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Abstract. Sparkle is the first threshold signature scheme in the pairing-
free discrete logarithm setting (Crites, Komlo, Maller, Crypto 2023) to
be proven secure under adaptive corruptions. However, without using the
algebraic group model, Sparkle’s proof imposes an undesirable restriction
on the adversary. Namely, for a signing threshold t < n, the adversary
is restricted to corrupt at most t/2 parties. In addition, Sparkle’s proof
relies on a strong one-more assumption.

In this work, we propose Twinkle, a new threshold signature scheme in
the pairing-free setting which overcomes these limitations. Twinkle is the
first pairing-free scheme to have a security proof under up to t adaptive
corruptions without relying on the algebraic group model. It is also the
first such scheme with a security proof under adaptive corruptions from
a well-studied non-interactive assumption, namely, the Decisional Diffie-
Hellman (DDH) assumption.

We achieve our result in two steps. First, we design a generic scheme
based on a linear function that satisfies several abstract properties and
prove its adaptive security under a suitable one-more assumption related
to this function. In the context of this proof, we also identify a gap in the
security proof of Sparkle and develop new techniques to overcome this
issue. Second, we give a suitable instantiation of the function for which
the corresponding one-more assumption follows from DDH.

Keywords: Threshold Signatures · Adaptive Security · Pairing-Free ·
Non-Interactive Assumptions

1 Introduction

A threshold signature scheme [36,37,70] enables a group of n signers to jointly
sign a message as long as more than t of them participate. To this end, each of
the n signers holds a share of the secret key associated with the public key of the
group. When t + 1 of them come together and run a signing protocol for a par-
ticular message, they obtain a compact signature (independent in size of t and
n) without revealing their secret key shares to each other. On the other hand, no
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subset of at most t potentially malicious signers can generate a valid signature.
Despite being a well-studied cryptographic primitive, threshold signatures have
experienced a renaissance due to their use in cryptocurrencies [64] and other
modern applications [30]. This new attention has also led to ongoing standard-
ization efforts [19]. In this work, we study threshold signatures in the pairing-free
discrete logarithm setting. As noted in previous works [29,78,79], pairings are
not supported in popular libraries and are substantially more expensive to com-
pute, which makes pairing-free solutions appealing.

Static vs. Adaptive Security. When defining security for threshold signa-
tures, the adversary is allowed to concurrently interact with honest signers in
the signing protocol. Additionally, it may corrupt up to t out of n parties, thereby
learning their secret key material and internal state. Here, we distinguish between
static corruptions and adaptive corruptions. For static corruptions, the adver-
sary declares the set of corrupted parties ahead of time before any messages
have been signed. For adaptive corruptions, the adversary can corrupt parties
dynamically, depending on previous signatures and corruptions.

Adaptive security is a far stronger notion than static security and matches
reality more closely. Unfortunately, proving adaptive security for threshold sig-
natures is highly challenging and previous works in the pairing-free setting rely
on strong interactive assumptions to simulate the state of adaptively corrupted
parties [28]. This simulation strategy, however, is at odds with rewinding the
adversary as part of a security proof. Roughly, if the adversary is allowed to cor-
rupt up to tc parties, then in the two runs induced by rewinding, it may corrupt
up to 2tc parties in total. Thus, for the reduction to obtain meaningful infor-
mation from the adversary’s forgery, it has to be restricted to corrupt at most
tc ≤ t/2 parties [28]. To bypass this unnatural restriction, prior work heavily
relies on the algebraic group model (AGM) [42] in order to avoid rewinding1.
In summary: to support an arbitrary corruption threshold, one has to use the
AGM or sacrifice adaptive security.

1.1 Our Contribution

Motivated by this unsatisfactory state of affairs, we construct Twinkle. Twinkle
is the first threshold signature scheme in the pairing-free setting which combines
all of the following characteristics:

– Adaptive Security. We prove Twinkle secure under adaptive corruptions.
Notably, we do not rely on secure erasures of private state.

– Non-Interactive Assumptions. Our security proof relies on a non-interactive
and well-studied assumption, namely, the DDH assumption. As a slightly more
efficient alternative, we give an instantiation based on a one-more variant of
CDH, for which we provide evidence of its hardness.

1 Other works resort to heavier machinery such as broadcast channels or non-
committing encryption resulting in inefficient protocols.
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– No AGM. Our security proof does not rely on the algebraic group model, but
only on the random oracle model.

– Arbitrary Threshold. Twinkle supports an arbitrary corruption threshold t <
n for n parties. Essentially, this is established by giving a proof without
rewinding.

