ (t+ dt)⟩ = e−2πif(t)dtHDe−2πig(t)dtHP |ψ (t)⟩ , (44)

f (t) =
√

1− t/tF , g (t) =
√

t/tF .

In all the presented data we used tF = N/32 and
dt ≃ 0.05. Individual shots use a random evolution
time between 2tF /3 and 4tF /3; this runtime averaging
produces substantially more reliable scaling, particularly

when probabilities are small. These parameters were cho-
sen by trial and error for smaller systems; we observed
that the probabilities of finding the ground state and
other low-energy states increased sublinearly with tF be-
yond this point. The relative improvements of the prob-
abilities of returning low-lying states were similarly sub-
linear. As discussed in section II E, we focused TAQC
rather than QAOA to avoid the overhead of angle op-
timization and to have easily interpretable results. No
numerical or iterative optimization methods were used,
nor was any per-instance tuning employed, for this algo-
rithm or any other algorithm in this work.

The results of our TAQC simulations, of 1000 random
PPSPs for each choice of N running from 8 to 30, are
shown in Fig. 8. The probability of finding the ground
state, shown in Fig. 9, decays exponentially with an expo-
nent very close to that in Eq. (25), which we find remark-
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FIG. 8: Performance of TAQC as an approximator for NC =
{

2, 4, 6, 3
√
N/2

}

N (clockwise from top left), with problem and

algorithm parameters described in section VC. Plotted are the probabilities Pq (N) = P (E ≤ qEGS) for q running from 0.5 to
0.85 in steps of 0.05 (top panels) and 0.25 to 0.6 (bottom panels). The results for the larger constraint densities thus plot a
weaker approximation range. Thick straight lines correspond to simple exponential fits where Pq (N) is not decaying; dashed
straight lines correspond to exponential decay; jagged thin curves are a guide to the eye; only points represent actual data.
As summarized in Table I, these results do not represent a meaningful improvement over the classical greedy result (Fig. 7),
though in some cases where Pq (N) decays exponentially for both approaches, the exponent for TAQC may be better. These
results were obtained using the Fujitsu Quantum Simulator, a classical HPC system.

able given the simplifying assumptions in that derivation,
and that it does not use the more sophisticated tech-
niques used to compute tunneling rates between semiclas-
sical minima. Further, this exponent displays only small
variations with constraint density and is nearly identical
in all four cases. Smaller system studies for other con-
straint densities all yielded very similar results for PGS,
as predicted by Eq. (25).
Turning to approximation hardness, being relatively

sparse, the NC = 2N problems are fairly well-
approximated by TAQC, with the algorithm returning
strings within q = 0.75 with constant or saturating prob-
ability; we attribute this to the presence of many compet-
ing minima with energies not far from EGS. In contrast,
forNC = 4N the algorithm’s performance for approxima-
tion degrades, with clear exponential decay for approxi-
mation ratios better than q = 0.55. For higher constraint
densities approximation becomes even more difficult, de-
caying exponentially below q = 0.45 for NC = 6N and
0.25 for NC = 3N3/2/2. We expect decay at sufficiently

large N for any constant fraction in that case, but cannot
simulate larger system sizes. Crucially, the thresholds qa
we measure are nearly identical to those found by the
classical greedy algorithm (figure 7), and no signatures
of an exponential quantum advantage in these instances
can be seen.
Interestingly, as NC/N increases, the probabilities of

finding states comparatively close to |G⟩ in Hamming
distance improve (see Fig. 9), but the probabilities of
finding states close in energy worsen. We attribute this
behavior to the high energy clustering phase conjectured
in Secs. IID and VB. Empirically for our PPSPs there is
a high density of local minima with energies E ≥ qaEGS,
and if qa is relatively close to 1 it becomes harder for high-
depth TAQC to find local excitations near the planted
ground state, as the probability amplitudes will be spread
over increasingly many competing minima and their own
basins of attraction. Conversely, as qa decreases with
increasing NC/N , the probability of finding local exci-
tations relatively near |G⟩ increases though still decays
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FIG. 9: Probabilities of returning states within Hamming distance DH = {2/5, 1/3, 1/4, 1/5, 1/8, 0}N flips from the ground

state G for QAOA (top to bottom curves), for NC =
{

2, 4, 6, 3
√
N/2

}

N (clockwise from top left) and application parameters in

section VC. As seen in the figures, the per-shot probability of finding the ground state is essentially independent of constraint
density and tracks the prediction N2−0.28N in Eq. 25. On the other hand, the probabilities of returning states at various
extensive fractional Hamming distances, e.g. N/4 or fewer flips, decay much more slowly, owing to the exponentially large
number of target states, and the task of finding states comparatively close to G becomes easier as NC/N increases. That said,
these probabilities all decay exponentially with N in all cases, consistent with the worsening approximation ratios observed
in Figure 8. In particular, as discussed in section VC, these results allow us to test the prediction in section II C that the
per-state matrix elements to mix with excited states can collapse as the energy increases. The numbers adjacent to each curve
on the plots are the best fit for the decay exponent b in

〈

Ω2

0j

〉

j
∝ 2−bN ; as the Hamming distance (and thus average energy, per

Eq. 18) increases, these matrix elements decay much more rapidly, exceeding the exponential growth of the number of target
states and confirming our expectation that AQC is a poor approximation algorithm in the worst case.

exponentially, as the low energy minima far from |G⟩ are
at proportionally higher energies and thus do not com-
pete directly with few-flip states. That the thresholds qa
for TAQC match those of the greedy classical algorithm
further supports the interpretation of an energy thresh-
old above which local minima become common.

Further, these results allow us to directly test the
qualitative predition in section IIC that the matrix el-
ements for the initial paramagnetic state to mix with
excited states can collapse as the energy increases, due
to the weakening transverse field and destructive in-
terference. As shown in FIG. 9, the probabilities
of finding states within fractional Hamming distances
{2/5, 1/3, 1/4, 1/5, 1/8}N from G all decay exponen-
tially, albeit with much smaller exponents than the prob-
ability of finding G. We emphasize that these smaller

exponents mask the fact that the per-state mixing rate
〈

Ω2
0j

〉

j
is decaying extremely rapidly, since the total suc-

cess probability for finding states within DH flips is given
by

PDH
(tF ) ∝

〈

Ω2
0j

〉

j
tF

W
NDH

, (45)

where NDH
is the number of states at this distance and is

given by Eq. 40. Since NDH
grows exponentially quickly,

for the total PDH
to decay exponentially

〈

Ω2
0j

〉

j
must

decay rapidly, and the resulting fit exponents in FIG. 9
are stark evidence of this. In section IIC, we identi-
fied weakening fields and destructive interference as good
reasons to not be confident in TAQC as a potent ap-
proximation algorithm, even though we were not able
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to perform a rigorous analytical calculation due to the
complexity involved. Our numerical results confirm this
suspicion. Spectrally filtered optimization was originally
formulated to resolve these two issues, and as shown in
the next section, leads to dramatically different behavior
and approximation performance.
Comparing the classical and established quantum

methods, we find that, for these approximation hard
instances, TAQC performs very poorly for finding the
ground state but less poorly for approximation below the
classical hardness threshold qa (see Table I), with decay
exponents that are much closer to the classical result. In
some higher constraint density cases our fits produced
favorable exponents for approximation with TAQC but
our range of N here is smaller than we would prefer
to claim any relative quantum advantage absent rigor-
ous theoretical justification. Nonetheless, both methods
show clear super-polynomial decay per-shot for approx-
imate optimization below the energy range where local
minima are dense. With these results in hand, we now
turn to folded quantum optimization, which maintains
an approximation guarantee regardless of the problem’s
constraint density.

