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Goldilocks quantum cellular automata (QCA) have been simulated on quantum hardware and produce emer-
gent small-world correlation networks. In Goldilocks QCA, a single-qubit unitary is applied to each qubit in a
one-dimensional chain subject to a balance constraint: a qubit is updated if its neighbors are in opposite basis
states. Here, we prove that a subclass of Goldilocks QCA—including the one implemented experimentally—
map onto free fermions and therefore can be classically simulated efficiently. We support this claim with two
independent proofs, one involving a Jordan–Wigner transformation and one mapping the integrable six-vertex
model to QCA. We compute local conserved quantities of these QCA and predict experimentally measurable
expectation values. These calculations can be applied to test large digital quantum computers against known
solutions. In contrast, typical Goldilocks QCA have equilibration properties and quasienergy-level statistics
that suggest nonintegrability. Still, the latter QCA conserve one quantity useful for error mitigation. Our work
provides a parametric quantum circuit with tunable integrability properties with which to test quantum hardware.

Introduction.—Classical cellular automata (CA) are dy-
namical models that evolve input bit strings (sequences of 1s
and 0s) according to a simple local rule [1]. Typically, the
update rule is the same everywhere along the bit string. At
each time step, every bit is updated in accordance with its
neighbors’ states. Despite their simplicity, CA engender rich
dynamics, including order, randomness, fractals, and conser-
vation laws. Also, CA can implement universal classical com-
putation [2, 3]. Early CA work stressed conservation laws as
ingredients for modeling physics [4, 5].

Classical CA generalize to quantum cellular automata
(QCA), defined axiomatically as the unitary discrete dynam-
ics that satisfy certain locality conditions [6, 7]. We focus
on an important subset of QCA, digital QCA: constrained
models implementable with quantum circuits of geometri-
cally local gates. In digital QCA, each gate updates one
or more qubits, in accordance with a surrounding neighbor-
hood’s state. Prominent examples include the Goldilocks

QCA, which generate small-world networks of bipartite mu-
tual information [8, 9], and the Floquet PXP model [10],
which exhibits quantum many-body scars [11, 12]. As unitary,
closed-system models, digital QCA parallel reversible classi-
cal CA: QCA exhibit rich dynamical many-body features aris-
ing from the repeated application of simple local rules.

Quantum hardware recently simulated digital QCA [9].
The noisy experimental data were postselected to obey a con-
servation law. Consequently, complex networks of two-qubit
correlators survived > 1000 two-qubit gates. Do QCA con-

serve additional quantities? If enough quantities are con-
served, can QCA dynamics be classically simulated effi-
ciently? Identifying classically simulable quantum models re-
stricts the scope of practical quantum advantage [13]. Also,
classically simulable models provide many-qubit test cases for
comparing emerging quantum computers with trusted classi-
cal counterparts.

Many physical systems conserve quantities such as en-
ergy, momentum, and particle number. Informally, a clas-
sical system is integrable if it conserves enough properties
that it always evolves predictably. Two-body gravitational or-
bits and the harmonic oscillator exemplify classical integra-
bilty. In statistical physics, integrable systems include the
two-dimensional Ising model [14] and the six-vertex model
of ice [15, 16]. Some one-dimensional quantum models [17–
20] are integrable in that (i) the dynamics conserve extensively
many local quantities and (ii) many-body interactions decom-
pose into two-body interactions whose chronological ordering
does not affect the physics. Yang-Baxter integrability codifies
these two points, offering a working definition of quantum
integrability [21]. Yang-Baxter integrability also interrelates
classical, statistical, quantum-field, and quantum-lattice inte-
grability [20, 22–24]. More recently, integrability has grown
to include quantum circuits [25–33].

The simplest quantum-integrability setting involves non-
interacting, or free, dynamics. Free fermions can be clas-
sically simulated efficiently [34–36]. Qubits can map onto
fermions via the Jordan-Wigner (JW) transformation [17, 37–
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FIG. 1. Goldilocks-QCA circuit. Each half-black-half-white circle
represents one control of a generalized XOR constraint. The orange
box represents the single-qubit unitary V̂ . The initial state is a tilted
ferromagnet with a polar angle θ and azimuthal angle φ .

39]. However, it is nontrivial to identify whether a given
unitary-gate sequence maps onto a noninteracting one [40].

We identify Goldilocks QCA that map onto free fermions,
presenting two independent proofs. One relies on a JW
transformation; and one, on a map from the integrable six-
vertex model. Furthermore, we compute conserved quantities
(charges) and use them to predict expectation values’ time-
averaged thermodynamic limits. Efficient, finite-size classi-
cal simulations support our predictions. Unlike their free-
fermionic counterparts, generic Goldilocks QCA appear non-
integrable according to three lines of evidence: each con-
serves only one local charge, local observables’ expectation
values equilibrate to values predictable from that charge alone,
and each QCA displays quasienergy-level statistics consis-
tent with quantum chaos. Therefore, we present a paramet-
ric model that has tunable integrability properties and tunable
conservation laws. More generally, our work elevates digital
QCA as a practical tool for testing quantum hardware.

Digital QCA.—We study a one-dimensional chain of qubits
indexed by j = 0,1, . . . ,L− 1. {|0ð , |1ð} denotes the single-
qubit computational basis; σ̂

γ
j , the Pauli γ ∈ {x,y,z} operator

at qubit j; and 1̂ j, the identity. For notational convenience,
we choose periodic boundary conditions, j + L ≡ j, and an
even number L of qubits. Our results do not depend on these
choices.

|Ψtð denotes the system’s state at the discrete time t.
|Ψtð is updated via spacetime-periodic applications of a lo-
cal controlled-unitary gate. We focus on QCA of the follow-
ing form. The gate is applied in a brickwork pattern: to all
even-index qubits, then all odd-index ones (Fig. 1). During
each time step, a single-qubit gate V̂ ∈ SU(2) [41] may be
applied to each qubit, depending on the states of that qubit’s
neighbors. A unitary Û on the Hilbert space H = (C2)¹L de-
scribes the dynamics: |Ψt+1ð = Û(V̂ ) |Ψtð, wherein Û(V̂ ) :=
Ĝ(V̂ ,1) Ĝ(V̂ ,0). The global even-site/odd-site half-time-step

gates are

Ĝ(V̂ ,q) :=
L/2−1

∏
k=0

û2k+q(V̂ ) , q = 0,1 . (1)

The neighborhood gates û j(V̂ ) act on trios of qubits:

û j(V̂ ) :=
1

∑
m,n=0

|mðïm| j−1 ¹ (V̂j)
f (m,n)¹|nðïn| j+1 . (2)

The left- and right-neighboring qubits form the controls.
f (m,n) ∈ {0,1} encodes the local update rule: if f (m,n) = 1,
while qubit j’s neighbors are in a state that overlaps with
|m,nð j−1, j+1, then V̂ updates qubit j’s state; otherwise, not.
For example, the Floquet PXP model flips qubit j if the neigh-
bors are in the state |00ð j−1, j+1. The corresponding V̂ = σ̂ x,
and fPXP(m,n) = 1−m· n−mn. The · denotes addition
modulo 2—the exclusive-or (XOR) classical logic gate. The
Floquet Fredrickson-Andersen model [42, 43] flips a qubit if
its neighbors are in any of the states |01ð j−1, j+1, |10ð j−1, j+1,

or |11ð j−1, j+1. This model’s V̂ = σ̂ x, and fFA(m,n) = m·n+
mn. For Goldilocks QCA [8],

fG(m,n) = m·n ; (3)

the neighbor configurations |01ð j−1, j+1 and |10ð j−1, j+1 en-
able nontrivial evolution. The name Goldilocks QCA comes
from the rule’s updating qubit j under more neighborhood
conditions than the PXP model but fewer conditions than the
Fredrickson-Andersen model—under a “just right” balance.
When V̂ = σ̂ x, Goldilocks QCA have been called the XOR-
Fredrickson-Andersen model [44]. Our digital QCA gener-
alize reversible CA and these previously studied models: V̂

introduces additional degrees of freedom. Also, as we show,
different V̂ lead to integrable and seemingly nonintegrable dy-
namics. Henceforth, we denote by Û(V̂ ) the Goldilocks-QCA
time-step gate constructed with V̂ .

