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Topologically ordered phases of matter [1–3] elude Landau’s symmetry-breaking theory [4], featur-

ing a variety of intriguing properties such as long-range entanglement and intrinsic robustness against

local perturbations. Their extension to periodically driven systems gives rise to exotic new phenomena

that are forbidden in thermal equilibrium [5, 6]. Here, we report the observation of signatures of such

a phenomenon—a prethermal topologically ordered time crystal—with programmable superconducting

qubits arranged on a square lattice. By periodically driving the superconducting qubits with a surface-

code Hamiltonian [7, 8], we observe discrete time-translation symmetry breaking dynamics [9–16] that is

only manifested in the subharmonic temporal response of nonlocal logical operators. We further connect

the observed dynamics to the underlying topological order by measuring a nonzero topological entan-

glement entropy [17, 18] and studying its subsequent dynamics. Our results demonstrate the potential

to explore exotic topologically ordered nonequilibrium phases of matter with noisy intermediate-scale

quantum processors [19].

Phases of matter are often classified by broken symmetries

and local order parameters [4]. However, the discovery of

topological order has transformed this simple paradigm [1, 2].

Two topologically ordered phases with the same symme-

tries can showcase topologically distinct features, such as

different patterns of long-range entanglement and the emer-

gence of quasiparticles with different anyonic braiding statis-

tics [3, 20, 21]. These features are intrinsically nonlocal in

that they cannot be distinguished by any local order parameter

[7, 22]. Unfortunately, topological order is usually restricted

to the ground state; mobile thermal excitations can hybridize

nominally degenerate ground states by traversing the system

along nontrivial closed loops. By introducing disorder, the

motion of these excitations can be arrested and the hybridiza-

tion process suppressed. In the limit where excitations are

fully localized, the topological phase becomes stable across

the entire energy spectrum of the system [5, 6, 23–29].

Time-periodic driving of a quantum many-body system en-

ables novel phases of matter that cannot exist in thermal equi-

librium. A prominent example is that of time crystals [9–16],

where discrete time translation symmetry is spontaneously

broken. Strikingly, the concept of a time crystal can be ex-

tended to include topological order, resulting in a new dynam-

ical phase dubbed a topologically ordered time crystal [30].

Unlike conventional time crystals, where the breaking of time

translation symmetry manifests in the dynamics of local ob-

servables, topologically ordered time crystals show such sym-

metry breaking only for nonlocal logical operators. Whether

or not this phase has a truly infinite lifetime depends on the

late-time stability of many-body localization [31–33]; never-

theless, the dynamical features of the system can still exhibit

very long-lived signatures of localization persisting beyond

current experimental timescales. While signatures of con-

ventional time crystals without topological order have been

observed in a number of distinct systems, including trapped

ions [34, 35], spins in nitrogen-vacancy centers [36, 37], ultra-

cold atoms [38, 39], solid-state spin ensembles [40–42], and

superconducting qubits [13, 43, 44], the observation of a topo-

logically ordered time crystal remains an open challenge.

Here, we report the observation of a long-lived prethermal

topologically ordered discrete time crystal, with eighteen pro-

grammable superconducting transmon qubits arranged on a

two-dimensional square lattice. By optimizing the device fab-

rication and control process, we push the median lifetime of
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FIG. 1. Periodically driven surface code model. a, Rotated surface code model on a three-by-six square lattice. The circled numbers label

the qubits. The dark and light gray regions represent plaquette operators Ap and Bq , respectively. The thick black (red) line represents the

nonlocal string operator ZL (XL). b, Topologically ordered Floquet eigenstates in the limit B → 0. The quasi-energies of each pair of

eigenstates |E
(l)
± ð are split by π. c, Schematic of the stroboscopic dynamics of the string operators ZL and XL. Under periodic driving, the

expectation value of ZL exhibits a persistent subharmonic oscillation with a period of 2T , while XL preserves a constant value of zero. d,

Decomposition of the Floquet unitary UF (B = 0) into elementary quantum gates. U1 is realized by applying π pulses to all the qubits.

Since all the plaquette operators commute with each other, U2 is constructed by sequentially applying four groups of them. Plaquette unitaries

e−iApT/2, labeled by U(ZZZZ) and U(ZZ), and e−iBqT/2, labeled by U(XXXX) and U(XX), are further decomposed into sequences

of single-qubit rotations and two-qubit controlled-Z gates. X(θ), Y (θ), and Z(θ) denote single-qubit rotations by an angle θ around the x-,

y-, and z-axis, respectively. e−iBqT/2 can be implemented by sandwiching e−iAqT/2 with Hadamard gates. In the experiment, the whole

circuit is further compiled to reduce the depth and suppress hardware noise (Supplementary Section II.E).

these qubits to T1 ≈ 163 µs and the median simultaneous

single- and two-qubit gate fidelities above 99.9% and 99.4%,

respectively. Together with a neuroevolution algorithm [45]

that outputs near-optimal quantum circuits for digitally sim-

ulating four-body interactions, this enables us to successfully

implement Floquet surface-code dynamics with an optimized

quantum circuit of depth exceeding 700, consisting of more

than 2300 single- and 1400 two-qubit gates. We measure the

dynamics of nonlocal logical operators and local spin mag-

netizations and find that the former show a robust subhar-

monic response, whereas the latter decay quickly to zero and

do not show period-doubled oscillations. This differs dras-

tically from conventional discrete time crystals, where lo-

cal, rather than nonlocal, observables exhibit subharmonic

response. We further reveal the long-range quantum entan-

gled nature of topological order by preparing a many-body

eigenstate of the Floquet unitary and measuring its topologi-

cal entanglement entropy with different subsystem sizes and

geometries [17, 18]. We obtain near-expected values for the

measured topological entanglement entropy, which deviates

significantly from the trivial-state value of zero and provides

strong evidence for the presence of topological order.

Theoretical model and experimental setup
We consider the periodically driven rotated surface code

model on a 2D lattice with open boundary conditions [30, 46]:

H(t) =

{

H1, 0 ≤ t < T ′,

H2, T ′ ≤ t < T,

H1 ≡
π

2

∑

k

σx
k +

∑

k

Bk · σk,

H2 ≡ −
∑

p

αpAp −
∑

q

βqBq,

(1)

where σk = (σx
k , σ

y
k , σ

z
k) is a vector of Pauli matrices acting

on the k-th qubit; Bk denotes an on-site field drawn randomly

and independently from a ball with radius B; the plaquette

operators Ap =
∏

m∈p σ
z
m and Bq =

∏

n∈q σ
x
n are products

of Pauli operators on the corresponding plaquettes (Fig. 1a);
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FIG. 2. Time-translation symmetry breaking for nonlocal observables with B = 0. a, Dynamics of nonlocal observables. Auto-correlation

function for the three-body string operators {ZLi
} (thick black lines) and the six-body string operators {XLi

} (thick red lines) are shown in

the upper six and lower three panels, respectively. Experimental data points (dots) are obtained from averaging over 24 random realizations,

with error bars representing the standard error of the statistical mean. The numerical results (lines) are computed by taking into account qubit

decoherence and gate errors (Supplementary Section III). Whereas the expectation values for {XLi
} remain zero, the auto-correlators for

{ZLi
} exhibit stable subharmonic oscillations for up to 20 cycles. b, Fourier spectra of time-domain signals observed in a, where a stable

subharmonic frequency peak appears for {ZLi
} but not {XLi

}. c, Dynamics of the auto-correlation function for local observables {σz
k}. Such

auto-correlations decay quickly to zero, in sharp contrast to those of the string operators {ZLi
}.

³p and ´q are coefficients uniformly chosen from [0, 2Ã); the

drive period is fixed as T = 2T ′ = 2, which roughly cor-

responds to a 1.4-µs runtime for the corresponding quantum

circuit in our experiment.

We note that, other than the discrete time-translation sym-

metry, H(t) breaks all microscopic symmetries due to the

presence of the random on-site fields Bk in H1. The Flo-

quet unitary that fully characterizes the dynamics of the sys-

tem reads UF = U2U1, with U1 = e−iH1 and U2 = e−iH2

being the unitary operators generated by the Hamiltonians H1

and H2, respectively. H2 represents the Hamiltonian of the

rotated surface code model, whose energy spectrum is two-

fold degenerate and whose eigenstates show topological or-

der [7, 8]. Owing to their topological nature, the degenerate

eigenstates can only be distinguished by nonlocal string op-

erators such as ZL =
∏

k∈Pz
Ãz
k or XL =

∏

k∈Px
Ãx
k , which

traverse the lattice through the path Pz or Px (see Fig. 1a). We

label each eigenstate pair by |Z
(l)
L = ±1ð for each eigenstate

with quasi-energy ϵl (see Supplementary Section I.A). In the

limit B → 0, U1 represents a perfect flip of all spins. As a re-

sult, the drive H1 reorganizes the topologically ordered eigen-

state pairs of H2 into Floquet eigenstates |E
(l)
± ð of the form

|E
(l)
± ð ∝ |Z

(l)
L = 1ð± |Z

(l)
L = −1ð. The quasi-energies of the

corresponding cat-like eigenstates are split by quasi-energy Ã
(Fig. 1b). As a result, the stroboscopic dynamics of the nonlo-

cal operator ZL exhibits a stable subharmonic oscillation with

2T periodicity as illustrated in Fig. 1c, which breaks the dis-

crete time-translation symmetry by the drive period T (Sup-

plementary Section I.D). These Floquet eigenstates also ex-

hibit topological order, which is essential for the robustness

of the subharmonic response of the nonlocal string operators

ZL.

