l‘)

Check for
updates

Hanjun Li*®) | Huijia Lin!, Antigoni Polychroniadou?, and Stefano Tessaro

1

LERNA: Secure Single-Server
Aggregation via Key-Homomorphic
Masking

1 University of Washington, Seattle, WA, USA
{hanjul,rachel,tessaro}@cs.washington.edu
2 J.P. Morgan Al Research & AlgoCRYPT CoE, New York, NY, USA
antigoni.polychroniadou@jpmorgan.com

Abstract. This paper introduces LERNA, a new framework for single-
server secure aggregation. Our protocols are tailored to the setting where
multiple consecutive aggregation phases are performed with the same set
of clients, a fraction of which can drop out in some of the phases. We
rely on an initial secret sharing setup among the clients which is gen-
erated once-and-for-all, and reused in all following aggregation phases.
Compared to prior works [Bonawitz et al. CCS’17, Bell et al. CCS’20],
the reusable setup eliminates one round of communication between the
server and clients per aggregation—i.e., we need two rounds for semi-
honest security (instead of three), and three rounds (instead of four) in
the malicious model. Our approach also significantly reduces the server’s
computational costs by only requiring the reconstruction of a single
secret-shared value (per aggregation). Prior work required reconstruct-
ing a secret-shared value for each client involved in the computation.

We provide instantiations of LERNA based on both the Decisional
Composite Residuosity (DCR) and (Ring) Learning with Rounding
((R)LWR) assumptions respectively and evaluate a version based on the
latter assumption. In addition to savings in round-complexity (which
result in reduced latency), our experiments show that the server compu-
tational costs are reduced by two orders of magnitude in comparison to
the state-of-the-art. In settings with a large number of clients, we also
reduce the computational costs up to twenty-fold for most clients, while
a small set of “heavy clients” is subject to a workload that is still smaller
than that of prior work.

Keywords: Secure Aggregation + Reusable Setup * Privacy Preserving
Machine Learning

Introduction

1

A secure aggregation protocol allows a set of clients, each holding an input z;, to

interact with one or more servers, so that the latter learns the sum Y z;, but no

additional information. The inputs z; could be integers, often mod ¢, or vectors
of integers. In contrast to the usual setting of multi-party computation, which

© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASTACRYPT 2023, LNCS 14438, pp. 302-334, 2023.
https://doi.org/10.1007/978-981-99-8721-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8721-4_10&domain=pdf
https://doi.org/10.1007/978-981-99-8721-4_10

LERNA 303

assumes point-to-point channels, here communication only occurs between each
individual client and the server(s), i.e., there is no direct inter-client communi-
cation and clients can only communicate indirectly through the server(s).

Secure aggregation protocols are suitable for a broad range of applications,
such as privacy-preserving telemetry in browsers [14], analytics in digital con-
tact tracing [2], and Federated Machine Learning [9]. Practical multi-server
protocols [15,18] are, in fact, already being considered for standardization by
IETF [22]. In this paper, however, we target the single-server setting. This
setting is preferable whenever distributing trust among multiple non-colluding
entities is not easily feasible. However, it is also more challenging, as protocols
require multiple rounds of interaction and need to accommodate for potential
client dropouts, whilst ensuring the correctness of aggregation and the privacy of
clients’ inputs against other colluding clients and/or the server. These protocols
have emerged primarily in the context of Federated Machine Learning, starting
from Bonawitz et al. [10], which underlies Google’s Federated ML system [9],
and its recent optimizations and extensions [6,7].

This paper introduces a new general paradigm for single-server secure aggre-
gation, which improves upon the state-of-the-art in terms of round and com-
putational complexities. Our protocols are particularly advantageous in settings
where repeated aggregation phases are performed with the same set of clients
(some of which may drop out) as they only require two rounds per aggregation,
in addition to an initial setup round, at the presence of semi-honest colluding
clients and/or server. In comparison, prior protocols [7,10] require three rounds
per aggregation (without initial setup). In the malicious security model, all pro-
tocols require one additional round, namely, three rounds in our protocols and
four rounds in prior works. Moreover, our approach also significantly improves
the server workload by reducing the number of secret-sharing reconstructions.

Repeated Aggregation. While existing single server aggregation protocols
mainly focus on running a single aggregation, many scenarios require running
repeated aggregation sessions throughout a period of time, with the same set of
clients. A prototypical application involves a number of sensors or nodes in a
network reporting telemetry data. For example, a company of Internet of Things
(IoT) devices may want to aggregate operation data from a certain area period-
ically to help understand how the devices are used throughout the day. Other
examples include wireless sensor networks (WSN) [21], smart meters [3], and
medical devices [23].

Our protocol leverages the repeated aggregation setting by having an ini-
tial setup round that generates correlated states among clients to facilitate the
many aggregation phases later, reducing both round and computational com-
plexity. The protocol is robust to drop-outs, as long as the fraction of drop-out
clients is bounded at any point in time. Our main protocol focuses on the setting
with a large number of clients, e.g. M > 20K . To reduce communication costs,
it selects a committee of fixed size O(x?) in the initial setup round to hold the
correlated states. And the committee stays unchanged through out many aggre-
gation phases. The protocol guarantees the privacy of clients’ inputs against

304 H. Li et al.

statically corrupted clients that may collude with the server, provided that the
total number of corrupted clients in the setup and all aggregation phases are
bounded. Compared to protocols designed for single aggregation, we rely on the
more stringent condition that the total number of corrupted clients is bounded
across many aggregation sessions. However, one can alleviate this assumption by
periodically rerunning the setup phase, generating fresh correlated states among
clients. Different applications may refresh at a different frequency, say, every day,
every week, or even longer, depending on how likely clients are corrupted. Viewed
this way, our protocol offers a new tradeoff between the rate of corruption and
efficiency gain.

Alternatively, when the number of client is small, e.g. M < 80, our protocol
can avoid the committee in the initial setup round to guarantee stronger privacy:
in this setting, the clients may be adaptively corrupted instead of statically as
assumed above. (See the full version for details on this variant.)

Existing Single-Server Secure Aggregation. It is helpful to first review the
blueprint behind existing single-server aggregation protocols [7,10]. Here, we
restrict ourselves to the semi-honest setting for simplicity, but these protocols
(along with ours) can be modified to support malicious corruption of server and
clients.

The initial idea is to have each client i € [M] send a masked input z; = z;+¢;
to the server. To generate these masks, every pair of clients i,j establishes a
shared key k;; = k;; = PRG(g*"7), where ¢g* is a group element which acts as
an ephemeral public key associated with each client ¢ € [M], and which is shared
in an initial round (through the server) with all other clients. The value s; is
kept secret by client . Then, each client ¢ € [M] uses the mask

Ci:zkij_zkij .

j<i 3>

These masks satisfy in particular the cancellation property > . c; = 0, and con-
sequently the server can simply output), z; = Y. ;.

A first concern is that this only works if each client remains alive and indeed
submits its own masked input—a term k;; = k;; included in client j’s mask c;
is not canceled out without client ¢’s contribution. To handle a dropout, each
client additionally secret shares their own secret s;, which is reconstructed in
case they drop out, to then, in turn, derive all k;;’s for j # 4.

A second concern is that a slow client ¢ could be prematurely labeled as a
dropout, and their secret s; reconstructed before the masked value z; reaches the
server, thus revealing x;. To prevent this, each client initially shares a second
random mask b;, along with s;, and sends instead the masked input z; = x; +b; +
¢; to the server. Then, after receiving the masked inputs {z;};cs from a subset
I C [M] of the clients, for each i € I, the server reconstructs b;, thus allowing
the inclusion of (z; 4+ ¢;) in the final sum. In contrast, it reconstructs s; for all
i ¢ I, thus enabling the computation of), _; x; as discussed above. For every
client ¢ ¢ I, because b; remains secret, the value z; remains protected even if
later z; is obtained by the adversary.

LERNA 305

Therefore, the overall protocol needs three rounds. An additional round is
needed to tolerate a malicious server, and it forces the server to commit to a
single set I of clients which are claimed not to have dropped out.

The Costs of Secret Sharing. The most expensive part in the above blueprint
is the initial sharing of s; and b;, along with the later reconstruction of (one of)
them for each client. This impacts both the round and computational complexity
in several ways.

Foremost, secret sharing s; and b; takes one additional round of communi-
cation. While some initial setup round is somewhat inherent (e.g., to share keys
to allow clients to communicate with each other via the server), this becomes a
bigger concern in the repeated aggregation setting. Here, it is crucial that the
values s; and b; are re-generated and re-shared at each repeated session, for oth-
erwise dropping out at some later session may compromise the privacy of the
inputs from prior sessions.

Moreover, the computation and communication costs due to secret sharing
are high — ©(M) for each client, and ©(M?) for the server. Crucially, the server
needs to reconstruct one secret shared value—either s; or b,—for each client.
In addition, for every client dropout, the server needs to perform ©(M) expo-
nentiations to recover the corresponding values k;;. To reduce costs, Bell et.
al. [7] proposed to have clients only secret share in a random neighborhood of
size ©(log M + k), where k is the statistical security parameter. Though this
idea reduces the client and server costs to O(log M + k) and M (O(log M + k)),
respectively, the improvement is at the cost of weakening the security guarantees
at the presence of maliciously corrupted clients and/or server.!

Our Contributions. This paper proposes LERNA, a new lightweight approach
to single-server secure aggregation which addresses the aforementioned issues.
Foremost, it reduces the round complexity to two respectively three communi-
cation rounds for semi-honest and malicious security, respectively, in addition
to an initial offline round which establishes a setup that can be re-used across
multiple aggregations. Moreover, LERNA also features very small server costs,
as the server only needs to perform a single reconstruction of a secret-shared
value. We validate the performance of LERNA also by benchmarking a proto-
type implementation.

An important feature of our implementation is that it identifies a (random)
subset of the clients as a committee. Our benchmarking shows that the compu-
tational costs of committee members are smaller than the client costs of prior
solutions. However, LERNA is even more lightweight for clients outside of the
committee. Indeed, in addition to participating in an initial setup stage, non-
members only need to send a single message to the server to include their input in
an aggregation session, and subsequent interaction within the same session only
involves committee members. Our benchmarking demonstrates up to twenty-fold
performance improvement for these non-committee clients.

! More specifically, using the protocol of Bell et. al., if the server is malicious, it may
recover the sums of inputs of multiple subsets of clients.