More-precise statement of results.—Goldilocks QCA gen-
erate free-fermionic dynamics if the single-site update unitary
has the form

V̂free(α,β ,±) :=

(

cosα ∓e−iβ sinα

eiβ sinα ±cosα

)

, α,β ∈R. (4)

The next section outlines a transparent proof based on a JW
transformation. The following section overviews an indepen-
dent proof, which maps the six-vertex model to the QCA. See
the Supplemental Material (SM) for details [45].

This main result raises a question: are Goldilocks QCA
with Û(V̂ ̸= V̂free) integrable? We demonstrate their consis-
tency with nonintegrability. The most general single-site uni-
tary is

V̂ ′(a,b) :=
1

√

|a|2 + |b|2

(

a b

−b∗ a∗

)

, a,b ∈ C . (5)

We draw the real and imaginary parts of a and b from inde-
pendent standard normal distributions. The resultant V̂ ′(a,b)
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likely lack finely tuned forms, such as (4). Hence we empiri-
cally quantify typical Goldilocks QCA’s local-charge, equili-
bration, and level-statistics properties. These properties sug-
gest that typical Goldilocks QCA are nonintegrable, comple-
menting the integrability we rigorously ascribe to V̂free.

JW transformation.—We overview our first proof here (see
Supplemental Note I for details), initially outlining the strat-
egy. We decompose the neighborhood gate û j into more-
convenient elementary gates. Then, we define fermionic oper-
ators in terms of Pauli operators. We construct Hamiltonians
that are bilinear (quadratic) in those fermion operators. These
Hamiltonians generate unitaries that constitute the half-time-
step operators Ĝ. Due to the bilinearity, Ĝ represents free-
fermionic evolution. For simplicity, we focus on single-site
gates (4) with the restricted arguments V̂free(α,0,−). The SM
generalizes to arbitrary arguments.

Let us express the neighborhood gates conveniently. De-
note by [CZ]i, j = |0ðï0|i 1̂ j + |1ðï1|i σ̂ z

j the controlled-Z
gate between qubits i and j. In terms of it, the neigh-
borhood unitary (2) decomposes as û j(V̂free(α,0,−)) =

e
−i(α/2)σ̂y

j [CZ] j−1, j[CZ] j, j+1e
i(α/2)σ̂y

j . Substituting this de-
composition into Eq. (1), we express the half-time-step gates
as Ĝ(V̂free(α,0,−), q)= eiĤ1(α,q)e−iĤ2 e−iĤ1(α,q). The Floquet
Hamiltonians Ĥ1 and Ĥ2 depend on Pauli operators.

To JW-transform those Hamiltonians, we define fermionic
annihilation operators [46]:

â j :=
j−1

∏
k=0

σ̂
y
k

(σ̂ z
j + iσ̂ x

j )

2
. (6)

Under the JW transformation, the Floquet Hamiltonians are
bilinear in the fermionic creation and annihilation operators:

Ĥ1(α,q) :=−α

2

L/2−1

∑
j=0

(

â2 j+qâ
†
2 j+q − â

†
2 j+qâ2 j+q

)

, and

(7)

Ĥ2 :=
π

4

[

±
(

â0 + â
†
0

)(

âL−1 − â
†
L−1

)

+
L−2

∑
j=0

(−1) j+1
(

â
†
j − â j

)(

â j+1 + â
†
j+1

)

]

. (8)

The ± in (8) follows from a simplification (discussed in
Supplemental Note I) familiar from the transverse-field Ising
model’s JW transformation [37, 38]. The JW transforma-
tion (6) does not map the neighborhood gates (2) to Gaussian
fermionic operators. Hence the QCA’s integrability is not ob-
vious, a priori. We describe our second proof next.

Mapping from the six-vertex model.— The six-vertex model
explains why H2O-based ice has residual entropy at zero tem-
perature [15]. Each molecule’s oxygen can participate in one
of six configurations with its four neighbor-molecules’ hy-
drogens, obeying the ice condition [15, 16]; hence the name
six-vertex. The model and its generalizations relate to other
problems in statistical mechanics and quantum many-body
physics [22, 47, 48]. Importantly, the model is exactly solv-
able [16, 22, 49].

In the original, classical model, each vertex type is associ-
ated with a Boltzmann weight. Two-dimensional such crystals
are Yang-Baxter-integrable [16, 22] and, under certain con-
ditions, noninteracting [22, 49]. However, this model (and
closely related ones) can alternatively describe quantum dy-
namics [10, 31]. The vertex weights become complex-valued
transition amplitudes. One of the crystal’s spatial dimen-
sions becomes a discrete-time dimension. Furthermore, ice-
conditioned vertices encode certain QCA neighborhood con-
straints. We impose the Goldilocks constraint and unitarity
(see Supplemental Note II). The resulting instance of the six-
vertex model both maps onto the Goldilocks update unitary
V̂free [Eq. (4)] and is free-fermionic.

Our approach contrasts with recent work. The authors
of [10, 50, 51] prove certain QCA’s Yang-Baxter integrabil-
ity by constructing a transfer matrix. The transfer matrix gen-
erates extensively many mutually commuting charges, estab-
lishing integrabilty. We could similarly leverage the six-vertex
model’s known transfer matrix [22] to calculate charges of
our QCA. Alternatively, we could calculate charges from free-
fermionic methods, as in [52, 53]. Instead, we next pursue an
approach applicable to all V̂ , not only V̂free: we numerically
search for all charges with limited supports.

Conserved charges.—We identify charges by adapting the
numerical algorithm of Ref. [54]. In principle, the al-
gorithm returns all local charges (although not quasilocal
ones). Finding less-local charges requires substantially more
computational time. Let Â(i) ∈ {1̂, σ̂ x, σ̂ y, σ̂ z} denote the
ith factor in a product of contiguous Pauli operators. We
can sum such a product over all sites, [Â(1)Â(2) . . . Â(n)] :=

∑
L−1
j=0 Â

(0)
j Â

(1)
j+1 . . . Â

(n)
j+n, or over all even-indexed sites:

[[Â(1)Â(2) . . . Â(n)]] := ∑
L/2−1
j=0 Â

(0)
2 j Â

(1)
2 j+1 . . . Â

(n)
2 j+n. Here n de-

notes the size of a term’s support. We search for charges ex-
pressible in terms of such sums. A charge has a support size
equal to the largest term’s support size.