For a comparison of schemes in the pairing-free discrete logarithm setting, see
Table 1. We also emphasize that we achieve our goal without the use of heavy
cryptographic techniques, and our scheme is practical. For example, signatures
of Twinkle (from DDH) are at most 3 times as large as regular Schnorr signa-
tures [74], and Twinkle has three rounds. In the context of our proof, we also
identify a gap in the analysis of Sparkle [28] and develop new proof techniques
to fix it in the context of our scheme2.

Table 1. Comparison of different threshold signature schemes in the discrete loga-
rithm setting without pairings and the two instantiations of our Twinkle scheme. We
compare whether the schemes are proven secure under adaptive corruptions and under
which assumption and idealized model they are proven. We also compare the corrup-
tion thresholds that they support. For all schemes, we assume that there is a trusted
dealer distributing key shares securely. For GJKR [48]/StiStr [77], broadcast channels
are assumed, which adds rounds when implemented.

Scheme Rounds Adaptive Assumption Idealization Corruptions
GJKR [48]/StiStr [77] ≥ 4 ✗ DLOG ROM ≤ t < n/2
Lin-UC [63] 3 ✗ DLOG ROM ≤ t

Frost [60] 2 ✗ DLOG Custom ≤ t

Frost [8,11,60] 2 ✗ AOMDL ROM ≤ t

Frost2 [8,11,27] 2 ✗ AOMDL ROM ≤ t

Frost3 [73]/Olaf [25] 2 ✗ AOMDL ROM ≤ t

TZ [79] 2 ✗ DLOG ROM ≤ t

Sparkle [28] 3 ✗ DLOG ROM ≤ t

Sparkle [28] 3 ✓ AOMDL ROM ≤ t/2
Sparkle [28] 3 ✓ AOMDL ROM+AGM ≤ t

Twinkle (AOMCDH) 3 ✓ AOMCDH ROM ≤ t

Twinkle (DDH) 3 ✓ DDH ROM 0 ≤ t

Conceptually, the design of our threshold signature is inspired by five-move
identification schemes, which already have found use in the construction of
tightly secure signature schemes [24,49,57]. We achieve our result in two main
steps:

1. We first phrase our scheme abstractly using (a variant of) linear function
families [23,52,55,69,79]. To prove security under adaptive corruptions, we
define a security notion for linear functions resembling a one-more style CDH
assumption. This is the step where we identify the gap in the analysis of
Sparkle [28].

2 We communicated the gap and our solution to the authors of Sparkle. To be clear,
we do not claim that Sparkle is insecure, just that the proof in [28] has a gap.
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2. We then instantiate the linear function family such that this one-more notion
follows from the (non-interactive) DDH assumption. Note that Tessaro and
Zhu [79] showed a related statement, namely, that a suitable one-more variant
of DLOG follows from DLOG. In this sense, our work makes a further step in
an agenda aimed at replacing interactive assumptions with non-interactive
ones. We are confident that this is interesting in its own right.

1.2 Technical Overview

We keep the technical overview self-contained, but some background on Schnorr
signatures [58,74], five-move identification [24,49,57], and Sparkle [28] is helpful.
Sparkle and The Problem with Rewinding. As our starting point, let us
review the main ideas behind Sparkle [28], and why the use of rewinding limits us
to tolerating at most t/2 corruptions. For that, we fix a group G with generator g
and prime order p. Each signer i ∈ [n] holds a secret key share ski ∈ Zp such that
ski = f(i) for a polynomial f of degree t. Further, the public key is pk = gf(0).
To sign a message m, a set S ⊆ [n] of signers engage in the following interactive
signing protocol, omitting some details:

1. Each party i ∈ S samples a random ri
$←− Zp and computes Ri = gri . It then

sends a hash comi of Ri, S, and m to the other signers to commit to Ri. We
call Ri a preimage of comi. The hash function is modeled as a random oracle.

2. Once a party has received all hashes from the first round, it sends Ri to the
other signers to open the commitment.

3. If all commitments are correctly opened, each signer computes the combined
nonce R =

∏
i Ri. Then, it derives a challenge c ∈ Zp from pk, R, and m using

another random oracle. Each signer i computes and sends its response share
si := c · �i,S · ski + ri, where �i,S is a Lagrange coefficient. The signature is
(c, s), where s =

∑
i si.

