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The exponential suppression of macroscopic quantum tunneling (MQT) in the number of elements
to be reconfigured is an essential element of broken symmetry phases. Slow MQT is also a core
bottleneck in quantum algorithms, such as traversing an energy landscape in optimization, and
adiabatic state preparation more generally. In this work, we demonstrate the possibility to accelerate
MQT through Floquet engineering with the application of a uniform, high frequency transverse drive
field. Using the ferromagnetic phase of the transverse field Ising model in one and two dimensions
as a prototypical example, we identify three qualitatively distinct regimes as a function of drive
strength: (i) for weak drive, the system exhibits exponentially slow MQT alongside robust magnetic
order, as expected; (ii) at intermediate drive strength, we find polynomial decay of rates alongside
vanishing magnetic order consistent with critical or paramagnetic state; (iii) at very strong drive
strengths both the tunnelling rate and time-averaged magnetic order remain finite with increasing
system size. We support these claims with extensive full wavefunction and matrix-product state
numerical simulations, and theoretical analysis. An experimental test of these results presents a
technologically important and novel scientific question accessible on NISQ-era quantum computers.

The idea of single-particle quantum tunneling through
a barrier is well-known since the 1920s [1, 2] and is found
in practical technologies such as the tunneling diode [3].
Common examples of macroscopic quantum tunneling
(MQT) have typically built on this concept [4], includ-
ing the Josephson junction, a building block of quan-
tum information systems, and can be modeled by e.g.
the Lipkin-Meshkov-Glick model [5]. A long-time goal of
such models is to move beyond the Josephson regime, in
which N bosons or Cooper pairs move fluidly between
two dominant single-particle states a particle at a time,
into the Fock regime, in which all particles can collec-
tively tunnel from one extreme to the other – the |N, 0ð
and |0, Nð NOON state. This kind of tunneling is hard
to observe because the tunneling time is exponentially
long in the number of particles. One way to understand
this exponentially long time is to calculate the energy
splitting between symmetric and anti-symmetric states
|N, 0ð ± |0, Nð, which is exponentially small in the Fock
regime. The tunneling time can be estimated as ℏ over
this energy splitting. Such concepts are the basis of sym-
metry breaking and are famously cited in Anderson’s pa-
per, “More is Different” [6], where he uses the example
of left and right handed sugar as the two extremes. In
this case, the tunneling time is longer than the lifetime of
the universe. However, the current quantum computing

paradigm and NISQ device availability offer a new op-
portunity to rexamine such foundational questions, due
to their high level of many-body control in both time and
space. Utilizing many-body control in the form of sym-

phonic tunneling [7] on the transverse field Ising model
(TFIM), in this Letter we establish a complexity transi-
tion in MQT from exponential suppression to a polyno-
mial scaling in the number of particles.

Prior to the wide availability of NISQ quantum com-
puting devices and the spread of the quantum circuit
paradigm, many researchers looked for ways to observe
MQT, such as scattering solitons or “lumps” of bosons on
a barrier [8], physically manipulating complicated traps
in quantum simulator experiments [9, 10], hybridizing
modes to access new avenues for quantum control [11, 12],
or driving non- or weakly-interacting systems [13, 14].
A particularly famous example is the beam splitter ex-
periment of Markus Arndt [15], in which fullerenes take
two simultaneous paths. Although these experiments are
in a certain sense macroscopic [16], ultimately they are
mean-field like superpositions of center of mass degrees
of freedom [4], just like Josephson tunneling.

However, no one to date has determined a realistic way
to achieve MQT of large numbers of strongly-interacting
quantum elements in a Fock-like regime, and even con-
trolling small numbers of weakly interacting fermions has

ar
X

iv
:2

3
1
1
.1

7
8
1
4
v
3
  
[c

o
n
d
-m

at
.s

tr
-e

l]
  
1
4
 A

u
g
 2

0
2
4



2

0 5 10

T

0.0

0.2

0.4

0.6

0.8

1.0

S
ta
te

P
o
p
u
la
ti
o
n
s

|00 . . . 0〉 heating

0.0

0.2

0.4

0.6

0.8

1.0

〈Z
iZ

j
〉

FIG. 1: (left) Adiabatic ramping protocols in for the coefficients {J, κ, α} in Eq. (1). Both the X (DC) and Y (AC) fields are
smoothly ramped up R(t < tr) = sin2 0.5πt/tr and similarly down from (tr + T ) → (2tr + T ) with the same sinusoidal profile,
R(t). (center) The circuit is repeated with varying plateau times T to measure the period of Rabi oscillations, 2π/ΩR j T .
(right) Time traces used to extract the oscillation period ΩR, for a 4× 7 2d geometry, with κ = 2.5 and two choices of α/f . We
plot the final population of |00 . . . 0ð (after ramping fields down), for a series of plateau times T . The average ferromagnetic
correlator ïZiZjð (dashed lines) is measured repeatedly during evolution for drive strengths α/f = 0.1 (blue) and 0.14 (red)
with sinusoidal fits (solid curves) and an estimate of heating 1− |ïψf |00 . . . 0ð|

2 − |ïψf |11 . . . 1ð|
2 (stars near zero).