For small but finite B, the system’s integrability is bro-

ken and the eigenstate pairs are no longer exactly split by Ã.

However, this deviation arises from the motion of excitations

across the system which mixes the different topological sec-

tors, which is strongly suppressed by the disorder in ³p and

´p. Until this thermalization occurs, t ≲ tth, the system’s

dynamics will exhibit robust period doubling dynamics, much

like in the B = 0 case. All our experimental and theoret-

ical observations of period doubling behavior pertain to this

“prethermal” regime which, in the small-B regime, is much

larger than the experimentally accessible timescales.

Our experiments are carried out on a programmable flip-

chip superconducting processor with 18 transmon qubits ar-

ranged on a 2D square lattice (see Supplementary Section

II.A for detailed information about the device). To imple-

ment H(t), the four-body terms with random strengths in H2,

which are vital for the eigenstate topological order at high

energy, pose an apparent challenge since four-body interac-

tions do not naturally appear in the superconducting system.

We therefore exploit the idea of digital quantum simulation to
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FIG. 3. Measured stabilizer values and topological entanglement

entropy for a Floquet eigenstate. a, Measured expectation values of

plaquette operators {Ap} and {Bq} for the Floquet eigenstate |E
(0)
+ ð

are shown in the left panel. Expectation values of string operators

{XLi
, ZLi

} are plotted in the right panel with solid (hollow) bars

representing experimental (theoretical) results. b, Measuring topo-

logical entanglement entropy (TOPO, Stopo) on four- and six-qubit

subsystems. Division of subsystems and corresponding experimental

results are shown in the upper and lower panels, respectively. Blue

squares (red circles) represent entanglement entropy (region fideli-

ties F (ρi)). The topological entanglement entropy is extracted from

the measured von Neumann entropy for the regions Si. The error

bars, obtained by repeated measurements, are very small and not

shown here. The black rhombus markers are theoretical predictions

for Stopo and Si, which agree well with the corresponding experi-

mental results.

implement H(t) with quantum circuits (Fig. 1d), which are

obtained via a neuroevolution algorithm [45] (Supplementary

Section I.E). We mention that these quantum circuits are near-

optimal and can implement H(t) in an analytical fashion with-

out any Trotter error, independent of ³p, ´p, and Bk. With

these efficient quantum circuits, improved gate fidelities, and

coherence times, we are able to implement and probe the un-

conventional dynamics of the system up to 20 driving periods.

Subharmonic response for nonlocal observables

The characteristic signature of topological time-crystalline

eigenstate order is the breaking of the discrete time-translation

symmetry for nonlocal logical operators, manifested by per-

sistent oscillations with period 2T . To this end, we de-

fine the normalized auto-correlation function A
1/d
L (t) =

sign[ïZL(0)ZL(t)ð]|ïZL(t)ð|1/d for the d-body string oper-

ator ZL, where ï· · · ð represents the expectation value and the

d-th root is used to indicate the geometric mean value. We

begin by studying the evolution of the disorder-averaged auto-

correlator A
1/d
Li

(t) for operators {ZLi
} (d = 3) at the solvable

limit B = 0, which are averaged over 24 random realizations

by sampling Hamiltonian parameters ³p, ´q and initial prod-

uct states. From Fig. 2a, it is evident that, in the topologically

ordered regime, A
1/d
Li

(t) oscillates with a 2T periodicity for

up to 20 driving cycles. We mention that A
1/d
Li

(t) exhibits a

gradually decaying envelope due to extrinsic experimental im-

perfections, rather than internal thermalization, which is con-

firmed by numerical simulations (lines in Fig. 2a) incorpo-

rating experimentally measured gate errors and decoherence

times. Indeed, the ideal numerical simulations show that the

internal thermalization time of the system without experimen-

tal noise is far longer than 20 driving cycles (Supplementary

Section I.C). In the frequency domain, A
1/d
Li

shows a peak at

the subharmonic frequency of the drive period É/É0 = 0.5,

as shown in Fig. 2b. We also note that the string operator

XL does not show period-doubled oscillations, and no sub-

harmonic peak is observed in the frequency domain.

Although the 2T -period subharmonic oscillations of non-

local observables {ZLi
} already sharply distinguish our ex-

periment from previous works [13, 34–36, 43], where only

local observables break time-translation symmetry, we fur-

ther demonstrate that the observed Floquet topological order

is a nonlocal effect by contrasting with the dynamical behav-

ior of local operators {Ãz
k}. The auto-correlation function

ïsign[Ãz
k(0)]Ã

z
k(t)ð decays to zero quickly without evident os-

cillations (Fig. 2c), even though the periodic drive is locally

applied to each qubit. The striking contrast between nonlo-

cal operators {ZLi
} and local operators {Ãz

k} exposes the lo-

cally indistinguishable nature of the Floquet topological order

and rules out the possibility of trivial oscillations arising from

driving a noninteracting system.

Topologically-ordered Floquet eigenstates
The Floquet eigenstates bear intrinsic topological order and

exhibit long-range quantum entanglement characterized by

the topological entanglement entropy Stopo [17, 18] (see Sup-

plementary Section I.B). To reveal the underlying global en-

tanglement, we prepare an eigenstate of UF and measure its

Stopo for different system sizes. In the B → 0 limit, eigen-

states of UF correspond to superpositions of degenerate eigen-

states of H2 (see Fig. 1b). The eigenstate we prepare is the

symmetric superposition of ground states of H2, given by

|E(0)
+ ð = 1√

2
(|Z(0)

L = 1ð+ |Z(0)
L = −1ð). We prepare it from

a simple initial product state using a quantum circuit whose

depth grows linearly with the system size (see Supplementary

Section I.F) [47]:

|E(0)
+ ð = 1

24
(1 +XL)

∏

q

(1 +Bq)|0ð¹18. (2)
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FIG. 4. Robustness of the topological time-crystalline eigenstate order. a, Measured disorder-averaged auto-correlation function A
1/d
Li

(t)

for string operators {ZLi
} with B = 0.1 (upper panel) and B = 3.0 (lower panel). Error bars denote the standard error of the statistical mean

over 24 random realizations. b, Amplitudes of Fourier spectra at ω/ω0 = 0.5 as a function of B. Fourier transform of A
1/d
L (t) is performed

using averaged time-domain signals over {ZLi
} for up to t = 6T . Each data point is averaged over 24 random realizations. Error bars are

the standard deviation (S.D.) for 24 disorder realizations. Insert: The S.D. of Fourier spectra amplitudes at ω/ω0 = 0.5 as a function of B. c,

Quench dynamics of the disorder-averaged topological entanglement entropy Stopo from the initial state |E
(0)
+ ð (which is a Floquet eigenstate

at B = 0) for different B. Here, Stopo(t ̸= 0) is obtained by performing state tomography on a four-qubit subsystem and the average is

over 12 random realizations; Stopo(t = 0) is obtained via the same state tomography process and averaging over five repetitions of eigenstate

preparation. d, Measured plaquette and string operators for the eigenstate |E
(0)
+ ð after single-step UF evolution at B = 0.1 and B = 3.0. e,

Stopo(t = T ) as a function of random field strength B, which is averaged over 12 random realizations. Numerical simulations (dashed lines)

in b, c, and e are carried out with noisy quantum gates (see Supplementary Section III for details).

We then measure the plaquette operators {Ap} and {Bq} (left

panel of Fig. 3a), and an average value of ∼0.95 is observed,

which is noteworthy given that these operators encode four-

body correlations. The high-fidelity gates and long coherence

times achieved in our experiment are of crucial importance to

obtain such a high average value of the measured stabilizers

(see Supplementary Section II.B). We also measure the ex-

pectation values of string operators {XLi
, ZLi

} and find that

ïE(0)
+ |ZLi

|E(0)
+ ð ≈ 0 and ïE(0)

+ |XLi
|E(0)

+ ð ≈ 1 (right panel

of Fig. 3a). These experimental results are in good agree-

ment with theoretical predictions, providing strong evidence

that the prepared state is indeed a Floquet eigenstate as de-

sired.

Having prepared the Floquet eigenstate, we further measure

its topological entanglement entropy for two different subsys-

tem sizes: four qubits and six qubits. We follow a protocol

developed in Ref. [47] and divide the subsystem into three

parts: A, B, and C (upper panels of Fig. 3b). Stopo can be

extracted from the following combination of von Neumann

entanglement entropies [17, 18]:

Stopo = SA +SB +SC −SAB −SAC −SBC +SABC , (3)

where SA is the von Neumann entropy for region A, while

AB means the union of regions A and B, and similarly for

other terms. For the eigenstates of UF , the theoretically pre-

dicted value of Stopo is − ln 2 [17]. For each region i, we

perform quantum state tomography on the whole (four-qubit

or six-qubit) subsystem and reconstruct Äi to calculate the cor-

responding fidelity F (Äi) = tr
√√

ÄiÄideali

√
Äi and von Neu-

mann entropy Si = −tr(Äi ln Äi), where Äideali is the reduced

density matrix of region i obtained by tracing out the com-

plementary region of the ideal Floquet eigenstate. The ex-
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perimentally measured Stopo, Si, and F (Äi) are shown in the

lower panels of Fig. 3b. The measured von Neumann entropy

for each region agrees well with the corresponding ideal value.

