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Abstract. Fractional evolution equations lack generally accessible and well-
converged codes excepting anomalous diffusion. A particular equation of strong interest
to the growing intersection of applied mathematics and quantum information science
and technology is the fractional Schrodinger equation, which describes sub-and super-
dispersive behavior of quantum wavefunctions induced by multiscale media. We derive
a computationally efficient sixth-order split-step numerical method to converge the
eigenfunctions of the FSE to arbitrary numerical precision for arbitrary fractional order
derivative. We demonstrate applications of this code to machine precision for classic
quantum problems such as the finite well and harmonic oscillator, which take surprising
twists due to the non-local nature of the fractional derivative. For example, the
evanescent wave tails in the finite well take a Mittag-Leffer-like form which decay much
slower than the well-known exponential from integer-order derivative wave theories,
enhancing penetration into the barrier and therefore quantum tunneling rates. We
call this effect fractionally enhanced quantum tunneling. This work includes an open
source code for communities from quantum experimentalists to applied mathematicians
to easily and efficiently explore the solutions of the fractional Schrodinger equation in
a wide variety of practical potentials for potential realization in quantum tunneling
enhancement and other quantum applications.

1. Fractional differential equations in context

In recent decades, the field of fractional differential equations (FDEs) has developed
rapidly due to their wide applicability in physics, engineering, economics, and biology
[1-9]. The best known example of these is the anomalous diffusion equation, which
has been experimentally verified to accurately describe diffusion on short time scales
[10, 11]. An outstanding question with FDEs is how to properly simulate them with
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well-converged and understood numerical methods so as to explore and predict such
experimental scenarios. For example, anomalous diffusion FDE simulators are used to
predict diffusion of pollution in groundwater systems, where the fractional derivatives
create a greatly increased probability of pollutants propagating to large distances [12].
Mathematically, this appears as a power-law probability distribution in place of the usual
normal or Gaussian one, resulting in the distribution growing faster than the usual ¢'/2
[13]. The anomalous diffusion FDE is a particular example of general reaction-diffusion
FDEs which largely remain unsolved and unexplored. In this Article, we focus on the
fractional Schrodinger equation (FSE), connected to anomalous diffusion by a complex
rotation of the time derivative from the real to the imaginary axis, just as for the
integer-order case.

Turning now to possible mathematical solution methods for FDEs, we first note
that linear FDE methods such as the Laplace transform, Fourier transform, Mellin
transform, Adomain decomposition, and separation of variables may be used effectively
in only niche examples [14, 15]. Unfortunately, in general the exact solutions to FDEs are
intractable, due in part to the nonlocal nature of fractional derivatives. Such nonlocality
can be observed in the many definitions of fractional derivatives. For example the Riesz
fractional derivative is a particularly useful form for physics readers, since it generalizes
from the Fourier transform 0/0x — ik as follows:

(0/0x°) f(x) = 97 f(x) = /dkem(—lkla)f(k)- (1)

In effect, this nonlocality creates an integrodifferential equation. Thus, numerical
methods are a vital component to understanding FDEs. Direct implementation of
fractional derivatives to discrete numerical schemes is subject to creating errors and
inaccuracies just as with integer derivatives. For example, famously the obvious direct
discretization of the usual integer-order Schrodinger equation via finite-differencing does
not conserve the normalization [16]. Many FDE methods developed so far, while useful
for back of the envelope brainstorming, suffer from such issues. Thus, in order to
make accurate and reliable predictions for multiscale experiments, rigorous and careful
development of such numerical methods is desirable. The methods we develop in this
Article will be generally useful toward this goal. As a clear demonstration and for
context we will focus on solving the eigenfunction problem for the FSE in a variety of
physically relevant potentials. Eigenfunctions provide a complete basis for all solutions
for linear FDEs just like integer order linear differential equations.