The overall proof strategy adopted in [28] follows a similar paradigm as that
of proving Schnorr signatures, with appropriate twists. Namely, one first takes
care of simulating signing queries using honest-verifier zero-knowledge (HVZK)
and by suitably programming the random oracle. We will come back to this part
of the proof later. Then, via rewinding, one can extract the secret key from a
forgery. To simulate adaptive corruption queries, the proof of Sparkle relies on a
DLOG oracle on each corruption query, i.e., security is proven under the one-more
version of DLOG (OMDL). Specifically, getting t + 1 DLOG challenges from the
OMDL assumption and t-time access to a DLOG oracle, the reduction defines a
degree t polynomial “in the exponent”, simulates the game as explained, and uses
rewinding to solve the final DLOG challenge. Note that if we allow the adversary
to corrupt at most tc parties throughout the experiment, it may corrupt up to
2tc parties over both runs, meaning that the reduction has to query the DLOG
oracle up to 2tc times. Therefore, we have to require that 2tc ≤ t.
How to Avoid Rewinding. Now it should be clear that the restriction on the
corruption threshold is induced by the use of rewinding. If we avoid rewinding,
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we can also remove the restriction. To do so, it is natural to follow existing
approaches from the literature on tightly-secure (and thus rewinding-free) sig-
natures. A common approach is to rely on lossy identification [1,56,58] that has
already been used in the closely-related multi-signature setting [69]. We find this
unsuitable for two reasons. Namely, (a) these schemes rely on the DDH assump-
tion, it is not clear at all what a suitable one-more variant would look like, and
(b) the core idea of this technique is to move to a hybrid in which there is no
secret key for pk at all. This seems hard to combine with adaptive corruptions.
Roughly, this is because if there is no secret key for pk, then at most t of the
pki can have a secret key, meaning that we would have to guess the set of cor-
ruptions. Instead, we take inspiration from five-move identification [24,49,57],
for which problems (a) and (b) do not show up. Namely, (a) such schemes rely
on the CDH assumption, and (b) there is always a secret key. To explain the
idea, we directly focus on our threshold signature scheme. For that, let h ∈ G

be derived from the message via a random oracle. Given h, our signing protocol
is as follows:

1. Each signer i ∈ S samples ri
$←− Zp and computes R

(1)
i = gri , R

(2)
i = hri , and

pk(2)i = hski . It then sends a hash of R
(1)
i , R

(2)
i , pk(2)i to the other signers.

2. Once a party received all hashes from the first round, it sends R
(1)
i , R

(2)
i , pk(2)i .

3. If all commitments are correctly opened, each signer computes the combined
nonces R(k) for k ∈ {1, 2} and secondary public key pk(2) in a natural way.
Then, it derives a challenge c from R(1), R(2), pk(2), and m and computes
si := c · �i,S · ski + ri. The signature is (pk(2), c, s) with s =

∑
i si.

Intuitively, the signers engage in two executions of Sparkle with generators g and
h, respectively, using the same randomness ri. To understand why we can avoid
rewinding with this scheme, let us ignore signing and corruption queries for a
moment, and focus on how to turn a forgery (pk(2), c, s) into a solution for a hard
problem, concretely, CDH. For that, we consider two cases. First, if pk(2) = hf(0),
then pk(2) is a CDH solution for pk = gf(0) and h. Indeed, this is what should
happen in an honest execution. Second, we can bound the probability that the
forgery is valid and pk(2) �= hf(0) using a statistical argument. Roughly, (c, s)
acts as a statistically sound proof for the statement pk(2) = hf(0). To simulate
adaptive corruptions, for now assume that we can rely on a one-more variant of
the CDH assumption, in which we have t-time access to a DLOG oracle. We come
back to this later. What remains is to simulate honest parties during the signing.
For that, the first trick is to set up h (by programming the random oracle) in
a special way. Roughly, we want to be able to translate valid transcripts with
respect to g into valid transcripts with respect to h. Once this is established, we
can focus on simulating the g-side of the protocol.

A Gap in the Proof of Sparkle. If we only focus on the g-side, our protocol
is essentially Sparkle. Therefore, it should be possible to simulate signing exactly
as in Sparkle using HVZK. Unfortunately, when looking at this part of Sparkle’s
proof, we discovered that a certain adversarial behavior is not covered. Namely,
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the proof does not correctly simulate the case in which the adversary sends
inconsistent sets of commitments to different honest parties. It turns out that
handling this requires fundamentally new techniques. To understand the gap, it is
instructive to consider Sparkle’s proof for an example of three signers in a session
sid, with two of them being honest, say Signer 1 and 2, and the third one being
malicious. Let us assume that Signers 1 and 2 are already in the second round of
the protocol. That is, both already sent their commitments com1 and com2 and
now expect a list of commitments M = (com1, com2, com3) from the first round
as input. In Sparkle’s proof, the reduction sends random commitments com1 and
com2 on behalf of the honest parties. Later, when Signer 1 (resp. 2) gets M, it
has to output its second message R1 (resp. R2) and program the random oracle
at R1 (resp. R2) to be com1 (resp. com2). The goal of the reduction is to set
up R1 and R2 using HVZK such that the responses s1 and s2 can be computed
without using the secret key. To understand how the reduction proceeds, assume
that Signer 1 is asked (by the adversary) to reveal his nonce R1 first. When this
happens, the reduction samples a challenge c and a response s1. It then defines
R1 as R1 := gs1pk−c�1,S