In addition, we observe that −Stopo/ ln 2 is 0.86 ± 0.02 for

the four-qubit and 0.84 ± 0.08 for the six-qubit subsystem,

which is incompatible with the trivial-state value of zero and

provides strong evidence for the nontrivial topological nature

of the prepared Floquet eigenstate. The deviation between the

measured Stopo and its corresponding ideal value is due to

limited coherence times and gate errors, which is confirmed

by numerical results using a noise model estimated via inde-

pendent measurements (our numerical simulations show that

−Stopo/ ln 2 is 0.85 and 0.82 for the four-qubit and six-qubit

subsystems, respectively; see Supplementary Section III).

Robustness against local perturbations

Topological order is expected to be robust against small lo-

cal perturbations. In our experiment, we investigate the ro-

bustness of the subharmonic response of nonlocal logical op-

erators and of the entanglement dynamics to local perturba-

tions by turning on the random on-site fields in H1. We vary

the perturbation strength B and measure A
1/d
Li

(t) and Stopo(t),
with results plotted in Fig. 4.

Figure 4a shows the measured disorder-averaged auto-

correlation function A
1/d
Li

(t) for {ZLi
} under weak (B = 0.1)

and strong (B = 3.0) perturbations, which are averaged over

24 realizations with randomly drawn initial states, ³p, ´q , and

Bk. With a small perturbation (B = 0.1), A
1/d
Li

(t) continues

to exhibit persistent subharmonic response up to 20 driving

periods (upper panel of Fig. 4a), which is a defining feature of

the time-translation symmetry breaking for nonlocal operators

and shows the robustness of the observed prethermal topolog-

ically ordered discrete time crystal. In contrast, with a strong

perturbation (B = 3.0), the measured A
1/d
Li

(t) decays quickly

to zero and shows no subharmonic response (lower panel of

Fig. 4a); at large B, the large onsite field rapidly destroys the

topological order preventing any robust period doubling dy-

namics. To explore the crossover from the time-crystalline

to trivial dynamics, we vary the perturbation strength B and

Fourier transform the measured time-domain signals. Fig. 4b

shows the Fourier amplitudes at É/É0 = 0.5 with B ranging

from 0 to 3.0. We find a small plateau at B ≲ 0.25, which

further supports the robustness of the topologically ordered

time-crystalline dynamics against weak perturbations. As B
increases, the Fourier amplitude decays monotonically and

becomes almost flat at B ≳ 2.5, where the topological order is

very quickly destroyed and no period doubling dynamics sur-

vives. Sample-to-sample amplitude fluctuations over 24 ran-

dom realizations (inset of Fig. 4b) display a sharp increase at

the same value of B where the Fourier amplitude starts to de-

cay, further highlighting the location of the crossover between

the prethermal topological time-crystalline and the trivial dy-

namics.

We further study the dynamics of the topological entangle-

ment entropy under local perturbations. We first prepare the

system in the B = 0 Floquet eigenstate |E(0)
+ ð and then let

it evolve under H(t) with varying B. In Fig. 4c, we plot the

measured Stopo(t) for B = 0.1 and B = 3.0, respectively.

From this figure, we see that Stopo(t) drops more quickly at

strong perturbation B = 3.0 due to the breakdown of the topo-

logical phase. We note that Stopo(t) also has a slow decay

even for B = 0.1 due to the accumulated gate errors in the

circuit, which is confirmed by the numerical simulations (the

dashed lines in Fig. 4c) (see Supplementary Section III). In

addition, we measure plaquette and string operators after evo-

lution under UF for a single time step (see Fig. 4d). From

this figure, it is clear that their values are largely preserved

for B = 0.1, unlike the case of B = 3.0, where these values

drop to near zero. We further measure the disorder-averaged

Stopo(t = T ) as a function of B (Fig. 4e). Similar to the

Fourier spectrum amplitudes in Fig. 4b, Stopo(t = T ) also

decays monotonically with increasing disorder strength. The

plateau at weak disorder (B ≲ 0.25) further validates the ro-

bustness of time-crystalline dynamics against perturbations.

We note that, for the generic local perturbations considered

in our experiment, the overlap between a bare logical opera-

tor and its corresponding dressed logical operator may vanish

in the thermodynamic limit. This would render the observa-

tion of time-crystalline behavior for the bare logical operator

infeasible [30]. In addition, to observe the time-crystalline

behavior, it is also crucial that {∏Ãx
k , ZL} = 0 is satisfied,

which requires that the length of ZL be odd. A possible way to

maintain time-crystalline signatures in bare logical operators

in the thermodynamic limit and to remove the requirement of

odd length ZL is to consider a surface code with a hole, as

discussed in depth in Ref. [30]. In our experiment, we do

not adopt such a layout because measuring the correspond-

ing nonlocal logical operator would become very challenging

with the current device.

Conclusions and outlook

In summary, we have experimentally observed signatures of a

long-lived topologically ordered time crystal in the prethermal

regime with a programmable superconducting quantum pro-

cessor. In contrast to previously reported conventional time

crystals, for our observed topologically ordered time crystal,

the breaking of discrete time-translation symmetry only oc-

curs for nonlocal logical operators, rather than local observ-

ables. We showed persistent subharmonic response for logical

operators independent of the initial state and demonstrated ro-

bustness of this response to generic perturbations without any

microscopic symmetry. In addition, we also prepared a topo-

logically ordered Floquet eigenstate and measured its topolog-

ical entanglement entropy, which agrees well with theoretical

predictions and clearly shows the intrinsic topological nature

of the observed time crystal.

The topologically ordered eigenstates of the Floquet unitary

are theoretically predicted to exhibit a perimeter law, where

the expectation value of a Wilson loop scales with the perime-
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ter rather than the area enclosed [30]. In the future, it is desir-

able to demonstrate such a perimeter law in experiment. The

high controllability and programmability of the superconduct-

ing processor demonstrated in our experiment also paves the

way to exploring a wide range of other exotic non-equilibrium

phases with intrinsic topological order that are not accessible

in natural materials. In particular, it would be interesting and

important to realize various dynamically-enriched topological

orders [48]. Indeed, our experiment has demonstrated all nec-

essary building blocks for implementing the Floquet-enriched

topological order that hosts dynamical anyon permutation [48]

and emergent non-Abelian anyons [49, 50]. An observation

of such an unconventional phenomenon would also mark an

important step in deepening our understanding of exotic non-

equilibrium phases.
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findings of this study will be publicly available at Zenodo.org.
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I. THEORETICAL ANALYSIS

In this work, we experimentally observe topological time-crystalline order, which can be characterized by the subharmonic

temporal response of nonlocal logical operators [S1, S2]. The topological time-crystalline order is realized in a periodically

driven surface-code model. In this section, we will first briefly introduce the topological properties of the surface code and

provide theoretical analysis of the emergence of topological time-crystalline order. Then, we will show how to use a set of

elementary quantum gates to implement the Floquet unitary and to prepare the Floquet eigenstates with a programmable super-

conducting quantum processor.

A. Surface-code model

Recent progress [S1, S3, S4] has demonstrated that many physical systems and their properties can be described using the

language of topology; an important example of this is topological stabilizer codes [S5]. The surface-code model is an important

FIG. S1. The layout of a 3×6 rotated surface-code model. Circles represent qubits. The shaded plaquettes and semicircles indicate the local

four-body and two-body operators on connected qubits, respectively. The dark (light) gray regions represent the Ap (Bq) plaquette operators.
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topological stabilizer code that has numerous applications in quantum error correction [S6–S9]. It is analytically solvable and is

also of interest to researchers from other fields, including condensed matter physics.

We adapt a variant of the surface-code model: the rotated surface code defined on a planar lattice with open boundary

conditions [S10] (see Fig. S1). Its Hamiltonian is given by

H = −
∑

p

³pAp −
∑

q

´qBq, with Ap =
∏

k∈p

Ãz
k and Bq =

∏

k∈q

Ãx
k , (S1)

where the plaquettes p and q are shown in Fig. S1, and ³p, ´q are randomly chosen positive coefficients. For simplicity, unless

otherwise specified, we do not distinguish the plaquette operators and the semicircle operators in the following discussions. We

note that Ap, Bq are both Pauli strings and have eigenvalues ±1. String operators consisting of the same type of Pauli operators

commute with each other: [Ap, Ap′ ] = [Bq, Bq′ ] = 0. Additionally, Ap and Bq also mutually commute because the overlap

between the support of Ap and any Bq has an even number of qubits. We conclude that the ground states of the rotated surface-

code model are simultaneous eigenstates of all plaquette operators Ap and Bq with eigenvalue +1. Furthermore, each excited

eigenstate of the Hamiltonian is a simultaneous eigenstate of all plaquette operators with different eigenvalues. The model in

Fig. S1 has 18 physical qubits and 17 independent plaquette operators, and the remaining single-qubit degree of freedom leads

to a two-fold degeneracy for each energy level.

Suppose |Èð is one of the ground states of H defined on the lattice shown in Fig. S1. That is, all plaquette operators have

an expectation value of 1: ïÈ|Ap|Èð = ïÈ|Bq|Èð = +1 for arbitrary plaquettes p, q. To find another ground state, we try

to flip the qubit with index k = 1. However, this changes the sign of the expectation value of at least one of the plaquette

operators, such as the one supported by qubits 1 and 2, i.e. ïÈ|Ãx
1A{1,2}Ã

x
1 |Èð = −1. Thus, the state with one flipped spin

is no longer a ground state. To maintain the sign of ïA{1,2}ð, we flip qubit 2, but this changes the signs of other connected

plaquette operators. Thus we are forced to continue this process until qubits k = 1, . . . , 6 are all flipped. The final state is then

still a simultaneous +1 eigenstate of all plaquette operators, since the string flip operator commutes with all plaquette operators:
[

∏6
k=1 Ã

x
k , Ap

]

=
[

∏6
k=1 Ã

x
k , Bq

]

= 0. We denote the string operator byXL ≡ ∏6
k=1 Ã

x
k . It cannot be represented as a product

of any combination of plaquette operators. Similarly, we can also define ZL ≡
∏

k=1,12,13 Ã
z
k, which anticommutes with XL.

