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The speed of elementary quantum gates ultimately sets the limit on the speed at which quantum circuits can

operate. For a fixed physical interaction strength between two qubits, the speed of any two-qubit gate is limited

even with arbitrarily fast single-qubit gates. In this work, we explore the possibilities of speeding up two-qubit

gates beyond such a limit by expanding our computational space outside the qubit subspace, which is exper-

imentally relevant for qubits encoded in multi-level atoms or anharmonic oscillators. We identify an optimal

theoretical bound for the speed limit of a two-qubit gate achieved using two qudits with a bounded interaction

strength and arbitrarily fast single-qudit gates. In addition, we find an experimentally feasible protocol using

two parametrically coupled superconducting transmons that achieves this theoretical speed limit in a non-trivial

way. We also consider practical scenarios with limited single-qudit drive strengths and off-resonant transitions.

For such scenarios, we develop an open-source, machine learning assisted, quantum optimal control algorithm

that can achieve a speedup close to the theoretical limit with near-perfect gate fidelity. This work opens up a

new avenue to speed up two-qubit gates when the physical interaction strength between qubits cannot be easily

increased while extra states outside the qubit subspace can be well controlled.

I. INTRODUCTION

As noisy intermediate-scale quantum computers [1, 2] have

finite coherence times and imperfect gate fidelities, designing

quantum gates with faster speed and higher fidelity has been a

major focus in quantum computing [3–5]. Tremendous effort

from both academia and industry has been made on improv-

ing gate fidelities. This improvement, when coupled with the

recent development of low-cost error correction codes [6–8],

means that we may no longer be far from fault-tolerant quan-

tum computers. Therefore, increasing the speed of a quantum

computer would become a more important challenge in the

long term. The most direct way to address this challenge is to

achieve faster quantum gates, especially two-qubit gates since

they are usually the speed bottleneck for most hardware plat-

forms [9–11]. However, the speed of two-qubit gates is funda-

mentally limited by the interaction strength between the phys-

ical qubits [12]. An upper limit of such interaction strength

usually exists for a given hardware design, posing a strong

constraint on the speed of quantum computers.

One possible way to alleviate this constraint is to speed up

two-qubit gates using extra states present in physical systems

that carry the qubits. For example, if qubits are encoded in

atomic states, there often exist low-energy states other than

the qubit states that can be well controlled and have long co-

herence times [13–15]. Alternatively, for qubits encoded in

anharmonic oscillators such as superconducting qubits, one

can often control and measure higher energy states above the

qubit states [11, 16–18]. As a result, we can expand the com-

putational space from qubits to qudits (where d stands for the

dimension of the local Hilbert space). This allows us to go be-

yond the usual speed limit for two-qubit gates [12] without in-

creasing the physical interaction strength. While we can also

perform universal quantum computing using qudits as the na-
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tive information carriers [13, 19–23], this approach would re-

quire significant effort in developing compatible quantum al-

gorithms [24–26], efficient quantum circuit compilations [27–

29], and quantum error correction codes [30–32]. Here we

only intend to use qudits effectively as qubits for quantum

computing, but with a potential speed advantage over the use

of strictly qubits. More explicitly, we require the state of the

system to be within the qubit subspace before and after each

quantum gate, such that states beyond the qubit subspace can

only be populated in the middle of the gate implementation.

In fact, many existing quantum gate designs already involve

states outside the qubit subspace in a similar way [33–35]. A

simple example is a single-qubit gate achieved by a Raman

transition. Gates designed this way do not require end users

to consider states outside the qubit subspace, which greatly

simplifies the design of quantum circuits.

The idea of using extra states beyond the qubit subspace

to speed up two-qubit gates has been recently explored in a

system made of two coupled weakly anharmonic supercon-

ducting qubits [36]. Here we ask a more general question:

What is the fundamental speed limit of a two-qubit gate using

two qudits with a bounded interaction strength? For d = 2,

the answer to this question is known for any given two-qubit

gate and the form of interaction, provided that arbitrarily fast

single-qubit gates are available [12]. For d > 2, no similar

answer exists to our best knowledge. Ref. [36] studies such a

speed limit for a specific two-qudit Hamiltonian. But since the

study relies on numerical optimization, no well-established

speed limit was found. In this work, we provide more in-depth

answers to the above question by first deriving a rigorous the-

oretical bound on the speed of certain two-qubit gates using

a general two-qudit Hamiltonian. We show with explicit pro-

tocols that this bound cannot be generically improved and is

thus optimal.