been a grand challenge only recently accomplished in mi-
crotraps [17]. This is a desirable goal in order to tra-
verse energy landscapes, for instance, to find a ground
state of a spin glass [18, 19]. MQT physics forms a key
source of potential quantum advantage, and bottleneck
process for quantum optimization [20, 21]. While we have
previously explored multi-tone drives to accelerate MQT
scaling[7, 22, 23], in this work we focus on a single fre-
quency Floquet engineering approach [24], which we im-
plement via Trotterization[25] in discrete space-time, i.e.
on a quantum circuit model in one and two dimensional
lattices of qubits. In addition to the expected ferromag-
netic and crossover (critical or paramagnetic) behaviors
observed at weak and intermediate drives, we discover
an unusual revival of ferromagnetic order at very strong
drives accompanied by comparatively fast MQT. The
quantum Ising model we study is enriched with a time
dependent y-field of strength α and angular frequency ω

H = −J
∑

ïijð

ZiZj − κ
∑

i

Xi + α sinωt
∑

i

Yi, (1)

where familiar static couplings J, κ > 0 denote ferromag-
netic spin-spin interaction and transverse field, respec-
tively. The phase transition to a paramagnetic state oc-
curs (for α = 0) at κc = κ/J = 1 (≃ 3) in 1D (2D) [26].
For κ < κc, the ground state manifold is a doublet of
symmetric and antisymmetric superpositions of macro-
scopic polarization states with energy splitting Ω0 (N),
often referred to as a Rabi frequency given the simplic-
ity of the two-level dynamics that ensues. This splitting
Ω0 (N)–the inverse of which sets the MQT time to mix
the two ferromagnetic states–decays exponentially in N .
In particular, in 1D we obtain analytically (see Sec. B in
Supp. Materials (SM))

Ω0 (N) ∝ κ√
N

(κ

J

)N−1

. (2)

We are not aware of similar calculation in 2D but the
result should scale exponentially in N , i.e. area-like.

To measure the tunneling rate we initialize the system
(Fig. 1, left) in one of the FM groundstates of the TFIM
for κ = α = 0, and smoothly ramp up off-diagonal terms
κ and α. This creates a coherent magnetization reversal
(Rabi) oscillation which we measure by varying the dura-
tion of the plateau and fitting the probability of magne-
tization reversal after ramping down to a simple cosine
profile (Fig. 1, right). Magnetic order is inferred from
the time average of the two-point correlation ïZiZjð over
the entire plateau region evaluated at large spatial sepa-
rations. Our Trotterized simulations closely model how
a gate-based quantum computer would approximate the
continuum time evolution of the problem (Fig. 1, center),
i.e. with a sufficiently small time step (see SM).
Strong AC drive in Eq. 1 results in novel terms in

the effective Floquet Hamiltonian (see Sec. D in SM) –
steering coherent correlated many-body behavior using
such dynamically generated Hamiltonians is commonly
referred to as Floquet engineering (FE)[27, 28]. The ap-
parent dramatic renormalization of MQT has not pre-
viously been realized through FE, to the best of our
knowledge. Since heating is the common concern in FE
we took special care to mitigate it by implementing a
scaling limit in which the drive frequency and amplitude
both increase logarithmically with N . This choice is mo-
tivated by the expectation that heating rates from high-
frequency drives decay exponentially in ω [29–35], but in-
crease only quadratically with drive amplitude [30]. We
thus redefine the Floquet controls as α, f with

α ≡ αs logN, ω = 2πf ≡ 2πfs logN (3)

such that the state evolves as

|ψ(t+ dt)ð = exp (−2πidtH(t)) |ψ (t)ð . (4)

The leading corrections to the Floquet Hamiltonian are
generated as a power series in α/f = αs/fs, and there-
fore remain constant in N (also, note the convention of
extra 2π - see SM, Sec. D). This log-over-log limit hits
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FIG. 2: Evolution of order and MQT in the driven 1D quantum Ising model from weak (α/f < 0.15) to strong (α/f g 0.4)
driving, simulated with time-evolved block decimation (TEBD), with transverse field κ = 0.9. Left: antipodal magnetic order
parameter – note the saturation of order at large separation for weak and strong driving regime, with apparent decay in-between.
Drive parameters for which simulations predict magnetic order is asymptotically zero (finite) are plotted with hollow diamonds
(solid circles). Center: exponential decay of the Rabi freq. associated with MQT for weak drives gives way to non-exponential,
nearly flat behavior vs. N as α/f increases. Drive parameters for which the best fit is exponential decay are plotted with
solid circles; hollow diamonds indicate polynomial decay or constant ΩR. Right: Decay (”difficulty”) exponents Υ for ΩR(N).
Solid dots indicate data points where ΩR decays exponentially, while empty circles are compatible with subexponential decay.
Inset: time-averaged values for the two-point correlator from Fig. 2. Filled diamonds indicate values of α/f where we observe
saturation of ïZ0ZL/2ð in the range of system sizes observed. Empty diamonds label cases where no such saturation is observed,
which we conservatively interpret a zero magnetization.

an empirical sweet spot where the driving frequency in-
creases very gradually, but the system can evolve for
polynomially long times (or even longer) before mean-
ingfully heating. In practical terms, such logarithmic
scaling limit translates into logarithmic increase in cir-
cuit depth on a digital quantum computer and should be
readily reacheable. Analog implementations will likely be
more nuanced and mindful of specific relaxation mecha-
nisms (see SM, Sec. D for added discussion). Smooth
ramp profiles (see Fig. 1) ensure adiabatic loading of
the many-body state (see SM Sec. E for quantitative
study of Floquet adiabaticity). We note finally that we
cannot measure heating during evolution as we do not
compute the eigenstates of the AC-dressed system (ex-
cept in SM, Sec. E), and thus can only measure it after
the transverse terms are ramped down. Since the system
is closed, a final measurement is sufficient to detect if
the system left the ground state manifold (Fig. 1, right).
Throughout this work heating was monitored vigilantly
and suppressed through a combination of measures de-
scribed in this paragraph.