This defines a Pauli algebra on a single logical qubit, and we conclude that the ground state manifold has a two-fold degeneracy

indexed by, e.g., ïZLð = ±1. The same analysis can also be applied to any excited eigenstate. For the l-th energy level, we

denote the eigenstates satisfying ïZLð = ±1 by |Z(l)
L = ±1ð. In the topological stabilizer formalism, plaquette operators are

called stabilizers, and the ground space is called the code space, which is manipulated by logical string operators XL, ZL.

B. Topological order of the surface-code model

In the language of group theory, we can define a group generated by the plaquette operators (stabilizers) S = ïAp, Bqð, and an

18-qubit Pauli group P18 = ïÃx
k , Ã

z
k : k runs over all sitesð. S is a subgroup of P18. The centralizer group CP18

(S) consists of

all operators in P18 that simultaneously commute with all plaquette operators. For the rotated surface-code model, S is a normal

subgroup ofCP18
(S) and we have the quotient groupCP18

(S)/S ∼= P1 being the Pauli group for one qubit. The above discussion

indicates that the two-fold degeneracy of each eigenstate of Eq. (S1), discussed in the previous section, is directly related to the

topology of the system. Any single-qubit operator fails to commute with at least one plaquette operator. According to the

discussion in Section I.A, we know that ZL and XL are two independent nonlocal operators which can map one eigenstate to its

degenerate partner. As a consequence, they can be regarded as the representatives of the cosets of S. Since arbitrary products

of the plaquette operators with ZL (XL) are equivalent to ZL (XL) itself in a fixed stabilizer eigenspace, we have several

equivalent expressions for operators ZL and XL (see Fig. 2 of the main text): ZL1
=

∏

k=1,12,13 Ã
z
k, ZL2

=
∏

k=2,11,14 Ã
z
k, . . .

and XL1
=

∏6
k=1 Ã

x
k , XL2

=
∏12

k=7 Ã
x
k , . . . , all of which are nonlocal operators. All operators within each coset are equivalent

modulo S.

A connection between topological order and quantum entanglement is provided by the topological entanglement entropy.

For a many-body wavefunction, the von Neumann entropy of a subregion, S(Äsub) ≡ − tr Äsub ln Äsub, describes the quantum

entanglement between the subregion and its complement. Here, Äsub denotes the reduced density matrix of the subregion obtained

by tracing out the complementary region. For a system obeying the entanglement area law, the von Neumann entropy of a

subregion is represented as [S11]

S(Äsub) = ³∂sub − µ + · · · . (S2)

Here, ³ is a constant determined by the details of the system, ∂sub is the volume of the subregion’s boundary, and −µ is

the topological entanglement entropy, which characterizes nonlocal entanglement persisting at arbitrarily large distances. In

topological quantum field theory, it is known that µ = lnD, where D is the total quantum dimension [S11]. In an Abelian anyon

model, D is the square root of the number of superselection sectors corresponding to inequivalent quasi-particle species. For
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FIG. S2. Regions A, B, and C defined for computing topological entanglement entropy via Eq. (S3).

the rotated surface-code model, there are two types of Abelian anyons: electric charges e associated with Ap plaquette operators

and magnetic charges m associated with Bq plaquette operators. So, there are four quasi-particle sectors (identity, e, m, and

em) and the total quantum dimension D is equal to
√
4 = 2. Thus, the topological entanglement entropy Stopo = − ln 2 for the

model (S1). To measure Stopo, we cancel out boundary contributions by dividing the subregion into three parts that are all large

compared to the correlation length [S11] (see Fig. S2) and computing

Stopo = SA + SB + SC − SAB − SBC − SAC + SABC , (S3)

where SA is the von Neumann entropy of region A, SAB is the von Neumann entropy of region A ∪ B, and so on. In this way,

all boundary terms are canceled out, and the result is the topological entanglement entropy Stopo = −µ.

C. Topological time-crystalline order

Having reviewed the concept of topological order in the static rotated surface-code model, we now generalize to the periodi-

cally driven setting and show the emergence of topological time-crystalline order. The Floquet Hamiltonian of the driven rotated

surface-code model is

H(t) =

{

H1, 0 f t < T ′,

H2, T ′ f t < T,

H1 ≡ Ã

2

∑

k

Ãx
k +

∑

k

Bk · σk,

H2 ≡ −
∑

p

³pAp −
∑

q

´qBq,

(S4)

where Bk is an on-site field randomly chosen from a ball with radiusB, σk is the vector of Pauli operators, Ap, Bq are plaquette

operators defined in Fig. S1, ³p, ´q are coefficients uniformly chosen from [0, 2Ã), and T = 2T ′ = 2. H2 is the rotated surface-

code Hamiltonian, and its spectrum is exactly two-fold degenerate, with eigenstates |Z(l)
L = ±1ð at energy ϵl. These two-fold

degenerate eigenstates cannot be distinguished by any local operator. However, they can be distinguished by a nonlocal string

operator such as ZL. WhenB = 0, the effect of U1 = e−iÃ/2
∑

k
Ãx
k ∝

∏

k Ã
x
k is to flip all the qubits. When we index degenerate

eigenstates of H2 with a logical operator ZL of odd length, this is equivalent to applying a logical operator XL. In this situation,

we have the relations

UF |Z(l)
L = 1ð = exp (−iϵl)|Z(l)

L = −1ð, UF |Z(l)
L = −1ð = exp (−iϵl)|Z(l)

L = 1ð, (S5)

where UF = exp (−iH2) exp (−iH1) is the Floquet unitary. In other words, UF toggles between two degenerate eigenstates of

H2. In a degenerate eigenspace of H2, UF can thus be represented as a matrix

UF ∼





0 exp (−iϵl)
exp (−iϵl) 0



 . (S6)
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FIG. S3. Dynamics of nonlocal and local observables at B = 0.1. All data in this figure are averaged over 1000 random realizations,

and the error bars stand for the standard error of the statistical mean. a, Disorder-averaged dynamics of nonlocal string operators {ZLi
}

and {XLi
}. Expectation values of all six {ZLi

} lying on top of each other, break the time-translation symmetry, and manifest subharmonic

oscillations with period 2T . Despite the initial slight decay, mainly caused by the imperfect overlap between the dressed logical operators

and the measured bare operators, the {ZLi
} expectation values show a plateau at late times, indicating persistent oscillations. In contrast,

expectation values of all three {XLi
} (lie on top of each other) remain zero as expected. b, The Fourier spectrum of the disorder-averaged

dynamics of {ZLi
}. The peaks at ω/ω0 = 1/2 (ω0 = 2π/T ) indicate the subharmonic oscillations of {ZLi

}. c, The Fourier spectrum of

the disorder-averaged dynamics of {XLi
}. d, Disorder-averaged dynamics of single-qubit operators {σz

k}. e, The Fourier spectrum of the

disorder-averaged dynamics of single-qubit operators {σz
k}.

Therefore, in this eigenspace, UF has eigenvalues ± exp (−iϵl) corresponding to Floquet eigenstates |E(l)
± ð ∝ |Z(l)

L =

1ð ± |Z(l)
L = −1ð, respectively. For the Floquet Hamiltonian HF = i logUF , the corresponding quasi-energies are ϵl and

ϵl + Ã (see Fig. 1b of the main text). We note that the H2 eigenstates |Z(l)
L = 1ð and |Z(l)

L = −1ð have the same topological

entanglement entropy Stopo = − ln 2, which is the core feature of the topological order of this model. The Floquet eigenstates

|E(l)
± ð inherit the same value of Stopo.

We further investigate the dynamical behavior of the nonlocal string operators. Without loss of generality, we start from

a product state |È0ð which has expectation value of +1 for the string operator ZL, such as |È0ð =
⊗

k |0ðk. This can be

represented as a superposition of the subset of eigenstates {|Z(l)
L = 1ð}: |È0ð =

∑

l ³l|Z(l)
L = 1ð, such thatïÈ0|ZL|È0ð =

∑

l′l ³
∗
l′³lïZ(l′)

L = 1|ZL|Z(l)
L = 1ð = ∑

l′l ³
∗
l′³l¶l′l = 1. Under time evolution by the Floquet unitary UF , we find that

UF |È0ð = exp (−iH2) exp (−iH1)
∑

l

³l|Z(l)
L = 1ð

= exp (−iH2)
∑

l

³l|Z(l)
L = −1ð

=
∑

l

³le
iϵl |Z(l)

L = −1ð

≡ |È1ð.

(S7)



5

a b

FIG. S4. Lifetime of the topological time-crystalline order. Experimentally measuring the lifetime of the topological time-crystalline order

is infeasible due to the limited coherence time of our experimental device. a, Disorder-averaged dynamics of the nonlocal logical qubit

expectation values
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∣
ïψn|ZL1

|ψnð
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∣
(we first take the average, and then take the absolute value). The results are averaged over a number of

random realizations ranging from 103 (N = 15) to 104 (N = 6) depending on the system size. The results show that, after an initial slight

decay,

∣

∣

∣
ïψn|ZL1

|ψnð
∣

∣

∣
reaches a plateau extending up to a timescale that diverges exponentially with the system size (see panel b). The gray

dashed line indicates the reference value of 1/2 that is used to extract the logical-qubit lifetime. Error bars represent the standard error of the

statistical mean. b, Finite-size scaling of the lifetime of the topological time-crystalline order. The colored dots exhibit the exponential scaling

of τ∗/T with system size, where τ∗ is the time at which

∣

∣

∣
ïψn|ZL1

|ψnð
∣

∣

∣
reaches 1/2. The gray dashed line is a best-fit exponential for the

system-size dependence of τ∗/T .