One tracing of the historical origin of the FSE can be pieced together as follows.
The original Schrodinger equation was reinterpreted as a path integral over Brownian
motion by Feynman [17]. In Brownian motion, the paths can be written as non-
differentiable, self-similar curves with fractional dimensions that may differ from the
Cartesian embedding in e.g. 3D. Laskin then constructed the FSE as a path integral
over Lévy flights [18]. This construction is the natural generalization over paths with
fractional dimension differing from Brownian motion. This change in the dispersive
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properties of the underlying equation creates derivatives of fractional order. The
particular type of derivative that arises from this construction is the Riesz fractional
derivative, Eq. (1). Although there are many useful definitions of fractional derivatives,
such as the Caputo derivative used in some anomalous diffusion FDE simulation methods
[19], we will focus on the Riesz derivative for the purposes of this Article.

In the context of Laskin’s many seminal contributions to the formulation and
understanding of the FSE [18, 20-22] we point out that he naturally used a common
approach to solving the integer-order Schrodinger equation @ = 2 for piece-wise
potentials, namely matching the wavefunction and its first derivative at step-function
boundaries. This is a general method for linear ODEs commonly taught for a wide
range of reaction-diffusion type equations in which the number of required matching
conditions at each step-function is equal to one less than the order of the highest
derivative. Although not a universal method it applies in a wide range of cases. The
nonlocal nature of fractional derivatives is one definite exception to this approach, since
regions bounding the step functions cannot be treated independently [23]. This led to a
misunderstanding of evanescent waves in Laskin’s work [18] which we shall correct. The
essential elements of our numerical approach can be applied to a variety of reaction-
diffusion and other ODE and even PDE contexts addressing decay of a solution in a
barrier. As particular applications to the FSE we will consider first the particle on a
ring problem showing that the functional form is in this case independent of the order of
the derivative, while the eigenvalue does depend on a. We then consider the quantum
harmonic oscillator, where we show that decay into the barrier is greatly slowed for non-
integer orders, enhancing the evanescent waves. Finally for the finite well and double
well we show this enhanced evanescent wave effect naturally leads to higher tunneling
rates due to larger penetration into the barrier, which we call fractionally-enhanced
quantum tunneling, an effect one expects to observe in multiscale media in quantum
systems.

2. Overview of the Fractional Schrodinger Equation

The one-dimensional FSE takes the following form:
2

: [N
iho,U = —C’Q%Gx\lf + V(z)V, (2)

where the Reisz fractional derivative of order o may be here defined more succinctly
than Eq. (1) in terms of the Fourier transform F

0rf(x) = FH=|k[*"F(f(2))), (3)

where C, is a constant with physical units that correct those imposed by the fractional
derivative. Clearly, the Reisz fractional derivative is a Fourier multiplier type operator
and given a fractional order of o = 2 we recover the ordinary second order derivative.
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To simplify our analysis we rescale our units such that the FSE simplifies to the
following.

1 .

Given this construction we may define a time evolution operator by integrating out the
first derivative with respect to time,

U(z, At) = e A (2, 0) . (5)

The eigenfunction problem may then be defined as those functions for which
application of our Hamiltonian applies only a scaling factor to our function:

The set of linearly independent eigenfunctions which fulfills this property defines a basis
from which any solution may be decomposed [24]. The goal of this paper is to construct
an effective means by which we may numerically construct eigenfunctions within this
set. The means by which we will construct these eigenfunctions is via imaginary time
evolution through the Fourier split step method, as discussed in Sec. 4.

3. The Mittag-Leffler Function

Before discussing the Fourier split step method, a special function with many
connections to fractional derivatives must be briefly discussed. The Mittag-LefHer
function arises naturally in the solution of many fractional order integral equations
or fractional order differential equations and has diverse application in the study of
fractional relaxation and fractional diffusion [25, 26]. Although the eigenfunctions
generated to solve the fractional Schrodinger equation are not quantitatively described
by the Mittag-Leffler function, certain behavior attributed to the Mittag-Leffler function
and its family of functions appears when examining the eigenstates, especially the decay
patterns in the classically forbidden regions of the eigenfunctions.

The Mittag-Leffler function can be understood as a type of generalization to the
exponential function and is defined with one or two parameters via the following sums:

E,(z) = ’; ﬁ , (1)
Eunl) = 3 55 5 (8)

Where the exponential function is the eigenfunction of the derivative operator, the
Mittag-Leffler function is the eigenfunction of the Caputo fractional derivative, a
fractional derivative connected to the fractional Rietz operator we study in this article
[27]. As a practical example of the type of behavior that the Mittag-Leffler function
portrays, Fig. 1 compares a Gaussian and its Mittag-Leffler analog.
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Figure 1: Comparison of the Mittag-Leffler function to the Gaussian. (a): Core behavior
of the Mittag-Leffler function. (b): Logarithmic scale emphasizing the tails.