Next, we argue that for physical Hamiltonians, the speedup

of two-qubit gates due to extra states in qudits comes from two

distinct sources: (1) larger coupling strengths between higher

energy states of each qudit and (2) constructive interference
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among multiple states beyond the qubit subspace. For exam-

ple, the speedup observed in Ref. [36] is largely due to (1), and

we provide an O(d) upper bound of such speedup. Here we

construct explicit protocols that can achieve speedup from ei-

ther or both of the two sources. Importantly, we show that for

d = 3, these protocols can be readily implemented using two

parametrically coupled superconducting transmon qubits [37].

The use of just one additional excited state for each transmon

qubit can already lead to a two-qubit iSWAP gate 3 times its

maximum speed with only two qubits. We further show that

this gate protocol is time optimal as no faster iSWAP gate can

be achieved based on the same interaction Hamiltonian.

In practice, it is hard to achieve the theoretical speed limit

mentioned above as it requires arbitrarily fast single-qudit

gates and no errors due to off-resonant drives or couplings. To

address this concern, we develop an open-source quantum op-

timal control algorithm combining the GRAPE algorithm [38]

with techniques in machine learning to optimize the fidelity of

a target two-qubit gate with two coupled qudits. We optimize

the pulse shapes of the drives on both qudits and identify the

shortest gate time for a gate fidelity above a desired thresh-

old. As an example, we focus on designing a speed-optimized

iSWAP gate using two coupled qutrits as discussed above.

Our optimal control algorithm generates gates with >99.99%
fidelity at a speed close to the theoretical speed limit, assum-

ing the maximum Rabi frequency of the drives is about an

order of magnitude larger than the interaction strength. If off-

resonant transitions are taken into account, the gate fidelity

will be lower (around 99%) for the gate close to the theoret-

ical speed limit, but we can slow down the gate by a small

amount to achieve >99.9% gate fidelity.

It is worth mentioning that the open-source repository we

developed for our optimal control algorithm can be useful for

a wide range of problems in quantum gate designs. Apart from

its high efficiency due to the use of state-of-art machine learn-

ing techniques, it can handle a general time-dependent two-

qudit Hamiltonian and multiple drives at different frequen-

cies, including the off-resonant transitions they may induce.

Our repository thus goes beyond several existing counterparts

for GRAPE-based algorithms [39–43].

The paper is organized as follows. In Section II, we study

the theoretical speed limit of two-qubit gates achieved with

two coupled qudits. We discuss explicit protocols that can sat-

urate the theoretical speed limit and explain the two different

sources of speedup for physical Hamiltonians. In Section III,

we introduce our quantum optimal control algorithm and ap-

ply it to find speed-optimized two-qubit gates using two para-

metrically coupled transmon qutrits. Section IV concludes the

paper with an outlook.

II. THEORETICAL SPEED LIMIT

We first derive a theoretical speed limit for a given two-

qubit gate assuming a bounded interaction strength between

two qudits and arbitrarily fast single-qudit gates. The Hamil-

tonian we consider is written in the following general form:

H(t) = H1(t) +H2(t) +Hc(t) (1)

where H1(t) and H2(t) are the Hamiltonians that act only on

the qudit 1 and qudit 2 respectively. Hc(t) denotes the interac-

tion between the two qudits. We upper bound the interaction

strength via ∥Hc(t)∥ f J , where ∥·∥ denotes the operator

norm (largest singular value of the operator) and J is a con-

stant that only depends on the dimension d of each qudit. We

do not limit ∥H1,2(t)∥, which allows for arbitrarily fast single-

qudit gates.

To find the speed limit for the above Hamiltonian H(t) to

generate a given two-qubit gate, we first recall results in the

study of quantum speed limits [44] that bound the minimum

time t§ to evolve an arbitrary quantum state to an orthogonal

state. For example, the Mandelstam-Tamm (MT) inequality

[45] shows that for any time-independent Hamiltonian H ,

t§ g π

2∆E
(2)

where ∆E =
√

ïH2ð − ïHð2 is the energy uncertainty of the

initial state. We assume ℏ = 1 throughout this paper.

The MT inequality can be generalized to accommodate a

time-dependent Hamiltonian H(t) and an arbitrary overlap

between an initial state |ψ(0)ð and a final state |ψ(T )ð [45],

which reads:
∫ T

0

∆E(t)dt f arccos |ïψ(0)|ψ(T )ð| (3)

where ∆E(t) is the uncertainty of H(t) in the state |ψ(t)ð.
We cannot directly apply the MT inequality or its above

generalization to bound the speed of a two-qubit gate. This is

because we have allowed for arbitrarily fast single-qudit gates.