If we measure the string operator ZL after a single Floquet period T , we have

ïÈ1|ZL|È1ð =
∑

l′l

³∗
l′³le

−i(ϵl−ϵl′ )ïZ(l′)
L = −1|ZL|Z(l)

L = −1ð = −
∑

l′l

³∗
l′³le

−i(ϵl−ϵl′ )¶l′l = −1. (S8)

Similarly, the stroboscopic dynamics of the string operator ZL after a time t = nT is ïÈn|ZL|Ènð = (−1)n, where |Ènð =
(UF )

n |È0ð. Therefore, the expectation values of ZL oscillate with period 2T , which breaks the discrete time-translation symme-

try of the Floquet Hamiltonian (S4). The corresponding numerical simulations are shown in Fig. S3a, b. For the string operator

XL, one can check that ïÈn|XL|Ènð = 0 (see Fig. S3a, c).

In contrast, we find that local operators exhibit featureless dynamics in our Floquet model. For a single-qubit operator Osingle,

we have

ïÈ0|Osingle|È0ð =
∑

l′l

³∗
l′³lïZ(l′)

L = 1|Osingle|Z(l)
L = 1ð, (S9)

and

ïÈ1|Osingle|È1ð =
∑

l′l

³∗
l′³le

−i(ϵl−ϵl′ )ïZ(l′)
L = −1|Osingle|Z(l)

L = −1ð. (S10)

The extra phase factors e−i(ϵl−ϵl′ ) tend to be randomly distributed under the Floquet dynamics of Hamiltonian (S4), leading to a

fast decay to zero for ïÈn|Osingle|Ènð (see Fig. S3d, e) and thus to an impossibility of time-translation symmetry breaking. This

distinction between the dynamics of local and nonlocal operators is the key difference between the topological time-crystalline

order and conventional time-crystalline order.

D. Stability of topological time-crystalline order

The stability of the topological time-crystalline order is a highly non-trivial problem and is still open for further exploration.

For example, it is believed that many-body localization (MBL) can help prevent a Floquet system from heating to infinite

temperature. However, the stability of MBL in the thermodynamic limit is still controversial [S12–S14] (especially in two or
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more spatial dimensions), and investigating such open problems is beyond the scope of the present work. Here, we perform

a preliminary numerical simulation to explore the stability of the topological time-crystalline order against small local random

fields.

In our numerical simulations, we define the lifetime as the number of Floquet periods elapsed before the magnitude of the

expectation value of ZL decays to 1/2. We fix a small perturbation strength B = 0.1 for this study. In the presence of random

on-site fields, the contribution of H1 to the Floquet unitary is no longer a perfect spin-flip operator for all the sites; rather, it is

U1 = e−iH1 ∼
∏

k

Ãx
k +O(B). (S11)

As the underlying lattice structure can have a significant effect on the lifetime of the logical qubit, we carry out the numerical

simulations for lattices of dimensions 3 × 2, 3 × 3, 3 × 4, 3 × 5, and measure the non-local logical Z operator of fixed length

3. The initial states are randomly chosen z-basis product states in order to give definite expectation values of ±1 for the string

operator ZL. For each realization, we numerically calculate the dynamics under Eq. (S4) for a long enough time to observe

the decay of the string operator. The final results are averaged over many such random realizations, and the time at which the

expectation values reach 1/2 is regarded as the indicator of the lifetime (see Fig. S4a). Our results show that the lifetime of the

topological order for the model is much longer than any experimentally accessible timescale. Furthermore, we observe that the

lifetime of the logical qubit grows exponentially with system size for N = 6, 9, 12, 15 (see Fig. S4b). We conclude that, owing

to disorder, the true thermalization time is much larger than these experimentally inaccessible timescales, and thus the observed

topological time crystalline behavior is robust.

E. Quantum circuits for the Floquet unitary

It is straightforward to realize the Floquet drive U1(t) = e−itH1 with tensor products of single-qubit rotations, which can be

represented via Euler angles (see Fig. S5a). However, the circuit construction of U2(t) = e−itH2 is more challenging due to the

four-body plaquette operators Ap, Bq in the Hamiltonian H2. To construct digital quantum circuits for this evolution, we exploit

the property that all plaquette operators mutually commute, so that the evolution reads

U2(t) = e−itH2 =
∏

p

eit³pAp

∏

q

eit´qBq . (S12)

Besides, we have the relation HÃzH = Ãx, where H is the single-qubit Hadamard gate. Thus, for any plaquette q, we have

H¹q
(

eit´qAq
)

H¹q = eit´qBq , (S13)

whereH¹q stands for a Hadamard transform applied to the qubits in plaquette q. Therefore, the circuit construction for evolution

under H2 reduces to simulating a single plaquette operator Ap.

Variational quantum circuits are a powerful tool for NISQ quantum computation and quantum simulation and have been

intensively studied in recent years [S15, S16]. We adapt this method to construct the quantum circuit for evolution under the

plaquette operatorAp. Variational quantum circuits are composed of gates with parameterized rotation angles that can be updated

according to various algorithms. The circuit construction for the evolution operator of Ap can be divided into two steps. First,

we need to find an appropriate variational ansatz for it. Second, we optimize the variational parameters in this ansatz to minimize

the distance between the corresponding quantum circuit and the target unitary.

For the first step, we use the neuroevolution method [S17] to find a suitable variational quantum circuit architecture. The

complete gate set used in our experiment consists of three kinds of single-qubit rotations X(¹), Y (¹), Z(¹) and a controlled-

phase gate CRz(¹) along the z axis (¹ stands for the variational parameter). Then, we can construct a directed graph where each

node represents a block of gates that can be implemented in parallel, and where the directed edges denote allowed sequences of

blocks. A quantum circuit can then be represented as a directed path in this graph. To find a desired circuit ansatz, we use the

following procedure:

1. Randomly sample several paths with a fixed depth in the constructed directed graph as our initial quantum-circuit ansatz;

2. For each path representing an ansatz, minimize the cost function L(θ), which is given by

L(θ) = 1− Tr
[

U 
target Ucircuit (θ)

]

/d, (S14)

whereUtarget is the evolution unitary of the plaquette operatorAp, Ucircuit is the unitary represented by the current quantum-

circuit ansatz with variational parameters θ, and d is the dimension of the Hilbert space. L(θ) measures the distance

between the target unitary and the current quantum circuit. We update variational parameters using gradient-based algo-

rithms;
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FIG. S5. Digital quantum circuits for the Floquet unitary. (a) Single-qubit circuit realizing U1. We use Euler angles to represent general

single-qubit rotations. (b) Circuit realizing the evolution unitary of the two-body plaquette Ap on the boundary of the lattice (see Fig. S1). (c)

Circuit realizing the evolution unitary of the four-body plaquette Ap. Combining these elementary circuits allows us to digitally simulate the

Hamiltonian (S4). In experiments, the whole circuit is further compiled to reduce the depth.

3. Keep the ansatzs with smallest values of the loss function L(θ), and prolong the corresponding paths in the directed graph

to generate new circuits with larger depth;

4. Iterate steps 2 and 3 until the loss function converges.

We repeat this algorithm several times and choose the circuit ansatz with the smallest value of the loss function as the optimal

result.

Remarkably, in some cases, we can obtain ansatz circuits with an extremely small distance from our target unitary (typically,

the loss function L(θ) < 10−4), which indicates that there probably exists a circuit ansatz that is analytically equivalent to the

target unitary. Thus, we further manually simplify the obtained variational circuit ansatz. Precisely speaking, we alternately

utilize the following methods to reduce the number of the variational parameters in this ansatz:

1. Drop those gates very close to the identity gate, i.e., variational gates with small rotation angles.

2. Fix those gates with special parameters, such as ¹ = Ã.

3. Change the order of some commuting gates.

4. Split or combine some neighboring gates.

After the reduction process above, we obtain an experimentally friendly circuit that analytically represents the evolution unitary

U(t) = eit³pAp (see Fig. S5b, c). The evolution unitary of Bq is then obtained by inserting a layer of Hadamard gates before

and after U(t). Then, we can obtain the digital quantum circuit for U2 by concatenating the evolution operators for all plaquette

operators. This yields an analytical representation of the whole time-evolution unitary (see Fig. 1 of the main text).

F. Floquet eigenstate preparation circuits

In the main text, we experimentally measure the topological entanglement entropy of a Floquet eigenstate. Here, we provide

more details on the circuit for preparing this state. In our model, the Floquet eigenstates |E(l)
± ð ∝ |Z(l)

L = 1ð ± |Z(l)
L = −1ð are

superpositions of the eigenstates (|Z(l)
L = ±1ð) of the rotated surface-code Hamiltonian. We follow the method in Ref. [S18] to

realize the eigenstates |Z(l)
L = ±1ð and their superpositions. Here, we briefly summarize the idea of this method.

Without loss of generality, we choose the Floquet eigenstate that superposes the two-fold degenerate ground states of H2.