Clearly the Gaussian function is simply the Mittag-Leffler function given that ¢ = 1
with the parameter —2?. Additionally, close to the origin the functions are similar with
slight divergences of slower or faster decay. However, the important piece is in the tails of
Fig. 1(b). Away from the central curve, the tails present a stark difference for non-integer
q. Examining the case of ¢ = 0.9, they decay significantly slower than the Gaussian case
and in fact the decay appears to slow down as the tail extends further. Furthermore,
for ¢ = 1.1 we observe the main difference is the appearance of a node before it again
slowly decays towards zero. In both cases we find the tails decay significantly slower for
non-integer v as compared to the integer case.

To summarize, where typically we would observe exponentially decaying tails in
integer order eigenfunctions, what we find in our generated eigenfunctions with the
FSE is Mittag-Leffler-like decaying tails. Although not exactly the same, certain

stark features very reminiscent of Mittag-Leffler functions and related functions may
be observed.

4. Fourier Split Step: The Fractional Adaptation

Recall that imaginary time evolution takes the form
fo(z, —it) = e H fo(x) = Z ane” i, () (9)

with v, (z) the eigenfunctions of a Hamiltonian and a,, the initial weights. All higher
energy components decay exponentially more rapidly in imaginary time, resulting in the
ground state. To obtain higher eigenfunctions, one simply subtracts lower eigenfunctions
at every renormalization step. A modification to this method must be used to treat

nearly degenerate or degenerate eigenstates, as one encounters e.g. in the double well
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potential. For the double well it is sufficient to constrain the parity to be even in order
to obtain the ground state, and use alternating parity constraints for excited states.

The difficulty then is not how to generate the eigenfunctions, but how to evolve
in time given a fractional derivative in the Hamiltonian. Although the Reisz fractional
derivative is quite complicated and difficult to apply in position space, its application
in momentum space is straightforward as per Eq. (1). Thus we have a portion of our
Hamiltonian which is easy to apply in position space and difficult to apply in momentum
space, the potential; and a portion which is easy to apply in momentum space and
difficult to apply in position space, the fractional derivative. The Fourier split step
method is a well-known solution to this circumstance, which we here write out plainly
for the fractional case.

Given that we may split our Hamiltonian into these components where M is the
operator that is easy to apply in the momentum domain, and P is the operator that
is easy to apply in the position domain, the problem is that we may not immediately
separate these operators within the exponential function as these operators in general do
not commute. However, by ignoring this and splitting them regardless we may construct
an approximation that is 1st order in terms of the time step, At,

H=M+P, (10)

e—ﬁAt — e—MAte—ﬁAt + O(At) ] (11)

As per the usual split step method, we Fourier transform the state before applying
M, then inverse Fourier transform, apply P, and obtain the first order approximation.
Given that our operators have the following form the complete procedure is as follows:

~

P=V() V= I, (12)

U(z, —iAt) = F1 <e_%|k|am}" (e_v(x)A%(x,O))) + O(At). (13)

We may then increase the accuracy of this scheme by adding more steps and
changing the constants on the operators such that the exponential is applied more
accurately. A general construction of a splitting scheme is

n
€A+B ~ H eakAeka . (14)
k=1

An example of a different scheme that may be recovered via this procedure is the second
order Suzuki-Trotter approximation, which is also a second order approximation in time:

QA+B)AL _ LANt BAt LAAL | O(AL) . (15)