We first focus on the single-site gates highlighted in the JW
section, generalizing later: Û(V̂free(α,0,−)), we find, con-
serves 13 linearly independent charges Q̂i=1,2,...,13 of support
size f 5. Having performed the search symbolically in Math-
ematica [55] , we report eight charges needed later:

Q̂1 = [σ̂ zσ̂ z], (9a)

Q̂2 = tanα [σ̂ xσ̂ x]+ [σ̂ xσ̂ z]+ [σ̂ zσ̂ x], (9b)

Q̂3 = [σ̂ xσ̂ yσ̂ z]− [σ̂ zσ̂ yσ̂ x], (9c)

Q̂4 = [σ̂ y]+ [σ̂ zσ̂ yσ̂ x]+ tanα [σ̂ xσ̂ yσ̂ z], (9d)

Q̂5 = [σ̂ xσ̂ x]+ [σ̂ zσ̂ yσ̂ yσ̂ z], (9e)

Q̂6 = tanα( [σ̂ xσ̂ yσ̂ yσ̂ z]− [σ̂ zσ̂ yσ̂ yσ̂ z]) (9f)

+[σ̂ xσ̂ yσ̂ yσ̂ z]+ [σ̂ zσ̂ yσ̂ yσ̂ x], (9g)

Q̂7 = [σ̂ xσ̂ yσ̂ x]− tanα([σ̂ xσ̂ yσ̂ z] (9h)

− [σ̂ xσ̂ yσ̂ yσ̂ yσ̂ z])− [σ̂ zσ̂ yσ̂ yσ̂ yσ̂ x], and (9i)

Q̂8 = [σ̂ xσ̂ yσ̂ yσ̂ yσ̂ z]− [σ̂ zσ̂ yσ̂ yσ̂ yσ̂ x] . (9j)

Supplemental Note III specifies the remaining five charges.
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Q̂1 counts domain walls and is conserved by every update V̂ ,
even if V̂ is chosen randomly at every site and circuit layer.
Being diagonal relative to the computational basis, Q̂1 is use-
ful for postselective error mitigation on quantum hardware [9].

The charges (9) do not all mutually commute. This obser-
vation is consistent with Ref. [53], since the dynamics map to
a free-fermionic model that breaks one-site-translation sym-
metry. Exploring thermodynamic consequences of noncom-
muting charges is a recent endeavor [56–60]; now, Goldilocks
QCA provide an additional example of non-Abelian integra-
bility [61–64].

Now, we generalize from Û(V̂free(α,0,−)) in two ways.
First, suppose that β ̸= 0 in V̂free(α,β ,±) [Eq. (4)]. The
charges follow from Eq. (9) and a local change of basis (see
Supplemental Note I). Second, consider the plus-sign gates
V̂free(α,0,+). Using the algorithm of [54], we numerically
found nine charges with support sizes f 5, for all α sam-
pled. Only one charge—Q̂1—has a support size f 3. Accord-
ing to [51], at the point α = π/2, Û(V̂free(π/2,0,+) = σ̂ x)
maps onto free evolution of domain walls (it conserves Q̂1)
and conserves Q̂ = [[Îσ̂ xσ̂ x Î]]+ [[σ̂ zσ̂ yσ̂ yσ̂ z]]+ [[σ̂ zσ̂ zσ̂ zσ̂ z]]
[65]. In addition to proving this QCA’s free-fermionic nature,
we numerically demonstrate that each of the three terms in Q̂

is conserved individually. Furthermore, we find 24 charges
with support sizes f 5 at α = π/2.

Finally, we illustrate generic Goldilocks QCA, whose
single-site update unitaries V̂ ′(a,b) are selected as specified
around Eq. (5). Using the algorithm of Ref. [54], we find no
charges (except Q̂1) with support size f 5 for the representa-
tive example Û(V̂ ′(0.3+ 0.7i,−1.0− 0.5i)). This outcome,
as well as evidence presented next, suggests that generic
Goldilocks QCA are nonintegrable. Nevertheless, fine-tuned
V̂ ′ choices might engender (interacting) integrable dynamics
that one might find using methods like those in Ref. [51].

Predicting dynamics.—We now contrast integrable and
generic QCA dynamics. We initialize the system in
the translationally invariant, tilted-ferromagnet product state
|Ψ0(θ ,φ)ð := |θ ,φð¹L, where |θ ,φð := cos(θ/2) |0ð +
eiφ sin(θ/2) |1ð. We calculate the evolutions of local expec-
tation values

F (t;γ,k) := ïΨt |(σ̂ γ)¹k|Ψtð . (10)

As a first consequence of free-fermion integrability,
F (t;γ,k) can be classically simulated efficiently, via the
Gaussian formalism [35, 36], for diverse initial states. These
are the states mapped, via the JW transformation, onto Gaus-
sian states. Gaussian states are fully specified by their co-
variance matrices, and expectation values in Gaussian states
follow from Wick’s theorem [35]. The set of Gaussian states
includes the y-ferromagnet state, |Ψ0(π/2,π/2)ð = [(|0ð+
i |1ð)/

√
2]¹L.

We have efficiently calculated the expectation values (10)
numerically. See Supplemental Note IV for details. Fig-
ure 2(a) illustrates our results. It shows expectation values
F (t;y,k) of the experimentally realized Goldilocks QCA,
whose V̂ = V̂free(π/4,0,−) [9].

10−1

100

F
(t
;
y
,
k
) k = 1

k = 2

k = 3

k = 4

(a)

0 5 10 15 20 25 30

Time t

0.00

0.25

0.50

0.75

F
(t
;
z
,
3
)

(b)

Median
a ≈ −0.70 + 0.68i
b ≈ −0.14 + 0.18i

FIG. 2. Expectation-value dynamics. (a) Dynamics generated by
integrable Goldilocks QCA Û [V̂free(π/4,0,−)], for a system size
L = 256. The initial (Gaussian) state is the y-ferromagnet. (b) Me-
dian expectation value from 100 realizations of generic Goldilocks
QCA Û [V̂ ′(a,b)] (solid curves) and one outlying realization [96th

percentile of F (9;z,3), dot-dashed curves]. Darker curves signal
larger system sizes (L = 18,22,26). The initial state is the tilted fer-
romagnet |Ψ0(0.56,3.7)ð. In both panels, horizontal dashed curves
mark the thermodynamic limits predicted by the appropriate GGE.

In contrast, we cannot apply the Gaussian formalism to
generic QCA. The numerical computations involve brute-
force representations of the evolution operators in the com-
putational basis. Only small sizes and times are achievable.
Figure 2(b) illustrates the median (and one example outlier)
of expectation values F (t;z,3) calculated from 100 V̂ ′(a,b)
realizations. (In each realization, the same V̂ ′(a,b) acted at
each site and time step.)

A second consequence of integrability pertains to the ex-
pectation values’ time-averaged, large-system limits. In the
thermodynamic limit, expectation values are expected to be
consistent with generalized Gibbs ensembles (GGEs) [66–68]

ρ̂ :=
1
Z

exp

(

−∑
i

Q̂iµi

)

. (11)

The sum runs over the local charges. The normalization fac-
tor Z := Tr(exp(−∑i Q̂iµi)). The µi are generalized chemical
potentials (or Lagrange multipliers) fixed by the initial con-
ditions: ïΨ0| Q̂i |Ψ0ð = Tr(ρ̂Q̂i). If one does not know all
the charges, one can truncate the GGE [52, 69]—construct
the approximate ensemble ρ̂ [n] that includes the m charges
of support size f n [70]. Truncated-GGE predictions ap-
proximate GGE predictions of expectation values with sup-
port sizes < n [52]. For systems whose charges commute,
Eq. (11) predicts time-averaged expectation values of a large
system prepared in a microcanonical subspace—with well-
defined values of the included charges [71]. If the charges
fail to commute, Eq. (11) predicts analogously for a system in
an approximate microcanonical subspace—with fairly well-
defined values of the included charges (since noncommuting
charges cannot necessarily have well-defined values simulta-
neously) [59, 72, 73]. Our initial condition, being a product
state, satisfies this requirement [72].
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We computed truncated-GGE predictions Tr(ρ̂ [n][σ̂ γ ]¹k)
for our free-fermion and generic systems. Figure 2(a–b)
shows these results and comparisons with the exact time-
evolved expectation values. The free-fermion case involves
the 13 local charges described around Eqs. (9). The chemi-
cal potentials µi = 0 (up to our method’s numerical accuracy)
for i > m = 8. The time-evolved expectation values rapidly
equilibrate to the truncated-GGE predictions. As k increases,
the equilibrium value approaches zero. Supplemental Note V
explains this behavior qualitatively, although it is unimportant
for our purposes.