Thus, it takes zero time to evolve from any state to an orthogo-

nal state. To address this issue, we need to separate the single-

qudit Hamiltonians H1,2(t) from the interaction Hamiltonian

Hc(t) in Eq. (1). This can be done by introducing the follow-

ing interaction picture Hamiltonian for Hc(t):

HI(t) = U 
H1

(t)U 
H2

(t)Hc(t)UH1
(t)UH2

(t) (4)

where we define the time evolution operator UG(t) ≡
T e−i

∫
t

0
G(t′)dt′ for a general time-dependent Hamiltonian

G(t). Since UG(t) is a unitary operator, it’s easy to see

∥HI(t)∥ = ∥Hc(t)∥.

Our goal is to implement a given two-qubit target gate U
in time T in the two-qubit subspace of the two qudits. This

means we require UH(T ) =

(

U 0

0 Ũ

)

, where Ũ is an arbitrary

unitary outside the two-qubit subspace. Such block-diagonal

UH(T ) ensures that as long as the initial state of the system

belongs to the two-qubit subspace, the final state does so too.

We can use the generalized MT inequality in Eq. (3) to

lower bound the time T to implement the target gate if we can

show that the evolution operator UHI
(T ) for HI is capable

of evolving some initial state to an orthogonal state. This is

however complicated by the fact thatUH1
(T ) andUH2

(T ) can

be arbitrary due to the lack of constraints on H1,2(t). Fortu-

nately, we can use the fact that UH1
(T ) and UH2

(T ) are only

arbitrary single-qudit unitaries to move forward. For concrete-

ness, we use the iSWAP gate as our target gate U below as an

example.
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Let us choose an initial state of the form |ψ0ð = (c0|0ð +
c1|1ð)¹ |0ð and denote |ψT ð = UHI

(T )|ψ0ð. Using the iden-

tity UHI
(T ) = U 

H1
(T )U 

H2
(T )UH(T ), we find that

|ïψ0|ψT ð| =
∣

∣

∣
ïψ0|U 

H1
(T )U  

H2
(T )UH(T )|ψ0ð

∣

∣

∣

f
∣

∣

∣
c0ï0|U 

H1
(T )|0ð+ c1ï0|U  

H1
(T )|1ð

∣

∣

∣
. (5)

where we used that fact that UH(T ) is an iSWAP gate in the

two-qubit subspace. For any UH1
(T ), we can then always

choose appropriate values of c0 and c1 to make ïψ0|ψT ð =
0. In other words, there exists at least one initial state such

that no matter how we choose H1(t), evolving under HI(t)
for time T results in an orthogonal state, provided that the

evolution under H(t) generates an iSWAP gate in the two-

qubit subspace.

We then bound the energy uncertainty ∆E(t) for the

Hamiltonian HI(t) at any time t in any state |ψð using

∆E(t) f
√

ïHI(t)2ð f
√

∥HI(t)2∥ = ∥HI(t)∥ f J (6)

where we use the fact that ∥HI(t)
2∥ denotes the largest eigen-

value of HI(t)
2, which cannot be smaller than ïHI(t)

2ð.
Combining Eq. (6) with Eq. (3) above, we arrive at

tiSWAP g π

2J
. (7)

Therefore, we obtain a theoretical speed limit for implement-

ing a two-qubit iSWAP gate with a generic two-qudit Hamil-

tonian in Eq. (1) satisfying ∥Hc(t)∥ f J .

A similar but possibly more complicated analysis can be

applied to obtain the speed limit for other two-qubit gates.

For the iSWAP gate, we can further show that the speed limit

given by Eq. (7) is optimal. This can be seen first for the d = 2
case, where we can generate the iSWAP gate directly using

H = J(σ+
1 σ

−
2 + h.c.) that satisfies ∥H∥ = J . At time T =

π/(2J), we can easily check that UH(T ) = e−iHT = UiSWAP,

exactly reaching the speed limit predicted by Eq. (7).

From Eq. (7), we also see that if J ≡ max∥Hc(t)∥ is a con-

stant independent of d, then no speedup can be obtained if we

go from two qubits to two qudits. Fortunately, for many phys-

ical Hamiltonians, when we expand the computational space

from qubits to qudits, the value of J will increase naturally

without physically increasing the interaction strength (such

as moving the two qudits spatially closer). For example, the

interaction between two capacitively coupled superconduct-

ing transmons (which are anharmonic oscillators) can be de-

scribed by

Hc = g(a1 + a 1)(a2 + a 2) (8)

where g characterizes the physical interaction strength and ai
is the annihilation operator for the ith anharmonic oscillator.