306 H. Li et al.

A drawback of our solution, as shown in our benchmark, is a relatively
heavy communication cost in the initial offline round. This requires participat-
ing devices to have sufficient storage and network bandwidth. To amortize this
one-time cost, an ideal application for LERNA runs repeated aggregation for
large numbers of iterations, T, before rerunning the setup. We envision run-
ning LERNA for machine learning from data collected from a large number of
relatively powerful devices, e.g. the payment terminals Amazon One, medical
imaging devices, weather stations, etc.

Our protocols are built on top of a new primitive, which we call a key-
homomorphic masking scheme, which allows clients to initially secret share a
re-usable secret value (i.e., which can be reused across multiple computations) to
the committee as part of the initial offline round. We provide two instantiations
from, respectively, the DCR, assumption [16] and (Ring) LWR assumption [5],
with the latter being our main result.

Related Work. The same reduction in round complexity was very recently
achieved by Guo et al. [19], also relying on a re-usable secret shared value.
However, their solution performs the aggregation in the exponent of a discrete-
log hard group, resulting essentially in the sever obtaining the value g2-i%:,
where ¢ is a group generator. In other words, the actual result can only be
extracted by computing the discrete logarithm, which is feasible only if)" z; is
sufficiently small. This forces the computation to be over small domains accom-
modating Federated learning of models with small weights, such as quantized
or compressed models. In contrast, most Federated ML tasks typically involve
large values. LERNA does not suffer from this drawback. Our approach differs
from [19] in that it relies on different mathematical structures (underlying the
LWR and DCR assumptions) to obtain the aggregated sum in the clear. This,
in turn, requires overcoming a few challenges, in particular, designing special
secret-sharing schemes tailored to our requirements — linear reconstruction via
small coefficients (for LWR) and working over the integers (for DCR).

The work of [20] proposed a semi-honest protocol, SASH+, using a seed-
homomorphic PRG based on LWR similar to our key-homomorphic masking
scheme. However, SASH+ exploits the homomorphic property in a different way
from LERNA. At high-level, assuming LWR with dimension n, SASH+ reduces
the problem of aggregating ¢-dimension inputs to aggregating n-dimensional
homomorphic PRG seeds, which is done using the protocol of [7]. This reduction
reduces the computation cost of the server and each client by roughly a factor of
(¢/n), but at the cost of increasing the round complexity from 3 to 4 per iteration,
and introducing an error to the aggregation result that scales linearly with M.
In comparison, LERNA reduces the round complexity from 3 to 2, and improves
the computation cost at the same time. LERNA also computes the aggregation
results exactly without error. As we’ll discuss in our benchmarks, LERNA server,
and non-committee clients are significantly faster than SASH+’s, while LERNA
committee clients become slower than SASH+ clients for very large M.

The work of [25] focuses on the specific application of repeated aggregation
in federated machine learning (FL), where the server selects a random subset of

LERNA 307

clients to aggregate at each iteration. It observes that the usual random client
selection strategy in FL causes a leakage of client inputs when the model is
close to converged. The paper proposes a new client selection algorithm to mit-
igate this leakage, assuming an honest server following this new algorithm. We
note that LERNA can also be adapted to run repeated aggregation over a dif-
ferent subset of clients at each iteration. The mitigation strategy can then be
orthogonally applied to the semi-honest version of LERNA. We stress that the
client selection strategy is not to be confused with LERNA’s committee selec-
tion. Client selection could be added on top of our protocol (but is not included
explicitly), and would happen in every iteration, whereas committee selection is
within our protocol, and happens only once during its setup phase.

A recent and concurrent work by Bell et al. [6] additionally considers the
question of input validation. While this is extremely important, it is orthogo-
nal to the issues studied by this paper. Their system also uses Ring-LWE for
efficiency improvement, but still follows broadly the above blueprint without a
re-usable setup.

1.1 Overview of LERNA

LERNA’s approach differs from the existing protocols in [7,10] whose core idea
is hiding each input x; with a masks that, as described above, satisfies the can-
cellation property. Instead, LERNA starts with a conceptually simpler solution,
where each client ¢ hides its input a; with a (random) mask ¢; as z; = x; + ¢,
and sends the masked value z; to the server. With the help of the clients, the
server first recovers cy =) ;. ¢4, for the set of online clients U, and hence the
aggregation result vy =), ;; z; — cy. The key question we answer is how the
clients securely help the server to compute cy.

Straw Man Solution. The first naive idea is to let every client secret share its
mask ¢; with all other clients using a linear secret sharing scheme (Share, Recon),
such as Shamir’s secret-sharing scheme. In particular, the Recon algorithm
involves evaluating a linear function on the shares. As in prior works [7,10]
each client only has a private and authenticated channel with the server. They
can also communicate with each other indirectly through the server. Assuming
a PKI setup, such indirect communication can be private and authenticated.
In more detail, each client i € [M] sends (through the server) the j’th share ¢}
of ¢; to each other client j € [M], before sending their masked input z; = ¢; + ;.
The server then finds the set of clients U who have completed both steps, and
notifies them of the set U for aggregation. Each client j then locally aggregates

the shares it has received from clients ¢ € U, obtaining cg/ =D iU c;. By the
linear homomorphism of the secret sharing, cg/ is the j’th share of the aggregated
mask cy. As long as enough clients, say j € U’ C U, send their aggregated
shares ¢ to the server, the latter can reconstruct ¢y = Recon({c}};cu7), and

then recover the aggregated input zy.

308 H. Li et al.

This simple solution is, however inefficient: The step where each client i shares
its mask ¢; with all other clients has overall 2(M?) communication complexity
per aggregation. To aggregate T times, the cost grows as £2(M? x T).

Key-Homomorphic Masking Scheme. Somewhat informally a key-
homomorphic masking scheme involves a pair of algorithms Mask, UnMask. The
Mask algorithm takes an input z from some input space Z,, a masking key
k from some key space KC, and a tag 7, and computes a masked message
z « Mask(k, ,2). The UnMask algorithm takes the above z and an “empty”
mask ¢ « Mask(k, 7,0) under the same key k and tag 7, and recovers the mes-
sage © «— UnMask(z, ¢).

Importantly, the scheme is additively key-homomorphic for masks with the
same tag 7: Mask(k+ k', 7,z + ') = Mask(k, 7, z) BMask(k’, 7, '), where H rep-
resents homomorphic addition. We can generalize the additive homomorphism
to evaluate any linear function L over masks {z; «— Mask(k;, 7, z;) }:

Eval(L, {z:}) = Mask(L({ki}), 7, L({z:})) ,

where the linear function L is evaluated respectively over k;’s in the key space
K and over x;’s in the message space Z,.

Jumping ahead, our instantiation of the masking scheme under LWR will
only achieve approzimate key-homomorphism. We will explain below how we get
around this limitation. For now, it is helpful to assume a perfect masking scheme
to convey the main idea.

Sketch of the LERNA Protocol. We now describe the semi-honest protocol.
Note that the following description depends on a commitment @ C [M]. One can
easily think of this committee as containing all clients, although in our concrete
instantiation below, we only include a (random) subset of the clients in @

— Setup phase: The clients agree on a common committee Q C [M] using public,
common randomness. Every client ¢ secret shares a fresh masking key k; as
{k:; }ielo) and sends the j’th share k; to committee member j € Q.

— Online phase: In the t*" aggregation session,

1. The clients sample a common tag 7 « H(sid,¢) using a hash function
‘H, modeled as a random oracle. Every client P; then computes a masked
input z; « Mask(k;, 7, 2;) and sends z; to the server.

The server identifies the set U of online clients. It sends U to all committee
members @, indicating that it wants to aggregate the inputs in U.

2. Upon receiving U, every committee member P; aggregates the key shares
k! it received from clients i € U, obtaining kY = 3., k?, which by linear
homomorphism, equals the j’'th share of ky = ;. ki. (Therefore, given
enough shares {k]U}jeU/, for a large enough subset U’, one can recover
ky.) Then, P; computes an empty mask cg-] — l\/lask(k;]U, 7,0), and sends
it back to the server.

LERNA 309

Upon receiving enough shares {céj }jev from a subset U’ C U, the server
homomorphically computes the aggregated mask

cy = Eval(Recon, {C;]}jGU’)
= Mask(Recon({k¥ };ct), 7, 0) = Mask(ks, 7, 0)

where the first equivalence uses the fact that the Recon algorithm is linear.
Similarly,

= ZZZ = Z Mask(k;, 7, ;)

icU =
= Mask(Zk‘“T le Mask (kv , T, xvr)
€U icU

The server can now recover xy = UnMask(zy, cp).

LWR-Based Instantiation. Our main instantiation of the masking scheme is
inspired by the simple seed-homomorphic PRG of [11]. The LWR assumption [5]
is associated with two moduli ¢ > p, where p is the modulus of the message
space. A tag 7 is an LWR public vector a € Zj, and the masking key k is an
LWR secret s € Zy. A masked input z is sunply an LWR sample rounded to p
added with the message x, i.e.,

LWR: 7 = a € Zg, k=seZy, z=[(s,a)],+z€Z

The linear structure of LWR implies the key homomorphism property. However,
it only holds approzimately due to rounding errors. More specifically: i) additive
key-homomorphism holds approximately with bounded error, and i) linear key-
homomorphism holds with bounded error if the linear function L evaluated has
small coefficients. To see i), consider two masks with keys k1 = s1,ke = s9,
inputs x1, 2, and a common tag 7 = a. We have

z1+ 22 = [(s1,a)], + a1+ [(s2,8)], + 22
[(s1+s2,a)], +21+22+¢€,

where e is the rounding difference between |[(s1,a)], + [(s2,a)|, and
[(s1+ Sg,a)jp, which is bounded by 1. With regard to i), when evaluating a
linear function L over the masks using the above approximate additive homo-
morphism, the error is scaled by the coefficients of L.

The approximate key homomorphism creates a technical issue in the protocol:
when the server evaluates Recon homomorphically, it introduces an additive error
in the aggregation result. To remove the error, our solution is to multiply the
inputs with a scaling factor A, set to be larger than the noise.

If the coefficients of Recon are large — e.g., as in Shamir’s secret sharing —
then the error induced by homomorphic evaluation, and hence the scaling factor
A becomes large, causing a significant overhead in the protocol. To minimize

310 H. Li et al.

this overhead, we will use a linear secret-sharing scheme whose reconstruction
function has only —1,0,1 coefficients — referred to as the flatness property. An
additional benefit of the flatness property is that Recon becomes computationally
cheaper, involving only simple additions and subtractions.

Committee Based Flat Secret Sharing Scheme. As motivated above, we
need a secret sharing scheme with small reconstruction coefficients. One solution
appears to come from the work of [17], which transforms any monotone Boolean
formula for the threshold function into a linear secret-sharing scheme with small
coefficients, satisfying flatness. Unfortunately, however, known constructions of
Boolean formulae for the threshold function with M inputs has a size 2(M?53)
[26], which by the transformation of [17] gives a secret sharing consisting of
Q(M53) elements in total. This is prohibitively expensive and recent work [4]
indicates several challenges in improving this.