1 . Ideally, the reduction would now program the random
oracle on the combined nonce R = R1R2R3 to return c, and output R1 to the
adversary. However, while the reduction can extract R3 from com3 by observing
the random oracle queries, R2 is not yet defined at that point. The solution
proposed in Sparkle’s proof is as follows. Before returning R1 to the adversary,
the reduction also samples s2 and defines R2 := gs2pk−c�2,S

2 . Then, the reduction
can compute the combined nonce R = R1R2R3 and program the random oracle
on input R to return c. Later, it can use s1 and s2 as responses.

However, as we will argue now, this strategy is flawed3. Think about what
happens if the first-round messages M′ that Signer 2 sees do not contain com3,
but instead a different4 commitment com′

3 to a nonce R′
3 �= R3. Then, with high

probability, the combined nonce R′ that Signer 2 will compute is different from
R, meaning that its challenge c′ will also be different from c, and so s2 is not a
valid response. One naive idea to solve this is to program R2 := gs2pk−c′�2,S

2 for
an independent c′ when we reveal R1. In this case, however, the adversary may
just choose to submit M′ = M to Signer 2, making the simulation fail.

Equivalence Classes to the Rescue. The solution we present is very tech-
nical, and we sketch a massively simplified solution here. Abstractly speak-
ing, we want to be able to identify whether two queries q = (sid, i, M) and
q′ = (sid′, i′, M′) will result in the same combined nonce before all commit-
ments comj in M and M′ have preimages Rj . To do so, we define an equivalence
relation ∼ on such queries for which we show two properties.

3 The problem has nothing to do with adaptive security and shows up for a static
adversary as well.

4 Note that in Sparkle, no broadcast channel is assumed, and so this may happen. Also,
note that in multi-signatures that follow a similar strategy, e.g. [10], this problem
does not show up as there is only one honest signer.
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1. First, the equivalence relation is consistent over time, namely, (a) if q ∼ q′ at
some point in time, then q ∼ q′ at any later point, and (b) if q �∼ q′ at some
point in time, then q �∼ q′ at any later point.

2. Second, assume that all commitments in M and M′ have preimages. Then
the resulting combined nonces R and R′ are the same if and only if q ∼ q′.

The technical challenge is that ∼ has to stay consistent while also adapting to
changes in the random oracle over time. Assuming we have such a relation, we
can make the simulation work. Namely, when we have to reveal the nonce Ri

of an honest signer i, we first define c := C(q), where C is a random oracle on
equivalence classes and is only known to the reduction. That is, C is a random
oracle with the additional condition that C(q) = C(q′) if q ∼ q′. Then, we define
Ri := gsipk−c�i,S

i . We do not define any other Ri′ of honest parties at that
point, meaning that we also may not know the combined nonce yet. Instead, we
carefully delay the random oracle programming of the combined nonce until it
is completely known.
Cherry on Top: Non-interactive Assumptions. While the scheme we have
so far does its job, we still rely on an interactive assumption, and we are eager
to avoid it. For that, it is useful to write our scheme abstractly, replacing every
exponentiation with the function T(t, x) = tx. Note that for almost every t ∈ G,
the function T(t, ·) is a bijection. Our hope is that by instantiating our scheme
with a different function with suitable properties, we can show that the cor-
responding one-more assumption is implied by a non-interactive assumption.
Indeed, Tessaro and Zhu [79] recently used a similar strategy to avoid OMDL in
certain situations. To do so, they replace the bijective function with a compress-
ing function. In our case, the interactive assumption, written abstractly using
T, asks an adversary to win the following game:
– A random g and h are sampled, and random x0, . . . , xt are sampled. Then,

g, h, and all Xi = T(g, xi) for all 0 ≤ i ≤ t are given to the adversary.
– Roughly, the adversary gets t-time access to an algebraic oracle inverting T.