Because the ground states are the simultaneous eigenstates of all plaquette operators, we can apply the projector
∏

p,q(1 +

Ap)(1 + Bq) to map the initial state into the ground space. For simplicity, we choose an initial state of |0ð¹18. The projector

above is a sequence of mutually commuting projection operators, which project the initial state into a simultaneous eigenstate

of Ap and Bq . The final state is unchanged after exchanging the order of the projection operators, since [Ap, Bq] = 0. Since

(1 + Ap)|0ð¹18 = |0ð¹18, we conclude that |Z(0)
L = 1ð ∝ ∏

q(1 + Bq)|0ð¹18 (ignoring an overall normalization factor).

Furthermore, since |Z(0)
L = −1ð = XL|Z(0)

L = 1ð, we can express the superposition of ground states in two topological sectors
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as |Z(0)
L = 1ð+ |Z(0)

L = −1ð ∝ (1+XL)
∏

q(1+Bq)|0ð¹18. Since Bq only consists of Ãx operators, we have [XL, Bq] = 0.

As a result, we can also write |Z(0)
L = 1ð+ |Z(0)

L = −1ð ∝
∏

q(1+Bq)(1+XL)|0ð¹18.

Since all the XLk
are equivalent in our model, we fix XL =

∏12
k=7 Ã

x
k in the following discussion. We first show how to

prepare the state (1+XL)|0ð¹18. The effect of 1+XL is to project the initial zero state into a cat state of the form(|000000ð+
|111111ð)7,...,12 ¹ |0ð¹12. This cat state can be prepared conveniently with quantum gates by first applying a Hadamard gate on

one of the qubits in {7, . . . 12} and then successively applying CNOT gates for each pair of neighboring qubits. The effect of

the projection operators 1+Bq can be realized by applying similar gate sequences to the qubits in plaquette q.

II. EXPERIMENTAL INFORMATION

Exploring an intrinsically non-equilibrium Floquet system [Eq. (S4)] relies on the dynamical manipulation of highly entangled

many-body states. In our work, we engineer a topological “synthetic quantum material” on a 3× 6 superconducting qubit lattice

using the digital quantum simulation paradigm. In this section, we provide detailed information on the experimental platform,

device performance, and circuit calibration.

A. Experimental platform

Ω

FIG. S6. Quantum processor and experimental setup. a, Photo of the flip-chip quantum processor. The 18 qubits actively used in our

experiments are marked by blue solid circles, while the other unused qubits are marked by white circles. b, Schematic structure of the 3 × 6
qubit lattice. Qubits are arranged at the vertices of a 3×6 grid, and couplers are represented by the edges. c, Wiring information. The

superconducting quantum chip is mounted on the mixing chamber plate (20 mK) of the dilution refrigerator. For simplicity, we use a square

box at the bottom right corner, wherein a pair of qubits is coupled to a coupler, to represent the chip. To control and measure the chip, qubits and

couplers are connected to the room-temperature electronics by readout lines (green), microwave-drive lines (blue), fast Z-pulse lines (purple)

and slow DC-bias lines (brown). Information on the microwave components is provided in the legend on the right.
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As shown in Fig. S6a and b, we use a 3 × 6 qubit lattice on a flip-chip superconducting quantum processor to implement

the theoretical model. This processor has a two-dimensional architecture consisting of a 6 × 6 qubit array where the nearest-

neighbor (NN) qubit pairs are connected by tunable couplers [S19]. Thus, the interaction between each NN qubit pair can be

tuned dynamically by applying control signals to the coupler (Fig. S6c), which enables the implementation of two-qubit CZ

gates in our experiments. Each qubit is capacitively coupled to a readout resonator for dispersive readout, and each group of nine

readout resonators shares a common readout transmission line for simultaneous state measurements. Figure S6c shows the details

of the experimental setup, including wiring information, microwave components, and room-temperature control electronics.

B. System calibration

Realizing a well-specified Hamiltonian with digital quantum circuits is a challenging experimental task. It is a complex control

problem, whose target is to find optimal parameters which convert time-dependent room-temperature microwave signals to an

effective Hamiltonian on the quantum chip at low temperature. In our experiment, we coherently control 45 quantum elements

(18 qubits and 27 couplers) for manipulating the topologically ordered Floquet system. Here, we briefly describe our calibration

procedures for tuning up these elements.

Before calibrating the universal quantum gate set (single-qubit rotations and two-qubit CZ gate), we use the following proce-

dures to get an overall characterization of the device.

1. Perform spectroscopy measurements for each qubit to obtain the relationship between the qubit frequency Éq and the

amplitude of its fast Z pulse.

2. Tune up each qubit individually at a flux-sensitive point, which we choose ∼300 MHz below its maximum frequency

(sweet point) in our experiments, and perform a series of measurements to obtain the following basic parameters.

• Single-qubit Ã and Ã/2 pulse parameters.

• The ratio between the fast Z-pulse amplitude and the slow DC-bias amplitude. With this ratio, we can further get the

relationship between qubit frequency Éq and the amplitude of the DC bias.

• Qubit readout pulse parameters.

• Spectrum of T1. We note that the T1 spectrum is repeatedly monitored on different days to detect possible moving

two-level-system (TLS) defects [S20].

3. Synchronize the timing of the control pulses from different control lines. We select the center qubit as the root and use the

Dijkstra algorithm to traverse all the qubits and couplers from near to far. For the detailed calibration pulse sequences, see

Ref. [S21].

4. Calibrate the distortion of the fast Z pulse. Distortion information is obtained by probing the time-domain response of the

qubit phase right after a Z pulse [S22]. We note that the distortion of the fast Z pulse for the coupler is derived with the

help of the phase response of its adjacent qubits.

With the information above, we can start to tune up the universal quantum gate set on the 3 × 6 lattice, which includes 18

single-qubit rotations and 27 two-qubit CZ gates. This is challenging due to the existence of pulse distortions, TLS defects, and

crosstalk. We allocate a set of idle frequencies {É10} to qubits, which are optimized to yield high-fidelity single-qubit gates as

well as to favor the implementation of two-qubit CZ gates. We consider several important principles, which are listed below.

• Energy relaxation time T1 and spin-echo pure dephasing time T SE
2 in the vicinity of É10 should be long and stable.

• Frequency detuning between two qubits with stray coupling should be much larger than the strength of the stray coupling.

• The fast Z-pulse amplitude for realizing a two-qubit CZ gate should be small to minimize the impact of residue pulse

distortion.

In each optimization round, we tune up all the single- and two-qubit gates, and then test their fidelities by performing simul-

taneous cross-entropy benchmarking (XEB) [S23] using the typical layers in the target circuits. These results are used as the

feedback for the next round of optimization. After several rounds, we obtain a set of idle frequencies and gate parameters for

our experiments. The idle frequencies {É10} in this experiment are shown in Fig. S7a. The measured energy relaxation time T1
and spin-echo dephasing time T SE

2 at {É10} are listed in Fig. S7b and c, respectively. Their cumulative distributions and median

values are shown in Fig. S7d, e, and f. Remarkably, the median value of T1 over 18 qubits is ∼163 µs. We also achieve median

Pauli errors (ϵp) of ∼0.48 × 10−3 for single-qubit gates and ∼6.4 × 10−3 for two-qubit CZ gates, which is equivalent to the

randomized-benchmarking fidelities [S24] of 0.9997 and 0.9949, respectively. Here we use the relation F = 1− ϵp/(1+ 1/2d),
where d is the number of qubits. Figure S8 shows detailed information on gate errors.



10

Readout fidelities of qubits are simultaneously measured by preparing 18 qubits in random product states [S25] and averaging

them for each qubit. Fig. S9 displays the measured readout fidelities for each qubit in our experiment, which are also used to

correct the effects of readout errors.
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FIG. S7. Qubit performance at idle frequencies. a, Heat map of idle frequencies {ω10}. b, Heat map of qubit energy relaxation times {T1}
at idle frequencies. c, Heat map of qubit spin-echo pure dephasing times {T SE

2 } at idle frequencies. d, e, and f are the integrated histograms

of {ω10}, {T1} and {T SE
2 }, respectively, which are obtained using the data in a, b, and c.

C. Microwave crosstalk

Single-qubit rotations for each qubit are realized by applying microwave pulses to its microwave drive line. However, mi-

crowave pulses applied to Qi will also induce unwanted state transitions of Qj . The microwave pulse crosstalk felt by Qj can

be modeled as Ω̃j = Ajie
−iϕjiΩi [S26], where Ωi is the microwave signal applied to the source qubit Qi, while Ajie

−iϕji de-

scribes the relative amplitude and the relative phase of the effect on the target qubit Qj . It can be canceled by actively applying

an opposite signal −Ω̃j to the qubit Qj . We use randomized benchmarking to detect microwave crosstalk, and use the measured

matrix {Ajie
−iϕji} to suppress such effects.

D. Flux-bias crosstalk

In our device, applying a bias current to the flux line of qubit Qi (or coupler Ci) can cause a nonzero flux on other qubits (or

couplers). During parallel gate operations, this flux crosstalk can introduce extra phase errors into the circuit. The crosstalk can

be modeled as ∆̃j = ∆iBji, where ∆i is the flux to qubit Qi (or coupler Ci), ∆̃j is the crosstalk flux felt by qubit Qj , and Bji

is the crosstalk ratio. We neglect crosstalk to couplers in our experiments. To compensate for ∆̃j , we measure the ratio Bji and

apply a flux bias −∆̃j to Qj . The measured crosstalk matrix elements {Bji} for fast Z bias are shown in Fig. S10.

E. Device-aware circuit transformation

A quantum circuit constructed theoretically usually incorporates little information about the limitations or imperfections of

the underlying hardware performance, leaving space for further improvements before it is converted to physical control pulses.