Our committee-based construction follows the blueprint of [17], but drasti-
cally reduces the total share size from 2(M?>?) to ©(x?) where is the security
parameter. Our key observation is that in the setting of secure aggregation, a
much weaker secret sharing scheme (than that of [17]) suffices:

1. Instead of using a monotone Boolean formula for threshold functions, it suf-
fices to consider gap threshold functions. Such a function outputs 1 if more
than p fraction of the inputs are 1 and outputs 0 if less than v < p fraction
of the inputs are 1 (and has no guarantees for inputs in between). The values
of p and ~ correspond to the reconstruction and privacy thresholds in the
context of secret sharing.

2. Instead of using a single formula, we use a distribution F of formulae. Our
secret-sharing scheme has a setup phase where a formula is sampled f «— F.
As such, the security and correctness of secret sharing only need to hold with
overwhelming probability over the random choice of f.

Sampling f « F directly translates to sampling a committee of share holders
in the secret sharing scheme, corresponding to the committee @ chosen in the
setup phase of our protocol above.

3. In fact, we do not even need formulae that compute exactly the gap threshold
function. Instead, it suffices if for every “promised” input z, a random formula
f < F computes the correct output with overwhelming probability. That is,

Vz with hamming weight <YM or > pM,
Pr[f(z) correct |f «— F] > 1 — negl(x).

These relaxations allow us to modify the randomized construction of formulae
for threshold function in [26] to obtain a distribution of formulae with sizes
O(k?) satisfying the above. The transformation of [17] then gives a committee
based secret sharing consisting of only ©(k?) elements in total, with a O(x?)
size committee.

Server Efficiency. LERNA admits very efficient server computation. Upon
collecting all the masked inputs z; and all the mask shares ¢!, the server simply

LERNA 311

computes a sum Y, z;, reconstruction over shares ', and finally unmasks.

7
Since our secret sharing has 0/1 coefficients, reconstruction is also computing
a sum. LERNA server is 100x faster than that of prior work [7], where the
server needs to perform ©(M) reconstruction of Shamir’s secret sharing, and
O (M (log M + k)) group exponentiations. See Sect. 5 experimental data, and the

full version for asymptotic comparisons.

Static vs. Adaptive Corruptions. One consequence of the above approach
is that the random choices involved in sampling the formula (i.e., the commit-
tee of share holders) need to be independent of corruptions and dropouts in
an execution of the protocol, which we expect to be chosen non-adaptively (for
dropouts, in fact, we only require an overall set of potential dropouts to be fixed
non-adaptively, but when individual parties drop out can be chosen adaptively).
We stress that this assumption already inherently underlies the optimized aggre-
gation protocol from [7], which relies on choosing a random graph independently
of corruption and dropout patterns.

For the setting where the number of clients is small, e.g. M < 80, we show an
alternative instantiation of LERNA that doesn’t involve sampling a committee
of share holders in the full version. In this variant, LERNA tolerates adaptive
corruption.

2 Preliminaries

In this section, we explain the system and failure models of LERNA, and give
an overview of LERNA’s security requirements. We provide a formal security
definition in the UC framework in the full version.

System Model. LERNA is a framework for secure aggregation involving M
clients and a single server. Different from the systems in [7,10], LERNA has
a one-time setup phase followed by many, T, online phases (also referred to
as aggregation sessions). The setup phase creates correlated secrets si,..., 8y
among the M clients, which are re-used in all following online phases. Dur-
ing each online phase, the server computes the aggregation over fresh inputs
X1,...,Xp from the same set of clients. The inputs to the clients x; € Zt are
large integer vectors from a bounded (but potentially exponentially large) range,
and the aggregation results are computed coordinate-wise over the integers.

Communication Model. Similar to prior work, LERNA has a simple communi-
cation pattern. During the online phases, each client communicates only with
the server through private and authenticated channels. During the setup phase,
the clients communicate indirectly with each other through the server, also in a
private and authenticated way. This can be achieved by assuming a PKI setup,
or, to avoid the PKI setup, the clients can run pairwise key-agreement through
the server at the beginning of the setup phase. We need to assume (similarly to
[7,10]) the server behave honestly in the key-agreement round.

The LERNA protocol proceeds in rounds. In each round, each client may send
one message to the server, and may receive a reply message from the server. For
simplicity, we assume synchronized communication channels.

312 H. Li et al.

Failure Model. LERNA is designed to be robust against two types of failures,
corruption and dropout. For the first type of failure, a subset of the parties,
may or may not include the server, collude to try to learn the individual input
of the other clients. We further differentiate static and adaptive corruptions.
In static corruption, the adversary selects a subset of corrupted parties at the
beginning of the protocol execution. In adaptive corruption, the adversary is free
to choose which party to corrupt at any stage of the protocol execution. Our main
protocol in Sect. 4, suitable for running with large number of clients, tolerates
static corruption. The variant described in the full version for running with small
number of clients tolerates adaptive corruption. In the semi-honest setting, the
adversary learns the inputs and the internal states of the corrupted parties,
throughout the setup phase and all online phases. In the malicious setting, the
adversary controls the actions of the corrupted parties entirely.

For the second type of failure, a potentially different subset of clients drop
out from each online phase (and may come back in the future). We model no
clients dropout during the setup phase. This is equivalent to saying only the set
of clients who complete the setup phase is considered during the following online
phases. More precisely, we model the dropout failure by allowing the adversary
to choose a set of potential dropout clients D; for each online phase t, all at the
beginning of the protocol. The adversary is allowed to adaptively decide whether
and when each client P; € D; (from the potential set) actually drops out during
the online phase t.

Security Definition. The security of LERNA has two aspects: correctness and
privacy. They are parameterized by a constant fraction §, which represents the
fraction of dropout clients tolerated by LERNA.

Correctness guarantees that in the semi-honest setting, the server computes
the correct result in a session, as long as less than 6 M clients drop out in that
session. In contrast, in the malicious setting, a corrupted client may arbitrarily
“pollute” the aggregation result or cause it to be L, indicating an error.

For privacy, we consider an adversary that statically corrupts at most a v
fraction of the clients, before the aggregation protocol begins. We tolerate any
fraction 0 < < 1 — §. The adversary may additionally corrupt the server. The
following privacy guarantee applies to both the semi-honest and the malicious
settings.

In the simpler case, where only clients but not the server are corrupted, the
adversary learns only the corrupted clients’ inputs in each aggregation session
and nothing else. In the case where the server is also corrupted, the adversary
learns the corrupted clients’ inputs, as well as a single sum of the honest clients’
inputs in a sufficiently large set U C [M], where |U| > (1 — §)M.

For comparison, the privacy guarantee of [7] is weaker. In the case where
both the server and a subset of the clients are corrupted, an adversary may learn
multiple non-overlapping sums of the honest inputs in each aggregation session.
Their security guarantees that each such sum contains at least £2(log M) inputs,
which provides a weaker degree of anonymity.

LERNA 313

Formally, we define the security of LERNA in the UC framework [13]. Details
of the UC framework and our formal security definition are deferred to the full
version.

3 Technical Tools

In this section, we construct two technical tools, a key-homomorphic masking
scheme and a flat secret sharing scheme. As outlined in the technical overview
(Sect. 1.1), the masking scheme is used for hiding clients’ input vectors, and the
secret sharing scheme is used for sharing each client’s secret masking key.

3.1 Key-Homomorphic Masking
We first introduce the syntax of a key-homomorphic masking scheme.

- Setup(l’\J,Bmsg) : takes as inputs the security parameter)\, a message
dimension ¢, and a lower bound B, on the message modulus. It outputs
public parameters pp, which defines a key space K, a message space Zﬁm with
some modulus p,, > B, and a mask space Zf; with some modulus q.

In our framework, we assume every client enters the setup phase (Fig.1) with
common correctly generated public parameters pp. If the Setup algorithm is
deterministic, or public-coin, then this assumption is simply a notational conve-
nience, since each client can compute the common pp on its own, using a random
oracle to derive common public randomness if necessary.

— KeyGen(pp) : outputs a masking key k € K.
— TagGen(pp) : outputs a tag 7.

In our framework, each client P; derives its secret masking key k; in the setup
phase, and re-uses it during all online phases. In contrast, it derives a fresh tag
7 for each online phase, using common public randomness. We only require the
key-homomorphic property to hold for masks under the same tag 7. While the
tag is public to all clients, the masking keys must remain secret.

— Mask(pp, k,7,m) : takes as inputs a masking key k € K, a tag 7, and a
message m € Zf;m, and outputs a masked message c,,.

— UnMask(pp, ¢n, €o) : takes as inputs a masked message c¢,,, and an “empty”
mask cp (of message 0) under the same key and tag. It recovers a message
m* or 1.

The UnMask algorithm is a bit unusual, as it doesn’t take the masking key k or
the tag 7 to recover the message. Instead, it asks the caller to first compute an
empty mask ¢y using the key k& and tag 7, and then feed ¢y to the algorithm.
We define such a syntax because in our framework, the caller of UnMask is the
server. The clients jointly help the server compute the empty mask cq, instead of
revealing their masking keys, so that the keys remain secret during each online
phase.

314 H. Li et al.

— Eval(pp, L, {c;}): takes as inputs a linear function L with d integer coefficients
and d masks {c;}ic[g. It homomorphically evaluates L on the masks and
outputs the result cj,.

As mentioned earlier, the input masks {c;} to the Eval algorithm should be
masked under a common tag 7. Evaluating L on the masks roughly translates
to evaluating L on both the masking keys, over the key space K, and over the
messages, over the message space Zﬁm. We define this property below as key-
homomorphism.

Correctness. Formally, we define the correctness and the key-homomorphism
requirement as follows.

Definition 1 (correctness). For all public parameters pp, tags 7, and keys k
output by Setup, TagGen and KeyGen, and for all messages m € ng, the fol-
lowing holds.

Cm MaSk(pp, ka 7, m)a
Pr |UnMask(pp, ¢, co) = m =1
co < Mask(pp, k, 7,0).

Definition 2 (key-homomorphism). Consider any linear function L, repre-
sented by d integer coefficients. For all public parameters pp, tag 7, and keys
ki, .., ke output by Setup, TagGen, and KeyGen, and all messages my,...,my €
Zf;m, the following holds.

{6L — MaSk(pva({ki})7TvL({mi}))}
= {cL «— Eval(pp, L, {c;}) | ¢; < Mask(pp, k;, 7, mi)}7

where L({m;}) is evaluated over Zi, —and L({k;}), over the key space K.