More precisely, the oracle outputs
∑t

i=0 αixi on input α0, . . . , αt.
– The adversary outputs X ′

i for all 0 ≤ i ≤ t. It wins if all solutions are valid,
meaning that there is a zi such that T(g, zi) = Xi ∧T(h, zi) = X ′

i. Intuitively,
the adversary has to “shift” the images Xi from g to h.

Under a suitable instantiation of T and a well-studied non-interactive assump-
tion, we want to show that no adversary can win this game. Unfortunately, if
we just use a compressing function as in the case of [79], it is not clear how to
make use of the winning condition. Instead, our idea is to use a function that
can dynamically be switched between a bijective and a compressing mode. A bit
more precisely, a proof sketch works as follows:
1. We start with the game we introduced above. With overwhelming probability,

the functions Tg := T(g, ·) and Th := T(h, ·) should be bijective.
2. Assume that we can efficiently invert Th using knowledge of h. Then, we can

state our winning condition equivalently by requiring that T−1
h (X ′

i) = xi for
all i. Roughly, this means that the adversary has to find the xi to win.
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3. We assume that we can indistinguishably switch g to a mode in which Tg is
compressing.

4. Finally, we use a statistical argument to show that the adversary can not win.
Intuitively, this is because Tg is compressing and the inversion oracle does
not leak too much about the xi’s.

It turns out that, choosing T carefully, we find a function that (1) has all the
properties we need for our scheme and (2) allows us to follow our proof sketch
under the DDH assumption.

1.3 More on Related Work

We discuss further related work, including threshold signatures from other
assumptions, and related cryptographic primitives.

Techniques for Adaptive Security. General techniques for achieving adaptive
security have been studied [21,54,65]. Unfortunately, these techniques often rely
on heavy cryptographic machinery and assumptions, e.g., secure erasures or
broadcast channels.

Other Algebraic Structures. In the pairing setting, a natural construction
is the (non-interactive) threshold version of the BLS signature scheme [14,17],
which has been modified to achieve adaptive security in [62]. Recently, Bacho
and Loss [6] have proven adaptive security of threshold BLS in the AGM. Das
et al. have constructed weighted threshold signatures in the pairing-setting [33],
and Crites et al. have constructed structure-preserving threshold signatures in
the pairing-setting [26]. Threshold signatures have been constructed based on
RSA [3,35,41,47,72,75,79]. Notably, adaptive security has been considered in [3].
A few works also have constructed threshold signatures from lattices [2,12,16,32,
51]. Finally, several works have proposed threshold signing protocols for ECDSA
signatures [20,22,31,38,43–46,64]. Except for [20], these works focus on static
corruptions. For an overview of this line of work, see [5].

Robustness. Recently, there has been renewed interest in robust (Schnorr)
threshold signing protocols [13,50,73,76]. Such robust protocols additionally
ensure that no malicious party can prevent honest parties from signing. Notably,
all of these protocols assume static corruptions.

Multi-signatures. Multi-signatures [10,53] are threshold signatures with t =
n − 1, i.e., all n parties need to participate in the signing protocol, with the
advantage that parties generate their keys independently and come together to
sign spontaneously without setting up a shared key. There is a rich literature on
multi-signatures, e.g., [4,9,14,15,18,40,66–68,79]. Closest to our work in spirit
are the work by Pan and Wagner [69], which avoids rewinding, and the work of
Tessaro and Zhu [79], which aims at non-interactive assumptions.

Distributed Key Generation. In principle, one can rely on generic secure
multi-party computation to set up key shares for a threshold signature scheme
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without using a trusted dealer. To get a more efficient solution, dedicated dis-
tributed key generation protocols have been studied [21,34,48,54,59,61,71], with
some of them being adaptively secure [21,54,59].

2 Preliminaries

By λ we denote the security parameter. We assume all algorithms get λ in
unary as input. If X is a finite set, we write x

$←− X to indicate that x is
sampled uniformly at random from X. If A is a probabilistic algorithm, we
write y := A(x; ρ) to state that y is assigned to the output of A on input x with
random coins ρ. If ρ is sampled uniformly at random, we simply write y ← A(x).
Further, the notation y ∈ A(x) indicates that y is a possible output of A on input
x, i.e., there are random coins ρ such that A(x; ρ) outputs y.