VI. NUMERICAL TESTS OF SPECTRALLY
FILTERED QUANTUM OPTIMIZATION

Having numerically confirmed the expectation that
our PPSPs are superpolynomially hard for classical and
prior quantum approaches, for both exact and approx-
imate optimization, we now present the results of our
folded quantum optimization simulations. We simulated
both the trial minimum annealing and interpolation (e.g.
AQC) variations. In all cases aside from MSFO, we
chose runtimes increased linearly in N , albeit with larger
prefactors than in the TAQC simulations (which used
tF = N/32). Following the discussion in section II E,
a longer runtime further helps reduce the potential in-
fluence of diabatic local heating as the Hamiltonian pa-
rameters are varied. Run and ramp times that are too
short can lead to artificially poor scaling, arising from
the formation of local excitations as the transverse field
is turned on or off too quickly. This is fundamentally a
different, and much more prosaic, issue, than decaying
collective tunneling rates, but can be difficult to distin-
guish when our only measures are energy and Hamming
distance from |G⟩.

A. Spectrally folded adiabatic interpolation
performance

We first present simulations of the AQC variation of
spectral folding, in figures 10 and 16. For the AQC
variation, we followed the procedure in Eq. (44), with
a quadratic Hfold (Eq. 8, without the symmetrization at

high energies) in place ofHP and f (t) = (1− t/tF )
1/4

in-

stead of
√

1− t/tF , with an average runtime tF = N/24
and dt = 0.0325. This schedule modification was found
to improve scaling at higher approximation ratios. In
all cases individual shots are runtime averaged between
2tF /3 and 4tF /3 as in our TAQC simulations.
As shown in figure 10, in all but one case we were able

to meet the approximation target A = 0.75, but not ex-
ceed it; for NC = 4N we were limited to qa ≃ 0.7. Our
spectral folding methods are also much better at reliably
returning states close to G in Hamming distance, consis-
tent with the approximation guarantee (see Fig. 16). We
likewise tested increasing A to 0.85 in simulations up to
N = 24 with this variation, and found improved prefac-
tors but no improvement in scaling (see Fig. 18). This
suggests that we have found the performance ceiling for
this approach. Interestingly, the worst case qa = 0.7 ob-
served for this method is not far below the approximation
ratio of ∼ 0.8 predicted in section IVC3, using a much
more simplified analysis than was employed for the TMA
and MSFO variations.

B. Trial minimum annealing performance

We also tested the TMA formulation of spectral fold-
ing, with results plotted in Fig. 11. For these variations
we used runtimes tF = N/12 and dt = 0.025; note that
this choice of tF is a factor of 8/3 larger than in our
TAQC simulations but with the same scaling. In smaller
system studies similar qualitative performance was ob-
served for shorter tF (such as N/24 or N/32). Following
the principles in section II E, these longer runtimes were
chosen to ensure we did not need to worry about perfor-
mance degradation due to heating from the ramps them-
selves. For this variation we used a 3-XORSAT HL–the
formulation for which we could predict performance in
Sec. IV–with the minimum energy set to −2N via C (t),
which was linearly ramped down to zero by tf , and simple
sinusoidal ramp profiles with tr = N/24; the transverse
field strength κ during the main evolution was 1.3.
The careful reader may note that choosing C (t) to set

the minimum energy to −2N instead of −N is naively
suboptimal, as all other things being equal sweeping over
a larger energy range increases W in Eq. (2), and should
reduce the returned probabilities Pq (N) by an appro-
priate prefactor. However in our simulations this choice
consistently improved both the prefactors and scaling,
e.g. the value of qa, as compared to choosing a minimum
energy −N for HL. We suspect this has to do with the
band structure considerations described in Appendix C
but due to the complexity of the problem, are unable to
make a quantitative prediction.
The performance of the two approaches is qualitatively

similar with subtle differences as we vary the returned ap-
proximation ratio q. At lower approximation ratios the
AQC formulation returns higher probabilities, at lower
total gate count since there are no ramping steps and no
additional gates associated with adding HL. However,
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FIG. 10: Performance of the quadratic AQC formulation of spectral folding, for NC =
{
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N (clockwise from top

left), with N running from 10 to 27 (top row) or 26 (bottom row), A = 0.75, dt = 0.0325, tf = N/24 and other parameters as
stated in text. In each plot the 8 curves plot Pq (N) = P (E ≤ qEGS) for q running from 0.5 to 0.85 (top to bottom) in steps of
0.05. Thick straight lines correspond to simple exponential fits where Pq (N) is not decaying, dashed straight lines correspond to
exponential decay, and thin lines between points are included for visual clarity. In all four cases spectrally folded optimization is
able to meet its approximation target of A = 0.75, returning states at or below this energy with constant probablity in a linearly
growing number of cost function calls. This is in stark contrast to our classical greedy algorithm (FIG. 7) and QAOA (FIG. 8)
results, where the achievable polynomial time approximation ratio steadily worsens with increasing NC/N , and supports the
theoretical analysis of section IV. These results were obtained using the Fujitsu Quantum Simulator, a classical HPC system.

at higher approximation ratios the TMA formulation ap-
pears to be better able to approach the approximation
target A = 0.85. As discussed in the algorithm defini-
tion, folded optimization will definitionally fail to con-
sistently return energies significantly below AEGS, and
absent warping we expect it to break down as A gets
too close to 1 given that TAQC and similar methods fail
to reliably approximate these problems. Choosing the
best value for A is thus a subtle issue that depends on
the problem class; for extensions of this method to hard
CSPs it will necessarily change from one problem class
to the next.

Likewise, as mentioned in section IVC3, one can re-
place the random 3-XORSAT lowering Hamiltonian in
TMA for a simpler set of linear Z biases, reducing the
gate count per timestep and, potentially, increasing the
per-state tunneling rate by implementing a shallower
cost-per-flip curve. In comparison to the 3-XORSAT
variation discussed in the previous paragraph, to achieve

good performance we needed to double the ramp time.
This protocol seemed to be more sensitive to performance
degradation from heating during ramps. The algorithm
also benefitted from adjusting C (t) so that the minimum
energy of HL was −3N , as compared to −2N for the 3-
XORSATHL. Relative performance for A = 0.75 is com-
parable to the other variations, as illustrated in Fig. 12,
though the individual Pq (N) show more significant non-
monotonicity that makes reliable curve fitting challeng-
ing. This issue is even more pronounced for A = 0.85
(data not shown), to the point that we did not quote qa
values for that variation in the Table I.