The key-homomorphism definition above requires the evaluated mask cy, to have
the same distribution as the “target” mask ¢;. We next introduce a relaxation
to this rather strong property. Roughly, the evaluated mask cy, should be dis-
tributed close to the target mask ¢y. In other words, through homomorphic
evaluation we obtain the target mask with some bounded additive noise.

Our framework requires two additional properties from an approximate key-
homomorphic scheme. First, when computing UnMask on a masked input ¢, and
an empty mask cg, any additive noises in them translate to additive noises in
the recovered message. Second, when computing Eval on noisy masks, the addi-
tive noises translates to an additive noise in the evaluated mask, with bounded
magnitude. We formalize the above requirements as follows.

Definition 3 (e-approzimate key-homomorphism). Consider any linear func-
tion L, with d integer coefficients whose absolute values are bounded by some
B € N.

— Let ¢y, cy, be the evaluated and the “target” masks as defined in Definition 2.
We require
HéL — CL”oo S EdBL.

LERNA 315

— Let ¢y, co be the masked input and the empty mask as defined in Definition 1.
For all integer noise vectors ey, ey € Z¢, we require

UnMask(pp, ¢, + €1,¢0 + €2) = m + e + ez mod py,.

— Let pp, {c;} be the public parameters and the masks as defined in Definition 2.
For all integer noise vectors {e;}, whose values are bounded by some B, € N
we require

[Eval(pp, L, {c;}) — Eval(pp, L, {c; + €;})||oc < BedBy.

Security. For security, we require a mask under a randomly chosen key hides
its message. We further require this holds for a polynomial number of adaptive
sessions, each with a fresh tag sampled with public randomness, reusing the same
key.

Definition 4 (security). Let A be the security parameter. The masking scheme
is secure if for all input dimension € = £(\) < poly(A\) and message modulus
lower bound Bi,sg = Bmsg(A) < 209y (N) - any efficient adversary A has negligible
advantage in distinguishing the experiments Exp“,\;‘;l;k(l)‘) defined as follows:

— The challenger computes pp < Setup(1*, ¢, Biysg), and samples a masking key
k < KeyGen(pp). It launches A(1), sends pp to A, and repeats the following
steps until A outputs a bit b'.

1. Run 7 <« TagGen(pp;r) using fresh randomness r, and send (7,r) to A.
A replies with a message m € Zf;m.
2. If b = 1, compute c¢; < Mask(pp, k, 7, m). Otherwise, compute co «—
Mask(pp, k, 7,0). Send ¢, to A.

Construction Based on LWR. We construct a l-approximate key-
homomorphic masking scheme based on the learning with rounding (LWR)
assumption [5]. The construction is a slight modification to the almost seed
homomorphic PRG based on LWR in [11].

Definition 5 (LWR [5]). let A be the security parameter, n = n(\), ¢ = q(A),
p = p(A) be integers. The LWR,, 4, assumption states that for any m = poly(n)
A— L™ ", s Ly, u— L', the following indistinguishability holds:

q’
(A, LA ’ SJp) ~° (A, _qu)’
where |-],, is the rounding function defined as ||, : Zq — Zp 1 x — |(p/q) - x].
Construction 1 (key-homomorphic masking by LWR).

— Setup(1*, £, p,,) : deterministically choose a modulus ¢ and dimension n such
that LWR,, 4,p,, is assumed to be hard. Output pp = (¢, pm,q,n). The key
space is K = Zy, the message space, ng, which is the same as the mask
space.

316 H. Li et al.

KeyGen(pp) : sample a vector s « Zi, and output k = s.

— TagGen(pp) : sample a matrix A «— 23”7 and output 7 = A.

Mask(pp, k, 7, m) : parse the key and tag as k,7 = s, A. Output the masked
message ¢, = |[A-s], +meZ, .

— UnMask(pp, ¢, €o) : output the message m* = ¢, —cg € Zf,m.

— Eval(pp, L,{c;}) : parse L as d integer coefficients wuy,...,uq. Output the
evaluated mask cj, = Eie[d] u;C; € me'

The idea of the construction is simple. A masking key is an LWR secret k = s,
and a tag is a random LWR public matrix 7 = A. Given a masking key s, a tag
A, and a message m as inputs, the Mask algorithm hides the message m with a
fresh LWR sample [A - s] - We defer the proof of Lemma 1 to the full version.

Lemma 1. Construction 1 s a l-approzimate key-homomorphic masking
scheme under the LW R,, 4 p,. assumption.

Choosing Parameters ¢,n. It is proved in [5] that under the Learning With
Error (LWE) assumption with dimension n, modulus ¢, and any noise distribu-
tion bounded by B, the LWR assumption also holds with dimension n and moduli
g, Pm such that ¢ > Bp,,n*1) . It’s commonly believed that the LWE assumption
holds for sufficiently large B = poly(n), and sub-exponential modulus-to-noise
ratio a = ¢/B < 2V™. Therefore, given a message modulus p,, € N, it suffices
to set n = (logp, + 2(N))?, and ¢ = Bp,,,n'°8*.

Extension to Ring LWR. The above scheme can also be instantiated using the
Ring LWR assumption introduced together with LWR in [5]. We implement the
more computationally efficient version with Ring LWR and present experiment
data in Sect. 5.

Construction Based on DCR. Due to limited space, we defer our construction
of an exact key-homomorphic masking scheme under the decisional composite
residuosity (DCR) assumption to the full version.

3.2 Flat Secret Sharing

A threshold secret-sharing scheme with M parties normally has two algorithms
Share, Recon, and is parameterized by privacy and reconstruction thresholds 7, p,
where 0 < v < p < 1. Running Share on a secret value creates M shares. Running
Recon on any subset of more than pM shares recovers the secret. Any subset of
less than yvM shares contains no information about the secret.

Secret Sharing in Our Framework. Our framework uses the scheme in an
unusual way. In the setup phase, the clients run Share to create shares of their
masking keys. In the online phase, the server runs Recon not over the key shares,
but homomorphically over empty masks created under the key shares. As long
as Recon is a linear function, the key-homomorphism property (Definition 2)
ensures that running Recon over the masks translates to over the underlying key

LERNA 317

shares. The two thresholds v, p guarantees the masking keys are hidden when
at most yM clients are corrupted, and Recon succeeds when at least pM clients
are online.

This approach creates a technical challenge when the masking scheme has
only approximate key-homomorphism (Definition 3). Namely, evaluating Recon
homomorphically creates an additive noise, which grows with the magnitude of
the coefficients of Recon. The noise then propagates into the aggregation result.

To help remove the noise, each client input is multiplied with a scaling factor
A, set larger than the noise. To accommodate the factor A in the clients inputs,
the message modulus of the masking scheme is in turn increased by log A bits.
This overhead motivates us to construct a secret-sharing scheme with small
coefficients in Recon, which we call a flat secret sharing scheme.

Overview of Our Scheme. Our starting point is the linear secret sharing
scheme [17] that has 0, 1 coefficients. However, using the scheme has a prohibitive
overhead: the total share size scales polynomially in the population M, namely
Q(M5‘3).

A first attempt at reducing the share size is to run the scheme in a small com-
mittee, sampled during the setup phase. If client corruption and dropout happen
independently to the committee sampling, then the fractions of corruption and
dropout in the committee roughly equal the true fractions in the population.
This is true in our framework, where the set of corrupted clients, and potential
dropout clients are decided statically at the beginning.

That is, we add a Setup algorithm to the scheme, which samples a committee
Q@ C [M] at random. It can be shown that when the fractions 0 < v < p < 1
has a constant gap, a committee of size O(x) suffices, with a O(27") statistical
error.

Running [17] as a blackbox with a committee of size O(x) reduces the total
share size from O(M?53) to O(k®?). But we are able to further improve it to
O(k?), with a O(k?)-size committee, by re-visiting the analysis of [26], and con-
structing a committee version of [17] in a non-blackbox way. We summarize the
syntax of our committee-based scheme for some secret space M below.

— Setup(1”, M) takes as inputs the statistical security parameter x, and the
population size M. It outputs a committee () of share holders, and public
parameters pp.

— Share(pp, s) outputs shares {s;},;cq computed from s € M.

— Recon(pp, W, {s;};ew) takes as inputs a set W indicating which shares are
received, and the set of shares {s;};cw. It outputs a recovered secret s* or
1.

Correctness and Security. Formally, we define the correctness requirements
as follows.

Definition 6 (p-reconstruction). Let k be the statistical security parameter. For
all population size M € N, secret s € M, and subset T C [M] with size |T| > pM

318 H. Li et al.

the following holds.
(Q,pp) < Setup(1*, M),
wW=TnaQ, > 1 — negl(k).
{s;}q < Share(pp, s)

Recon(pp, W, {s;}w)

=S

The usual security requires that, for any corruption set C' C [M] below the
threshold, i.e. |C| < vM, corrupted shares {s;}onc contain no information
about the secret s.

We need a stronger property (which implies the usual one) to prove security of
our framework: given corrupted shares {s;}qonc of 0, there is algorithm Ext that
“extents” them to a full set of shares {s;}¢ for any secret s. The shares {s;}¢
distribute statistically close to shares of s. This is analogous to the property
that, given a corrupted subset of Shamir’s shares, one can interpolate the rest
of the shares to any secret s. We formalize this requirement as follows.

Definition 7 (vy-simulation-privacy). Let k be the statistical security parame-
ter. There exists an efficient deterministic algorithm Ext such that for all popu-
lation size M € N, secret s € M, and subset C C [M] with size |C| < yvM the
following two distributions are statistically close.

They share the same public parameters (Q, pp) < Setup(1*, M).

1. {sj}q is computed normally as {s;}¢g < Share(pp,s).
2. {3j}o = {sj}anc U {%}Qm@ s computed by
{s;}q — Share(pp,0) and {5;} oz = Ext(pp, C, {5 }onc, 5).-

Flatness. As explained in “Secret Sharing in Our Framework”, we require the
Recon algorithm to have small coefficients as a linear function over the input
shares. This minimizes the noise introduced by evaluating Recon homomorphi-
cally over empty masks. A similar situation arises in the security proof of our
framework, where the simulator needs to evaluate Ext (Definition 7) homomor-
phically over noisy masks. We therefore additionally require Ext to have small
coefficients as a linear function over the input shares and the secret. We sum-
marize the above requirements as “flatness”.

Definition 8 (flatness). Let k be the statistical security parameter. A flat secret
sharing scheme satisfies the following.

— The Recon algorithm, when not outputting L, can be written as a linear func-
tion over the input shares, with integer coefficients bounded by O(1).