Threshold Signatures. We define threshold signatures, assuming a trusted
key generation, which can be replaced by a distributed key generation in prac-
tice. Our syntax matches the three-round structure of our protocol. Namely, a
(t, n)-threshold signature scheme is a tuple of PPT algorithms TS = (Setup,Gen,
Sig,Ver), where Setup(1λ) outputs system parameters par, and Gen(par) outputs
a public key pk and secret key shares sk1, . . . , skn. Further, Sig specifies a sign-
ing protocol, formally split into four algorithms (Sig0,Sig1,Sig2,Combine). Here,
algorithm Sigj models how the signers locally compute their (j + 1)st protocol
message pmj+1 and advance their state, where Sig0(S, i, ski,m) takes as input
the signer set S, the index of the signer i ∈ [n], its secret key share ski, and the
message m, and Sig1 (resp. Sig2) takes as input the current state of the signer
and the list M1 (resp M2) of all protocol messages from the previous round.
Finally, Combine(S,m, M1, M2, M3) can be used to publicly turn the transcript
into a signature σ, which can then be verified using Ver(pk,m, σ). Roughly, we
say that the scheme is complete if for any such parameters and keys, a signa-
ture generated by a signing protocol among t + 1 parties outputs a signature
for which Ver outputs 1. For a more formal and precise definition of syntax and
completeness, we refer to the full version [7].

Our security game is in line with the established template and is presented
in Fig. 1. First, the adversary gets an honestly generated public key as input. At
any point in time, the adversary can start a new signing session with signer set
S and message m with session identifier sid by calling an oracle Next(sid, S,m).
Additionally, the adversary may adaptively corrupt up to t users via an oracle
Corr. Thereby, it learns their secret key and private state in all currently open
signing sessions. To interact with honest users in signing sessions, the adversary
has access to per-round signing oracles Sig0,Sig1,Sig2. Roughly, each signing
oracle can be called with respect to a specific honest user i and a session iden-
tifier sid, given that the user is already in the respective round for that session
(modeled by algorithm Allowed). Further, when calling such an oracle, the adver-
sary inputs the vector of all messages of the previous round. In particular, the
adversary could send different messages to two different honest parties within
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the same session, i.e., we assume no broadcast channels. Additionally, this means
that the adversary can arbitrarily decide which message to send to an honest
party on behalf of another honest party, i.e., we assume no authenticated chan-
nels. Finally, the adversary outputs a forgery (m∗, σ∗). It wins the security game,
if it never started a signing session for message m∗ and the signature σ∗ is valid.
Therefore, our notion is (an interactive version of) TS-UF-0 using the terminol-
ogy of [8,11], which is similar to recent works [25,28].

No Erasures. In our pseudocode, the private state of signer i in session sid is
stored in state[sid, i], where state is a map. After each signing round, this state
is updated. We choose to update the state instead of adding a new state to avoid
clutter, which is similar to earlier works [28]. On the downside, this means that
potentially, schemes that are secure in our model could rely on erasures, i.e., on
safely deleting part of the state of an earlier round before a user gets corrupted.
We emphasize that in our scheme, any state in earlier rounds can be computed

Fig. 1. The game TS-EUF-CMA for a (three-round) (t, n)-threshold signature
scheme TS = (Setup,Gen, Sig,Ver) and an adversary A.
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from the state in the current round and the secret key. This means that our
schemes do not rely on erasures.

Definition 1 (TS-EUF-CMA Security). Let TS = (Setup,Gen,Sig,Ver) be a
(t, n)-threshold signature scheme. Consider the game TS-EUF-CMA defined
in Fig. 1. We say that TS is TS-EUF-CMA secure, if for all PPT adversaries A,
the following advantage is negligible:

AdvTS-EUF-CMA
A,TS (λ) := Pr

[
TS-EUF-CMAA

TS(λ) ⇒ 1
]
.

3 Our Construction

In this section, we present our new threshold signature scheme. However, before
we present it, we first introduce a building block we need, which we call tagged
linear function families.

3.1 Tagged Linear Function Families

Similar to what is done in other works [23,52,55,69,79], we use the abstraction
of linear function families to describe our scheme in a generic way. However, we
slightly change the notion by introducing tags to cover different functions with
the same set of parameters.

Definition 2 (Tagged Linear Function Family). A tagged linear function
family is a tuple of PPT algorithms TLF = (Gen,T) with the following syntax:

– Gen(1λ) → par takes as input the security parameter 1λ and outputs param-
eters par. We assume that par implicitly defines the following sets: A set of
scalars Spar, which forms a field; a set of tags Tpar; a domain Dpar and a range
Rpar, where each forms a vector space over Spar. If par is clear from the con-
text, we omit the subscript par. We naturally denote the operations of these
fields and vector spaces by + and ·, and assume that these operations can be
evaluated efficiently.