C. Multi-stage filtered optimization performance

For our final set of simulations, we studied the multi-
stage filtered optimization of section IVB, which for
dC ≫ 1 and ϵ ≪ 1 is predicted to find the ground state
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FIG. 11: Performance of the trial minimum annealing formulation of spectral folding with a 3-XORSAT lowering Hamiltonian

HL, with A = 0.85, plotted for constraint densities (clockwise from top left)NC =
{

2N, 4N, 6N, 1.5×N3/2
}

and approximation

ratios between q = 0.5 and 0.85 with N running from 10 to 24, for the parameters detailed in the text. All data is derived from
averaging over 960 random instances and choices of tf . Compared to the AQC formulation shown in figure 10, the achievable
approximation ratio qa is often slightly higher, though the total gate count in this formulation is larger by a constant prefactor.
In all cases qa well exceeds the value of 0.6 conservatively predicted for this formulation.

in sub-quadratic total evolution time. In that section, we
made two claims, the first concerning the stability of the
transition point and the second concerning the validity of
mean-field methods for predicting the minimum gap. If
the second claim in particular asymptotically holds then
the time to solution must scale polynomially, roughly as
N1.46 for the parameters (x = 2 and w = 0.6 in Eq. 12)
chosen. Our goal in these sections was to test the basic
veracity of these claims. In particular, we wanted to ver-
ify that for a polynomial quantum evolution time tF (N),
predicted from a mean field analysis, the probability of
finding the ground state PGS (N) would be asymptoti-
cally constant with increasing N .

To determine tF (N), we needed to take into account
a few effects that are not relevant in the large N limit.
First, as discussed in appendix IVA, the average cost
per flip away from G has meaningful small-N deviations
from the asymptotic result in Eq. 18. To take this into
account, we numerically calculated the average E (x) for
x flips away from G and used that result as the cost
function in computing Ωmf (N). For x = 2, w = 0.6

and N ≤ 30, we obtained Ωmf (N) ∝ N−0.16. Sec-
ond, the slope W (N) was not perfectly linear, but in-

stead best fit by W (N) ∝
√

N2 + w2
0. Third, let the

avoided crossing occur at sc (N) (for total Hamiltonian
H = κHD + sHx,w

cost). It turns out for N in the range
accessible for classical simulation that the scaling of the
gap with s is substantially asymmetric around sc (with
a much sharper slope with s > sc), and sc (N) likewise
empirically varies as sc (N) = s0 + a/N for a constant a
and s0 ≃ 0.3 is the asymptotic result. Putting all these
effects together, we posited a runtime scaling

tF (N) ∝
√

N2 + w2
0

Ωmf (N)
2
sc (N)

. (46)

This function approximately scales as N1.5 for the pa-
rameters chosen here, and was used as the input to set
the runtime of our simulations. We set dt = 0.025 to
minimize heating from Trotter error (though as seen in
figure 13, we needed to reduce it further for dC = 2),
and let the runtime of the first stage be tF (N) and the
second and third stages be tF (N) /2 for each. Finally,
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FIG. 12: Performance of the trial minimum annealing formulation of spectral folding with a local Z bias HL, with A = 0.75, for
N running from 8 to 25. qa in each case is comparable to other variations, though greater non-monotonicity in the individual
Pq (N) curves makes fitting more difficult.

we chose the prefactor of tF (N) so that tF (8) = 1/4,
matching the runtime used in the TAQC simulations of
section VC.

The results of our simulations are plotted in FIG. 13,
and support our assertion of a polynomially scaling
time to find the true ground state for PPSPs in the
approximation-hard regime. With suitably small dt we
find that PGS (N) is asymptotically independent of con-
straint density and asymptotically constant with N , at
least up to N = 25, the largest sizes simulated. Both
the constant scaling, and the approximate dC indepen-
dence, are implied by our theory. The performance ad-
vantage of MSFO is particularly stark when compared
to TAQC, as seen in the figure. Per Eq. 2 we assume
that the TAQC success probability scales roughly as
PGS ∝ Ω0 (N)

2
tF (N) /W (N), and therefore to make

the comparison fair we took the probabilities computed
in section VC and multiplied them by the appropriate
factor (8/N) (tF (N) /tF (8)) to afford them the same to-
tal quantum evolution time as MSFO.

We find the result for dC = 2 to be particularly sur-
prising, in some sense, given that the local constraint
density variation is proportionally large in that case, and
that the clustering energy is 75-80% of EGS so we do not
think transverse field chaos can be a priori ignored once

filtering is applied. The only algorithm modification we
needed to make to match the performance at higher con-
straint densities was to reduce dt (and thus increase the
circuit depth, so the total evolution time was the same)
by 20%. We attribute the increased sensitivity to Trot-
ter error to the larger local variations in the cost per flip
of the classical HP ; recall that we have normalized each
problem so that EGS = −N , and the variance of the local
energy cost scales as 1/

√
dC as a result.

We emphasize that we do not guarantee that MSFO
will always be able to find the ground state for any ap-
propriately normalized MAX-3-XORSAT instance, given
that it cannot overcome TFC. We presume that there are
also additional hypergraph properties that ensure expo-
nential scaling for MSFO (and our other filtered opti-
mization methods), for both exact and approximate op-
timization; we just do not know what they are. If the
transition to the ground state becomes first order and
is missed, MSFO could likely suffer from the same field
weakening and interference problems as TAQC, though
this could be addressed by choosing an approximation
target A < 1, something that could be interesting to ex-
plore in future work.
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FIG. 13: Probability of finding the ground state with multi-stage filtered optimization (top, approximately constant data), as

compared to Trotterized adiabatic quantum evolution (bottom, exponentially decaying data), for NC =
{

2, 4, 6, 3
√
N/2

}

N

(blue, gold, green and red points), demonstrating the rough independence of constraint density–and, critically, the scaling of
PGS (N) for the runtime specified–predicted through many-body theory in the text. The TAQC data, which all shows clear
exponential decay, is taken from FIG. 9 and rescaled by a multiplicative factor so that the total per-shot quantum evolution
time is the same for all data. This runtime is sub-quadratic (scaling approximately as N1.5) and given by Eq. 46. For NC = 2N
we observe performance degradation at larger N , which turns out to be due to Trotter error heating; reducing dt from 0.025 to
0.02 restores constant PGS (N) (purple triangles). We attribute the larger sensitivity to Trotter error at low dC to the increased
local variance of the density of constraints, and it may be the case that dt needs exhibit slow polynomial decay with N to
maintain asymptotically constant scaling; both issues are discussed in section IVB. Black dashed lines plot the average over
constraint densities for the two methods. Each MSFO datapoint is the average of 480 randomly generated instances.