— The Ext algorithm can be written as a linear function over the input shares
and the secret, with integer coefficients bounded by O(log k).

Construction Details. We start by recalling the result of [8] and [17], summa-
rized in the following theorem.

LERNA 319

Theorem 1 (formula to secret sharing [8,17]). For secrets over M = Z, for
any modulus q or M = Z, there exists an efficient algorithm that translates any
monotone Boolean formula f : {0, 1}M — {0,1}, over variables x1,...,xn, of
size d = |f|, to a pair of secret sharing algorithms Sharey, Recony satisfy the
following:

— Sharey(s) computes d share units, each corresponding to a literal in f. For
each share holder i € [M], its share s; consists of all units corresponding to
x;. Sharey(s) outputs the shares {s;}.

If M = Zg, each share unit is an element in Zq. If M = Z, with secrets
bounded by B, each unit is an integer bounded by B2".

— For any subset T C [M], let ap € {0,1}™ denote the assignment where a; = 1
iff t € T. For every subset of the shares {s; }r, reconstruction Recon(T, {s;}r)
succeeds iff f(ar) = 1.

For any subset {s;}c that fails to reconstruct, there exists a simulation algo-
rithm Ext defined analogously to Definition 7.
— The algorithms Sharey, Recony satisfy “flatness” per Definition §.

With Theorem 1, constructing a flat secret sharing scheme for any access struc-
ture reduces to finding a corresponding formula f:

— Setup constructs a formula f as pp, and defines the committee @ as the set
of distinct literals in f.
— Share, Recon simply run Sharey, Recony given by Theorem 1.

Below we first describe the result of [26], which shows the existence of a formula
ft, of size O(MP®3), for any t-threshold function. (Note that for any YM < t <
pM, f; satisfies our requirement.)

Construction 2 (t-threshold monotone Boolean formula [26]).
In [26], f¢ (over M variables) is implicitly constructed through a formulae dis-
tribution F} satisfying the following:

Va € {0,1}", Pr[f(a) = Threshy(a)|f — F] > 1—2M, (1)

where Thresh; denotes the ¢-threshold function. Applying the union bound over
all 2M values for a, we have

Pr|Va € {0,1}", f(a) = Thresh,(a) | f — F,| > 0.

Hence, there exists a formula f; in F; that computes Thresh, exactly.

Further, note that for any threshold 0 < ¢ < M, the function Thresh; over M
inputs is equivalent to Threshy; /o over M" = M + D < 2M inputs, with D < M
dummy variables always set to 1 or 0, respectively for the case of t < M/2 or
t > M/2. For technical reasons, we always choose M’ to be odd. Therefore, it
remains to construct a formulae distribution Fy; 9, for any odd M.

The construction is recursive. In the base case, F(©) is defined as

FO) .)T for a uniform j <* [M] w/ prob. p=3—+/5
BR w/ prob. (1 —p).

320 H. Li et al.
For i > 1, the formulae distribution F*? is defined inductively
FO o (B FE) A (B v FED)
where Fl(ifl)7 Fz(ifl), Féifl),Fffl) are distributions independent and identical

to F(—1_ It’s shown that after k = O(1) 4 2.65log M recursion steps, the dis-
tribution Firo = F*) satisfies Eq. 1.

Correctness and Efficiency of Construction 2. According to Eq.1, we examine

the probability that, for any assignment a € {0, I}M, a sample f(— F@
computes the incorrect result.

— When a has less than M/2 ones, f(¥)(a) is supposed to output 0, but instead

(incorrectly) outputs 1. Let pgi) denote this probability, i.e., f)(a) = 1. By
construction, we have

pl = (1—(1—pl=1)2)% (2)

— When a has at least M/2 ones, let pg) denote the probability that f(*)(a)
(incorrectly) outputs 0. Similarly, we have

i i—1))2
P =1—-(1—= @))% (3)
By construction of F(?) and that M is odd, we also have

(0) 1 1

), pe) < (1 =p)+p(5— 577)

(0)
s 2 2M

< (1
PSP T on
It remains to show that pgk),pgk) < 2M for k = O(1) + 2.65log M, which follows

from the technical claims below, which are taken directly from [26].

Claim 1 (phase 1). For the recurrence relations specified by Eq. 2, 3 with any
initial values satisfying ¥ < p/2 —p/(2M), 0 <1 —p/2 —p/(2M), it holds
that pgkl) <p/2—-102(1), and p&kl) <1-p/2-02(1) for ky =1.65log M.

Claim 2 (phase 2). For the recurrence relations specified by Eq. 2, 3 with any
initial values satisfying pgo) < p/2—90(1), and pgo) <1-=p/2—90(1), it holds
that p2), p%2) < O for ky = O(1) + log M.

Intuitively, a formula sampled from F(® fails with probability close to (but less
than) p/2 and 1 — p/2 respectively in the two cases. Each recursive step “shifts”
them further away from the starting points towards 0. Claim 1 shows that it
takes k1 = O(log M) steps to start at ©(1/M)-away and shift to 2(1)-away
from the starting points. Claim 2 shows that it takes additional ko = O(log M)
steps to shift exponentially close to 0.

LERNA 321

Since each recursive step multiplies the formula size by 4, after k = k1 + ko =
O(1)+2.65log M steps, the formulas in F(*) has size 40(0+2:65108 M — §(f53),

Reducing the Size of Construction 2. Our first observation is instead of the for-
mula f;, we only need a formula f,. that 1) computes 1 if the inputs have
> pM ones, 2) computes 0 if the inputs have < vM ones, and 3) may otherwise
compute either. We denote this (p,7)-threshold function Thresh, . A similar
trick reduces computing Thresh, , over M variables to Threshy 5 51/2_s over
M’ < 2M variables for some constant fraction § = (p —v)/4.

This observation allows us to calculate the initial failure probability for
O — FO differently from above.

— When a has less than M(1/2 — §) ones, f(© fails (i.e., computes 1) with
probability pgo) <p(l/2 —-90) <p/2—02(1).
~ When a has more than M(1/2 4 §) ones, f(©) fails with probability ¥ <

(I1-p)+p(1/2+0) <1—p/2—0(1).

Since the initial values of pgo),pﬁo) already satisfies the condition for Claim 2,
we indeed only need ko = O(1) + log M recursive steps! This observation
already let us reduce the size of the formula from 40(1)+2:56log M — O(7f5-3)
to 40(1)+logM — O(MQ)

Our second observation is that in the static corruption model, the set of
corrupted and the reconstructing share holders C,T; at each iteration ¢ is fixed
before the secret sharing Setup algorithm. Therefore, instead of finding an exact
formula f, ., that’s correct on all assignments, it suffices to sample f «— Fj,
during Setup that’s correct on the (poly(k) many) fixed assignments ac and
ar; .

In particular, we can avoid taking the union bound over values for a, and
only construct a distribution F), ., (equivalently, F| /5, 51/2—s) such that

2]%

Vae {0,1}", Pr[f(a) = Thresh,(a)|f — F,,] > 1 —2~.

By Claim 2, we now only need k4 = O(1) + log k recursive steps, which further
reduces the formula size to O(x?)!
To summarize, we obtain the following lemma.

Lemma 2 (flat secret sharing). For any population size M € N, constant frac-
tions 0 < v < p < 1, integer modulus q and dimension ¢, there exists a flat
secret-sharing scheme Setup, Share, Recon for secrets space M = Zg or M =17¢,
with privacy and reconstruction thresholds v, p. Furthermore,

— It has committee size |Q| = O(k?%), where the constant depends on the thresh-
olds 7, p.

— The Recon algorithm, when written as a linear function, has O(k) non-zero
coefficients, which are 1 or —1.

322 H. Li et al.

Concrete Algorithm for Theorem 1. When sharing a secret according to a for-
mula f, Sharey views f as a tree with AND, OR on the intermediate nodes, and
literals x; on the leaf nodes. It assigns a share to each node of this tree: i) Upon
reaching an AND node, split the current share s into two additive shares of s,
and assign them to the children. ii) Upon reaching an OR node, duplicate s and
assign them to the children. iii) Upon reaching a literal z;, assign s to share
holder i. Reconstruction according to f follows a similar recursive algorithm.

4 The LERNA Framework

In this section, we describe our abstract secure aggregation protocol assuming
the existence of the two technical tools introduced in Sect. 3:

— An e-approximate key-homomorphic masking scheme HM = (HM.Setup,
KeyGen, TagGen, Mask, UnMask, Eval) setup properly with HM.pp, specifying
a message space Z5 , mask space Z; and key space K.

— A flat secret sharing scheme SS = (SS.Setup, Share, Recon) for sharing the
masking keys in the above key space K.

The protocol additionally assumes a public key encryption scheme and two hash
functions Hip, Ho modeled as random oracles. We assume the hash functions
‘H1, Hs output exactly the numbers of random bits required by the algorithms
SS.Setup, and TagGen.

The protocol runs with M clients { P;} and a single server S for T iterations.
During each iteration ¢ € [T, every client P; obtains a fresh integer vector x € Z*
from a bounded range [0, B,,]. To avoid wrap-around in the aggregation results,
we setup the masking scheme with a modulus lower bound By = AM By,
where A is a message scaling factor introduced in the protocol.

The protocol is further parameterized by two thresholds «, d € (0, 1), specify-
ing the maximum fractions of corrupted clients and dropout clients, respectively,
under the restriction that v+ & < 1. We set the privacy threshold of the secret
sharing scheme to v, and the reconstruction threshold to p =1 — 4.

In the online phase, the protocol uses a noise bound B, and a message scaling
factor A, which we specify in Sect. 4.4 for concrete instantiations under LWR.

4.1 The Semi-honest Protocol

We start with the simpler, semi-honest variant of the protocol, given in Fig. 1,
and Fig. 2. We describe the additional steps to obtain the malicious variant next,
and defer the more formal (in the UC framework) security proof for the malicious
protocol to the full version.

Setup Phase. During the setup phase, the clients first agree on a small com-
mittee), computed using public common randomness r;. They each sample a
secret masking key k;, and secret share it to the committee @), using the server

LERNA 323

Setup Phase
Inputs to P;: The session id sid, public keys of other clients, and public param-
eters of the masking scheme HM.pp.

1. Each client P; obtains common randomness r1 = #i(sid) for sampling the
committee (@, SS.pp) < SS.Setup(;r1).
Next, P; samples a masking key k; < KeyGen(HM.pp) and secret shares it to
the committee: _
{k3}jeq Share(SS.pp, k:).

P; encrypts each share k; with the public key of its target P; as l;:; and sends
(sid, 7, 7, {I;;}JGQ) to the server S.