– T(par, g, x) → X is deterministic, takes as input parameters par, a tag g ∈ T ,
a domain element x ∈ D, and outputs a range element X ∈ R. For all
parameters par, and for all tags g ∈ T , the function T(par, g, ·) realizes a
homomorphism, i.e.

∀s ∈ S, x, y ∈ D : T(par, g, s · x + y) = s · T(par, g, x) + T(par, g, y).

For T, we also omit the input par if it is clear from the context.

For our construction, we require that images are uniformly distributed. More
precisely, we say that TLF is εr-regular, if there is a set Reg of pairs (par, g)
such that random parameters par and tags g are in Reg with probability at least
1 − εr, and for each such pair in Reg, T(par, g, x) is uniformly distributed over
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the range, assuming x
$←− D. We postpone a more formal definition to the full

version [7]. Next, we show that tagged linear function families satisfy a statistical
property that turns out to be useful. This property is implicitly present in other
works as well, e.g., in [1,56,57,69], and can be interpreted in various ways, e.g.,
as the soundness of a natural proof system.
Lemma 1. Let TLF = (Gen,T) be a tagged linear function family. For every
fixed parameters par and tags g, h ∈ T , define the set

Im(par, g, h) :=
{

(X1, X2) ∈ R2 | ∃x ∈ D : T(g, x) = X1 ∧ T(h, x) = X2
}

.

Then, for any (even unbounded) algorithm A, we have

Pr

⎡

⎣
(X1, X2) /∈ Im(par, g, h)

∧ T(g, s) = c · X1 + R1
∧ T(h, s) = c · X2 + R2

∣
∣
∣
∣
∣
∣

par ← Gen(1λ),
(St, g, h, X1, X2, R1, R2) ← A(par),
c

$←− S, s ← A(St, c)

⎤

⎦ ≤ 1
|S| .

The proof of Lemma 1 is postponed to the full version [7]. As another technical
tool in our proof, we need our tagged linear function families to be translatable,
a notion we define next. Informally, it means that we can rerandomize a given
tag g into a tag h, such that we can efficiently compute T(h, x) from T(g, x)
without knowing x.
Definition 3 (Translatability). Let TLF = (Gen,T) be a tagged linear func-
tion family. We say that TLF is εt-translatable, if there is a PPT algorithm Shift
and a deterministic polynomial time algorithm Translate, such that the following
properties hold:
– Well Distributed Tags. The statistical distance between the following dis-

tributions X0 and X1 is at most εt:

X0 :=
{

(par, g, h)
∣
∣
∣ par ← Gen(1λ), g

$←− T , h
$←− T

}
,

X1 :=
{

(par, g, h)
∣
∣
∣ par ← Gen(1λ), g

$←− T , (h, td) ← Shift(par, g)
}

.

– Translation Completeness. For every par ∈ Gen(1λ), for any g ∈ T , any
x ∈ D, and any (h, td) ∈ Shift(par, g), we have

Translate(td,T(g, x)) = T(h, x) and InvTranslate(td,T(h, x)) = T(g, x).
Next, we define the main security property that we will require for our construc-
tion. Intuitively, it should not be possible for an adversary to translate T(g, x)
into T(h, x) if g, h and x are chosen randomly. Our actual notion is a one-more
variant of this intuition.
Definition 4 (Algebraic Translation Resistance). Let TLF = (Gen,T) be
a tagged linear function family, and t ∈ N be a number. Consider the game
A-TRAN-RES defined in Fig. 2. We say that TLF is t-algebraic translation
resistant, if for any PPT algorithm A, the following advantage is negligible:

Advt-A-TRAN-RES
A,TLF (λ) := Pr

[
t-A-TRAN-RESA

TLF(λ) ⇒ 1
]
.
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Fig. 2. Game A-TRAN-RES for a tagged linear function family TLF = (Gen,T) and
adversary A.

3.2 Construction

Let TLF = (Gen,T) be a tagged linear function family. Further, let H : {0, 1}∗ →
T , Ĥ : {0, 1}∗ → {0, 1}2λ, H̄ : {0, 1}∗ → S be random oracles. We construct
a (t, n)-treshold signature scheme Twinkle[TLF] = (Setup,Gen,Sig,Ver). We
assume that there is an implicit injection from [n] into S. Further, let �i,S(x) :=∏

j∈S\{i}(j − x)/(j − i) ∈ S denote the ith lagrange coefficient for all i ∈ [n] and
S ⊆ [n], and let �i,S := �i,S(0). We describe our scheme verbally.