We can truncate the Hilbert space of each anharmonic oscil-

lator to d dimensions, making a system of two qudits. It is

not hard to show that ∥Hc∥ = gO(d). Intuitively, this is be-

cause the creation/annihilation operators have matrix elements

of roughly
√
d in the subspace formed by the two highest Fock

states |d − 1ð and |d − 2ð. Then Eq. (7) predicts a potential

O(d) speedup for the implementation of a two-qubit gate, con-

sistent with the numerical findings in Ref. [36].

Here we construct an explicit protocol based on the Hamil-

tonian in Eq. (8) to speedup a two-qubit iSWAP gate by a fac-

tor of d − 1. We can replace the constant coupling strength g
in Eq. (8) by a parametric coupling g cos(ωt) [37], where ω is

set to match the energy difference between the |d − 1, d − 2ð
and |d − 2, d − 1ð energy eigenstates. If we assume the an-

harmonicity and frequency difference of the two transmons

are sufficiently large compared to g, we induce an effective

Hamiltonian of the form

Heff = g(d− 1)(|d− 1, d− 2ð ïd− 2, d− 1|+ h.c.). (9)

If we further assume that single-qudit gates are arbitrarily fast,

we can swap the information stored in the states |d − 2ð and

|d−1ð to the computational basis states |0ð and |1ð in no time,

thus achieving an iSWAP gate in time T = π/[2g(d− 1)].
A very different way to obtain the same amount of speedup

is to couple many states in the qudit space collectively to some

states in the two-qubit subspace. For example, we can con-

sider the following effective coupling Hamiltonian

H ′
eff = g(|0ð+ |2ð+ · · ·+ |d− 1ð)¹2 ï11|+ h.c. (10)

Simply speaking, we couple the state |11ð to (d− 1)2 orthog-

onal Fock states with a uniform coupling strength g. If we

start the two qudits in the state |00ð and perform a single-

qudit gate that takes |0ð to 1√
d−1

(|0ð + |2ð + · · · + |d − 1ð)
for each qudit before and after the evolution of H ′

eff for time

T = π/[2g(d−1)], we end up in the |11ð state. A more careful

analysis reveals that this process implements an iSWAP gate

if we further flip the second qubit before and after the process.

Both protocols above saturate the theoretical speed limit

given by Eq. (7) in different ways and implement an iSWAP

gate O(d) faster than when the evolution is constrained to

within the qubit subspace. Moreover, we can even combine

the speedup obtained in the above two protocols in an experi-

mentally realizable Hamiltonian for d = 3. By parametrically

driving the coupling g in Eq. (8) with four different frequen-

cies, corresponding to the energy differences between |00ð
and |11ð, |02ð and |11ð, |20ð and |11ð, as well as |22ð and |11ð,
we end up with the following effective coupling Hamiltonian

in the rotating wave approximation:

H ′′
eff = g(|00ð+

√
2 |02ð+

√
2 |20ð+2 |22ð) ï11|+h.c. (11)

It’s not hard to show that an iSWAP gate can be achieved us-

ing the following gate sequence after projecting onto the two-

qubit subspace:

UiSWAP = X2U
 
1U

 
2e

−iH′′

eff
π
6gU2U1X2 (12)

where U1 and U2 are rotations around the y axis by an angle

2 arctan
(√

2
)

for the effective qubit formed by the |0ð and

|2ð states for qutrit 1 and qutrit 2 respectively, and X2 flips

the states |0ð and |1ð for the second qutrit. If we again as-

sume arbitrarily fast single-qudit gates, we can now achieve
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an iSWAP gate in time T = π/(6g), three times the speed for

the same Hamiltonian restricted to the qubit subspace, where

the speed limit is π/(2g). We emphasize that this gate pro-

tocol also saturates the theoretical speed limit in Eq. (7) due

to ∥H ′′
eff∥ = 3g. Interestingly, we note that for d = 3 the

previous two protocols based on Heff in Eq. (9) and H ′
eff in

Eq. (10) both give an iSWAP gate time T = π/(4g) (assum-

ing negligible single-qudit gate times). The protocol using

H ′′
eff is faster as it uses both stronger coupling strengths for

higher excited states and a collective (but not uniform) cou-

pling between states in the qudit subspace and a state in the

qubit subspace.