2. The server S receives the above encrypted shares from all M clients, and dis-
tributes them through messages (sid, {k:}'<[*!) to every committee member
P; e Q.

3. Each committee member P; € () receives encrypted shares, decrypts them,

and stores the plain shares {k} ViEM],

Fig. 1. LERNA protocol for the setup phase.

to distribute those shares. To keep the shares secret from the server, the clients
encrypt each share using the public key of its target share-holder.

Note that the clients only run the setup phase once, followed by T online
phases. In each online phase, each client P; uses the same masking key k; to
mask its fresh input vector x;. Reusing the masking key may seem like a privacy
concern. To address this, we ensure that in each online phase, the clients sample
a fresh tag T used for computing the mask. The randomness of the tag T protects
the input vector x;, as long as the masking key remains secret.

Online Phase.

Step 1: Every client runs the key-homomorphic masking scheme HM.Mask to
obtain a masked input vector z;, and sends it to the server S. It’s important
to note that key-homomorphism only holds for masks computed using the same
tag 7. Therefore, the clients sample the tag using public common randomness
Iro.

Step 2: The server receives the masked input vectors {z;} from the online
clients, and replies the online set U to each committee member. Note that non-
committee member clients don’t need to send anything in the rest of the online
phase.

Step 3: Every committee member P; aggregates locally its shares of masking

keys from the online set U to obtain an aggregated key share kJU, uses it to
compute an “empty mask” as its reconstruction vector w;, and sends it to the
server S.
Step 4: The server S receives reconstruction vectors {w;} from the online
committee members. It proceeds to locally recover the aggregation result.
First, it homomorphically aggregates the masked input vectors z; to obtain
Csum- By key-homomorphism, the vector cgu, approximately equals running

324 H. Li et al.

Online Phase: iteration t = 1,...,T
Inputs to P;: The session id sid, and an integer vector x; € Vi

1. Each client P; obtains common randomness ro = Ha(sid, t) for sampling a tag
7 = TagGen(HM.pp; r2), computes

z; + Mask(HM.pp, ki, 7, A - x;),

and sends a message (sid, 1, z;, t) to the server S.

2. The server S receives a masked input vector z; from each online client, and
records the set of dropout clients D. It computes the “online set” U = [M]\ D,
and sends a message (sid, U, t) to every online committee member P; € (QNU).

3. Each online committee member P; checks that |U| > (1 — d)M, and computes
a reconstruction vector

w; = Mask(HM.pp, Y, k5, 7,0) + e;,

where e; < [Be]’ is a uniformly sampled noise from range B.. If |U] is too
small, P; sets w; = L. P; sends a message (sid, j, w;,) to the server S.

4. The server S receives a reconstruction vector w; from every online committee
member, ignoring L. It records the set of valid vectors W. S homomorphically
sums over the masked inputs as csum = Eval(HM.pp,+,{z;}icv), and then
homomorphically runs the Recon algorithm over the vectors {w;}

co = Eval(HM.pp7 Recon(SS.pp, W, -), {wz})

If Recon aborts on the set W, then S outputs a message (sid,.L,D,t).
Otherwise, it uses co as the “empty mask” to recover Xy <+
UnMask(HM.pp, Csum, €o), and rounds x;; by A to obtain xy. It outputs a
message (sid, xy, D, t).

Fig. 2. LERNA protocol for the online phase (semi-honest).

HM.Mask on the scaled aggregation result x;; = A - >, x; under the key
ku = >y ki. It remains to obtain an “empty mask” co under the same key
ky, with which the server can recover the scaled aggregation result xj,, and
then the actual aggregation result xy = |x};/A] through rounding.

To obtain the empty mask co under the key kg, the server homomorphi-
cally runs the algorithm SS.Recon over the reconstruction vectors w;. By key-
homomorphism, the result indeed approximately equals cg. Note that approxi-
mate key-homomorphism causes some errors in the recovered result x7;. But we
set the scaling factor A sufficiently large to make sure such errors are removed
by the rounding step.

Alternative to the PKI Setup. The setup phase of our protocol requires the
clients to encrypt their secret shares under the public keys of the target share-
holders. For simplicity, our protocol assumes a public key infrastructure (PKI),
and that each client enters the setup phase knowing every other client’s public
key.

LERNA 325

An alternative approach is to let the clients run pairwise key agreement at
the beginning of the setup phase, as described in the “Communication Model”
paragraph (Sect. 2).

Committee Members and Non-members. Note that in each online phase,
non-member clients only have one task: send masked input vectors to the server.
The rest of the reconstruction steps are handled by committee member clients.

This separation of responsibility suggests an alternative aggregation model,
where during each phase, only a small, potentially random, subset among the
non-member clients is required to provide inputs. Our protocol can be adapted
straightforwardly to guarantee: as long as not too many committee members
drop out during the session, the server can securely compute the aggregation
result. This scenario can be useful for stochastic federated learning algorithms
that benefit from a large input population, but only learns from a random subset
at each iteration.

4.2 Correctness of LERNA

Below, we illustrate correctness by proving Lemma 3. A formal functionality
definition and security proof in the UC framework is in the full version.

Lemma 3 (correctness). If less than M clients dropout in an online session t,
then the server outputs the correct aggregation result with overwhelming proba-
bility in the semi-honest setting.

Proof (sketch). Looking at the reconstruction step (online step 4), we first argue
that the aggregated mask cg,yy is distributed close to a mask over the aggregation
result. By e-approximate key homomorphism (Definition 3), we have

llesum — Mask(HM.pp, Z ki, T, AX:xi)HOO < eM.
ieU ieU

For the UnMask algorithm to work correctly, we need to argue the recon-
structed mask ¢y is distributed close to an empty mask under the key >, ki.
To this end, we first argue that the Recon algorithm succeeds over the shares
from the set W with overwhelming probability. By assumption, online set U com-
puted by the server at the online step 2 has size |U| > (1 — §)M. Therefore, all
online committee members send reconstruction vectors w; at online step 3. Let
the online set at online step 3 be U’ C U. The set of valid reconstruction vectors
W equals W = U’ N Q. By assumption, we have |U’| > (1 — §) M. Therefore, by
(1 — d)-reconstruction, the algorithm Recon indeed succeeds with overwhelming
probability.

By flatness (Definition 8), the function Recon(SS.pp, W, -) is linear with O(1)
coefficients. Therefore, by e-approximate key homomorphism, we have

llco — Mask(HM.pp, Z Recon(SS.pp, W, {k}}jew), 7,0)|| o
< O(eB|Q)), v ks

326 H. Li et al.

where B, is the bound on the noises e; in the vectors w;.

Finally, we conclude that the UnMask algorithm on masks cg,y, and ¢y returns
anoisy result x;; = AY"; x;+e, where the noise has entries bounded by |le[|oc =
O(e(M + B.|Q))). As long as the message scaling factor A is sufficiently large
A > 2||e]|oo, the server indeed recovers the correct result through rounding by

O

4.3 Achieving Malicious Security

To achieve malicious security, we keep the setup phase (Fig. 1) unchanged, and
only modify the online phase (Fig.2) starting from step 2. The modifications
follow similar ideas to prior work [7,10]. The modified online phase is given in
Fig. 3, where the changes are highlighted in blue.

Online Phase: iteration t =1,...,T
Inputs to P;: The session id sid, public keys of other clients, and an integer
vector x; € Z¢.

2. The server S records the dropout set D and online set U = [M]\ D as in
Figure 2, and sends a message (sid,U,t) to every online committee member
P; € (QNU). Additionally, it sends a short hash of U, hy to every online
client.

3. Each client P; receives a hash hy from the server S, and sends its signature
oi(hu) to S.

4. The server S receives a signature from every online client, and sends the set of
valid signatures {o;(U)} to every online committee member P;.

5. Each online committee member P; checks that at least (1 +)M /2 signatures
over the hash hy are valid. If there are not enough valid signatures, it sets the
reconstruction vector w; = L. Otherwise, it proceeds as in Figure 2 step 3 to
compute the vector w;, and sends it to the server S.

6. The server S receives a reconstruction vector w; from every online commit-
tee member, ignoring invalid vectors like L. It proceeds as in Figure 2 step
4 to recover the result xy. In case of any failed step, it outputs a message
(sid, L, D, t).

Fig. 3. LERNA protocol for the online phase (malicious). (Color figure online)

To see why we need the additional steps in the malicious setting, consider
the following corrupted server. Recall that in the semi-honest online protocol,
the server sends an online set U to online committee members to recover an
aggregation result X =), X;. A corrupted server instead sends different online
sets, U # U’, to two subsets of online committee members. As long as both
subsets are large enough, the correctness of the semi-honest protocol guarantees
the successful recovery of both results xy and xy by the server. This obviously
violates our security definition, which requires only a single sum of honest inputs
is leaked in each online phase.

LERNA 327

The additional steps 3—4 in Fig. 3 roughly ask each client, including corrupted
ones, to “vote” on an online set U by signing a hash . The server collects those
signatures as unforgeable votes and sends them to the committee members. The
threshold in step 5 is set such that at most one online set U* can have enough
votes. Therefore, the above attack is prevented.

Preventing Abort Attacks. While setting the threshold for valid signatures
in Step 5 to (1 4)M/2 guarantees that at most one online set U* has enough
votes, it creates an opportunity for malicious clients to abort the protocol, even
when the server is honest, by not sending enough valid signatures. To avoid this
issue, we need enough honest clients so that their signatures alone are enough for
the threshold. Restricting the corruption and dropout threshold «,d such that
(37 + 20) < 1 suffices.

Claim 3. Assuming (37 + 26) < 1, and the server is honest, then every honest
committee member always collects at least (1 4+ v)M /2 valid signatures in Step 5.

Proof. By the assumption, there are at least (1 —~ —)M honest clients in each
iteration that remain online, and will send a valid signature in Step 3 on the hash
hi received from an honest server. Calculation shows (1—vy—3d)M > (1—v)M/2
iff 1> (3 + 20). O

By the above claim, an honest server is guaranteed to receive non-_L recon-
struction messages from all honest online committee members in Step 6. By
p-reconstruction (p = 1 — §) of the secret sharing, the server succeeds in com-
puting the empty mask cg.

Finally, the server may still abort if UnMask(HM.pp, Csum, €o) fails. However,
in our LWR masking scheme (Construction 1), the UnMask algorithm simply
computes a subtraction modulo p,,, which always succeeds.

Overhead of the Malicious Protocol. As highlighted in Fig.3, the com-
munication and computation overhead of the malicious variant consists of the
server sending valid signatures {o;(U)} in step 4, and each committee member
verifying those signatures in step 5, respectively.