Therefore, it is worthwhile to transform the circuits generated in Section I with the awareness of the device information to further
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FIG. S9. Qubit readout fidelity. a, Heat map of the readout fidelity for state |0ð. b, Heat map of the readout fidelity for state |1ð. c,

Integrated histogram of 18 readout fidelities based on the data in a and b. To obtain the readout fidelities, we prepare all the qubits in random

computational-basis product states and perform simultaneous measurements. For each qubit, its |0ð (|1ð) readout fidelity is given by calculating

the |0ð (|1ð) state probability from the samples that this qubit is prepared in |0ð (|1ð).

improve the circuit fidelity. Figure S11 shows the transformed circuit of the Floquet-evolution unitary for a single period T at

B = 0.1. We summarize the strategies and tools we use in this process below.

1. Remove redundant Clifford gates using ZX-calculus [S27, S28].

2. Use Qiskit [S29] to convert the circuit into combinations of two-qubit CZ gates and single-qubit rotations around the

x, y, z-axis on the Bloch sphere and Cirq [S30] to identify single-qubit layers and separate them from CZ gates. Then we

get a circuit that alternates between layers of single-qubit and CZ gates: a single-qubit gate layer (SQ layer), followed by

a layer of CZ gates (CZ layer), followed by an SQ layer, etc.

3. Compile consecutive SQ gates into a U3 gate. The U3 gate is constructed by combining a ¹-angle rotation around the

z-axis followed by an ³-angle rotation around an axis in the xy plane with an azimuthal angle ϕ, which can be written in

the form



12

(1,5)
(3,5)

(5,5)
(7,5)

(9,5)
(11,5)

(11,7)
(9,7)

(7,7)
(5,7)

(3,7)
(1,7)

(1,9)
(3,9)

(5,9)
(7,9)

(9,9)
(11,9)

Qubit target Q
j

(1,5)

(3,5)

(5,5)

(7,5)

(9,5)

(11,5)

(11,7)

(9,7)

(7,7)

(5,7)

(3,7)

(1,7)

(1,9)

(3,9)

(5,9)

(7,9)

(9,9)

(11,9)

(11,6)

(11,8)

(10,5)

(10,7)

(10,9)

(9,6)

(9,8)

(8,5)

(8,7)

(8,9)

(7,6)

(7,8)

(6,5)

(6,7)

(6,9)

(5,6)

(5,8)

(4,5)

(4,7)

(4,9)

(3,6)

(3,8)

(2,5)

(2,7)

(2,9)

(1,6)

(1,8)

  
  

  
  