Generic Goldilocks QCA conserve only Q̂1: n = 2, and
m= 1. The tilted ferromagnet with polar angle θ implies µ1 =
arctanh(cos2 θ) and Tr(ρ̂ [2][σ̂ z]¹k) = [cosk θ +(−cosθ)k]/2,
by direct calculation (Supplemental Note V). We calculate the
median expectation value over 100 V ′(a,b) realizations. It be-
haves as F (t,z,3)→ 0, approaching the truncated-GGE pre-
diction, as L increases. Outliers converge slowly in time and
L. Possible reasons include (i) proximity to integrable points
and (ii) conserved charges undetected by our method.

Level statistics.—(Quasi)energy-level statistics can evi-
dence integrability [50, 54, 74]. This evidence is reliable,
though, only if computed from energy levels in the same sym-
metry sector. As detailed in Supplemental Note VI, we an-
alyze spectral statistics in a sector shared by two charges:
first, Q̂1 has eigenvalues q1 ∈ −L,−L+4, . . . ,L. Second, ev-
ery V̂ ′ conserves the two-site-shift operator Π̂2. Its eigenval-
ues e4πiK/L depend on K ∈ {0,1, . . . ,L/2}. In an eigenspace
shared by Π̂2 and Q̂1, we compute eigenvalues eiφℓ of the time-
step unitary Û , following [50]. We sort the quasienergies φℓ ∈
[0,2π) in ascending order. From the spacings sℓ := φℓ+1 −φℓ,
we form ratios [75] rℓ := min{sℓ,sℓ−1}/max{sℓ,sℓ−1}. P(r)
denotes the distribution, across the quasienergy spectrum,
over these ratios. P(r) is more convenient than the distri-
bution over the spacings themselves, which require spectral-
unfolding analyses [74–76]. Poisson statistics PP(r) = 2/(1+
r)2 can signal integrability [77], whereas Wigner-Dyson statis-
tics PWD(r) = (27/4)(r+ r2)/(1+ r+ r2)5/2 can signal non-
integrability [78].

Figure 3 shows the level statistics of typical single-site
update operators V̂ ′(a,b). Different realizations evidence
Wigner-Dyson-like, Poisson-like, and intermediate statistics.
The median distribution is closest to Wigner-Dyson. Fur-
thermore, the fraction displaying Wigner-Dyson-like statistics
grows with L. Therefore, most Goldilocks QCA appear non-
integrable.

Outlook.—We have proven that certain Goldilocks QCA
exhibit free-fermionic integrability. This claim rests on two
independent proofs, one involving a Jordan–Wigner trans-
formation; and one, a mapping from the six-vertex model.
We demonstrated implications of integrability: efficient clas-
sical simulability, many (noncommuting) local charges, and
rapid equilibration to truncated-GGE predictions. Generic
Goldilocks QCA are predominately consistent with nonin-
tegrability, as evidenced by thermalization to single-charge-
GGE predictions and Wigner-Dyson-like level statistics.
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FIG. 3. Quasienergy-level statistics. Distribution P(r) over level-
spacing ratios. The solid black curve shows the median distribu-
tion, calculated from 100 realizations of V̂ ′(a,b) at L = 16, from the
(K=1, q1=0) sector’s 3200 levels. The faint curves show individual
realizations. The black dashed line shows the median distribution for
the same 100 V̂ ′ realizations but a smaller system (L = 14) and the
(K=1, q1=2) sector’s 858 levels.The Wigner-Dyson (dashed, cyan)
and Poisson (dot-dashed, red) distributions serve as references.

Some QCA exhibit anomalous behaviors that invite fu-
ture research: intermediate level statistics and thermalization
that is less complete, as a function of L, than one might ex-
pect. Noncommuting charges can enable such behaviors, as
might near-integrability. Do generic QCA lie close to in-
tegrable parameter points, conserve hidden noncommuting
charges, or approximately conserve noncommuting charges?
Noncommuting-charge studies have focused on exact conser-
vation [56]. Extensions to approximate conservation could
uncover further quantum thermodynamics, and Goldilocks
QCA might provide a toy model.

Our integrability proofs raise more questions. Our six-
vertex map works for many QCA (see Supplemental Note II)
but, applied to Goldilocks QCA, reveals noninteracting
integrability. Could other six-vertex QCA exhibit interacting
or nonunitary integrability [79, 80]? Can all the QCA that
map onto free fermions be classified? One can straightfor-
wardly generalize our discovered free-fermion dynamics by
maintaining the Goldilocks constraint, while targeting g 2
qubits with V̂ (Supplemental Note VII). More generally,
could free fermions in disguise, like those in Ref. [81], appear
in QCA? The very recent paper [32] suggests so. Answers
to these questions may further identify candidate settings for
practical quantum advantages and provide reliable data for
many-qubit benchmarking experiments.
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Supplemental Material for “Integrability of Goldilocks quantum cellular automata”

Supplemental Note I: Details about the Jordan-Wigner mapping of certain Goldilocks quantum cellular automata to

free fermions

In this section, we detail the JW mapping of certain Goldilocks QCA [those described by Eq. (SII.8)] to noninteracting Floquet
dynamics. Specifically, we show that bilinear fermionic Hamiltonians generate the global time-step unitaries Û(V̂free(α,β ,±)).
We first prove the result for restricted arguments V̂free(α,0,−), then generalize afterward. As outlined in the main text, we first
decompose the neighborhood gate û j [Eq. (2)] into simpler one- and two-qubit gates. We then apply this decomposition to the
half-time-step gates Ĝ [Eq. (1)]. Performing a JW transformation reveals that each Ĝ is bilinear in the JW fermions.

For convenience, we first analyze the neighborhood gate û j [Eq. (2)] with the restricted argument V̂free(α,0,−). This gate
decomposes into one- and two-qubit gates, one can verify by direct computation:

û j(V̂free(α,0,−))= e
−i(α/2) σ̂

y
j [CZ] j−1, j [CZ] j, j+1 e

i(α/2)σ̂y
j . (SI.1)

In terms of these neighborhood gates, the even (q = 0) and odd (q = 1) half-time-step operators are

Ĝ(V̂free(α,0,−),q)=
L/2−1

∏
j=0

û j(V̂free(α,0,−))

=

(

L/2−1

∏
j=0

e
−i(α/2)σ̂y

2 j+q

)(

L/2−1

∏
j=0

[CZ] j−1, j[CZ] j, j+1

)(

L/2−1

∏
j=0

e
i(α/2)σ̂y

2 j+q

)

. (SI.2)

The controlled-Z gate decomposes in terms of Pauli operators as

[CZ] j, j+1 = e−iπ/4 exp
(

−i
π

4
σ̂ z

j σ̂ z
j+1

)

exp
(

+i
π

4

[

σ̂ z
j + σ̂ z

j+1

])

. (SI.3)

Therefore, the second factor in Eq. (SI.2) is

L/2−1

∏
j=0

[CZ] j−1, j[CZ] j, j+1 =
L−1

∏
j=0

[CZ] j, j+1 (SI.4)

=
L−1

∏
j=0

exp
(

−i
π

4
σ̂ z

j σ̂
z
j+1

)

exp
(

i
π

4

[

σ̂ z
j + σ̂ z

j+1

])