For ease of presentation, the variant shown in Fig. 3 requires every client to
send a signature in step 3. However, it can be shown that at the cost of a O(27")
statistical error in privacy, only committee members need to send signatures.
Note that the number of signatures is at most the committee size |Q| = O(k?),
which is independent of the number of clients M, or the input dimension £.
Therefore, when M or ¢ is large, sending and checking those signatures incur
only negligible communication and computation overheads over the semi-honest
variant.

4.4 Instantiation Under LWR

Concretely, we instantiate the LERNA protocol with the 1-approximate homo-
morphic masking scheme based on LWR in Construction 1.

328 H. Li et al.

We set the noise bound B, = O(log(k)M2"), which is required for secu-
rity. (See the full version for security proofs.) where k is the statistical security
parameter. We set the message scaling factor A = O(M + B.|Q|) as required
by the correctness proof of Lemma 3, where |Q| = O(x?) is the committee size
of the flat secret sharing scheme, as described in Sect. 3.2. Under these settings,
our protocol sets up the LWR-based masking scheme with message modulus
(which is the same as the mask modulus) p,, = AMB,, which has bit length
log pm < O(1) + 3logk + k + 2log M + log B,.

The LWR-based masking scheme has keyspace K = Zy, where the dimension
n and modulus ¢ is chosen such that LWR,, ;,, . is assumed to be hard. We
therefore instantiate a flat secret-sharing scheme with secret space M = K = Zj.

We present communication and computation efficiency analysis for the LWR
instantiation in the full version.

5 Experimental Evaluation

We benchmark the concrete efficiency of the LERNA framework by implementing
the semi-honest protocol instantiated under the (Ring) LWR assumption (cf.
Sect. 4.4 for a description).

As our baseline, we compare our protocol design with the semi-honest pro-
tocol from [7], adapted naturally to the multi-session setting. In particular, the
baseline server uses the setup phase to randomly sample a communication graph,
and inform each client of its set of neighbors. Baseline clients re-use the same
communication graph throughout the following online phases.

Our benchmarks clearly highlight the lightweight server computation during
each online phase.

5.1 Implementation Details

Our prototypes are implemented in Python. The protocol simulations are run
locally, using the ABIDES simulation framework [12]. Our implementations use
the following libraries for heavy computations:

SEAL [24] and PySEAL 2 for polynomial arithmetics required by Ring LWR.

— Gmpy?2? for large integer arithmetics.

— M2Crypto* as an interface to AES for implementing a PRG and a random
oracle.

— PyNaCl® for public key encryption and key-agreement.

Setting Parameters. In the LERNA framework, we need to set two security
parameters, A = 128, k = 40. Computationally secure primitives (e.g., encryption

2 https://github.com/Lab41/PySEAL.
3 https://gmpy2.readthedocs.io/.

* https://m2crypto.readthedocs.io/.

5 https:/ /pynacl.readthedocs.io/.

https://github.com/Lab41/PySEAL
https://gmpy2.readthedocs.io/
https://m2crypto.readthedocs.io/
https://pynacl.readthedocs.io/

LERNA 329

Client Setup Computation Client Online Computation Sever (Online) Computation

s B member cient o% dropout I E—
o nonmember 06l ¥ e - swdropout
E " g Paiodgion® 5| - 10%aropoue
2 _ 2 2
g - g” : £ ////‘
£15 — e 04 515 Z =
2 - S 2 =
B P Fos B ///‘
R E — 210 W
5" L= § | =
5 . * 01 5| F
.
w4 % & w0 @ % % 4 s e 70w H % 4 % & 70 @
Number of Clients (x10%) Number of Clients (x10%) Number of Clients (x10%)
(a) LERNA client (b) LERNA client (c) LERNA server
setup computation. online computation. online computation.

Fig. 4. LERNA computation time vs. number of clients (M), with fixed input dimen-
sion ¢ = 10K.

and the masking scheme) are set to have A = 128 bits of security, and statistically
secure primitives (e.g., the flat secret sharing scheme) are set to have k = 40 bits
of security. The concrete committee size equals |Q| = 2 = 16384 for r = 40.

In our prototype, the message modulus p,, for the (Ring) LWR, based key-
homomorphic masking scheme is set as described in Sect. 4.4, which ranges from
142 to 145 bits in our benchmark settings. We set the RLWR dimension to be
21 and the modulus to ¢ = p,, - 22°* to guarantee at least 128 bits of security,
according to the hardness estimator® of [1].

In the baseline prototype, we set the field size for Shamir’s secret sharing to
be a 257 bit prime, because the secrets are 256 bit curves used in key-agreement.
To set the neighborhood size k and privacy threshold ¢ of Shamir’s secret sharing,
we follow Theorem 3.10 in [7] (section3.5). In our settings where the number
of parties ranges from M = 400,...,80K, the neighborhood size ranges from
k =109,...,126, and the privacy threshold ranges from ¢ = 55, ...,63 to achieve
277 = 2740 gtatistical error.

5.2 Benchmarks

Our benchmarks are run on a desktop machine with 32 Gigabyte of memory
and with a single core CPU speed 3.9 GHz. Our prototype implementations do
not take advantage of multiple cores. For computation time measurements, we
report an average over 10 experiment runs.

Computation Efficiency. We first benchmark the computation time of our
LERNA prototype with increasing numbers of clients M = 20K ...,80K. We
run the prototype with ¢ = 10K dimension inputs vector with random entries
from [0, 254], and fix the corruption threshold at v = 10%. In Fig. 4a, 4b, and 4c,
we respectively plot our client runtime during the setup and the online phases,
and our server runtime during the online phase. Comparing Fig. 4a and 4b, we
observe that the setup phase is much heavier compared to the online phases.
In Fig. 4b, and 4c, we observe that the dropout rate affects the computation
time of both committee member clients and the server. This is because our

5 Running code provided at https://lwe-estimator.readthedocs.io.

https://lwe-estimator.readthedocs.io

330 H. Li et al.

Client Online Computation Server Online C Client Amortized Comy

&
>

w0l 3 emnserer My e
5 Z12
£ ! —
£ H P
- H B0 e easeine
§oe -) Soajr = Lenasoter
02 .,/// ~@- Baseline client 02 ~¥- LERNA 40 iter
—#- LERNA (member) client A~ LERNA 20 iter
00 . : . oW 48— —a—8—8—a 00
%) 0 w0 00 =0 a0 » 5 e B w
Number of Clients (x10°) Number of Clients Number of Clients (x10%)
(a) Client online (b) Server online (c) Client amortized
computation. computation. computation.

Fig. 5. Computation time comparison between LERNA and [7], with fixed input dimen-
sion ¢ = 10K, and dropout rate v = 10%. (b) compares the server computation at a
smaller number of clients M = 400, ..., 3200 due to the high cost of the baseline server.
(¢) compares the amortized computation time of a single setup phase plus 20/40/80
online phases. Since the baseline client has negligible computation during setup, its
amortized time equals that shown in (a).

Client Online Computation Sever (Online) Computation

~A~ 0% dropout
~¥- 5% dropout
-#- 10% dropout

—A— 0% dropout
0.61 ~¥ 5% dropout
~#- 10% dropout
#- non-member

o <
=

Computation Time (s)
o o
\
L]
Y *
Computation Time (s)

01 & *
-
. 0
10 20 30 40 50 10 20 30 40 50
Dimension of Inputs (x10%) Dimension of Inputs (x10%)
(a) LERNA client (b) LERNA server
online computation. online computation.

Fig. 6. LERNA computation time vs. input dimension (¢), with fixed number of clients
M = 20K. The plot for client setup computation is omitted, as it doesn’t depend on Z.

committee member needs to aggregate masking key shares over the dropout set,
which becomes larger both under higher dropout rates and with a larger number
of clients. Our server similarly aggregates masked input vectors over the online
set, which becomes smaller under higher dropout rates.

In the full version, we give more detailed numbers about the running time of
different components of our protocols.

We next benchmark the computation time of our protocol with increasing
input dimensions ¢ = 10K ...,50K. We run the prototype with M = 20K
clients, and fix the corruption threshold again at v = 10%. In Fig.6a, and
Fig. 6b, we respectively plot our client and server during the online phase. Since
the clients and the server during the setup phase are independent of input dimen-
sions, we omit their plots.

Communication Efficiency. In Table1 we report the communication sizes
of our client with increasing input dimensions ¢ = 10K ...,50K. The server
communication can be deduced as the sum of all clients. Hence we omit its

LERNA 331

table. We run the prototype with M = 20K clients, and input entries from
[0,254]. We fix the corruption threshold and the dropout rate both at 10%.

Table 1. Client communication sizes.

Phase {=10K |{=30K |{=50K

Non-member setup |2.00 (GB) |2.00 (GB) |2.00 (GB)
Member setup 4.44 (GB) | 4.44 (GB) | 4.44 (GB)
Non-member online | 0.18 (MB) | 0.54 (MB) | 0.91 (MB)
Member online 0.37 (MB) | 1.09 (MB) | 1.82 (MB)

The total offline communication of our clients is indeed heavy, as reported in
Table 1. Each client sends encrypted shares of its masking key to the server. Due
to the large Ring LWR dimension (2048) and modulus (~400 bits), this phase
requires large communication (2 GB) from each client. Each committee member
additionally receives the encrypted shares from the clients.

Thankfully, the entire offline phase doesn’t need to be synchronized, which
eases the bandwidth requirement. If needed, each client can send a share of its
masking key to a committee member one at a time.

Comparing with the Baseline. To compare with the baseline, we run both
prototypes with 10K dimension inputs vectors with random entries from [0, 264].
We fix the corruption rate and the dropout rate at v = 10%.

As discussed in the introduction, we assume a statically corrupted set of
clients throughout the repeated T' sessions. A larger T', means a stronger assump-
tion on the staticness and the fraction of corruption. On the flip side, since our
protocol enjoys a re-usable setup across 1" sessions, a larger T gives better effi-
ciency. In comparing with the baseline, we not only compare the computation
time of each online iteration (Fig.5a, 5b), but also the amortized time over dif-
ferent settings of T' (Fig. 5¢). The client computation and communication cost of
running our setup phase (, where a fresh committee is formed and secret masking
keys are shared,) are shown in Fig. 4a and Table 1. The server costs of setup for
our server and for the baseline solution are negligible. Hence we omit reporting
them here.

From Fig. 5a, we observe that even our slower committee member client runs
faster than the baseline during each online iteration for M = 20K to M = 80K.
As expected, its running time grows faster with M than the baseline because
our committee member needs to aggregate masking key shares over the dropout
set. If the dropout rate is a non-zero constant, as set in our experiment, then the
committee client’s work grows linearly in M. In comparison, the computation
of the baseline depends linearly in its neighborhood size in the communication
graph, which is O(log M).