D. Discussion of our spectrally folded optimization
results

The reader may note that all of our spectral folding
simulations targeted energies in the range A = 0.75 to
A = 0.85, well above the theoretical prediction of ∼ 0.6.
We also tested A = 0.65 at smaller scales (data not
shown) for both formulations but found no region of the
parameter space where it showed meaningful improve-
ments over choosing A = 0.75 or higher. When increas-
ing A to 0.85 we were not able to meet this target with
constant probability, though for some cases we did see
improvements in the returned achievable approximation
ratio qa when compared to A = 0.75. Aside from our
MSFO simulations where A = 1, we did not run tests
with A > 0.85 due to system size constraints, though
comparing performance between A = 0.75 and A = 0.85
in table I suggests we have found the performance ceiling
for these methods. Given the comparatively small system
sizes available to classical simulation our ability to draw
meaningful scaling distinctions with very small changes
in A is limited. Considering the results of all our numer-
ical simulations, the minimum achievable approximation

ratio for our PPSP problem classes is at least 0.7 (often
0.75) for the quadratic AQC variation, and at least 0.75
(often 0.8) for the 3-XORSAT TMA variation.
As summarized in table I, the contrast between the

clear super-polynomial decay of higher approximation ra-
tios with classical methods and TAQC (Figs. 6-9), and
the constant probabilities returned by folded quantum
optimization (Figs. 10-13) is stark. In particular, for the
established methods, the polynomial time approximation
threshold is set by the problem structure, specifically the
relative energy of the high energy clustering phase, and as
our PPSPs become more extremal this threshold steadily
worsens as a fraction of the energy of the planted ground
state. We found no evidence for an exponential sep-
aration in approximation power between local classical
searches and TAQC. We assume, but did not test, that
this would hold for linear-depth QAOA as well, though
we do not rule out the possibility of meaningful speedups
given fine tuning. At lower constraint densities, the clus-
tering energy is not far above the ground state and spec-
trally folded quantum optimization provides no benefits
for approximation, though it can still show scaling advan-
tages for returning states close in Hamming distance to
the ground state (see appendices). At higher constraint
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densities however, spectral folding is able to return states
close to G (and often find it directly, given quadratic run-
times and multiple stages), in both energy and Hamming
distance, consistently and without degradation as NC/N
increases. The performance of all spectral folding vari-
ations tested was broadly similar, with the 3-XORSAT
TMA variation returning the highest approximation ra-
tio but at the highest prefactor cost in gate count.
This illustrates the fundamentally different structure of

collective tunneling in this approach. Where TAQC and
other direct methods attempt to find the ground state,
asymptotically fail (given exponential scaling), and re-
turn approximate states passed after this missed oppor-
tunity, spectrally folded optimization deforms the cost
function to search for states in an exponentially large
hyperspherical shell, avoiding the interference and weak-
ening field issues that are qualitatively responsible for
TAQC’s lack of obvious quantum advantage. In the in-
terest of fair comparisons the total runtime per-shot of
all routines besides MSFO is O (N) Hamiltonian calls.
With this simple linear scaling we are able to ensure that
any exponential scaling of the time to solution not visible
from our figures or fits must involve very small exponents,
though of course we cannot rule out such behavior on nu-
merics alone. We thus do not see our numerical simula-
tions as a precision scaling benchmark of folded quantum
optimization, but rather a test of the basic veracity of our
conservative analytical predictions in section IV.
Likewise, if our goal is to find ground states and not

just good approximations thereof, it may well be the
case that algorithms targeting A < 1 are actually su-
perior in the approximation-hard regime, even if MSFO
with A = 1 can find the ground state directly in sub-
quadratic time! This is because those algorithms are ca-
pable of reliably finding states near the ground state, e.g.
in its basin of attraction, and from there simple classical
methods such as our quasi-greedy algorithm or simulated
annealing can likely relax to the ground state quickly. If
the polynomial runtime scaling to find approximate solu-
tions is favorable (e.g. O (N) vs. O

(

N1.46
)

), then relax-
ing from an approximate solution may be more efficient.
The choices explored in this paper likely only scratch
the surface of what is possible in filtered optimization.
We present all of these simulations–and new quantum
algorithms–as constructive evidence for the fast approx-
imability of MAX-3-XORSAT through a novel speedup
mechanism. The results of our simulations, for a wide
range of parameters, all suggest that our theory is sound.

E. Extensions of these results

Having thoroughly explored MAX-3-XORSAT in this
work, it would be interesting to test spectral filtering
methods on other hard CSPs or problems that can be
straightforwardly formulated as such. We expect that the
derivation of the achievable approximation ratio through
the overlap of dressed states could generalize with some

modifications to many other problem classes. We focused
on MAX-3-XORSAT due to the simplicity of its struc-
ture, classical approximation hardness, and the fact that
its exponential difficulty scaling is obvious at small N for
more standard classical and quantum approaches.

It also strikes us as noteworthy that while spectral fold-
ing can be implemented in traditional classical heuristics,
there is no benefit to doing so. As we discussed at length
in Sec. II, classical algorithms generally start from high
energy states and attempt to cool towards the ground
state through local updates. In the case of linear spectral
folding, the folding procedure makes no difference what-
soever to the returned energy until the fold energy has
been reached, and in the worst case reaching that energy
is an exponentially difficult task for classical computers
unless P=NP, due to entropic barriers as discussed in
Sec. II and confirmed in our simulations. Changes to the
high energy spectrum from quadratic folding are sim-
ilarly not expected to make approximation easier. So
while spectral folding is not in and of itself a quantum
operation, we expect that it is only valuable in quantum
algorithms and we consider it an irreducibly quantum
method as a result. Further, because of its nonlocal na-
ture, even in the locally gapped dressed problem phase we
expect volume-scaling entanglement in low-lying states of
the folded quantum spin glass, and significant classical
simulation difficulty.

One interesting potential exception to this argument
is quantum Monte Carlo. Being a stoquastic problem, a
folded quantum spin glass can in principle be efficiently
simulated using QMC [103–107], which for a uniform field
has in some cases proven to be an effective quantum-
inspired classical solver [26, 108]. Incorporating spectral
folding into these algorithms is possible, though the loss
of locality makes evaluating each update much more ex-
pensive. As QMC is, fundamentally, an energy-based
classical local update rule combined with many replicas,
we do not expect it to overcome the entropic barrier in
MAX-3-XORSAT the way that true quantum evolution
can, though of course have not tested this here. In this
vein, we note also the results of Hastings, and subse-
quently Gilyén and Vazirani, that a super-polynomial
separation exists between stoquastic AQC (the class con-
taining some of the algorithms in this work) and classi-
cal computation [109, 110]; the stoquasticity of our algo-
rithms thus does not rule out super-polynomial speedups.
All that said, there may be some narrow cases where in-
corporating spectral filtering in a QMC calculation could
prove useful as a classical solver; this would be an inter-
esting avenue for future research.