III. OPTIMAL CONTROL RESULTS

In practice the single-qudit gates, such as the X2, U1, U2 in

Eq. (12), cannot be arbitrarily fast. Driving the transitions in

a qudit too strongly will off-resonantly drive other transitions

in the qudit. It may also drive transitions outside the qudit

subspace and transitions in the other qudit if individual ad-

dressing is not achieved by spatial separation, such as in most

superconducting qubit platforms. Admittedly, these problems

occur even if we are only driving the qubit transitions in usual

gate designs, but the fact that we have to drive transitions out-

side the qubit subspace resonantly and strongly makes it much

harder to control the errors caused by these off-resonant tran-

sitions. While we can control such errors using sufficiently

weak drives, the long time we spend on single-qudit gates can

easily negate any speedup we obtained for the gate protocols

in Section II.

To overcome this challenge, we develop a quantum opti-

mal control method based on the GRAPE algorithm [38] to

find optimal single-qudit Hamiltonians [H1,2(t) in Eq. (1)]

that lead to a two-qubit gate in a coupled two-qudit system

close to the theoretical limit studied in Section II with limited

single-qudit drive strengths and the presence of off-resonant

transitions. For simplicity, throughout the following discus-

sion we assume the coupling Hamiltonian Hc(t) in Eq. (1) is

time-independent, but we can also optimize Hc(t) if one can

engineer the interaction Hamiltonian temporally.

The goal of our optimal control algorithm is to maxi-

mize the average fidelity F between the evolution operator

UH(T ) = T e−i
∫

T

0
[H1(t)+H2(t)+Hc]dt projected to the two-

qubit subspace (denoted by UH below) and the target two-

qubit gate U , defined by [46]

F =
1

5
+

1

80

∑

j

tr
(

UU 
j U UHUjU 

H

)

(13)

where Uj ∈ {I,X, Y, Z} ¹ {I,X, Y, Z} is one of the 16

two-qubit Pauli operators. To be specific, we focus on finding

the fastest possible two-qubit iSWAP gate with a sufficiently

high fidelity F using two coupled qutrits with the interaction

Hamiltonian given by Eq. (11). As we introduced in Section

II, this Hamiltonian can be experimentally realized using para-

metrically coupled superconducting transmons [37]. To ac-

cess the full space of two qutrits, we will drive resonantly the

|0ð − |1ð and the |1ð − |2ð transitions for each qutrit and opti-

mize the pulse envelopes of each drive as our control.

We first consider the practical scenario where single-qudit

drives have finite strengths but off-resonant transitions can

be ignored. This can be a good approximation if the anhar-

monicity and frequency difference of the two transmon qubits

are much larger than the drive strengths and the interaction

strength g. In this case, the drive Hamiltonians take the form

H1(t) = (Ω1,1(t)|0ðï1|+Ω1,2(t)|1ðï2|+ h.c.)¹ I

H2(t) = I ¹ (Ω2,1(t)|0ðï1|+Ω2,2(t)|1ðï2|+ h.c.) (14)

Here Ωi,k(t) (i, k = 1, 2) represents the complex Rabi

frequency of the drive that is resonant with the transition

|k − 1ð − |kð in the qutrit i. Note that here we do not include

the diagonal Hamiltonian that defines the energies of the ba-

sis states |0ð , |1ð , |2ð for each qutrit, as we are in the rotating

frame of such a Hamiltonian.

To perform numerical optimization efficiently, we need to

discretize the continuous functions Ωi,k(t) above. As in the

standard GRAPE algorithm, we divide Ωi,k(t) from t = 0 to

t = T into M segments each with a duration τ = T/M .

Within each segment, we assume Ωi,k(t) is a slowly vary-

ing function that ensures Ωi,k(t) is continuous across different

segments. An example is:

Ωi,k(t) = A
(m)
i,k sin2[π(m− 1− t/τ)], t ∈ [(m− 1)τ,mτ ]

(15)

with m = 1, 2, · · · ,M . An illustration of Ωi,k(t) in this

form is shown in Fig. 1. We set M = 40 in our calculations,

which can be reached experimentally using commercial arbi-

trary waveform generators assuming a two-qubit gate time on

the order of 10-100ns, typical for transmon qubits. Further

increasing M does not lead to any noticeable improvement in

our results. We then optimize the 4M complex parameters

given by {A(m)
i,k } via a gradient descent method with random

initial values. We also run the optimization with multiple ran-

dom initializations and choose the highest fidelity obtained

from all runs.

To address the practical concern that single-qudit drives are

of limited strengths, we apply a constraint |A(m)
i,k | f Ωmax

for any i, k,m in our optimization, implying the Ωmax is

the maximum Rabi frequency of each drive. In Fig. 2, we

show the minimum gate time we obtained for a gate fidelity

F > 99.99% for different values of Ωmax (measured in units

of the interaction strength g). We choose this fidelity threshold

as it is higher than any experimental two-qubit gate achieved

up to date. From Fig. 2, one finds that if Ωmax/g ≳ 10, a

near-perfect iSWAP gate can be obtained for T = 0.4Tmin,

which is close to the theoretical speed limit T = Tmin/3. Here

Tmin = π/(2g) is the minimum iSWAP gate time for the cou-

pling Hamiltonian Hc in Eq. (11) restricted to the two-qubit

subspace (i.e. g(|01ðï10| + h.c.). Even for Ωmax as small as

3g, we can still obtain a faster gate than the two-qubit case.