In Fig. 5c, we compare the clients’ amortized running time (showing the heavy
member clients for LERNA) of a single setup phase followed by T' = 20/40/80

332 H. Li et al.

online iterations. Since the baseline client has negligible computation during
setup, its amortized time equals its online computation time, which doesn’t
change with 7. We observe an advantage, even for the member clients, over the
baseline when amortized over more than 7" = 40 online sessions. For example,
at M = 80K, the total client computation time of 40 LERNA iterations equals
22+40.5-40 = 42(s). The total time of 40 baseline iterations is at least 1.2-40 =
48(s), according to the plot.

In Fig.5b we are only able to compare the server’s performance at moder-
ate numbers of clients M = 400...3200, because the baseline server runs too
long when M reaches 10K . But this is enough to illustrate LERNA’s advantage
(concretely, more than 100x) in server computation times.

Comparing with SASH+ [20]. As mentioned in “Related Work”, the pro-
tocol SASH+ from [20] reduces aggregating ¢-dimension inputs to aggregating
n-dimensional homomorphic PRG seeds, where n is the LWR dimension. SASH+
then runs [7] for the latter. Asymptotically, SASH+ reduces the computation cost
of [20] from O(k2 +kf) to O (k2 +kn+1) for the clients, and from O(kMl+x2M)
to O(kMn + k%M 4 M) for the server. We optimistically estimate that SASH-+
reduces the computation cost of [7] by a factor of (£/n).

In our benchmarks, ¢ = 10K, and the LWR dimension n = 2048. We estimate
the server and client computational costs of SASH+ to be 5x smaller than [7] (in
reality, the improvement is smaller due to other computation steps that remain
constant). Under this estimation, we observe that the LERNA server (Fig.5b)
and non-committee member clients (Fig.4b) still significantly outperforms the
SASH+ server and SASH+ clients. However, the cost of a LERNA committee
member (Fig. 5a) becomes comparable to (when M is relatively small e.g. 20K)
or slower than (when M is larger) a SASH+ client.

Acknowledgement. This paper was prepared in part for information purposes by the
Artificial Intelligence Research group and AlgoCRYPT CoE of JPMorgan Chase & Co
and its affiliates (“JP Morgan”), and is not a product of the Research Department of JP
Morgan. JP Morgan makes no representation and warranty whatsoever and disclaims
all liability, for the completeness, accuracy or reliability of the information contained
herein. This document is not intended as investment research or investment advice, or
a recommendation, offer or solicitation for the purchase or sale of any security, financial
instrument, financial product or service, or to be used in any way for evaluating the
merits of participating in any transaction, and shall not constitute a solicitation under
any jurisdiction or to any person, if such solicitation under such jurisdiction or to such
person would be unlawful. 2023 JP Morgan Chase & Co. All rights reserved.

Hanjun Li was supported by a NSF grant CNS-2026774 and a Cisco Research
Award.

Huijia Lin was supported by NSF grants CNS-1936825 (CAREER), CNS-2026774,
a JP Morgan Al Research Award, a Cisco Research Award, and a Simons Collaboration
on the Theory of Algorithmic Fairness.

Stefano Tessaro was supported in part by NSF grants CNS-2026774, CNS-2154174,
a JP Morgan Faculty Award, a CISCO Faculty Award, and a gift from Microsoft.

LERNA 333

References

10.

11.

12.

13.

14.

Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Cryptology ePrint Archive, Report 2015/046 (2015). https://eprint.iacr.
org/2015/046

Apple, Google: Exposure notification privacy-preserving analytics (ENPA)
(2021). https://covid19-static.cdn-apple.com/applications/covid19/current/
static/contact-tracing/pdf/ENPA_White_Paper.pdf

Asghar, M.R., Dan, G., Miorandi, D., Chlamtac, I.: Smart meter data privacy: a
survey. IEEE Commun. Surv. Tutorials 19(4), 2820-2835 (2017). https://doi.org/
10.1109/COMST.2017.2720195

Ball, M., Cakan, A., Malkin, T.: Linear threshold secret-sharing with binary recon-
struction. In: Tessaro, S. (ed.) 2nd Conference on Information-Theoretic Cryptog-
raphy, ITC 2021, 23-26 July 2021, Virtual Conference. LIPIcs, vol. 199, pp. 12:1—
12:22. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2021). https://doi.org/
10.4230/LIPIcs.ITC.2021.12

Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719-737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4.42

Bell, J., et al.: Acorn: input validation for secure aggregation. Cryptology ePrint
Archive, Paper 2022/1461 (2022). https://eprint.iacr.org/2022/1461

Bell, J.H., Bonawitz, K.A., Gascén, A., Lepoint, T., Raykova, M.: Secure single-
server aggregation with (poly)logarithmic overhead. In: Ligatti, J., Ou, X., Katz,
J., Vigna, G. (eds.) ACM CCS 2020, pp. 1253-1269. ACM Press (2020). https://
doi.org/10.1145/3372297.3417885

Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In:
Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27-35. Springer, New
York (1990). https://doi.org/10.1007/0-387-34799-2_3

Bonawitz, K.A., et al.: Towards federated learning at scale: system design. In:
Talwalkar, A., Smith, V., Zaharia, M. (eds.) Proceedings of Machine Learning and
Systems 2019, MLSys 2019, Stanford, CA, USA, 31 March— 2 April 2019. mlsys.org
(2019). https://proceedings.mlsys.org/book/271.pdf

Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017, pp. 1175-1191. ACM Press (2017). https://doi.org/10.1145/3133956.
3133982

Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410-428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4_23

Byrd, D., Hybinette, M., Balch, T.H.: ABIDES: towards high-fidelity multi-agent
market simulation. In: Proceedings of the 2019 ACM SIGSIM Conference on Prin-
ciples of Advanced Discrete Simulation, SIGSIM-PADS 2020, Miami, FL, USA,
15-17 June 2020, pp. 11-22 (2020). https://doi.org/10.1145/3384441.3395986
Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136-145. IEEE Computer Society Press (2001).
https://doi.org/10.1109/SFCS.2001.959888

Corrigan-Gibbs, H.: Privacy-preserving firefox telemetry with prio (2020). https://
rwc.iacr.org/2020/slides/Gibbs.pdf

https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://doi.org/10.1109/COMST.2017.2720195
https://doi.org/10.1109/COMST.2017.2720195
https://doi.org/10.4230/LIPIcs.ITC.2021.12
https://doi.org/10.4230/LIPIcs.ITC.2021.12
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://eprint.iacr.org/2022/1461
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1007/0-387-34799-2_3
https://proceedings.mlsys.org/book/271.pdf
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1145/3384441.3395986
https://doi.org/10.1109/SFCS.2001.959888
https://rwc.iacr.org/2020/slides/Gibbs.pdf
https://rwc.iacr.org/2020/slides/Gibbs.pdf

334

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

H. Li et al.

Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of
aggregate statistics. In: Akella, A., Howell, J. (eds.) 14th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2017, Boston, MA, USA,
27-29 March 2017, pp. 259-282. USENIX Association (2017). https://www.usenix.
org/conference/nsdil7/technical-sessions/presentation/corrigan-gibbs

Damgard, 1., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119-136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2_9

Damgard, I., Thorbek, R.: Linear integer secret sharing and distributed exponenti-
ation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol.
3958, pp. 75-90. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853-6
Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640—
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35
Guo, Y., Polychroniadou, A., Shi, E., Byrd, D., Balch, T.: Microfedml: privacy
preserving federated learning for small weights. Cryptology ePrint Archive, Paper
2022/714 (2022). https://eprint.iacr.org/2022/714

Liu, Z., Chen, S., Ye, J., Fan, J., Li, H., Li, X.: SASH: efficient secure aggregation
based on SHPRG for federated learning. In: Cussens, J., Zhang, K. (eds.) Uncer-
tainty in Artificial Intelligence, Proceedings of the Thirty-Eighth Conference on
Uncertainty in Artificial Intelligence, UAT 2022, 1-5 August 2022, Eindhoven, The
Netherlands. Proceedings of Machine Learning Research, vol. 180, pp. 1243-1252.
PMLR (2022). https://proceedings.mlr.press/v180/liu22c.html

Ozdemir, S., Xiao, Y.: Secure data aggregation in wireless sensor networks: a com-
prehensive overview. Comput. Netw. 53(12), 2022-2037 (2009). https://doi.org/
10.1016/j.comnet.2009.02.023

Patton, C., Barnes, R., Schoppmann, P.: Verifiable Distributed Aggregation Func-
tions. Internet-Draft draft-patton-cfrg-vdaf-01, Internet Engineering Task Force
(2022). https://datatracker.ietf.org/doc/html/draft-patton-cfrg-vdaf-01

Rieke, N.; et al.: The future of digital health with federated learning. CoRR
abs/2003.08119 (2020). https://arxiv.org/abs/2003.08119

Microsoft SEAL (release 4.0). Microsoft Research, Redmond, WA (2022). https://
github.com/Microsoft /SEAL

So, J., Ali, R.E., Guler, B., Jiao, J., Avestimehr, S.: Securing secure aggrega-
tion: mitigating multi-round privacy leakage in federated learning. arXiv preprint
arXiv:2106.03328 (2021)

Valiant, L.G.: Short monotone formulae for the majority function. J. Algorithms
5(3), 363-366 (1984). https://doi.org/10.1016,/0196-6774(84)90016-6

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/11745853_6
https://doi.org/10.1007/978-3-642-55220-5_35
https://eprint.iacr.org/2022/714
https://proceedings.mlr.press/v180/liu22c.html
https://doi.org/10.1016/j.comnet.2009.02.023
https://doi.org/10.1016/j.comnet.2009.02.023
https://datatracker.ietf.org/doc/html/draft-patton-cfrg-vdaf-01
https://arxiv.org/abs/2003.08119
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
http://arxiv.org/abs/2106.03328
https://doi.org/10.1016/0196-6774(84)90016-6

	LERNA: Secure Single-Server Aggregation via Key-Homomorphic Masking
	1 Introduction
	1.1 Overview of LERNA

	2 Preliminaries
	3 Technical Tools
	3.1 Key-Homomorphic Masking
	3.2 Flat Secret Sharing

	4 The LERNA Framework
	4.1 The Semi-honest Protocol
	4.2 Correctness of LERNA
	4.3 Achieving Malicious Security
	4.4 Instantiation Under LWR

	5 Experimental Evaluation
	5.1 Implementation Details
	5.2 Benchmarks

	References