If it turns out that many or all of these instances are
efficiently approximable classically through QMC with a
filtered spectrum (or any other classical method, for that
matter), that would be a very significant discovery in its
own right. Nothing in this work rules that out, and we
think the issue deserves further inquiry.
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VII. CONCLUSIONS AND OUTLOOK

Using the NP-hard MAX-3-XORSAT problem class,
we explored the question of classical and quantum
approximation hardness from a practical, mechanism-
focused point of view. Guided by theoretical intuition,
we proposed a class of instances called planted partial
solution problems (PPSPs) which we showed are empir-
ically hard for both exact and approximate optimization
for classical searches and established quantum methods
such as adiabatic quantum computing (AQC) and, we
presume (but did not directly test), the quantum approx-
imate optimization algorithm (QAOA). Through extrap-
olation and qualitative analysis of a rigorous calculation
of the typical-case minimum gap at the first order para-
magnet to spin glass transition bottlenecking MAX-3-
XORSAT, we were able to identify two effects that signifi-
cantly impede the ability of high-depth Trotterized AQC
(TAQC) to approximate the hardest instances, namely
weakening transverse field and destructive interference.
We then proposed a novel algorithmic advance, called
spectrally filtered quantum optimization, that provides
multiple routes to circumvent these issues. The filtering
transformation itself is conceptually simple; the analyti-
cal analysis of the full algorithm’s performance is perhaps
less so. And rather intriguingly, it works by applying
classical modifications to the classical cost function be-
ing optimized, which only provide benefits for quantum
optimization.
Using a resummed extensive-order perturbation the-

ory, we were able to predict a constant fraction ap-
proximation guarantee for our difficult random hyper-
graph PPSPs, and consequently, an exponential quan-
tum speedup in the classically hard regime. To further
support our claims, we performed a series of numerical
simulations of high-depth TAQC, classical optimization
routines, and spectrally filtered optimization methods,
out to the largest sizes that we could feasibly reach while
still being able to gather good statistics. These numer-
ical results support our claims and we did not discover
any meaningful discrepancies or red flags in them; every
major prediction here has been numerically checked to
the extent we found reasonably possible.
The implications of an effective fast approximation

guarantee through spectrally filtered optimization–or any
quantum algorithm, for that matter–are profound, and
even restricting ourselves to MAX-3-XORSAT it is im-
portant to ask what types of hypergraph might cause it
to fail. To be clear, “failure” in this case means that, for a
class of hypergraphs, some property invalidates the ana-
lytical predictions we made and restricts polynomial-time
approximation to values of qm near zero. Such a property,
whether present in large random instances or specific to
a tiny subclass thereof, would have to break both folded
optimization through collective tunneling, and the soft-
ening of the first order phase transition in the multistage
composition of folding and warping.
Focusing on the trial minimum annealing formulation,

if a subsequent, more sophisticated analysis shows, for
example, that due to some subtle effect missed in our
resummed extensive order perturbation theory, the vari-
ations we propose are asymptotically limited to qm = 0.4
for random hypergraphs instead of our prediction of
≥ 0.6, we would not consider that a general failure of
the algorithm. Given the exponential density of target
states, for folded quantum optimization to fail the per-
state tunneling rate needs to be much worse than what
our calculations and simulations return; even doubling
the per-state tunneling decay exponent in Eq. (42) yields
qm ≃ 0.18, a much worse approximation ratio than we
predict and observe in simulations, but still a constant
fraction better than random guessing. And this esti-
mate is, again, for a formulation of our trial minimum
annealing algorithm that did not use all the tools avail-
able to us, such as spectral warping, that would further
improve performance. And finally, we emphasize again
that neither of our two filtered optimization algorithms
used all the techniques available to improve approxima-
tion performance–targeting excited states by folding in
the case of multistage filtered optimization, and spectral
warping in trial minimum annealing.

We are not so hubristic as to claim it is impossible that
there are hidden effects that substantially worsen scaling
at large N for random hypergraphs, which are not cap-
tured by our theories and are invisible in our numerics.
But we see no evidence for it, have no idea what such
an issue could be, and formulated our theory such that
the simplifying approximations we made were more likely
to underestimate the achievable approximation ratio qa
than overestimate it. Excellent empirical performance
in simulation, and the fact that two completely different
calculations analyzing completely different filtered opti-
mization algorithm formulations yield similar speedups,
both bolster the strength of our claims. We see it as much
more likely that one can structure PPSP hypergraphs in
some non-random way as to violate the core assumptions
of our calculations and become inapproximable. The con-
ditions on such hypergraphs are, however, fairly strict;
besides needing to more than double the exponential de-
cay rate of per-state tunneling in folded optimization (as
compared to random hypergraphs), whatever property is
responsible for the slowdown must be resilient both to the
addition of a random, uncorrelated problem with similar
constraint density and ground state energy, and to spec-
tral deformations such as nonlinear folding and spectral
warping. Further, such graphs must be relatively dense,
as sparse problems are easy to approximate by solving
random sub-problems, and their construction rules must
not inadvertently render them amenable to classical op-
timization.

Identifying hypergraph properties that cause this en-
tire class of methods to break down could lead to valu-
able new discoveries about macroscopic quantum tun-
neling physics and problem hardness, and further algo-
rithm innovations in the steps needed to mitigate their
effects. As we stated in the introduction, the underlying



36

reasons for classical approximation hardness are generic
and intuitive if often only applicable to extremal prob-
lem instances, but their quantum equivalents are not, and
much more opaque. The correctness of our predictions
here would imply that quantum approximation hardness
may not be generic at all, and instead specific to as-yet
undiscovered sets of problem properties. Let’s go explor-
ing.
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Appendix A: Appendix: small-N deviations from
the asymptotic cost per flip curve

In this section, we consider small-N deviations from
the asymptotic mean cost per flip scaling, Eq. 18. As
discussed in that subsection, the statement Eavg (x) =

E (G)
(

1− 2x
N

)p
is only asymptotically exact, owing to

the approximation made in taking the step size to zero
in Eq. 17. Empirically, as plotted in FIG. 14, the real
average energy at finite N tends to be larger (e.g. less
negative) than the asymptotic scaling predicts, though as
fraction of the total energy these deviations decrease with
system size, with an overall envelope that scales roughly
as 1/N .
While this effect has no impact on the asymptotic scal-

ing of our methods, it can potentially pose challenges for
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FIG. 14: Fractional deviations from the average energy Eq. 18
for random MAX-3-XORSAT instances, as a function of m
flips away from the planted ground state G, numerically esti-
mated for N = {12, 24, 36, 48, 60} (blue circles through purple
triangles and monotonically decreasing).

small N simulation. As the average energy costs (e.g.
Eavg (m) − E (G)) enter in products into the denomina-
tors of collective tunneling rate calculations, even small
fractional increases can produce significant reductions in
the associated minimum gaps. They can similarly alter
how the system responds to the spectral filtering trans-
formations. However, this is at least partially balanced
in scaling by the fact that the scale of the cost per flip
increases is decreasing with N , so for the algorithms con-
sidered in this work the resulting deviations from the
predicted asymptotic scaling are typically modest.