The speedup we obtained from our optimal control algo-

rithm for a finite single-qudit drive strength is in fact non-

trivial. If we instead follow the exact theoretical protocol

in Eq. (12), we need to perform 4 single-qudit gates in serial
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1 3 5 7 9 11 13 15
m

-3

-1

1

3

5

7

9

11
Re(Ω1, 1(t)) Im(Ω1, 1(t))

Figure 1. An example of the pulse shape Ω1,1(t) (in units of g)

in Eq. (15) for the drive resonant with the |0ð-|1ð transition of the

first qudit. This pulse shape is obtained from our optimal control

algorithm. For a better presentation, only the first 15 segments of the

full 40-segment pulse are shown here.

3 5 7 9 11 13 15 17 19
Ωmax/g

0.4

0.6

0.8

1.0

1.2

1.4

T
F
/T

m
in

Exact Protocol
Optimal Control Protocol

Figure 2. The minimum gate times TF for F g 99.99% achieved by

the exact protocol in Eq. (12) and the optimal control protocol with-

out considering off-resonant transitions as a function of the maxi-

mum Rabi frequency Ωmax for the single-qudit drives.

and also spend a time Tmin/3 for evolving Hc. Moreover, the

single-qudit gates U1,2 in Eq. (12) require us to drive the tran-

sition |0ð−|2ð, which is a two-photon transition whose dipole

moment is typically much smaller than that for the |0ð−|1ð or

the |1ð − |2ð transitions in a transmon. Yet even if we assume

that the maximum Rabi frequency of the |0ð−|2ð drive is also

Ωmax, we still need to spend a minimum total gate time of

Texact =
π + 2arctan

(√
2
)

Ωmax

+
π

6g
(16)

to obtain an exact iSWAP gate in the two-qubit subspace fol-

lowing Eq. (12). As shown in Fig. 2, we see that Texact is sig-

nificantly larger than the gate time we obtained using the op-

timal control algorithm, despite that both gate times approach

the theoretical limit π/(6g) in the Ωmax → ∞ limit. The speed

advantage brought by the optimal control method is likely due

to the fact that single-qudit drives are applied simultaneously

with the two-qubit interaction [47], while for the exact proto-

col the drives and the interaction are applied in serial.

The optimal control algorithm can also give us much higher

gate fidelity if we slow down the gate a bit. As shown in Fig. 3,

we can achieve a gate infidelity below 10−13 for a gate time

T = 0.45Tmin, which is still more than twice the speed of an

iSWAP gate using only two qubits.

0.30 0.35 0.40 0.45 0.50 0.55 0.60
T/Tmin

10−1
10−2
10−3

10−5

10−7

10−9

10−11

10−13

1
−
F Optimization without ORT

Optimization with ORT

Figure 3. The infidelity 1 − F of the iSWAP gate achieved by our

optimal control algorithm with and without considering off-resonant

transitions (ORT) as a function of the gate time T using two coupled

qutrits. The theoretical speed limit is given by T = Tmin/3, which

can only be achieved with infinitely fast single-qudit gates. Here

we assume a maximum single-qudit Rabi frequency Ωmax = 20g
(Ωmax = 40g) for the optimization without (with) ORT.

The results shown so far assume that the four drives in

Eq. (14) do not drive any other transitions off-resonantly. This

assumption may not be valid if the two transmons are already

strongly coupled, which is preferred for a fast two-qubit gate.

For example, for a coupling strength g in Eq. (8) on the order

of 10MHz, we need to drive each transmon with a maximum

Rabi frequency on the order of 100MHz in order to approach

the theoretical speed limit as indicated by Fig. 2. This is not

much smaller than the anharmonicity of the transmon or the

frequency difference between two transmon qubits (both typ-

ically a few hundred MHz [37, 47]). Therefore, our next step

is perform the optimization with the off-resonant transitions

induced by the drives modelled by the Hamiltonians H1,2(t).
Since the qubit frequency of most transmons is much larger