The key results of our simulations are shown in Fig. 2
(1D) and Fig. 3(2D). They document the evolution of
long-range magnetic order and also of the Rabi precession
frequency of macroscopic magnetization. Most remark-
ably, 1D and 2D appear phenomenologically identical.
We can identify three distinct regimes:

(i) The weak driving regime (α/f ≲ 0.2 in 2D and
α/f < 0.15 in 1D): here ΩR ∝ N−c exp (−ΥN). The
scaling exponent Υ is reduced by the AC drive but the
splitting still scales exponentially. At long distances
ïZiZjð approaches a non-zero constant, see Figs. 2 and
3. This is the same qualitative behavior as the DC (un-
driven) problem, and also provides a test case for quality

control of our two main simulation methods.

(ii) The crossover regime (0.2 ≲ α/f ≲ 0.3) is character-
ized by monotonic decay of spin correlations consistent
with absence of magnetic order;

(iii) The strong driving regime (α/f ≳ 0.3 in 2D, α/f g
0.4 in 1D): ïZiZjð begins to increase and becomes con-
stant as a function of distance. ΩR likewise becomes
approximately constant with system size, though the to-
tal time required to tunnel between states is polynomial
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FIG. 3: Evolution of order and MQT in the 2D driven quan-
tum Ising model, for various geometries with 12 f N f 28,
with the time-averaged magnetic order parameter plotted in
the inset for four relatively large system sizes. As the decay
exponent Υ → 0, the polynomial prefactor in ΩR reduces to
nearly constant scaling in the very strong drive limit. We
used a transverse field κ = 2.5 for 3× y and 4× y geometries,
and 1.75 for 2× y.
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FIG. 4: Time-averaged magnetic order as probed with antipo-
dal correlator in 1D chains of length 8 to 20 (dark blue, gold,
green, red, purple, brown, light blue) at strong AC drive. Red
dashed lines demarcate waiting time in-between the on-/off-
ramp whereby both DC and AC transverse fields are simul-
taneously turned on. Contrary to conventional behavior the
order parameter achieves its minimal value during the ramp
and then recovers rather dramatically on the plateaus.

because a polynomially long ramp time is required to
turn on the transverse terms while avoiding heating. The
physics of this regime may be traced (see SM Sec. E) to
so-called Floquet ”micromotion”, i.e. fast intra-period
dynamics, which also leads to strong dependence of ob-
servables on the precise protocol used for time averaging,
e.g. we noticed larger error bars in Fig.3 (left). The
strong driving regime here is particularly surprising. As
α increases, we observe this behavior regime begins close
to α/f ∼ 0.3 ∼ 0.4 and, importantly, for a variety of
κ values (not shown), in contrast to regimes (i) and (ii)
which are much more sensitive to κ/J . Our approximate
analytic calculation is able to capture the variation of
Rabi frequency in the weak drive regime (i) and also the
onset of (ii) in a modified version of Eq. (2) (see SM, Sec.
C), This derivation does not capture the restoration of
order at strong driving, even with accurately extracted
(numerically) Floquet Hamiltonian (see SM, Sec. D),
thus presenting an open problem which likely requires
a more nuanced treatment of Floquet micromotion (see
also SM, Sec. E) and possibly other effects.

We can further explore the non-equilibrium nature of
the strong driving regime by examining the temporal evo-
lution of the same antipodal correlator we used to define
long range order in 1D. The existence of paramagnetic
intermediate α regime is probed during the ramp, as the
magnetic order appears to nearly collapse but then revive
briskly in time for the plateau, see Fig. 4. As mentioned
above, the Rabi oscillation rate ΩR measured from vary-
ing the plateau time is approximately constant with sys-
tem size. ΩR in this limit is a continuous function of κ,
α and f and not a simple multiple of any of them. This
is in stark contrast to simply using a large DC transverse

field (e.g. κ > κc), where no such order restoration is seen
and magnetic order decays exponentially with N in the
plateau region. However, the ramping time to reach the
plateau without heating the system does increase with
N , empirically as O

(

N2
)

in 1D, which combined with
the decreasing minimum ferromagnetic order parameter
(during the ramp) suggests to us that we cross at least
one, possibly two, phase transitions en route to the fer-
romagnetic state at strong drive. Taken together with
the vastly more complicated temporal dynamics of this
correlator on the plateau, which shows strong high fre-
quency components averaged over and not shown in the
Fig. 4, and the inability of the quasi-equilibrium average
Hamiltonian approach (see SM) to capture the restora-
tion of order parameter, our numerical results suggest the
importance of non-equilibrium effects, such as prether-
malization.

A natural and obvious extension of the results of this
Letter is accelerated quantum optimization, though we
caution that the spin glass case is much more complex
(for example, no longer being a simple ferromagnet, the
pair-flip terms generated will no longer be sign-definite
and can interfere destructively with the DC transverse
field). Applying a simple uniform AC field everywhere
is not expected to produce significant benefits for such
problems, necessitating a more sophisticated approach.
That said, it may be helpful in mitigating some of the
slowdowns associated with minor embedding [7] in ana-
log quantum optimization, by inducing fast MQT in the
chains that embed logical qubits in 2D systems.