We caution however that at larger p these deviations
become more severe, even if they too vanish as N → ∞.
This issue is one of the main reasons we focused ex-
clusively on p = 3 MAX-3-XORSAT in this work, as
the methods and techniques we introduced can readily
generalize to higher degree constraints. We feel that
the generalization from mean-field like analytical calcula-
tions to real disordered problems is highly nontrivial, and
thought it important to be able to test the basic veracity
of our predictions using detailed numerical simulations.
For p = 5 we were not confident in being able to access
the asymptotic scaling of the system in full wavefunction
simulations with N ≤ 25, so we did not explore MAX-5-
XORSAT in this work.

Appendix B: Tunneling between two p-spin wells

.

To benchmark our prediction in Eq. 39, we performed
a series of numerical simulations, shown in FIG. 15. For
these calculations, we computed the degeneracy splitting
2Ω0 for two p-spin wells centered at classical states a and
b separated N/2 flips apart, with a total Hamiltonian
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given by

H = − 1

Np−1









∑

j

Zjaj





p

+





∑

j

Zjbj





p



− κ
∑

j

Xj , (B1)

The (p, κ) values we used were
{(2, 1.25) , (3, 1.25) , (4, 1.2) , (5, 1.1) , (7, 1.06) , (9, 1.03)},
and the resulting exponents found from numer-
ical fitting of Ω0 (N) = a

√
N2−bN , as com-

pared to Eq. 39, are (listed as (p, bnum, bth))
{(2, 0.175, 0.180) , (3, 0.235, 0.239) , (4, 0.275, 0.287),
(5, 0.482, 0.512) , (7, 0.591, 0.623) , (9, 0.676, 0.722)},
demonstrating excellent overall agreement, even with
the prefactor, as shown in FIG 15.

While fully sufficient for our purposes here (where
p = 3), we want to highlight two issues with the formu-
lation in Eq. 29 that suggest a more refined treatment
should be developed to tackle p > 3 and/or asymmet-
ric minima. First, ∂mEm,n is guaranteed to vanish at
some point, since the energy curve at the peak of the
barrier is smooth, and since it enters the calculation in
the denominator, it predicts a diverging scale for energy
corrections. In symmetric cases, this divergence is can-
celed by the factor of N/2−2n in the numerator and the
result is finite, but if the energy curve is not symmetrical
between the two minima those two factors won’t gener-
ally coincide (as the barrier peak won’t occur at M/2
flips for asymmetric minima) and the divergence will not
be canceled.

Second, even we consider the symmetric case and the
divergence is canceled, this formulation of perturbation
theory can still lead to unphysical results. For p ≥ 4,
while the energy corrections remain finite throughout,
for κ relatively close to κc, the renormalized energy bar-
rier peaks at some m = mc < M/2, and decreases from
there. This is unphysical, and we can mitigate it with the
ad hoc prescription that um,0 simply stops increasing be-
yond m = mc and maintains that value until m = M/2.
The sum in Eq. 34 is similarly modified so that the in-
sertion of an additional spin flip cannot lower the energy.
Using this prescription produces quantitatively good re-
sults for p running from 4 to 9, as shown in FIG. 15.

One can also work through this analysis for the split-
ting p = 2 mean field all-to-all ferromagnet, where the
transition out of the ferromagnet phase occurs when
κ = 2 for this normalization. In that case all N spins
must flip and there are no secondary spin corrections;
further, due to a symmetry cancellation the self energy
corrections (e.g. Eq. 29) are energy-independent and thus
do not renormalize the tunneling barrier. Repeating the
same steps for this somewhat simpler calculation yields

Ω0 (Nκ) ≃
√

N

2π

κN

w (N, κ)
2

(e

4

)N

. (B2)
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FIG. 15: Comparison of Eq. 39 to the tunnel splitting found
from exact diagonalization of the Hamiltonian in Eq. B1, for
p = {2, 3, 4, 5, 7, 9} (blue, gold, green, purple, red, brown) and
κ stated in the text. There are no free parameters in this;
exponents found by extrapolating Eq. 39 out to N = 80 agree
with the numerical results to within few percent. To make
sensible predictions for p ≥ 4 an additional modification was
needed to regularize the transverse field corrections to state
energies– see text for details. Only p = 3 is directly relevant
to this work; simulation of other p values is to demonstrate
the accuracy and flexibility of our theory.

We of course still need to evaluate the normalization fac-
tor w (N, κ). Explicitly, it is given by

w (N, κ) =

√

√

√

√

√1 +

N/2
∑

k=1

(

N

k

)

κ2k



k!
k
∏

j=1

ϵ−1
k





2

(B3)

This function is extremely well fit by a simple exponential
in N , with a coefficient that depends on κ. Empirically,
it can be well approximated as,

w (N, κ)
2 ∝

(

1 + aκb
)N

, (B4)

where fitting a range of κ values from 0.4 to 1.6 gives
a = 0.066 and b = 2.25, in fairly good agreement with the

result
(

1 + κ2/16
)M

one can derive from simple second
order perturbation theory.

Of note is that Eq. B3 is both of similar quantita-
tive accuracy as the results plotted in FIG. 15, and it
predicts that the decay exponent smoothly approaches
zero as κ → 2, at which point the minimum gap de-
cays inverse polynomially. Similar behavior–a crossover
to polynomial scaling when theory predicts the decay ex-
ponent must vanish–was observed both analytically and
numerically in the 1d transverse field Ising chain in [25].
We see this as lending further indirect support to our
polynomial time approximation hardness prediction in
Eq. 42–though the situation is fairly different all these
calculations identify a crossover to polynomial scaling by
the point at which a predicted decay exponent vanishes
in careful many-body theory.
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Appendix C: Band structure considerations for
linear spectral folding

In the simulations in section VI, we noticed that the
quadratic AQC formulation of spectrally folded quantum
optimization performed similarly to the rough prediction
in section IV, returning a worst case approximation ratio
of qa = 0.7 compared to the approximate theoretical esti-
mate 0.68. In contrast, the linear trial minimum anneal-
ing versions more notably outperformed the analyitical
prediction (returning qa = 0.75 as compared to 0.6), and
in numerical experiments the best choice for the lowering
parameter C (t) in Eq. 15 was 2-3 times that one would
naively expect. We suspect that this has to do with the
band structure of the dressed eigenstates in T (the band
of classical states at or very near the fold energy) when
the transverse field κ is nonzero, and in this subsection
argue why this might be the case. We present these argu-
ments as suggestions and not a rigorous proof, and think
more work on this issue could be valuable for shedding
light on the detailed structure of these optimization al-
gorithms.
Let {|Tj⟩} be the set of all NT bitstring states in T ;

states in T all have E ≃ AEGS before any corrections
from the lowering Hamiltonian. Further let |ψk⟩ be a
dressed eigenstate whose spectral weight is concentrated
in T . Thus

|ψk⟩ ≃
NT
∑

j∈T

cjk |Tj⟩ ,
〈∣

∣c2jk
∣

∣

〉

≃ 1

NT

. (C1)