than their anharmonicity, we can still safely ignore any off-

resonant two-photon transitions. For two qutrits, there are four

single-photon transitions: the |0ð−|1ð and |1ð−|2ð transitions

for each qutrit. Each of the four drives in Eq. (14) is resonant

with one of the four transitions, but can drive the remaining

three transitions off-resonantly. In addition, we should also

consider the fact that each of the four drives may also drive

the transition |2ð − |3ð off-resonantly for each transmon and

excite the system outside the Hilbert space of two qutrits. To

address this issue, we will expand our Hilbert space to d = 4
to explicitly take into account the |3ð state for each trans-

mon. We then add a penalty proportional to the maximum

and the average population outside the two-qutrit subspace to

the loss function, i.e. the infidelity 1 − F . As we discuss

in the Appendix, this penalty ensures that the leakage of the



6

state outside the two-qutrit subspace causes a negligible (less

than 0.1%) drop of the gate fidelity. Therefore, we can safely

ignore off-resonant transitions involving even higher energy

states, such as |4ð, |5ð, etc.

Note that we can now set Ωmax/g to a larger value (40 from

now on) as we have modelled all off-resonant transitions (5

for each drive tone). We set the anharmonicity to be 10g
and the frequency difference between the two transmon qubits

to be 15g, which are within the experimental reach for g as

large as 30MHz [37, 47]. As shown in Fig. 3, our optimal

control algorithm managed to find pulse shapes that lead to

>99% gate fidelity at T = 0.4Tmin and >99.9% gate fidelity

at T = 0.55Tmin. While both the gate fidelity and gate speed

are lower than the case without considering off-resonant tran-

sitions, we still obtain a notable speedup with a sufficiently

high gate fidelity. For g = 30MHz (in frequency not angu-

lar frequency), this means we can achieve an iSWAP gate in

time T ≈ 4.6ns with >99.9% fidelity, which is much faster

than any two-qubit gate experimentally achieved with trans-

mon qubits. In addition, we expect even higher fidelity and

faster gate if the anharmonicity and the frequency difference

between the two qubits are bigger.

Before we close this section, we point out a number of

technical achievements we made in our optimal control algo-

rithm. Our algorithm improves upon existing GRAPE based

algorithms for quantum gate designs such as QuTiP [39],

GRAPE-Tensorflow [40], and Juqbox [42]. First, we use the

state-of-art machine learning library Pytorch to perform auto-

differentiation of the loss function over the parameters in the

drive Hamiltonians. This auto-differentiation technique was

also used in Ref. [40]. Inspired by the state-of-art machine

learning practice, we further employ a stochastic gradient de-

scent algorithm with the Nesterov momentum method [48] to

improve the efficiency of the optimization process. In a re-

cent work [47], we have shown that this machine learning

inspired approach outperforms the standard GRAPE imple-

mentation (such as the one in the QuTiP software [39] which

uses the L-BFGS-B method) significantly when the parameter

space is large and a high fidelity (e.g. >99.9%) is needed.

Second, we adopt a symplectic second-order Runge-Kutta

(SRK2) method [49] in finding the evolution operator UH(T )
for the time-dependent Hamiltonian H(t). A symplectic ordi-

nary differential equation (ODE) solver conserves the unitar-

ity of the calculated evolution operator, which allows us to use

a larger step size to achieve a similar numerical accuracy, thus

making the optimization more efficient. A similar symplec-

tic method was used in Refs. [42, 43] also for GRAPE based

algorithms.

We have made an open-source repository [50] that imple-

ments our optimal control algorithm in Python. This reposi-

tory may benefit a wide range of researchers working on opti-

mal quantum gate designs not only due to its high efficiency,

but also due to its general framework that allows for multiple

drives within or outside the two-qubit subspace and accounts

for many off-resonant transitions. We have not seen such ca-

pabilities in any existing open-source repositories for optimal

quantum gate designs [39–43].

IV. CONCLUSION AND OUTLOOK

In this work, we have shown two primary results. First, we

derived a theoretical speed limit for certain two-qubit gates

implemented with two coupled qudits under the assumption

of arbitrarily fast single-qudit gates. This speed limit is op-

timal and it can be exactly achieved with physical interac-

tions among two qudits, providing an O(d) speedup in the

two-qubit gate time. In addition, we find that this speedup

can come from naturally stronger coupling between higher en-

ergy states of the qudits, collective couplings between states

in and outside the qubit subspace, or a combination of both.

Also, we have constructed explicit protocols to demonstrate

the speedup due to each of the above three cases.