  
C

o
u

p
le

r 
s
o

u
rc

e
 C

i  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

Q
u

b
it
 s

o
u

rc
e

 Q
i

Crosstalk matrix of fast flux bias B
ji

-0.46

-0.19

-0.86

-0.94

-0.58

-0.37

-1.22

-0.54

-0.15

0.21

0.69

0.70

0.29

0.05

-0.30

-0.46

-0.61

-1.44

-0.12

-0.53

-0.55

0.06

-0.91

0.11

-0.51

0.03

0.11

0.15

0.01

-0.29

0.01

0.01

-2.61

0.27

-0.61

2.01

0.26

4.69

0.83

2.71

2.85

1.60

0.89

4.47

0.61

-0.10

-0.13

-0.57

-0.66

-0.74

0.27

0.09

0.05

0.33

0.41

0.79

-0.19

0.08

0.06

-0.18

-0.13

-1.77

-0.10

-0.50

-0.56

0.03

-1.26

0.26

-0.89

0.30

-0.28

0.35

0.01

-0.11

0.02

0.01

-2.80

0.34

2.11

1.66

0.34

1.19

0.86

0.89

2.80

1.72

2.58

3.62

0.31

-0.05

-0.75

-0.66

-0.96

-0.98

-0.46

-0.07

-0.72

0.26

0.26

0.73

0.34

0.10

0.03

0.10

0.02

-2.01

-0.05

-0.84

-0.54

0.30

-1.29

0.21

-0.96

0.27

0.19

0.67

0.01

-0.31

-0.15

0.01

-4.89

0.47

-0.09

2.13

0.15

2.55

0.65

0.66

2.01

1.72

1.89

3.14

-0.20

0.01

-0.52

-1.03

-1.23

-0.63

-1.05

-0.84

-0.44

0.21

0.22

0.62

0.39

0.18

0.01

0.09

0.06

-2.83

0.24

-1.06

-0.50

0.52

-1.61

0.43

0.03

0.33

0.23

-0.33

0.01

1.12

-0.04

0.01

0.58

0.01

-0.04

1.94

0.01

2.83

0.01

0.50

1.40

0.01

1.83

0.01

-0.19

0.12

-0.01

-0.38

3.17

-0.46

-0.05

-0.36

0.01

0.05

0.13

0.55

0.48

0.07

-0.26

-0.46

-0.01

-3.55

0.56

5.04

-0.33

0.70

-2.26

0.39

0.67

0.93

0.22

0.71

0.47

0.73

0.01

0.18

0.36

0.32

-0.26

1.19

0.31

1.85

0.62

0.63

1.26

1.45

1.30

2.21

0.34

0.20

-0.15

0.01

0.04

-0.66

0.05

0.13

0.07

0.09

0.05

0.35

0.29

0.03

0.18

0.31

0.51

0.85

1.40

0.24

1.12

0.91

-2.57

0.52

-0.92

1.12

0.34

1.07

0.50

1.53

0.20

0.26

0.28

0.40

0.06

1.15

0.42

1.54

0.50

0.68

1.06

1.35

1.10

1.70

0.22

0.02

-0.56

-0.62

-1.00

2.19

-0.10

0.14

-0.05

0.21

0.09

0.43

0.33

0.04

0.05

0.26

0.63

-5.89

1.95

-1.17

0.85

1.02

-4.27

0.56

-2.18

1.16

0.39

1.16

0.50

1.57

0.14

0.23

0.27

0.44

-0.07

1.11

0.43

1.22

0.59

0.50

0.92

1.27

0.75

1.57

-0.15

-0.01

-0.23

-0.92

-1.12

0.05

-1.58

-0.11

0.08

-0.02

0.07

0.18

0.46

0.14

-0.01

0.05

-0.41

-4.10

0.50

-1.08

-1.72

0.46

0.13

1.14

-1.83

0.64

0.45

1.05

0.49

1.69

0.15

0.22

0.27

0.48

-0.21

1.30

0.39

1.51

0.66

0.42

1.18

1.54

0.89

2.10

-0.23

-0.13

-0.45

-0.97

-1.22

-1.00

-0.67

-0.53

-0.54

0.10

0.33

0.43

0.46

0.06

0.01

0.08

-0.11

-3.08

-0.04

-0.80

-1.12

0.46

-2.31

0.58

-1.33

1.63

0.01

-1.31

0.40

-0.30

-0.54

0.01

0.46

0.01

-0.27

1.64

0.01

1.90

0.01

0.37

1.55

0.01

1.13

0.01

0.15

-0.17

-0.57

-0.75

-0.69

-0.83

-0.74

-0.27

-0.41

0.31

0.25

0.77

0.46

0.18

-0.14

0.12

-0.06

-2.56

-0.23

-0.77

-0.96

0.34

-1.81

0.26

-0.96

0.20

0.10

0.39

0.01

-0.17

-1.41

0.01

-0.21

-2.76

-0.53

1.14

0.65

2.62

1.14

0.18

2.09

2.21

1.43

3.45

0.23

-0.18

-0.10

-0.17

-0.54

-0.53

-0.37

-0.49

0.08

-0.33

0.18

0.21

0.17

0.28

0.04

-0.04

-0.67

-2.02

-0.21

-0.69

-0.86

0.21

-1.49

0.36

-0.82

-0.02

0.12

0.35

0.01

-0.33

0.03

0.01

-0.75

0.15

-0.55

-0.17

-0.36

2.29

-1.37

0.52

2.93

3.17

1.90

4.35

0.06

-0.59

-0.11

-0.18

-0.46

-0.70

-0.53

-0.06

0.14

0.04

0.03

1.26

0.44

-0.64

0.04

0.05

-0.13

-1.68

-0.23

-0.57

-0.75

-0.02

-1.23

0.09

-0.68

-0.02

0.08

0.11

0.01

-0.36

0.09

0.01

-0.33

0.36

-0.71

2.42

0.27

3.89

1.12

-0.96

-0.73

2.20

1.04

3.38

-0.41

-0.57

-0.11

-0.24

-0.42

-0.71

-0.60

-1.16

0.07

-0.10

-0.09

0.35

0.29

-0.01

0.01

-0.09

-0.87

-1.73

-0.36

-0.53

-0.97

-0.05

-1.27

0.07

-0.69

-0.21

0.11

0.01

0.01

-0.58

0.01

0.01

-0.91

0.44

-0.84

3.45

-0.13

1.62

-7.00

-1.73

3.13

0.37

-0.23

5.56

-0.10

-0.96

-0.04

-0.22

-0.46

-0.71

-0.68

-0.10

0.06

-2.24

0.44

0.20

1.14

-0.06

-0.00

0.14

-0.22

-2.14

-0.42

-0.60

-1.16

0.06

-1.52

0.13

-0.80

-0.08

0.14

0.01

0.01

-0.57

0.01

0.01

-0.27

-1.08

-0.55

2.84

0.12

1.88

0.88

-0.64

2.27

2.11

0.67

4.43

0.10

-0.18

-0.04

0.01

-0.55

-0.92

-0.86

-0.25

0.01

0.11

0.19

-0.52

0.82

0.54

0.01

0.15

-0.19

-2.57

-0.48

-0.68

-1.34

0.22

-2.00

0.23

-0.99

0.13

0.16

0.01

0.01

0.01

0.01

-1.34

-0.08

-0.22

-0.36

1.97

-0.21

1.68

1.25

-0.14

1.79

2.56

0.74

3.16

-0.18

-0.09

-0.08

0.01

-1.08

-0.83

-1.02

-0.24

0.01

-0.11

0.20

0.18

0.76

0.47

0.05

0.08

-0.14

-3.11

-0.50

-0.73

-1.59

0.45

-2.47

0.21

-1.19

0.35

-0.54

0.01

-2.45

0.01

0.01

-0.31

0.01

0.01

-0.21

0.01

0.01

0.01

0.01

0.14

0.01

0.01

0.01

0.01

-0.42

-0.13

-0.08

-0.88

-1.61

0.31

-2.31

-0.28

0.05

0.19

-0.02

0.06

0.84

1.78

0.23

0.13

-0.32

-3.97

-0.47

-0.93

-2.02

-2.35

-3.29

0.01

-1.40

0.29

1.68

-2.89

0.50

0.14

0.06

0.28

0.25

0.43

-0.06

1.41

0.49

1.38

0.95

0.13

1.07

1.90

0.60

2.12

-0.28

-0.04

-0.03

-0.95

-0.90

0.80

-1.90

-1.29

0.07

0.08

-0.51

0.09

-0.10

0.36

0.15

0.07

-0.23

-4.91

2.50

-0.76

-2.84

-2.06

-4.48

0.70

-1.70

2.12

0.42

1.31

0.64

1.10

0.23

0.25

0.14

0.63

-0.03

1.02

0.53

1.07

0.61

0.32

0.90

1.54

0.76

1.46

-6

-4

-2

0

2

4

6

NaN

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

FIG. S10. Crosstalk matrix of the fast flux bias. Each qubit (coupler) is labeled by (x, y), which means it is located in the x-th column and

y-th row in our device. Note that we neglect crosstalk to couplers in our experiments.
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U3(³, ϕ, ¹) = Rxy(³, ϕ)Rz(¹) =





cos
(

³
2

)

−ie−iϕei¹ sin
(

³
2

)

−ieiϕ sin
(

³
2

)

ei¹ cos
(

³
2

)



 . (S15)

Note that Rz(¹) is implemented virtually by adding an extra ¹ to the phase of the subsequent microwave pulse [S31].

Rxy(³, ϕ) is implemented by applying a microwave pulse, whose phase is ϕ and whose amplitude depends on the rotation

angle ³.

4. Separate CZ gates in a given layer into several groups. This step is to avoid leakage caused by qubit level crossings while

multiple CZ gates operate in parallel. A maximum of two groups are enough for our Floquet-evolution circuit.

5. In the eigenstate circuit, we align the gates to the right of the circuit to delay the first operation on the qubit. Additionally,

for quantum state tomography measurements, tomographic rotation is combined with an SQ gate at the end of the circuit,

resulting in a U3 gate. To mitigate qubit-dephasing effects, these U3 gates are aligned to the left prior to measurement.

6. To suppress dephasing errors during idling, we incorporate dynamical decoupling (DD) gates. These DD gates are inserted

within the circuit, which effectively suppresses the dephasing and thus enhances the overall performance.

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ θ

θ

θ

θ

θ

θ

θ

FIG. S11. Experimental circuit to implement the Floquet unitary UF at B = 0.1. The first layer of the circuit encompasses the spin-flip

driving designed for H1, while the subsequent layers of the circuit simulate the evolution of the rotated surface-code Hamiltonian H2. UF is

composed of 15 SQ layers and 21 CZ layers. In total, it contains 117 single-qubit gates (excluding 40 dynamical decoupling (DD) gates) and

71 two-qubit CZ gates. We have three types of single-qubit gates: Clifford gates {X , Y , Z, ±X/2,±Y/2,±Z/2 }, parameterized rotation

gates {X(θ), Y (θ), Z(θ)}, and {U3(α, θ, φ)} gates. The DD gates are inserted in pairs. In our experiments, this circuit is repeated up to 20

cycles, for a total of about 2340 single-qubit gates and 1420 CZ gates. This equates to a time-domain sequence of ∼28.8 µs. Note that, at

B = 0, single-qubit gates in the H1 circuit are Clifford gates, and thus the whole circuit can be further simplified by merging some of them

into the H2 circuit.

III. NUMERICAL SIMULATIONS

For the experimentally-studied system size, we can numerically simulate the dynamics determined by specifically designed

quantum circuits in our experiment. First, classical simulations allow us to evaluate the feasibility of the theoretical proposal by

examining whether observables remain discernible after many Floquet cycles under realistic, noisy quantum gates. Second, we

can deepen our understanding of our device performance by comparing the experimental results with simulation predictions that

incorporate error models.
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A. Error model and noisy simulation

We employ the Monte Carlo wavefunction method [S32] to numerically simulate noisy circuits. The idea is to sample error

operators according to a noise model and randomly insert them after each ideal gate. In this way, errors occur randomly in the

circuit. We evolve the state vector along many quantum trajectories corresponding to many noise realizations. To obtain the value

of the desired observable, we average over an ensemble of quantum trajectories, which resembles repeated measurements for

evaluating the expectation value of an observable in real experiments. Notably, the Monte Carlo wavefunction method requires

fewer computational resources compared to the master-equation approach, because it only stores state vectors of size 2N during

the calculation rather than density matrices of size 2N ×2N . In this context, we use the state-vector simulator provided by Qiskit

for the numerical calculation of system dynamics. Qiskit provides several APIs to construct noise models that approximate the

behavior of noisy circuits executed on real NISQ devices.

We model realistic errors with different quantum channels, and represent them with a probabilistic mixture of different oper-

ators. The corresponding parameters are estimated using the experimental benchmarks of gate errors and device performance.

The following provides an introduction to the error model.

1. Decoherence errors. Due to interactions with the environment, energy relaxation and dephasing naturally occur in the

dynamics can be described by the quantum channel

E(Ä) =





1− Ä11e
−t/T1 Ä01e

−t/T2

Ä10e
−t/T2 Ä11e

−t/T1



 =
3

∑

i=0

MiÄM
 
i , (S16)

where Ä is the density matrix of a single qubit with elements Äij (i, j = 0, 1). Here, T1 represents the energy-relaxation

time originating from energy exchange with the environment, and T2 denotes the dephasing time characterizing the damp-

ing of off-diagonal terms of the density matrix. They satisfy the relation

1

T2
=

1

2T1
+

1

Tϕ
, (S17)

where Tϕ is the pure dephasing time, arising from non-dissipative interactions with the environment. This quantum

channel can be written in terms of the Kraus operators

M0 =
√
1− p0 − p1(|0ðï0|+ |1ðï1|),

M1 =
√
p0|0ðï0|,

M2 =
√
p0|0ðï1|,

M3 =
√
p1(|0ðï0| − |1ðï1|),

(S18)

which satisfy the normalization condition
∑3

i=0M
 
iMi = I . The Kraus operator M0 ∝ I indicates that the qubit remains

intact with probability 1− p0− p1. The pair of Kraus operators M1 and M2 describe spontaneous decay of the qubit from

its excited state |1ð to its ground state |0ð. This is realized in our simulations by randomly applying a reset operation to

the qubit with probability p0 = 1 − e−t/T1 . M3 contributes an additional dephasing channel to the qubit. Together with

the phase damping caused by M1 and M2, M1,2,3 describe the total phase damping. M3 is realized in our simulations by

randomly applying Ãz operators with probability p1 = 1
2e

−t/T1 [1 − e−t(1/T2−1/T1)]. The two simulation parameters p0
and p1 are estimated using the average values of T1 and T SE

2 reported in Section II A, while the value of t is set by the

averaged time required to apply an SQ (CZ) layer.

2. Depolarizing errors. The depolarizing channel is defined as

E(Ä) = (1− ep) Ä+
ep

4d − 1

∑

µ ̸=0

PµÄPµ, (S19)

where d is the number of qubits, Ä is a d-qubit density operator, Pµ ∈ {I,X, Y, Z}¹d is the tensor product of Pauli gates,

and ep denotes the Pauli error per cycle. We use the depolarizing channel to account for errors caused by imperfect control

of the system, such as gate control errors and crosstalk errors. It is realized in our simulations by applying a randomly

chosen non-identity Pauli string with probability ep/(4
d − 1).
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Using the error model above, we perform numerical simulations to verify the observed results in the main text. The deco-

herence error for each SQ (CZ) layer, quantified by p0 and p1 in the model, is estimated with T1 and T2 fixed by the average

measured T1, T SE
2 values (see Fig. S7), and with t set by the pulse duration corresponding to an SQ or CZ layer, depending on

whether the error channel is being applied after a single- or two-qubit gate layer. The average pulse duration is about 24.0 ns for

an SQ layer and 62.6 ns (52.5 ns) for a CZ layer in circuits with (without) eigenstate preparation. Then, the depolarization error

rate ep for each type of gate is estimated by subtracting the decoherence error rate from the median Pauli error rate ϵp estimated

in the previous section (Section II B). Here, Pauli errors are characterized using XEB experiments (see Fig. S8), whose median

value is ϵp ∼ 0.48×10−3 for a single-qubit gate, 0.64×10−2 for qubits involved in a CZ gate, and 1.37×10−3 (1.10×10−3) for

qubits that are idle during a CZ layer, in experimental circuits with (without) eigenstate preparation. Simulation results using the

error sources above are shown in Fig. 2a and Fig. 4b, c, and e of the main text and exhibit good agreement with the experiments.
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