= exp

(

−i
π

4

L−1

∑
j=0

σ̂ z
j σ̂

z
j+1

)

exp

(

i
π

2

L−1

∑
j=0

σ̂ z
j

)

= iL exp

(

−i
π

4

L−1

∑
j=0

σ̂ z
j σ̂

z
j+1

)

L−1

∏
k=0

σ̂ z
k . (SI.5)

The final equality follows from ei(π/2)σ̂ z
= iσ̂ z. Similarly, σ̂ z

k σ̂ z
k+1 =−iexp

(

i π
2 σ̂ z

k σ̂ z
k+1

)

, so the final factor in (SI.5) is

L−1

∏
k=0

σ̂ z
k =

L/2−1

∏
k=0

σ̂ z
2kσ̂ z

2k+1 = (−i)L/2 exp

(

i
π

2

L/2−1

∑
j=0

σ̂ z
2kσ̂ z

2k+1

)

. (SI.6)

We substitute from Eq. (SI.6) into Eq. (SI.5), then substitute the result into Eq. (SI.2). Neglecting the global phase,

Ĝ(V̂free(α,0,−),q)= exp

(

−iα

2

L/2−1

∑
j=0

σ̂
y
2 j+q

)

exp

(

−iπ

4

{

σ̂ z
L−1σ̂ z

0 +
L−2

∑
j=0

[−1] j+1σ̂ z
j σ̂

z
j+1

})

exp

(

iα

2

L/2−1

∑
k=0

σ̂
y
2 j+q

)

. (SI.7)

We define the two Hamiltonians

Ĥ1(α, q) :=−α

2

L/2−1

∑
j=0

σ̂
y
2 j+q and Ĥ2 :=

π

4

[

σ̂ z
L−1σ̂ z

0 +
L−2

∑
j=0

(−1) j+1σ̂ z
j σ̂

z
j+1

]

, (SI.8)
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so that Ĝ(V̂free(α,0,−), q)= exp(+iH1(α,q))exp(−iH2)exp(−iH1(α,q)).
As in the main text, we introduce the fermionic annihilation operators â j via the JW transformation:

â j =
j−1

∏
k=0

σ̂
y
k

(σ̂ z
j + iσ̂ x

j )

2
. (SI.9)

From the creation and annihilation operators, we can build bilinear fermionic operators such as σ̂
y
j = â jâ

†
j − â

†
j â j and σ̂ z

j σ̂
z
j+1 =

(â†
j − â j)(â j+1 + â

†
j+1). From the first such operator, in turn, we construct the fermion-number-parity operator:

P̂ =
L−1

∏
j=0

σ̂
y
j =

L−1

∏
j=0

(

â jâ
†
j − â

†
j â j

)

. (SI.10)

The number-parity operator features in one of the Hamiltonians we defined: applying the JW transformation (SI.9) to Eqs. (SI.8)
yields

Ĥ1(α,q) =−α

2

L/2−1

∑
j=0

(

â2 j+qâ
†
2 j+q − â

†
2 j+qâ2 j+q

)

and (SI.11)

Ĥ2 =
π

4

[

(

â0 + â
†
0

)(

âL−1 − â
†
L−1

)

P̂ +
L−2

∑
j=0

(−1) j+1
(

â
†
j − â j

)(

â j+1 + â
†
j+1

)

]

. (SI.12)

Ĥ1 is overtly quadratic in the fermion operators, even if different α values are assigned to different sites. In contrast, Ĥ2 is not
overtly quadratic.

Nevertheless, we can prove that Ĝ(V̂free(α,0,−), q) is free-fermionic by invoking the number-parity operator. The operator
commutes with both Hamiltonians: [Ĥ2,P̂] = [Ĥ1(α,q),P̂] = 0. Each Ĥ can be therefore represented, relative to the P̂

eigenbasis, by a block-diagonal matrix. Each matrix consists of two blocks, as P̂ has two eigenvalues, ±1. Denote the +1

eigenstates by |ϕ( j)
+ ð and the −1 eigenstates by |ϕ(k)

− ð, for indices j and k. In terms of these eigenstates, an arbitrary pure state

decomposes as |Ψð = ∑ j c
( j)
+ |ϕ( j)

+ ð+∑ j c
(k)
− |ϕ(k)

− ð, for normalized coefficients c
( j)
+ ,c

(k)
− ∈ C. Consider operating with the Ĥ2

matrix on |Ψð. Whenever the matrix acts on a |ϕ( j)
+ ð term, the P̂ in Eq. (SI.12) acts as +1; and, when the matrix acts on a

|ϕ(k)
− ð term, the P̂ as a −1. Hence, by Eq. (SI.12), Ĥ2 always acts as a quadratic operator. Both half-time-step operators Ĝ are

therefore quadratic. Consequently the global evolution operator Û(V̂free) = Ĝ(V̂free, 1)Ĝ(V̂free, 0) can be rewritten as

Û(V̂free(α,0,−))= eiĤ1(α,1) e−iĤ2 e−iĤ1(α,1) eiĤ1(α,0) e−iĤ2 e−iĤ1(α,0) . (SI.13)

Hence the Goldilocks-QCA time-step operator effects free-fermion dynamics.
One could further simplify Eq. (SI.13) to compute the Floquet Hamiltonian K̂ that satisfies Û = e−iK̂ . One would Fourier-

transform Eq. (SI.13), then apply the Baker–Campbell–Hausdorff formula. Finally, one would invoke the fact that any two
quadratic operators’ commutator is a quadratic operator. See Ref. [30] for a similar computation. However, we do not use the
form of K̂, so we omit this computation.

We now relax the restrictions imposed on the arguments of V̂free [Eq. (4)]: the β and then the minus sign. The already-
analyzed operator V̂ (α,0,−) transforms into the less restricted operator V̂free(α,β ,−) under the local basis change e−i(β/2)σ̂ z

:
V̂free(α,β ,−) = e−i(β/2)σ̂ z

V̂ (α,0,−)ei(β/2)σ̂ z
. The basis change preserves the QCA’s free-fermionic structure, merely rotating

the Pauli operators in the JW transformation (6):

σ̂ x → cosβ σ̂ x + sinβ σ̂ y , and σ̂ y → sin βσ̂ x + cos βσ̂ y . (SI.14)

One must transform also the charges (9) under (SI.14), to calculate the β ̸= 0 charges.
Finally, we prove the free-fermion nature of V̂free(α,β ,+). Direct calculation reveals u j(V̂free(α,β ,+)) =

[CZ] j−1, j[CZ] j, j+1u j(V̂free(−α,β ,−)). Therefore, one can simulate the V̂free(α,β ,+), using V̂free(α,β ,−): one negates α and
includes an extra layer of controlled-Z gates:

Ĝ(V̂free(α,β ,+), q)=
L−1

∏
j=0

[CZ] j, j+1Ĝ(V̂free(−α,β ,−)). (SI.15)

If β = 0, the global evolution operator is

Û(V̂free(α,0,+))= e−iĤ2 eiĤ1(−α,1) e−iĤ2 e−iĤ1(−α,1) e−iĤ2 eiĤ1(−α,0) e−iĤ2 e−iĤ1(−α,0) . (SI.16)

If β ̸= 0, we can apply the same construction, together with the local basis rotation (SI.14).
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Supplemental Note II: Mapping from the six-vertex model

In this section, we detail the mapping from the six-vertex model to certain Goldilocks QCA. We start by recalling elementary
facts about the model. Then, we show that the six-vertex model maps onto a set of QCA neighborhood gates. This set of gates
overlaps partially with the set of QCA neighborhood gates û j(V̂ ) focused on in this paper [Eq. (2)]. Finally, we identify the
Goldilocks QCA mapped to by points in the six-vertex model’s parameter space. At these points, we show, the six-vertex model
is free-fermionic.