Another natural next step would be to test these pre-
dictions on real quantum hardware. The feasibility of
such an experiment is bolstered by the recent Quantum
Utility experiment of the IBM team [36], which demon-
strated accurate simulation of time evolution in a TFIM
with up to 127 qubits, by combining multiple error mit-
igation techniques. Our discoveries here present a con-
crete, physically relevant, test: Floquet engineering of
fast MQT coexisting with broken symmetry. The ap-
parent universality of our results strongly suggests that
this phenomenon is real at large scales in higher dimen-
sions, but one of course needs to do an experiment on
quantum computing hardware to be certain. The os-
cillation periods in the strong drive regimes in Figs. 2
and 3 are empirically quite short, in the range of 10-20
Trotter steps. We estimate that with a bit more effort
put into fine tuning the ramping profile, system param-
eters, and circuit, perhaps using novel methods such as
[37], present or near-term quantum hardware could si-
multaneously extract the scaling of the oscillation period
and ferromagnetic order parameter for a hundred or more
qubits. This would be one of the first uses of a quantum
computer to answer a question of genuine scientific inter-
est at beyond-classical scales, a significant milestone in
the progress of quantum information science.

In conclusion, using a mix of theoretical arguments
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and large scale numerical simulations, with the trans-
verse field Ising ferromagnet as a model system, we have
shown that strong, high frequency AC drives can dra-
matically increase macroscopic quantum tunneling rates,
inducing a crossover from exponential to polynomial or
even constant scaling with system size. We further ob-
served an unusual but consistent increase in the time
averaged magnetic order with very strong driving, coex-
isting with fast MQT. This new dynamical phase is not
explained by our analytical theory and deserves further
analysis. As large MQT events form a key bottleneck in
quantum algorithms, novel methods to accelerate them
based on extensions of this work could have broad im-
pact.
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The content of this supplement is organized into a pre-
sentation of additional details on simulation in main text
(Sec. A), high orders resummation of tunnelling pro-
cesses in the ordinary static TFIM that is required to
reproduce the correct dependence of the tunnelling rate
in the ferromagnetic phase and, to the best of our knowl-
edge unavailable in existing literature (Sec. B), an exten-
sion of this theory to the effective Hamiltonian generated
by periodic driving (Sec. C), the analytic perturbative
and numeric non-perturbative calculation of the effective
Hamiltonian (Sec. D) which is non-integrable even in
one dimension. , Section E takes a closer look at the dy-
namics and its reduced spectral representation in terms
of just two eigenstates of the Floquet unitary. Here, we
clearly demonstrate the importance of adiabaticity and
intra-period (so called micromotion) to our findings. In
closing Section ?? we explore how our results could ap-
pear in a measurement apparatus that performs time-
averaging, as opposed to stroboscopic sampling.

Much of this discussion focuses primarily on TFIM
chains, we expect the physical picture to persist to 2D
(as supported by the numerical results presented in main
text).

A. Simulation details

We now present some more precise details of our sim-
ulations. Unless otherwise noted, we used a ramp time
Tr = N/8 with a smooth sinusoidal protocol. To avoid
edge effects, we used periodic boundary conditions in all
cases. During evolution we measured the ferromagnetic
order parameter ïZiZjð between the two most distant
qubits, to characterize the instantaneous state of the sys-
tem.This quantity was time-averaged over the plateau
to eliminate high frequency modulations. To simulate
evolution under a high frequency AC drive, we chose a
decreasing timestep dt = c/f sufficiently small to appro-
priately sample it. dt too large leads to severe Trotter

error and nonsensical output; c between 0.15 and 0.4 was
sufficient for faithful simulations, with smaller values nec-
essary when α is large. Our results thus simulate contin-
uous time and are not due to time discretization. The
Trotter error was eliminated by choosing an appropri-
ate timestep dt = c/f with value of c between 0.25 and
0.125. The bond dimension χ values in our 1d TEBD
simulations was chosen up to 50.

For a given system size N and α/f value, the Rabi fre-
quency ΩR is estimated by simulating the Floquet proto-
col for times t1, t2, . . . , tn obtaining the tunnelling proba-
bilities p1, p2, . . . , pn, where pi ≡ |ï1 · · · 1|U(ti)|0 · · · 0ð|2.
ΩR is then extracted by fitting the data with the func-
tion p(t) = sin2(ΩRt + φinit), as shown in Fig. 1(right
panel). For all simulations, the ramptimes and plateau
times were chosen so that (i) heating observed would in-
troduce only negligible effects in the extracted value of
the Rabi frequency, and (ii) the probed times would al-
low us to follow at least one oscillation of the tunnelling
probability.