Finally, let ΩLj be the M -spin tunneling matrix element
into a bitstring state |Tj⟩ from |LD⟩, where ⟨ΩLj⟩j = Ω0

as calculated in Eq. 39.
We choose our gauge and basis so that all transverse

field terms are negative and H is real, which is straight-
forward since H is stoquastic. In this gauge we can as-
sume all the ΩLj matrix elements are negative, though
their magnitudes can of course vary substantially over
T (but we expect are fairly well-correlated locally, when
considering states in T only a few flips apart). Because
the states in T are all near-zero energy, the local trans-
verse field-induced “hopping” matrix elements connect-
ing them are either direct (if a given pair of states in T
are one flip apart), or the result of short ranged, few-flip
tunneling through local excited states. In either case, the
resulting matrix element is negative, and the band of |ψk⟩
states are (approximately) the eigenstates of a hopping-
like model on a sparse, disordered graph of NT sites,
where most hopping matrix elements are negative and
there is local potential disorder. With all these quantities
defined, we now want to estimate the tunneling matrix
element Ω̃Lk from |LD⟩ into |ψk⟩.
We first consider states |ψk⟩ near the band center, e.g.

where the energy shifts from the transverse field are solely
due to the second order local processes captured in sec-
tion IV and the “hopping energy” is nearly zero. For
such states, we can assume the signs of the amplitudes

cjk are randomized. Then by the law of large numbers:

〈

Ω̃2
Lk

〉

k
≃
〈





NT
∑

j∈T

cjkΩLj





2
〉

k

(C2)

∝ NT

〈

c2jkΩ
2
Lj

〉

j
∝
〈

Ω2
Lj

〉

.

Thus, the average squared matrix element to tunnel into
a state in the band center has the same scaling as one
obtains from a more naive calculation that ignores the
band structure entirely. Since the majority of states in
the band are near the center in this respect, this calcu-
lation shows that ignoring the local band structure in T
is a decent approximation for obtaining the average col-
lective tunneling rate that enters into equations like 42.
But what happens when we consider states that are

more extremal, e.g. near the top or bottom of the band?
Near the top of the band, we can assume significant local
alternation in the signs/phases of the cjk coefficients, and
thus the assumption of randomization is still fairly good
and Eq. C2 likely accurately captures the scaling. For
states near the bottom of the band, however, the situa-
tion changes. First, these states will be lower in energy
by an O (N) factor, which means C (t) must be further
reduced for |LD⟩ to cross them, and the individual tun-
neling matrix elements ΩLj into such states may scale
differently as a result. We label these matrix elements
Ω′

Lj and do not attempt to predict what, if any, changes
to scaling may arise.
Second, to minimize the energy the signs/phases of

the cjk of nearby (in Hamming distance) configurations
will be synchronized given that the matrix elements that
couple them are real and (mostly) negative (again, in
this gauge choice; see [98]). And this synchronization
can dramatically enhance tunneling rates. Let us guess,
for example, that in the band ground state |ψ0⟩, most cj0
are positive. Then:

∣

∣

∣Ω̃2
L0

∣

∣

∣ ≃
〈





NT
∑

j∈T

cj0Ω
′
Lj





2
〉

∝ NT

〈

(

Ω′
Lj

)2
〉

. (C3)

Since NT is exponentially large in N (Eq. 40), the tun-
neling matrix element into the band ground state can
be exponentially larger than the average matrix element
for tunneling into the band center, though if Ω′

Lj decays
more quickly with N that may reduce or erase this effect.
We expect that collective tunneling into low-lying states
in the band could be similarly enhanced even if there
is more variation in the signs of the cjk terms, as the
matrix elements ΩLj are locally correlated in magnitude.
And though there are exponentially fewer states near the
band bottom compared to the band center, if the tunnel-
ing matrix elements are exponentially larger the weighted
average over all states in the band can be substantially
increased–we saw this effect already in averaging over the
relative distance to |L⟩ of different states in T (Eq. 41).
It is thus quite plausible that band structure effects could
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further increase collective tunneling rates and be respon-
sible for the relative overperformance of TMA spectral
folding in our simulations, as compared to the analytical
prediction.
All that said, we did not include this analysis in the

main text because we do not presently have the mathe-
matical tools to quantitatively predict the band structure

and nature of the dressed eigenstates, nor can we predict
the potential scaling changes in the collective tunneling
matrix elements Ω′

Lj to states near the bottom of the
band. So we present these results to justify our claim
that ignoring band structure is likely to underestimate
the achievable approximation ratio, and to suggest inter-
esting directions for further research.
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J. Golden, N. Lemons, and S. Eidenbenz, arXiv preprint
arXiv:2308.15442 (2023).

[68] J. Roland and N. J. Cerf, Phys. Rev. A 65, 042308
(2002).

[69] S. Khot and A. Naor, in 48th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS’07)
(IEEE, 2007), pp. 318–328.

[70] S. R. Allen, R. O’Donnell, and D. Witmer, in 2015 IEEE
56th Annual Symposium on Foundations of Computer
Science (IEEE, 2015), pp. 689–708.

[71] T. d’Orsi and L. Trevisan, arXiv preprint
arXiv:2204.10881 (2022).

[72] M. Alekhnovich, in 44th Annual IEEE Symposium on
Foundations of Computer Science, 2003. Proceedings.
(IEEE, 2003), pp. 298–307.

[73] B. Barak, A. Moitra, R. O’Donnell, P. Raghaven-
dra, O. Regev, D. Steurer, L. Trevisan, A. Vija-
yaraghavan, D. Witmer, and J. Wright, arXiv preprint
arXiv:1505.03424 (2015).

[74] O. Dubois and J. Mandler, Comptes Rendus Mathema-
tique 335, 963 (2002).

[75] J. H̊astad and S. Venkatesh, in Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing
(2002), pp. 43–52.

[76] M. Kowalsky, T. Albash, I. Hen, and D. A. Lidar, arXiv
preprint arXiv:2103.08464 (2021).

[77] L. Zhu, H. L. Tang, G. S. Barron, F. Calderon-Vargas,
N. J. Mayhall, E. Barnes, and S. E. Economou, Physical
Review Research 4, 033029 (2022).

[78] M. B. Hastings, Quantum 2, 78 (2018).
[79] A. M. Dalzell, N. Pancotti, E. T. Campbell, and F. G.