However, there is a significant subtlety here — the condition on which constants a,,
and b, are allowed in order to keep the scheme unconditionally stable for the case of
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imaginary time evolution. All constants a,, and b, must be positive for all n. Unlike the
real time evolution case where the applied complex exponential functions are rotations in
complex space, imaginary time evolution has either a decaying or growing exponential.
If a,, or b, is negative then higher energy eigenfunctions grow significantly faster during
specific steps than the lower energy eigenfunctions that we wish to isolate. Furthermore,
machine error will produce contributions of very high order eigenfunctions that will grow
significantly faster and lead to numerical instability. This problem is the same as that of
evolving the diffusion equation backwards in time. The problem that then arises is that
splitting methods with approximation orders greater than 2nd order must necessarily
have negative splitting coefficients [28]. We can fix this is by allowing our splitting
coefficients to not only be real valued but also complex valued. Given this adjustment
it is easy to show that higher-order splitting schemes become available at the cost of
the additional overhead of using complex numbers. Given this additional freedom, we
choose to use a sixth order scheme that takes 8 steps. The coefficients from Eq. (14)
are found in Table 1.

Step | a, b,

1 0.0584500187773306 0.116900037554661
+0.0217141273080301i | 40.04342825461606031

5 0.123229569418374 0.129559101282088
-0.04028067878601611 | -0.123989612188092i

5 0.158045797047111 0.186532492812133
-0.06044109073900991 | +0.00310743071007267i

4 0.160274614757183 0.134016736702233
+0.0790076422169959i | +0.154907853723919i

5 ay b3

6 as b

7 as by

8 a 0

Table 1: The splitting coefficients used in the FSE algorithm to obtain a sixth order
approximation.

To summarize, our FSE code is based on a sixth-order split-step method within the
framework of the Suzuki-Trotter approximation. This approach facilitates the efficient
application of the Riesz fractional derivative by leveraging the Fast Fourier Transform
(FFT). A notable aspect of using FFT in our simulations is the implicit assumption
of periodic boundary conditions. However, for scenarios involving bound states, open
boundary conditions can be effectively emulated by simply expanding the system size.
This expansion ensures that the boundary effects do not significantly influence the
dynamics within the region of interest.

In this context, when evolving the Schrodinger equation in imaginary time, which
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corresponds to the real-time evolution of a diffusion equation with an added potential
term, our approach employs the Fourier split-step method. This method, by its very
nature, is unconditionally stable when applied to linear, time-independent problems. Its
stability stems from the precise handling of the linear part of the equation in Fourier
space, complemented by the treatment of the nonlinear or potential-dependent part in
real space within each discrete time step. This characteristic of unconditional stability is
particularly advantageous for simulations aiming to reach the ground state, as does not
induce a restriction of the values of At and Az, this then permits the use of larger time
steps without risking numerical instability, thereby facilitating efficient convergence over
extended imaginary time scales.

However, the integration of certain types of potentials into the simulation imposes
additional considerations related to spatial and frequency resolutions. Specifically,
potentials characterized by large magnitudes, abrupt spatial variations, or significant
nonlinearities necessitate a meticulous choice of spatial grid size (Ax) and time step
(At). The presence of steep potential gradients calls for a denser spatial grid to
accurately capture these variations, while high-frequency components induced by the
potential require careful management in the frequency domain to prevent aliasing effects.
Therefore, while the primary stability concern of the Fourier split-step method in the
temporal domain is addressed, the introduction of complicated potentials demands a
nuanced approach in spatial discretization and frequency domain analysis. This is
essential to ensure the accuracy and reliability of the simulation results, particularly
in quantum systems where the potential landscape critically influences the system
dynamics.

In this study, an extensive convergence analysis was conducted to identify the
optimal grid sizes that effectively minimize finite grid errors below the threshold relevant
to our function analyses. For the entirety of the results presented in this paper, we
standardized the grid size and time step at Az = 1072 and At = 1072, An exception
is made in the case of the finite well problem, where an additional step is incorporated
to accurately address the sharp potential variations. Details of such adjustments are
elaborated in the corresponding sections of the paper.

In line with our commitment to open science and reproducibility, the complete
source code for our Fourier Split-Step simulations, as described in this paper, is made
publicly available. Interested researchers can access, review, and utilize the code through
our GitHub repository, titled ”FractionalEigenstate.” This repository includes detailed
documentation and example scripts, providing a comprehensive guide for users to adapt
and apply the code to their specific research needs. For access to the repository, please
refer to our citation below [29].