When fitting the data, we used a Fast Fourier Trans-
form on the state population data to obtain a warm start
for the frequency. Additionally we fit the Rabi frequency
for both |ïψ(T )|1ð|2 and |ïψ(T )|0ð|2 and the reported
value is the mean of these two values. There were in-
stances where we needed to add a phase of π/2 to φinit
in order to help the model to fit the data, this is likely
due to the size dependent simulation times, which caused
inconsistent ”initial” populations/ initial phases. Ad-
ditionally in instances with a heating we used a model
that included a decaying exponent term, namely p(t) =
e−bt sin2(ΩRt + φinit) and we found little inconsistency
in the extracted values for ΩR in these cases. We then
logarithmically scaled the values of ΩR, as seen in Sup-
plementary Figure 1 and fit them to log(ΩR) = A+Υ∗N
in order to extract the difficulty exponent Υ seen in 3.
In 1d our fits were to log(ΩR) = A+B logN +Υ ∗N , as
the larger system sizes accessible through TEBD allowed
us to resolve polynomial prefactors more accurately. In
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FIG. 1: Lograthmically scaled Rabi oscillations in the two-
dimensional transverse-field model, with κ = 2.5. Collections
of data such as this one are used to extract the difficulty
scaling exponent and characterize the three drive strength
regimes.
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FIG. 2: Difficulty exponents Υ extracted from Fig. 2. Solid
dots indicate datapoints where ΩR decays exponentially, while
empty circles are compatible with subexponential decay. In-
set: time-averaged values for the two-point correlator from
Fig. 2. Filled diamonds indicate values of α/f where we
observe saturation of ïZ0ZL/2ð in the range of system sizes
observed. Empty diamonds label cases where no such satu-
ration is observed, which we conservatively interpret a zero
magnetization.

both cases we observe that the Rabi frequency decays
exponentially with the system size at small values of α/f
and enters a “fast tunnelling” regime at larger values. In
the 1d case small positive values of the difficulty expo-
nent Υ (see Fig. 2) are observed in the fast tunnelling
regime while ΩR is still slowly decaying with the system
size. We believe these to be an artifact of the fit due
to finite size, and interpret them to be compatible with
Υ = 0.

B. Theory of MQT in the 1d TFIM – all orders

analysis

We consider the 1d transverse field Ising model, in the
ferromagnetic phase. Our Hamiltonian is

H = −
∑

j

(κXj + JZjZj+1) (1)

We assume periodic boundary conditions, for simplic-
ity. Our goal is to compute the exponentially small
tunneling rate Ω0 between degenerate ground states in
the ferromagnetic phase, where κ < J , through Lth or-
der perturbation theory in κ using the Ising Hamiltonian
as the base Hamiltonian. Fundamentally, this is a sum
of L! flip sequences connecting the two classical ground
states? ? ? ? ? ? , e.g.

Ω0 ≃ κL
∑

perm.seq{sj}

L
∏

k=1

1

E{s1,s2...sk}
(2)

Now, with L! terms and strong path dependence in
the denominator, this expression looks hopeless. But it
turns out there are two limits where one can evaluate
sums of this form, to good approximation. One is infinite-
dimensional (e.g. random) graphs or hypergraphs, where
the influence of specific sequences with (comparatively)
low intermediate energies, which have higher weight in
the sum, is swamped by the combinatorical proliferation
of random sequences, an issue we take up in a forth-
coming publication. The other is limit is 1d, e.g. this
problem. It will become clear from the structure of the
derivation why 2d is considerably harder and we do not
attempt it here.
The trick to evaluating this sum is to organize the sets

of terms by the maximum number of domain wall pairs
created at intermediate steps. We’ll start with the sim-
plest process, where there is just a single pair of domain
walls at all steps. This process begins by enacting a sin-
gle flip at any of the L sites, which has an energy cost
4J . The next flip is at one of the two sites adjacent to
this, which moves one of the two domain walls further
apart by one step. The intermediate energy is still 4J ,
but there are two choices we can make, which gives us a
combinatorical factor of 2 in the numerator. The same
goes for the third flip, fourth flip, and so on, “unzipping”
down the chain and accumulating a factor of κ/2J at
each step. Noting that there were L choices for the first
site to flip,

Ω
(1)
0 = L

κ2

4J

( κ

2J

)L−2

= L
κ

2

( κ

2J

)L−1

(3)

This is the lowest energy path possible, so one would be
tempted to stop here. But doing so underestimates Ω0

by a factor of 2L, which isn’t great. To get the correct
value–or at least, the correct exponent–we need to con-
sider higher order terms.
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Let’s now consider the set of all processes where a sec-
ond pair of domain walls is is created at some interme-
diate stage. Assume that k = 1 is the first step and
the first k flips simply create the first pair and separate
them. Then we now have a total of (L− k − 2) choices
for where to nucleate the second pair (the −2 comes from
two sites just moving existing domain walls around), and
the energy cost once this is done is 8J (compared to 1/2J ,
counting the combinatorics, for a flip at this stage that
just moves a domain wall). This is the energy cost that
now shows up in the dominator at each subsequent order
until a pair of domain walls eventually fuses, but we now
have 4 sites we can flip to move a domain wall around, so
we get a factor of κ/2J at each subsequent step just like
if we had a single pair, and once one of the pairs is elim-
inated we’re back to the same result as above. Combin-
ing all these factors, and summing over space and “time”
points where the second pair is created, we get:

Ω
(2)
0 ≃

L−2
∑

k=1

L− k − 2

4
Ω

(1)
0 . (4)

Now with three intermediate pairs. The third pair is
nucleated at any step after k, called step l. At this step
there are (L− l − 4) sites to choose from, and the energy
cost is 12J (corresponding to a factor of 1/6 in compari-
son to a flip that just moves a domain wall). Noting the
factor of 1/4 from the previous sequence, and ignoring
the combinatorically subleading cases where the second
pair of domain walls was destroyed before this third pair
was created, we find

Ω
(3)
0 ≃

L−2
∑

k=1

L− k − 2

4

L−4
∑

l=k

L− l − 4

6
Ω

(1)
0 . (5)

We can generalize this to four intermediate pairs, by in-
spection:

Ω
(4)
0 ≃

L−2
∑

k=1

L− k − 2

4

L−4
∑

l=k

L− l − 4

6

L−4
∑

m=l

L−m− 6

8
Ω

(1)
0 .(6)

If we evaluate these sums in mathematica, a pattern
quickly emerges, and a bit of algebra and inspection
shows that at order p we have

Ω
(p)
0 ≃

[

p

22p−1 (p!)
2

2p−1
∏

k=2

(L− k)

]

Ω
(1)
0 . (7)

The product evaluates to a Pochhammer function. Our
total tunneling rate is given by taking this sum out to
L/2, the maximum number of domain wall pairs possible
in this system:

Ω0 ≃ L
κ

2

( κ

2J

)L−1
L/2
∑

p=1

[

p

22p−1 (p!)
2

2p−1
∏

k=2

(L− k)

]

. (8)

This is a sum Mathematica can do; we get

Ω0 ≃ L

4
κ
(κ

J

)L−1 Γ (L− 1/2)√
πL!

(9)

Aymptotically, the ratio Γ (L− 1/2) /L! converges to
L−3/2, so up to an overall constant prefactor

Ω0 ∝ κ√
L

(κ

J

)L−1

. (10)

This matches numerics extremely well, though numeri-
cal data suggests a polynomial prefactor of L−κ/J is a
slightly better fit. That the exponent is such a close
match is a real triumph for high order perturbation the-
ory.

C. Collective tunneling in the AC driven case

In the weak and crossover regimes, the average Hamil-
tonian formulation predicts both the renormalization of
κ and J from fast oscillations, and the generation of new
pair-flip terms that constructively interfere to accelerate
tunneling (see next Sec. D). We can incorporate all these
effects into the derivation of Eq. 10 to predict both the
reduction of the scaling exponent Υ in the weak driving
regime, and the approximate location of the crossover to
polynomial scaling by identifying where Υ → 0. The
renormalization of κ and J is straightforward–following
the arguments in? , κ is reduced by a factor of J0 (2α/f),
where J0 is a Bessel function. Note that the argument
is α/f and not α/ω, respecting the convention stated
in the main text of including a factor of 2π in front of
H (t) in time evolution. Since the ferromagnetic cou-
pling J involves two-spin terms it is reduced by a factor
of J0 (2α/f)

2
, at least in the limit of α/f small, and thus

the ratio κ/J is increased by a factor of 1/J0 (2α/f).
To incorporate the pair flip terms, we need to take into

account two sets of processes. The first moving a domain

wall by two steps, with matrix element −J α2

f2 (as com-

pared to moving it a single step with matrix −κ in the
DC transverse field), and creating a domain wall pair two

sites apart with matrix element −J α2

f2 . The energy de-

nominators depend on the Ising Hamiltonian and are thus
unchanged beyond the renormalization of J already dis-
cussed. We can incorporate these terms into the analysis
leading to 10, at least approximately, by making two sub-
stitutions. First, noting that “most” of the spin flips that
contribute to the tunneling amplitude consist of moving
domain walls, we can now replace any single flip (which
contributes κ/ (2J) when all combinatorics are consid-

ered) with a pair flip with amplitude 2α2

f2 (including 1/J

for the energy denominator). This replaces two orders in
the DC calculation, and so the combination of all such

processes multiplies the tunneling rate by
(

1 + 2α2J2

f2κ2

)L

,

to decent approximation. The second modification is that
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every step that nucleates a new domain wall pair can be
replaced by the corresponding process that creates such
a pair two flips apart, which removes a factor of κ/ (4J)
from the overall tunneling rate since it flips two spins
instead of one. Combining all these contributions, we
derive an AC-modified tunnel splitting

ΩR (κ, α, f, L) ≃ L
κ

2





κ

2J × J0

(

2α
f

)





L−1

×(11)

(

1 + 2
α2J2

f2κ2

)L

×
L/2
∑

p=1





p
(

1 + 4α2J2

f2κ2

)p

22p−1 (p!)
2

2p−1
∏

k=2

(L− k)



 .

This expression must be evaluated numerically, but it’s
straightforward to do so. The decay exponent decreases
continuously with α/f , and if this ratio becomes large
enough the decay exponent crosses zero. At this point
perturbation theory has broken down and we expect a
crossover to polynomial decay (as observed in our sim-
ulations), though we cannot predict the degree of that
polynomial with these methods. For κ = 0.9, Eq. 11 pre-
dicts Υ → 0 when α/f ≃ 0.15, in excellent agreement
with the simulations shown in Fig. 2.

D. Derivation of the effective Hamiltonian

We now turn to the calculation of Heff ≡ logU/(iP ),

where the single period unitary is U = T ei
∫

P

0
dtH(t). We

will only be concerned with the structure of this opera-
tor away from ramps, i.e. when the problem is strictly
periodic, i.e. (recall Eq. 1)

H(t) =
∑

j

κXi + JZjZj+1 + α sin
2πt

P
Yj , (12)

with Floquet period P = (6 logL)−1 (and J < 0).
Standard Floquet-Magnus perturbation theory, a sort

of a short-time (high frequency) expansion, may be used
to calculate Heff perturbatively (i.e. when U is close to
being an identity), with third-order triple commutator
producing the leading nontrivial corrections to the first
order ”average Hamiltonian” terms (first two terms in
the Eq. 12)

H
(3)
eff =

1

6

∫ P

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

([H(t1), [H(t2), H(t3)] + [H(t3), [H(t2), H(t1)] (13)

Heff =
∑

j

κXi − JZjZj+1

+
3α2P 2

16π2

∑

j

2J (ZjZj+1 −XjXj+1)− κXj + . . . .