Brandão, in Proceedings of the 55th Annual ACM Sym-
posium on Theory of Computing (2023), pp. 1131–1144.

[80] A. Anshu, D. Gosset, K. J. M. Korol, and M. Soleiman-
ifar, Physical Review Letters 127, 250502 (2021).

[81] K. Marwaha and S. Hadfield, Quantum 6, 757 (2022).
[82] L. W. Wang and A. Zunger, The Journal of Physical

Chemistry 98, 2158 (1994).



42

qa=0.75

12 14 16 18 20 22 24
N

0.05

0.10

0.50

1

Pq(N)

qa=0.7

12 14 16 18 20 22 24
N

0.05

0.10

0.20

0.50

Pq(N)

qa=0.75

12 14 16 18 20 22 24
N

0.05

0.10

0.20

Pq(N)

qa=0.7

12 14 16 18 20 22 24
N

0.05

0.10

0.20

0.50

Pq(N)

FIG. 18: Performance quadratic AQC spectral folding, for NC =
{

2, 4, 6, 3
√
N/2

}

N (clockwise from top left) with increased

approximation target A = 0.85 and all other parameters equal. In comparison to the A = 0.75 results in figure 10, increasing
A improves prefactors but does not improve scaling and in the case of NC/N = 6, modestly reduces qa. This suggests we have
reached the performance ceiling for this variation on the tested PPSP classes.

[83] L.-W. Wang and A. Zunger, The Journal of Chemical
Physics 100, 2394 (1994).

[84] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-
Guzik, New Journal of Physics 18, 023023 (2016).

[85] R. Santagati, J. Wang, A. A. Gentile, S. Paesani,
N. Wiebe, J. R. McClean, S. Morley-Short, P. J. Shad-
bolt, D. Bonneau, J. W. Silverstone, et al., Science ad-
vances 4, eaap9646 (2018).

[86] F. Zhang, N. Gomes, Y. Yao, P. P. Orth, and
T. Iadecola, Physical Review B 104, 075159 (2021).

[87] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li,
E. Grant, L. Wossnig, I. Rungger, G. H. Booth, et al.,
Physics Reports 986, 1 (2022).

[88] L. C. Tazi and A. J. Thom, arXiv preprint
arXiv:2305.04783 (2023).

[89] E. Kapit, Systems and methods for accelerated quantum
optimization (2021), uS Patent App. 17/027,146.

[90] E. Granet and H. Dreyer, arXiv preprint
arXiv:2404.16001 (2024).

[91] S. Bravyi, D. P. DiVincenzo, and D. Loss, Annals of
physics 326, 2793 (2011).

[92] F. Pietracaprina, V. Ros, and A. Scardicchio, Physical
Review B 93, 054201 (2016).

[93] C. Baldwin, C. Laumann, A. Pal, and A. Scardicchio,
Physical Review B 93, 024202 (2016).

[94] C. Baldwin, C. Laumann, A. Pal, and A. Scardicchio,
Physical Review Letters 118, 127201 (2017).

[95] A. Scardicchio and T. Thiery, arXiv preprint
arXiv:1710.01234 (2017).

[96] B. Derrida, Physical Review Letters 45, 79 (1980).
[97] Y. Atia and D. Aharonov, arXiv preprint

arXiv:1906.02581 (2019).
[98] S. Bravyi, D. P. Divincenzo, R. I. Oliveira, and B. M.

Terhal, arXiv preprint quant-ph/0606140 (2006).
[99] T. Jörg, F. Krzakala, J. Kurchan, A. C. Maggs, and

J. Pujos, EPL (Europhysics Letters) 89, 40004 (2010).
[100] E. Kapit, Systems and methods for passive quantum er-

ror correction (2021), uS Patent 10,956,267.
[101] G. Mossi, V. Oganesyan, and E. Kapit, arXiv preprint

arXiv:2306.10632 (2023).
[102] Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga,

M. Nakadai, J. Chen, K. M. Nakanishi, K. Mitarai,
R. Imai, S. Tamiya, et al., Quantum 5, 559 (2021).

[103] S. V. Isakov, G. Mazzola, V. N. Smelyanskiy, Z. Jiang,
S. Boixo, H. Neven, and M. Troyer, Physical review
letters 117, 180402 (2016).

[104] E. Andriyash and M. H. Amin, arXiv preprint
arXiv:1703.09277 (2017).

[105] Z. Jiang, V. N. Smelyanskiy, S. V. Isakov, S. Boixo,
G. Mazzola, M. Troyer, and H. Neven, Physical Review



43

A 95, 012322 (2017).
[106] Z. Jiang, V. N. Smelyanskiy, S. Boixo, and H. Neven,

Physical Review A 96, 042330 (2017).
[107] A. D. King, J. Raymond, T. Lanting, S. V.

Isakov, M. Mohseni, G. Poulin-Lamarre, S. Ejtemaee,
W. Bernoudy, I. Ozfidan, A. Y. Smirnov, et al., arXiv
preprint arXiv:1911.03446 (2019).

[108] B. Heim, T. F. Rønnow, S. V. Isakov, and M. Troyer,
Science 348, 215 (2015).

[109] M. B. Hastings, Quantum 5, 597 (2021).
[110] A. Gilyén, M. B. Hastings, and U. Vazirani, in Proceed-

ings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing (2021), pp. 1357–1369.


	Contents
	Introduction
	Hardness mechanisms, problem definitions and previous approaches
	Inability of previous methods to find or even approach the ground state at large N
	Mechanisms for quantum solution hardness: exponentially small gaps and transverse field chaos
	Approximation hardness and conventional AQC/QAOA
	The MAX-3-XORSAT problem and approximation-hard instance construction
	Parameter choices for algorithm formulation and benchmarking

	Spectrally filtered quantum optimization algorithms
	Key preliminaries – filter functions
	Direct method
	Multi-stage filtered optimization
	Spectrally folded trial minimum annealing
	Resource estimates for spectrally folded trial minimum annealing

	Analytical performance predictions
	Cost per flip curve
	Multi-stage filtered optimization performance analysis
	First stage scaling
	Second and third stages
	Time to solution scaling

	Spectrally folded trial minimum annealing performance analysis
	Calculation of the per-state tunneling rate
	Achievable approximation ratio with spectrally folded trial minimum annealing
	Further Comments and Caveats


	Numerical tests of approximation hardness for traditional methods
	Setup and summary of results
	Performance of quasi-greedy classical algorithms
	Performance of high-depth TAQC for this problem

	Numerical tests of spectrally filtered quantum optimization
	Spectrally folded adiabatic interpolation performance
	Trial minimum annealing performance
	Multi-stage filtered optimization performance
	Discussion of our spectrally folded optimization results
	Extensions of these results

	Conclusions and Outlook
	Acknowledgments
	Appendix: small-N deviations from the asymptotic cost per flip curve
	Tunneling between two p-spin wells
	Band structure considerations for linear spectral folding
	References