5. Demonstration of FSE Code Precision: Particle on a Ring

To examine the effectiveness of this algorithm on fractional order quantum systems
we first investigate one of the very few systems in which the analytical energies and
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eigenstates are well known, the particle on a ring system. This will enable a careful
evaluation of our code’s precision.

We define the particle on a ring to be a constant potential, here chosen to be zero,
under periodic boundary conditions, with domain x € [—1, 1]. The Hamiltonian is thus

N 1 o
H=—30. (16)

Given that the Reisz fractional derivative is a Fourier multiplier similar to integer
derivatives, the eigenfunctions of such an operator by itself are plane waves. As we
cast our eigenfunctions to the real plane to ensure uniqueness these eigenfunctions are
then just sines and cosines similar to the particle on a ring problem with the second
derivative. Because of this, the eigenfunctions of this system are invariant of fractional
order. The only aspect of the eigen-problem that does change is the energy, which we
can obtain by imaginary time evolution, as per Sec. 4, as well as analytically for this
special case:

0% sin(kx) = —|k|“sin(kx) , (17)

B, = 3 (x[n/2))" (18)

where [*] denotes the ceiling function. This is due to the degeneracy of the energies
within the system. The reader will note that the usual integer order expression for the
energy is recovered when o = 2. The eigenstates of the system are given by

cosTTnxr 1 even

Pn(z) = { (19)

sintnr n odd,

independent of fractional order. To ascertain the effectiveness of this algorithm, we first
compare the generated first excited state for the particle on a ring system to its analytical
eigenstate across a few fractional orders. For this examination, we define our grid in the
domain [-1,1] with 480 evenly spaced points, a choice strategically made to enable the
representation of the 39th excited state within the constraints of the Nyquist sampling
theorem. The results of this analysis are presented in Figure 2. Interestingly higher
order systems tend to converge faster and yield more accurate results than their lower
order counterparts. Although not universally applicable, in many systems, an increase
in the fractional order leads to a greater energy spacing between eigenstates. This
increase in energy spacing inherently accelerates the convergence process via imaginary
time evolution.
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Figure 2: Point-wise error associated with the 1st excited state of the particle on a ring
system across fractional orders.

We now focus on evaluating the maximum error in the pointwise approximation
of each eigenstate, with a particular interest in how this error varies in relation to the
ordinal number of the eigenstate. To conduct this analysis, we opt for a discretization
of the domain into 480 uniformly distributed points. The rationale behind choosing this
specific number of points is grounded in the principles of the Nyquist sampling theorem.
According to this theorem, to accurately represent a signal with a frequency of f = 7n,
a minimum of 47n + 1 points is required. Hence, for effectively capturing the nuances of
the 39th excited state, which is represented by the function cos 397z, a minimum of 479
points is necessary. Therefore, our selection of 480 points ensures that we adequately
sample the highest frequency state in our analysis, minimizing the potential for aliasing
errors.
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Figure 3: Maxzimum point-wise error across many eigenstates of the particle on a ring
system for a few fractional orders.

Finally we may compare the calculated energies from our generated eigenstates to
the analytical energies for this system.
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Figure 4: Error in generated energies when compared to analytical energy.

6. Fractional Quantum Mechanics Eigensystems

Having established the efficacy of our code for the eigenvalue problem, we proceed
to treat three classic quantum problems of physical interest for fractional systems: the
quantum harmonic oscillator, the finite well, and the double well. We show how the new
parameter « in the FSE creates new features. The double well in particular contains the
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essential elements of quantum tunneling between discrete energy levels, and has some
quite surprising new aspects, which we call fractionally-enhanced quantum tunneling.

6.1. Quantum Harmonic Oscillator

The quantum harmonic oscillator problem is a somewhat famous problem within the
study of quantum mechanics as the potential in the system well approximates many
physically important systems and eigenstates produced lead to the construction of the
coherent state and describe many important physical phenomena. The system be defined
with the following Hamiltonian.

. 1 1
H=—-0%+ =2* 2
28$+2x (20)

Contrary to the prior system the eigenfunctions are no longer invariant of fractional
order. We compare the ground state in Fig. 5a across different orders to see this. While
these different ground states appear to be of the same structure with slight variations,
the greatest difference is hidden from sight in this plot. To uncover the main difference
between these ground states we will analyze the log plot in Fig. 5b.