(14)

The leading correction terms both suppress static ZZ
and X interactions and promote domain wall creation

FIG. 3: Decomposition of Heff = −i logU/P into one- and
two- nearest neighbor spin terms for L = 8, 10, with panels
(a) and (c) showing terms appearing in leading perturbation
theory (Eq. 14) with correct magnitudes, as illustrated in
panels (e) and (f). Panels (b) and (d) display terms from
beyond the leading order result – they are rather small, but
show the most size dependence. Correction to ZZ term (not
shown) is equal and opposite in sign to that of XX term.
No Z terms are generated, as expected. The residual missing
norm |H2

eff | − |H2

approx| ≲ 10−4 in the entire regime of inter-
est, with weak size dependence.
Note: 3/(16π2) ≈ 0.02. The unitary was computed exactly in
Mathematica by multiplying several MatrixExp evaluations
(at midpoints of P/dt = 6 time intervales), with MatrixLog
used subsequently to compute Heff – see text.

and hopping, in pairs via the XX term; the XX term
breaks integrability of the 1D TFIM and would be ex-
pected to produce thermalization generically (but incor-
rectly, in this context – see below); the leading terms
are strictly perturbative in α, κ, J . Since we are actually
working in the regime of large κ ≲ |J | = 1, we now turn
to complementary non-perturbative derivation of Heff .

The numerical operation of matrix logarithm, while
strictly speaking ill defined (multivalued), may neverthe-
less be effectively used with care, e.g. when the size of
the matrix is small and its spectrum is sufficiently well
resolved to preclude close encounters among levels. In
practical terms this means working with small systems,
e.g. chains of lengths L = 6..12, computing and decom-
posing Heff into sums of local few spin operators. The
procedure is justified a posteori if this local approxima-
tion toHeff exhausts the numerically exact unitary upon
re-exponentiation. All the results presented below were
obtained in this fashion for small system sizes and showed
good stability while they worked (and they tend to break
down for L ≳ 10 because of multivalued log). Much has
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been written about the breakdown of Magnus expansion
and its possible relationship to thermalization – the situ-
ation we find here (as already anticipated by the analytic
calculation), is that Heff remains very nicely local (see
Fig. 3) even as we venture far from the strict perturba-
tive regime. Most notably, there is a linear in α term that
is missing from the third order analytic expansion (it is,
in fact, ∼ αJ2κ2, i.e. first to show up in fifth order in
Magnus expansion!) term that generates a Y transverse
field (Fig. 3b). The comparison against perturbative re-
sult (Figs. 3ef vs. last line in Eq. 14) is imperfect due
to the fact that we compute the unitary by subdividing
the total period P into steps of duration dt = P/6, while
analytic results are computed strictly in continuous time.
We observed that such small quantitative discrepancies
are reduced as dt is decreased.

Note 1: the convention used in this Supplement differs
from the somewhat unusual choice in Main Text (where,
following Eq. 3 |ψ(t + δt)ð ≈ exp[−2πiδtH(t)]|ψ(t)ð).
Instead, we have the more standard |ψ(t + δt)ð ≈
exp[iδtH(t+δt/2)]|ψ(t)ð without the extra 2π. As long as
α → 2πα, the differences in the dynamics appear to be
small and insignificant. Importantly, this change turns
out to be crucial for the robust implementation of the
matrix log, since extra 2π readily leads to large phases
that obscure the log.

Note 2: Results in this section do not depend on the
precise protocol of how α, f are scaled up with N . As
explained in main text, scaling both logarithmically ap-
pears to be the optimal choice to suppress heating over
evolution times relevant to this work. For additional the-
oretical insights into different scaling limits, mostly fo-
cusing on steady states, see Ref. ? . In practical terms,
such scaling limit should be readily reachable on a digitial
quantum computer at the cost of logarithmic increase in
circuit depth. Analog implementations of the simulations
described in this work may require a more nuanced ap-
proach, guided by the general requirement of separation
of scales, with heating rates remaining low enough to al-
low time to observe MQT, which may mean increasing
α, f with a modified protocol guided by physical channels
of relaxation specific to the system in use.

E. Dynamics and adiabaticity via Floquet spectra

As already noted, the effective Hamiltonian we ob-
tained is non-integrable, yet collective oscillations we ob-
serve are remarkably coherent and do not show any sign
of thermalization. One natural mechanism for this to
happen is if the slowness of the ramp we used is suf-
ficient to deform the initial product state into a linear
combination of very few well isolated eigenstates of the
Floquet problem (i.e. of Heff ), that are especially ro-
bust, akin to groundstates and low lying excited states
of familiar Hamiltonian problems. We now present evi-
dence to support just such a picture, and also flesh out
a bit more phenomenology of the fast flipping magnetic
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FIG. 4: (color online) Panel (a): lack of thermalization of
Floquet eigenstates with most of the weight saturated by just
two eigenstates of the unitary (Pn denotes squared amplitude
of state’s overlap with a particular eigenstate). Using either
of the two quantities plotted as a proxy for diabaticity we
note its dependence on dynamic parameters, e.g. P/dt = 6
(inset) vs. P/dt = 9 (main panel);
Panel (b) tracks close agreement between observed frequency
of temporal order parameter oscillations (in light blue) ob-
tained from time- and/or Fourier- analysis of order parame-
ter dynamics and the Floquet gap ∆0 (in red) between two
dominant states (1 and 2, above); Additionally, the gap to
the third state ∆1 is shown in black;
Panels (c) and (d) show Fourier transformed data for aver-
age order parameter (in red) and the antipodal correlator (in
blue), ïZð(t), ïZ0ZL/2ð(t), at low frequency and near Floquet
zone boundary, respectively, for α/f ≈ 0.2; Note, while Z has
a peak at the collective Rabi frequency ΩR, the signal in ZZ
is at 2π/P ± ΩR;