1. Six-vertex model

The six-vertex model [22] is defined on a lattice whose degrees of freedom are the edges. Each edge is empty or occupied—or,
equivalently, carries an orientation: upwards for empty edges and downwards for occupied edges. The net flux flowing into each
vertex must vanish. According to this ice condition, the allowed vertices are

a1 a2 b1 b2 c1 c2 (SII.1)

As originally formulated, the six-vertex model is a classical statistical-mechanics model in two spatial dimensions. Each vertex
is assigned a positive Boltzmann weight—a1, a2, b1, b2, c1, or c2—as indicated above. A lattice configuration has a Boltzmann
weight equal to the product of its vertices’ weights. The model’s partition function is the sum over the configurations’ lattice
weights. The six-vertex model’s parameter space has free-fermionic points specified by the condition a1a2+b1b2 = c1c2 [22, 49].

This vertex model, whose degrees of freedom are the edges, is equivalent to a model whose degrees of freedom are spins [22,
24, 47, 48]. Let a classical spin live on each face of each vertex, such that the vertex becomes the center of a plaquette. We
represent an upward-pointing spin with a 0 and a downward-pointing spin with a 1. The vertex model is equivalent to this
spin model under the following rule: empty (filled) lattice edges separate neighboring spins that are aligned (antialigned). Two
plaquette configurations are consistent with each of the six vertex configurations [82]. These ice-conditioned plaquettes, and the
corresponding weights, are

0 0

0

0

0 0

1

1

0 1

1

0

0 1

0

1

1 0

0

0

0 1

0

0

1 1

1

a1

1

1 1

0

0
a2

1 0

0

1
b1

1 0

1

0
b2

0 1

1

1
c1

1 0

1

1
c2 (SII.2)

Instead of representing a classical spin system in two spatial dimensions, the six-vertex model can represent a one-dimensional
quantum system evolving in discrete time [10]. The classical lattice’s y-axis can be reinterpreted as the quantum system’s time
axis, which runs from bottom to top. Consecutive lattice rows represent the quantum system’s state at consecutive time steps.
Similarly to in the classical spin model, a qubit lives on each face of each vertex. Each qubit’s Hilbert space has a computational
basis {|0ð , |1ð}. If a qubit is in |0ð (|1ð), we say that the spin is pointing upward (downward). Within a row, the southward spins
specify the system’s state at some time, and the northward spins specify the system’s state at the next time step. Enforcing the
ice condition constrains the qubits’ evolution. Specifying the evolution, we specify, for each qubit, the complex amplitudes for
the transitions (0 → 0), (0 → 1), (1 → 0), and (1 → 1). The vertex weights serve as (un-normalized versions of) those transition
amplitudes, assuming complex values.

2. Quantum cellular automata mapped to by the six-vertex model

The quantum lattice’s weights can be encoded in QCA neighborhood gates [10]. A vertex’s southward spin represents an
element of the target qubit’s computational basis. The westward and eastward spins represent elements of the left-hand and
right-hand neighboring control qubits’ computational bases. The target qubit transitions from the southward to the northward
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spin state with the complex transition amplitude mentioned in the previous subsection. Below, we describe how to encode this
amplitude in a QCA gate.

To identify the most general such gate, we scale the vertex weights. The allowed scalings are the ones that cancel in the
lattice-configuration weight—the product of the vertices’ weights. Index a plaquette’s surrounding spins by m, j,n, l ∈ {0,1},
running clockwise from the westward face. Each vertex weight may be scaled by a factor ωm

1 ω
j

2ωn
3 ω l

4, wherein ω1ω2ω3ω4 = 1.
The resulting weights assume the following forms:

0 0

0

0
a1

0 0

1

1
a2ω2ω4

0 1

1

0
b1ω2ω3

0 1

0

1
b2ω3ω4

1 0

0

0
c1ω1

0 1

0

0
c2ω3

1 1

1

a1

1

1 1

0

0
a2ω1ω3

1 0

0

1
b1ω4ω1

1 0

1

0
b2ω1ω2

0 1

1

1
c1/ω1

1 0

1

1
c2/ω3 (SII.3)

We map these weights to QCA gates as follows. As noted in the previous subsection, each vertex weight can serve as a
transition amplitude. Here, we interpret the weight as a target qubit’s probability amplitude of transitioning from configuration
l to configuration j if the westward neighbor is in configuration m and the eastward neighbor is in n. We must specify four
transition amplitudes: those for (0 → 0), (0 → 1), (1 → 0), and (1 → 1). We encapsulate these four transition amplitudes in four
operators V̂6V(m,n). The operators are represented, relative to the computational basis, by

V̂6V(0,0)→
(

a1 0
0 a2ω2ω4

)

, (SII.4)

V̂6V(0,1)→
(

c2ω3 b2ω3ω4

b1ω2ω3 c1/ω1

)

, (SII.5)

V̂6V(1,0)→
(

c1ω1 b1ω4ω1

b2ω1ω2 c2/ω3

)

, and (SII.6)

V̂6V(1,1)→
(

a2ω1ω3 0
0 a1

)

. (SII.7)

Using these single-site transition operators, we can represent a three-site neighborhood’s evolution:

1

∑
m,n=0

|mðïm|¹V̂6V(m,n)¹|nðïn| . (SII.8)

This QCA operator resembles the QCA operator û j(V̂ ) focused on throughout this paper [Eq. (2)]. However, û j(V̂ ) is more
general in one way, whereas Eq. (SII.8) is more general in another way. û j(V̂ ) evolves the target as V̂ under some neighborhood
configurations and as 1̂ under other configurations. In contrast, under Eq. (SII.8), the target evolves under the more general V̂6V.
On the other hand, V̂ is not restricted to the form in Eqs. (SII.5)–(SII.6).

In conclusion, the six-vertex model maps onto QCA neighborhood gates of the form (SII.8). These gates form a set that
overlaps partially with the set of QCA gates (2) focused on in this paper. In the next subsection, we derive the forms of the
Goldilocks QCA mapped onto by the six-vertex model.

3. Goldilocks quantum cellular automata mapped to by the six-vertex model

We now specify the vertex weights under which the six-vertex model maps onto Goldilocks QCA. As a reminder, a Goldilocks
QCA effects the neighborhood gate û j of Eq. (2), subject to the constraint fG(m,n) =m·n [Eq. (3)]. According to the constraint,
the identity operator acts on a target qubit if the neighbors are in |00ð or |11ð. This rule fixes V̂6V(0,0) = V̂6V(1,1) = 1̂. Hence,
by Eqs. (SII.4)–(SII.7),

a1 = a2ω2ω4 = a2ω1ω3 = 1. (SII.9)



12

Digital QCA

Goldilocks:
Eqs. (2)-(3)

Six-vertex:
 Eq. (SII.8)

Free-fermionic:
Eq. (4)

FIG. S1. QCA Venn diagram. QCA compatible with both the six-vertex model and the Goldilocks constraint are free-fermionic.