The tails of the ground state are greatly altered by changing the fractional order.
We see that the exponential decay from the integer order case has been replaced by
Mittag-Leffler like decay in the tails. The node in the order 2.2 case is a clear hint of
the Mittag-Leffler like nature of this eigenstate. One may refer back to Fig. 1 to see
the very similar behavior of the tails in the classically forbidden region.
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Figure 5: Eigenfunctions of the quantum harmonic oscillator potential across fractional
orders: (a) Ground states depicted across fractional orders less than, equal to, and
greater than 2. (b) Logarithmic view emphasizing tail visibility. (c) Close-up at the
transition into the classically forbidden region, highlighting the distinct Mittag-Leffler-
like tails and node in the higher order eigenstate.

We may then recover the energies associated with each eigenfunction by again
evolving the state for a short time in imaginary time and extracting the energy from

the decay rate.



Exploring Multiscale Quantum Media

Eigenfunction | o = 1.8 a=20 a=22

0 0.4994984133 | 0.4999999999 | 0.5012687387
1 1.4452024402 | 1.5000000003 | 1.5508889832
2 2.3415247398 | 2.4999999995 | 2.6507789545
3 3.2229118004 | 3.4999999991 | 3.7689276297
4 4.0884863294 | 4.4999999983 | 4.9044885301

14

Table 2: Energies for the first five eigenfunctions associated with the quantum harmonic
oscillator of orders 1.8, 2.0, and 2.2

One may notice that the linear eigenspectrum afforded to the system with integer
order is entirely lost when the fractional order is changed. Thus, changing the fractional
order of the quantum harmonic oscillator results in an eigenspectrum that does not have
a revival time nor does it have a similar coherent state. We may then plot the spectrum
of eigenvalues across many orders to see a clearer trend of how the eigenspectrum changes
upon a changing fractional order.
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Figure 6: Spectrum of energies associated with eigenfunctions of the fractional quantum
harmonic oscillator across many orders

6.2. Finite Well

To examine the tails in the classically forbidden region and the compaction or expansion
associated with the spectrum of eigenenergies upon a changing fractional order, we now
investigate the finite well problem which may be defined with the following Hamiltonian.

H= —%ag +V(2) (21)
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(22)

(2) = Vo otherwise
0 if|z| <1

We will choose to set Vj to 100 in this analysis such that a sufficient number of
bound eigenstates may be generated within the well. We observe the ground state across

three different fractional orders such that adequate comparisons may be made.
Observation of Fig. 7a shows that the ground state across fractional orders appears

to be changed in only minute and insignificant ways. However, once more, the true
difference lies within the tails within the classically forbidden region as is seen in Fig.

b.
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Figure 7: Same analysis as in Fig. 5.

We may immediately note again that the tails of these eigenstates are no longer well
characterized by exponential decay. They are in fact Mittag-Leffler like decay patterns
similar to what was obtained in the fractional quantum harmonic oscillator and what was
shown in Fig. 1. Given this drastic change to the tails within the classically forbidden
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region, we may hypothesize that there is an enhancement to quantum tunneling due to
the longer range nature of confined states.

Furthermore, we may examine the number of bound states within this system.
As is well known, eigenstates with energies less than the height of the finite well are
bound states and as such they are effectively quantized. We may then plot how many
eigenstates are bound across many orders.
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Figure 8: Number of bound eigenstates in the finite well system across many fractional

orders

It is clear that as the order of the fractional derivative increases so does the energy
spacing between states; this results in a smaller number of states that are able to exist
within the finite well. Additionally as the fractional order decreases, the number of
states that may be placed in the same well increase quite quickly.

Finally, in the analysis of finite well potentials using our Fourier split-step method
with a 6th order Suzuki-Trotter approximation, the adjustment of the time step size
plays a critical role in managing the error terms, particularly those associated with
the commutator in the Suzuki-Trotter expansion. The non-commutative nature of the
kinetic and potential energy operators introduces significant error terms in the presence
of discontinuities, as found in steep finite wells. These error terms are inherently linked
to the commutator of these operators.