state discovered in this work. We only report results for a
relatively small TFIM ring of L = 8 sites, to complement
less detailed analysis on larger systems in main text, de-
ferring a proper study of Floquet adiabaticity? in this
problem to future work.

To facilitate the analysis we organize the time by mea-
suring it in units of Floquet period P = (6 log 8)−1 ≈
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0.08. Recall, the ramp protocol consists of three stages
{tr, tp, tr} = 2L{1, 8, 1} → P{200, 1597, 200}. Recall,
all off-diagonal couplings are turned on smoothly during
stage 1 with the envelope function sin2(0.5πt/tr) (and
similarly, turned off in the last stage). Following analysis
above, we will only consider the unitary operator dur-
ing stage 2 (i.e. only monochromatic drive, no ramps,
also no time offset, precisely as in Eq. 12). In exam-
ining the dynamics, however, we will make use of (i.e.
peek at!) full trajectories, including intra-cycle motion.
This is referred to as ”micromotion” in Floquet litera-
ture, although, as we shall see, our problem’s micromo-
tion is actually macroscopic! The subdivisions we use
are P/dt = 6, 9, 10 and usually produce similar results,
except as noted in Fig. 4a.

FIG. 5: Real time dynamics and reduced Floquet data:
panel (a) shows the dynamics of antipodal correlator at inte-
ger period multiples t = nP (black), half-integer multiples
t = (n + 1/2)P (deep blue) and all other subdivisions dt
(light blue), note the nearly perfect anti-correlation; panel
(b) shows maximum/average/minimum values of ZZ during
stage 2 of dynamcis (in blue/red/green, respectively); Panels
(c) and (d) display the evolution of matrix elements of magne-
tization and correlator operators within the two dimensional
eigenspace isolated in Fig. 4a.; Panels (e) and (g) display full
trajectory of mangetization for α/f ≈ 0.2, 0.4 (respectively);
Panels (f) and (h) first repeat the filtering used in panel (a)
with integer (black) and half-integer (green) times showing a
larger (macroscopic) separation; We also overlay (in red) an
attempt to reconstruct the correlator from spectral data in
Figs. 4b and panel (c) above – the match is impeccable (up
to an overall phase), unsurprisingly.

We begin by decomposing the time evolved state of
the system along the Floquet eigenstates and sorting the
resulting probability distribution, to isolate 3 most rel-
evant states, two of which clearly dominate (Fig. 4a).
Unsurprisingly, we confirm that the observed oscillations
of the order parameter (see Fig.4bc) originate from two-
level dynamics between the dominant states. This analy-
sis establishes the high degree of adiabaticity achieved in
our protocol. It is noteworthy that the transition to the
fast ferromagnetic regime without exponential growth of
Rabi frequency discovered and discussed in main text co-
incides with the approximate softening of the third level
near α/f ≈ 0.3 (Fig. 4b), which may be indicative of a
quantum critical point and heating effects (some of which
we noticed and worked to suppressed in larger L simula-
tions).

We continue the analysis by taking a closer look at
the real time dynamics of the order parameter and the
correlator in Fig. 5. As a proof of principle we show that
observed dynamics is accurately captured in the two level
description.

F. Time averaged dynamics

It may be useful and interesting to emulate an imper-
fect measurement apparatus, that may not be able to
resolve the apparently important intra-period dynamics
but rather report time averaged results. With this in
mind we present results of just such a protocol in Fig.
5, additionally exploring the contrast between the tran-
sition from ordinary FM to ordinary PM and the fast
flipping FM discovered here. The latter displays a dra-
matic non-equilibrium recovery effect during the ramp
stage 1, which we have not seen in previous figures.
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FIG. 6: Comparison of the time-averaged magnetic order parameter for large DC transverse field (a) and strong AC drives (b),
measured over the full evolution time, in the 1d chain with L running from 8 to 20 in steps of 2. Red dashed lines demarcate
waiting time in between the ramps. In the DC case on the left, κ is ramped up to 2, well past κc = 1, and the residual magnetic
order decays exponentially with L as a result. In the AC case on the right, κ is ramped up to 0.9 and the AC field is ramped
into the strong driving regime with α/f = 7.7/12. Here the long-range magnetic order is constant with system size in the
plateau, but as the fields are ramped up, it does cross a minimum value which is slowly decreasing with L, suggesting a phase
transition is crossed.

〈

Z0ZL/2

〉

begins and ends at 1 (when all transverse fields are turned off) but this region is left off the
plot to better focus on the behavior in the ramping and plateau regions.
Panel (c): sampling dependence of

〈

Z0ZL/2

〉

in the strongly driven regime. The blue trace samples it at every timestep, gold
at the end of every full period (dt = P/5 here), and green sampling at every timestep but reporting the average over each full
period.
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