Second, we addressed the concern that single-qudit gates

cannot be arbitrarily fast in practice by developing a GRAPE

based quantum optimal control algorithm and applying it to

obtain an iSWAP gate in the two-qubit subspace close to

the aforementioned theoretical speed limit for two coupled

qutrits. We develop an open-source repository for our al-

gorithm that implements state-of-art numerical optimization

techniques, allows for multiple drive frequencies, and takes

into account off-resonant transitions that cannot be ignored.

We expect this repository to be widely useful for researchers

working on optimal quantum gate designs, even if no states

outside the qubit subspace is used intentionally.

An alternative way to speedup a two-qubit gate is to use one

or more ancilla qubits, which is similar to the approach here

in that both are using extra states to go beyond the two-qubit

speed limit. However, it remains unclear where this approach

can actually lead to a speedup. Finding out the speed limit of

a two-qubit gate in a many-qubit system is also fundamental

interesting as it relates to the study of Lieb-Robinson bounds

and emergent locality in quantum many-body systems [51].

A natural follow-up to this work is to experimentally

demonstrate the speedup we obtained for the iSWAP gate us-

ing two parametrically coupled transmons. In addition, we are

also interested in designing specific protocols for other hard-

ware platforms such as trapped ions to accelerate two-qubit

gates there by using extra low-energy states that can be well

controlled. Admittedly, these protocols will bring an extra

level of complication in designing high-fidelity gates. But we

believe such complication can be tackled with a combination

of improvements in hardware and software, such as better in-

dividual addressing, more precise controls, longer coherence

times, and more powerful optimal control methods. Our work

thus creates a new pathway in further speeding up two-qubit

gates when conventional approaches such as increasing the in-

teraction strength between qubits have been exhausted.

APPENDIX: LEAKAGE ERRORS

In our optimal control algorithm discussed in Section II,

we have modelled the two-qutrit system with four states

(|0ð , |1ð , |2ð , |3ð) to account for errors induced by possible

leakage of the state outside the two-qutrit subspace for two

transmons. We further add a penalty to our loss function in
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the optimization to suppress the population outside the two-

qutrit subspace. To see how much leakage we still have, we

calculate the probability Pk (k = 2, 3, · · · ) for at least one

transmon to be in the state |kð as well as the probability P0,1

for both transmons to be in the two-qubit subspace. We start

the system in one of the four computational basis states (|00ð,
|01ð, |10ð, and |11ð) and plot in Fig. 4 the probabilities P0,1,

P2, P3, and P4 each averaged over the four initial states.

0 5 10 15 20 25 30 35 40
m

0.0

0.2

0.4

0.6

0.8

1.0
P0, 1

P2

P3

P4

Figure 4. Probabilities Pk for at least one transmon to be in the

state |kð during the gate protocol obtained from the T = 0.5Tmin

point of the optimization with ORT curve in Fig. 3. P0,1 denotes the

probability in the two-qubit subspace.

As we expected, over the application of M = 40 pulse

segments, P0,1 starts at exactly 1 and ends at 0.9978, show-

ing that we have achieved a high-fidelity two-qubit gate in the

subspace of two qudits with little leakage outside the qubit

subspace. Due to the penalty we add to minimize excitations

to states outside the two-qutrit subspace, we see that the pop-

ulation in the subspace involving state |kð, denoted by Pk de-

creases as we increase k. While the maximum value of Pk is

not negligible even for k = 4, we note that the value of Pk

gets very close to zero at the end of the gate implementation.

Fig. 5 shows that the leakage to higher excited states dur-

ing the gate implementation indeed has negligible effects on

the gate fidelity obtained. As an example, we take the pulse

shapes from the optimal control algorithm for a gate time

T = 0.5Tmin in the optimization with off-resonant transitions

(see Section II and Fig. 3). We then expand our Hilbert space

to consider all basis states from |0ð to |nmaxð for each trans-

mon, and calculate the gate fidelity with off-resonant transi-

tions to all higher excited states up to |nmaxð taken into ac-

count. We see that the gate fidelity only decreases by less

than 0.1% as we increase nmax from 3 (used in the optimiza-

tion algorithm) to 9. In fact, the gate fidelities reported in

Fig. 3 for the optimization with ORT are already the fidelities

calculated using nmax = 9 (although the optimization is al-

ways done with nmax = 3 for efficiency reasons). Thus we

have properly taken into account the leakage errors.

3 4 5 6 7 8 9
nmax

0.9960

0.9962

0.9964

0.9966

0.9968

F

Figure 5. Gate fidelity F to the ideal iSWAP gate when considering

leakage to higher energy states due to off-resonant transitions. We

consider all energy eigenstates of each transmon from |0ð to |nmaxð.
The particular gate calculated here is from the T = 0.5Tmin point of

the optimization with ORT curve in Fig. 3
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