If the neighboring spins are in |01ð or |10ð, the target evolves under V̂ . This rule fixes the remaining vertices’ weights via the
matrix equation V̂6V(0,1) = V̂6V(1,0) = V̂ . That matrix equation consists of four components:

ï0|V̂ |0ð= c1ω1 = c2ω3, (SII.10)

ï0|V̂ |1ð= b2ω3ω4 = b1ω1ω4, (SII.11)

ï1|V̂ |0ð= b1ω2ω3 = b2ω1ω2, and (SII.12)

ï1|V̂ |1ð= c1/ω1 = c2/ω3. (SII.13)

To simplify notation, we use Eq. (SII.9) to define ε1 ≡ ω2ω4 = ω1ω3 = ±1. Equations (SII.10) and (SII.13) imply (ω3)
2 =

(ω1)
2 ≡ ε2. Combining these two statements yields ε2 =±1. We can now express some of the original weights (some of the a,

b, and c numbers) in terms of ε1, ε2, and the other original weights:

a1 = ε1a2 = 1 , b1 = ε1ε2b2 , and c1 = ε1ε2c2 . (SII.14)

Hence the single-site Goldilocks gate realizable with the six-vertex model has the form

V̂ =

(

c1ω1 b1ω1/ω2ε1

b1ω1ω2ε1ε2 c1/ω1

)

. (SII.15)

The gate’s unitarity fixes |ω2|2 = 1, |c1|2 + |b1|2 = 1, and c∗1b1 + c1b∗1 = 0. Up to a global phase factor in V̂ , we
parameterize c1ω1 = cosα , b1ω1ε1 = isinα , and ω2ε2 = −ieiβ , wherein α,β ∈ R. The single-site Goldilocks gate
realizable with the six-vertex model acquires the form in the main text’s Eq. (4), which we reproduce here:

V̂ =

(

cosα −ε2e−iβ sinα

eiβ sinα ε2 cosα

)

. (SII.16)

For any ε1,ε2 =±1, the Goldilocks-constrained six-vertex model’s weights satisfy

a1a2 +b1b2 − c1c2 = ε1 + ε1ε2(ω1isinα)2 − ε1ε2(ω1 cosα)2 = ε1(1− sin2−cos2 α) = 0 , (SII.17)

i.e., the free-fermion condition from two subsections ago.
We have shown that the six-vertex model, at free-fermionic points of its parameter space, maps onto certain Goldilocks QCA

(Fig. S1). One can run this argument backward, to map these QCA onto the free-fermionic six-vertex model. Hence the model
and these QCA are equivalent, in the sense of the footnote near the end of the third paragraph in Sec. II 1.

Supplemental Note III: Conserved charges

The main text reports eight conserved charges Q̂i, wherein i = 1, . . . ,8, for the free-fermionic Goldilocks QCA with the gate
Vfree(α,0,−). We found five more charges, but they do not enter the truncated GGE, at least for the tilted-ferromagnet initial
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conditions. The remaining charges are

Q̂9 = tana [[σ̂ xσ̂ x]]+ [[σ̂ xσ̂ z]]+ [[σ̂ zσ̂ x]]− tana [[σ̂ zσ̂ z]] , (SIII.1a)

Q̂10 = [[σ̂ xσ̂ yσ̂ z]]− [[σ̂ zσ̂ yσ̂ x]] , (SIII.1b)

Q̂11 = [[σ̂ y]+ tana [[σ̂ xσ̂ yσ̂ z]]+ [[σ̂ zσ̂ yσ̂ x]] , (SIII.1c)

Q̂12 = [[σ̂ xσ̂ x]]+ [[σ̂ zσ̂ yσ̂ yσ̂ z]] , and (SIII.1d)

Q̂13 = tana [[σ̂ xσ̂ yσ̂ yσ̂ x]]+ [[σ̂ xσ̂ yσ̂ yσ̂ z]]+ [[σ̂ zσ̂ yσ̂ yσ̂ x]]− tana [[σ̂ zσ̂ yσ̂ yσ̂ z]] . (SIII.1e)

The double-bracket notation represents a sum over even-index sites: [[Â(1)Â(2) . . . Â(n)]] := ∑
L/2−1
j=0 Â

(0)
2 j Â

(1)
2 j+1 . . . Â

(n)
2 j+n. We calcu-

late the charges of U(Vfree(α,β ,−)) by applying the local change-of-basis transformation (SI.14) to the 13 charges reported for
U(Vfree(α,0,−)).

The main text describes nine conserved charges of the Goldilocks QCA with the gate V̂free(α,0,+). The algorithm of Ref. [54]
enables symbolic and numerical searches for the charges. We applied the symbolic method for generic α; the calculation did
not terminate. Therefore, we turned to the numerical method. Using it, we found nine charges with support sizes f 5, for each
of the α values sampled.

Supplemental Note IV: Details about numerical computations

In this section, we further detail the efficient numerical simulation of the integrable Goldilocks QCA. As we have shown, the
Goldilocks QCA (4) effect free-fermionic Floquet dynamics. The time-step operators Û(V̂free) are Gaussian: they follow from
multiplying exponentials of Hamiltonians that are quadratic in fermion operators [Eq. (SI.13)]. Consequently, the dynamics can
be simulated efficiently, if the system is initialized in a fermionic Gaussian state [35, 36], as we now review. A state is Gaussian
if it satisfies Wick’s theorem [35, 36].

For convenience of numerical implementation, we introduce the Majorana operators

ψ̂2 j+1 = â
†
j + â j and ψ̂2 j = i(â j − â

†
j) , (SIV.1)

so that {ψ̂a, ψ̂b}= 2δa,b. Each Gaussian state is completely fixed by the covariance matrix

Cab(ρ) =
i

2
tr(ρ [ψ̂a, ψ̂b]) , (SIV.2)

a 2L× 2L real, skew-symmetric matrix. Upon beginning in a Gaussian initial condition |Ψ0ð, the state remains Gaussian at all
times; its covariance matrix can be computed efficiently. Indeed, consider a Gaussian state |Ψtð specified by a covariance matrix
Ct . Suppose that we want to update the state with a bilinear unitary

Ô = exp

(

−1
4 ∑

m,n

Km,nψ̂m ψ̂n

)

, (SIV.3)

wherein Km,n ∈ R is real and skew-symmetric. By the Baker-Campbell-Haussdorf formula and the Majorana anticommutation
relations, Ô |Ψtð has the covariance matrix Ct+1 = OCtO

T specified by the 2L× 2L matrix O = exp(K) . K is the matrix with
elements Km,n, as in (SIV.3). Ô is a 2L ×2L unitary operator, whereas O is a 2L×2L orthogonal matrix. Therefore, to classically
simulate the time evolution, one must only calculate exponentials and products of matrices whose dimensionalities scale linearly
with the system size. Hence the whole algorithm is efficient.

To apply this procedure to our problem, we rewrite the Hamiltonians (7) and (8) in terms of the Majorana operators:

Ĥ1(q) = i
α

2

L/2−1

∑
j=0

ψ̂4 j+2qψ̂4 j+2q+1 , and Ĥ2 = i
π

4

L−1

∑
j=0

(−1) j+1ψ̂2 jψ̂2 j+3 . (SIV.4)

We have assumed that the boundary conditions are periodic. Ĥ2 may require a specific boundary term depending on the desired
initial and boundary conditions [37, 38]. Finally, one must specify the initial state’s covariance matrix. In our numerical
simulations, the initial state is the fermionic vacuum state |Ωð (which is a Gaussian state and has definite fermion-number-
parity). This state is defined by the condition a j |Ωð = 0 for all j = 0,1, . . . ,L− 1. In qubit language, σ̂

y
j |Ωð = |Ωð for all

j:

|Ωð=
( |0ð+ i |1ð√

2

)¹L

. (SIV.5)
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Recall the covariance-matrix definition (SIV.2) and the relationship between fermionic and Majorana operators. Using these
inputs, one can compute the covariance matrix immediately: Cab(|ΩðïΩ|) = δa−1,b −δa+1,b .