By decreasing the time step size, we directly influence the magnitude of the
commutator term in the error expression. In the Suzuki-Trotter approximation, the
error is proportional to the higher-order commutators of the Hamiltonian components,
which are functions of the time step size. Smaller time steps lead to a reduced impact
of these commutator terms, thereby diminishing the overall error. This reduction is
particularly crucial in the vicinity of the discontinuities in the finite well, where the
standard error terms would otherwise lead to significant inaccuracies.
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In the final stages of our simulation, the implementation of an even smaller time step
for a brief period serves to further alleviate the distortions caused by these commutator
terms. This meticulous calibration of the time step ensures that the evolution of the
wavefunction remains accurate, despite the challenges posed by the non-smooth nature
of the potential.

6.3. Double Well

As a practical example of the enhancement of quantum tunnelling we investigate the
quantum double well. A state localized in one well with less energy than the barrier
separating them are able to tunnel into the other well through the classically forbidden
zone in the middle. We may define the Hamiltonian of this system as the following.

B =20 V() (23)

V(r) = —42® + %x‘* +8 (24)

While in the algorithm a large range is chosen as to make sure the eigenfunction is
not cut off in the classical forbidden zone we may plot a close up view of the potential
below. We also plot the two lowest energy eigenstates which are a symmetric and
anti-symmetric wavefunction for order 1.9 as an example.
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Figure 9: Potential for double well system along with the two lowest energy eigenstates
for fractional order 1.9 as an example

Given these two states, we may put them into an equal superposition that almost
entirely isolates it to a specific well. In fact we may construct two superpositions, one
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in which the wavefunction is in the left well and one that is in the right well. We may
write them as the following.

1
ir) = 5 (1) = [6-) (25)
m) = —= () + [9)) (26)

V2

Where |¢,) is the symmetric wavefunction and [¢)_) is the anti-symmetric
wavefunction. The reason that tunnelling occurs is that the energy of the symmetric
wavefunction is just slightly different from the anti-symmetric wavefunction. Taking the
wavefunction in the left well, if we choose to evolve the system in time it will take on
the following form.

—iHt _ L oot _ ibnt
€ [r) = \/§< P+) -)) (27)

Removing the unimportant total phase we obtain the following.

. p 1 )
elet - o e*Zt(EI*EO) 3 28
) = 5 (1) ¥-)) (28)
i H—
e FRIYL) = [Pr) (29)
Clearly after at a time of ¢t = (El—fEO) the wavefunction isolated to the left well

becomes isolated to the right well as the relative phase between these two states changes.
After the same amount of time it will then return to the left well again. This means
that these states will oscillate tunnelling between wells with the following frequency.

By — Eo

f=
7r

We may now show the differences in energies for the first two eigenstates of the

(30)

double well system across many fractional orders.



Exploring Multiscale Quantum Media 19

0.010 +—% | | L]

0.008

0.006 1 e —

0.004 . o

Energy Difference
[
®

0.002 A

0.000 - e

T T T T T T T T T
1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20
Fractional Order

Figure 10: Energy difference between the two lowest energy states across many fractional
orders

As can be seen, the energy difference for this system with a fractional order less
than 2.0 is larger and thus in those systems tunnelling occurs at a greater frequency.
Interestingly enough when one increases the fractional order at first tunnelling frequency
decreases, before rebounding and increasing again similar to the case where one
decreased the fractional order. While this plot looks very linear, it is just slightly
not with a small negative second derivative for the data on the order of 10e-6.

7. Conclusion

In this article we have constructed an algorithm capable of solving for the eigensystem of
the fractional Schrodinger equation with an arbitrary physical potential up to machine
precision. Given this tool we have then examined a few physically important systems
and discovered that the exponential evanescent waves distinctive to classically forbidden
regions are replaced with many of the same properties of the fractional generalization
to the exponential function, the Mittag-Leffier function. We showed the fractional order
of the system can be used to control and enhance tunnelling via the non-locality and
enhanced evanescent waves associated with the fractional Schrodinger equation. We
have termed this effect fractionally-enhanced quantum tunneling. This algorithm is a
tool that may then be used by experimentalists and applied mathematicians to further
investigate the properties of multi-scale materials and discover unique and novel ways
to design quantum devices and materials.
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