Supplemental Note V: Single-charge generalized Gibbs ensemble

This section reports analytic results concerning the GGE ρ̂ = e−µQ̂1/Z that accounts for the conservation of Q̂1 =∑
L−1
j=0 σ̂ jσ̂ j+1

alone. We compute the partition function Z = Tr(e−µQ̂1), chemical potential µ , and z-type expectation values Tr(ρ̂[σ̂ z]¹k). We
use the computational basis, defined through σ̂ z

j |m jð= zm j
|m jð, wherein j = 0, . . . ,L−1, m j ∈ {0,1}, z0 = 1, and z1 =−1.

Define the transfer matrix P with elements ïm j|P |m j+1ð:

P =

(

e−µ eµ

eµ e−µ

)

. (SV.1)

The eigenvalues of P are λ+ = 2cosh µ and λ− = −2sinh µ . We introduce P to represent the partition function as
Z = Tr(e−µQ̂1) = Tr(PL) = λ L

+ + λ L
−. The chemical potential is set by the initial condition, here the tilted ferromagnet

|Ψ0ð= |Ψ(θ ,φ)ð. In the thermodynamic limit, one expects,

lim
L→∞

ïΨ0| Q̂1 |Ψ0ð= lim
L→∞

Tr(ρ̂Q̂1) . (SV.2)

Since |Ψ0ð is translationally invariant, ïΨ0| Q̂1 |Ψ0ð = LïΨ0| σ̂ z
0σ̂ z

1 |Ψ0ð = Lcos2 θ . Similarly, Tr(ρ̂Q̂1) = LTr(ρ̂σ̂ z
0σ̂ z

1). More
generally,

Tr
(

ρ̂[σ̂ z]¹k
)

=
1
Z

Tr
(

[σ̂ zP]kPL−k
)

(SV.3)

=
1+(−1)k

2

(

λ L
+λ k

−+λ k
+λ L

−
λ L
++λ L

−

)

[−2sinh(2µ)]−k/2 . (SV.4)

If k = 2, in the thermodynamic limit (as L → ∞), λ L
+ k λ L

−, so Tr
(

ρ̂[σ̂ z]¹2
)

→−2sinh2 µ/sinh2µ =− tanh µ . Therefore,

µ =−arctanh
(

cos2 θ
)

. (SV.5)

Finally, inserting Eq. (SV.5) into (SV.3), we calculate the GGE prediction for the tilted-ferromagnet initial condition:

Tr
(

ρ̂[σ̂ z]¹k
)

=

(

1+(−1)k

2

)(

cosk θ + cos2L−k θ

1+ cos2L θ

)

L→∞−−−→
(

1+(−1)k

2

)

cosk θ . (SV.6)

The GGE predicts that even-k z-type expectation values thermalize to their initial values, while odd-k z-type expectation values
thermalize to zero.

Here we make one comment on GGE predictions made using all the charges (9). The main text observed in Fig. 2 that, as
k increases, the equilibrium values approaches zero. We understand this trend in the Heisenberg picture as follows. Return to
expression (10) for expectation values F (t; ,γ,k). Consider preparing |Ψ0ð, evolving it forward in time to |Ψtð, perturbing it
with [σ̂ y]¹k, and evolving backward in time. The resultant state’s overlap with the initial state, |Ψ0ð, is F . If the perturbation
were absent (if k equaled 0), the overlap would be 1. The larger the perturbation, the more the resultant state should differ from
the initial state, so the smaller the overlap should be, consistent with our observations.

Supplemental Note VI: Details about level statistics

We computed symmetry-resolved spectral statistics as follows. Denote by Π̂ the operator that shifts the system by one site (the
direction of the shift does not impact the rest of our argument). The Goldilocks dynamics conserve the two-site-shift operator
Π̂2, due to the circuit’s brickwork structure: [Û(V̂ ), Π̂2] = 0, for all V̂ . Hence this shift operator is a conserved charge itself—
quasimomentum. Not only Û , but also the already known charge Q̂1 commutes with Π̂2: [U(V̂ ), Q̂1] = 0. Therefore, the two
charges share an eigenbasis {|ψ jð}. Denote the Q̂1 eigenvalues by q1 =−L,−L+4, . . . ,L; and the Π̂2 eigenvalues, by e4πiK/L,
wherein K ∈ 0,1, . . . ,L/2.

Consider the joint eigenspace, shared by the two charges, labeled by some q1 and some K. Denote the subspace’s dimen-
sionality by N. Define the projector onto this subspace by R̂ = ∑

N−1
j=0 |ψ jðïψ j|. (We suppress q1 and K labels for notational
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convenience.) From this projector, we construct the operator R̂Π̂Ĝ(V̂ ,0)R̂†. Following [50], we compute the operator’s eigen-
values, eiφℓ . The quasienergies φℓ are indexed by ℓ= 1,2 . . .N. We order the quasienergies such that φ1 f φ2 f . . .f φN . Then,
we compute the spacings sℓ := φℓ+1 − φℓ. The smallest ratio of adjacent spacings is rℓ := min{sℓ, sℓ−1}/max{sℓ, sℓ−1}. The
main text reports on the probability density P(r) for each of two joint eigenspaces.

Supplemental Note VII: Gates with larger supports

An important question is whether our free-fermion mapping can extend to more-general constrained discrete dynamics. For
instance, Ref. [8] reported about QCA gates supported on > 3 qubits. Interesting behavior was attributed to Goldilocks gates
supported on five qubits, four of which formed the control set. More generally, we can consider QCA whose local gates act on
d > 2 neighboring qubits, 2s < d of which form the control set.

We could not find integrable QCA that had the form (1) and whose gates acted on > 3 qubits. However, exploiting our
previous results, one can easily exhibit slightly more-general constrained models that map onto free fermions. We will construct
examples with arbitrary d g 4 and s = 1.

Consider the d-qubit neighborhood gates

û j :=
1

∑
m,n=0

|mðïm| j ¹V̂j+1,... j+d−2(m,n)¹|nðïn| j+d−1 . (SVII.1)

Qubits j and j+d −1 form the control set. However, unlike in Eq. (2), the update operator V̂ (m,n) may depend nontrivially on
the control qubits’ states. Define the partial-step updates

Ĝ(q) := ∏
x

û(d−s)x+q , (SVII.2)

assuming that (s+d) divides L. The single-step Floquet operator may be defined as

Û :=
d−2

∏
q=0

Ĝ(q) . (SVII.3)

We find a parametric class of QCA that satisfy Eqs. (SVII.1)–(SVII.3) and that map onto free fermions. The local gates have
the form

Û j = Ŵ
(1)
j+1..., j+d−3

j+d−3

∏
m= j

[CZ]m,m+1 Ŵ
(2)
j+1..., j+d−3 . (SVII.4)

W (1) and W (2) denote arbitrary unitary operators mapped onto Gaussian ones via the JW transformation (6). For instance, we
can choose

Ŵ
(a)
j+1..., j+d−3 = exp

(

−i

j+d−3

∑
ℓ= j+1

c
(a)
ℓ σ̂

y
ℓ − i ∑

γ,δ∈{x,z}

j+d−4

∑
ℓ= j+1

c
(a)
ℓ,γ,δ σ̂

γ
ℓ σ̂δ

ℓ+1

)

. (SVII.5)

The a = 1,2, while c
(a)
j and c

(a)
j,γ,δ are arbitrary real parameters. The second sum is over only the Pauli operators σ̂ x and σ̂ z. The

nontrivial part of the evolution operator is ∏ j[CZ] j, j+1. The JW transformation maps this factor onto a Gaussian operator (SI.9),

by Eq. (SI.5). By construction, he individual operators Ŵ
(a)
j+1..., j+k−3 is also Gaussian. Therefore, the whole Floquet operator Û

[Eq. (SVII.3)] is mapped onto a product of Gaussian operators. Hence Û is Gaussian.
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