Setup and Key Generation. All parties have access to public parameters
par ← TLF.Gen(1λ) which define the function T, and sets S, T , D, and R, and
to a random tag g

$←− T . To generate keys, elements aj
$←− D for j ∈ {0} ∪ [t] are

sampled. These elements form the coefficients of a polynomial of degree t. For
each i ∈ [n], we define the key pair (pki, ski) for the ith signer as

ski :=
t∑

j=0
ajij , pki := T(g, ski).

The shared public key is defined as pk := pk0 := T(g, a0).

Signing Protocol. Let S ⊆ [n] be a set of signers of size t + 1. We assume all
signers are aware of the set S and a message m ∈ {0, 1}∗ to be signed. First,
they all compute h := H(m). Then, they run the following protocol phases to
compute the signature:

1. Commitment Phase. Each signer i ∈ S samples ri
$←− D and computes

R
(1)
i := T(g, ri), R

(2)
i := T(h, ri), pk(2)i := T(h, ski).

Then, each signer i ∈ S computes a commitment

comi := Ĥ(S, i, R
(1)
i , R

(2)
i , pk(2)i )

and sends comi to the other signers.
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2. Opening Phase. Each signer i ∈ S sends R
(1)
i , R

(2)
i and pk(2)i to all other

signers.
3. Response Phase. Each signer i ∈ S checks that comj = Ĥ(S, j, R

(1)
j , R

(2)
j ,

pk(2)j ) holds for all j ∈ S. If one of these equations does not hold, the signer
aborts. Otherwise, the signer defines

R(1) :=
∑

j∈S

R
(1)
j , R(2) :=

∑

j∈S

R
(2)
j , pk(2) :=

∑

j∈S

�j,Spk(2)j .

The signer computes c := H̄(pk, pk(2), R(1), R(2),m) and si := c · �i,S · ski + ri.
It sends si to all other signers.

The signature is σ := (pk(2), c, s) for s :=
∑

j∈S sj .

Verification. Let pk be a public key, let m ∈ {0, 1}∗ be a message and let σ =
(pk(2), c, s) be a signature. To verify σ with respect to pk and m, one first com-
putes h := H(m) and R(1) := T(g, s)− c ·pk, R(2) := T(h, s)− c ·pk(2). Then, one
accepts the signature, i.e., outputs 1, if and only if c = H̄(pk, pk(2), R(1), R(2),m).

Theorem 1. Let TLF = (Gen,T) be a tagged linear function family and let
H : {0, 1}∗ → T , Ĥ : {0, 1}∗ → {0, 1}2λ, H̄ : {0, 1}∗ → S be random oracles.
Assume that TLF is εr-regular and εt-translatable. Further, assume that TLF is
t-algebraic translation resistant. Then, Twinkle[TLF] is TS-EUF-CMA secure.

Proof. Fix an adversary A against the security of TS := Twinkle[TLF]. We prove
the statement by presenting a sequence of games G0-G8. All games and associ-
ated oracles and algorithms are presented as pseudocode in the full version [7].

Game G0: This game is the security game TS-EUF-CMAA
TS for threshold

signatures. We recall the game to fix some notation. First, the game samples
parameters par′ for TLF and a tag g

$←− T . It also samples random coefficients
a0, . . . , at

$←− D and computes a public key pk := pk0 := T(g, a0) and secret
key shares ski :=

∑t
j=0 ajij for each i ∈ [n]. For convenience, denote the corre-

sponding public key shares by pki := T(g, ski). Then, the game runs A on input
par := (par′, g) and pk with access to signing oracles, corruption oracles, and
random oracles. Concretely, it gets access to random oracles H, Ĥ, and H̄, which
are provided by the game in the standard lazy way using maps h[·], ĥ[·], and
h̄[·], respectively. The set of corrupted parties is denoted by Corrupted and the
set of queried messages is denoted by Queried. Finally, the adversary outputs a
forgery (m∗, σ∗) and the game outputs 1 if m∗ /∈ Queried, |Corrupted| ≤ t, and
σ∗ is a valid signature for m∗. We make three purely conceptual changes to the
game. First, we will never keep the secret key share ski explicitly in the states
state[sid, i] for users i in a session sid, although the scheme description would
require this. This is without loss of generality, as the adversary only gets to see
the states when it corrupts a user, and in this case it also gets ski. Second, we
assume the adversary always queried H(m∗) before outputting its forgery. Third,
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we assume that the adversary makes exactly t (distinct) corruption queries.
These changes are without loss of generality and do not change the advantage
of A. Formally, one could build a wrapper adversary that internally runs A, but
makes a query H(m∗) and enough corruption queries before terminating, and
on every corruption query includes ski in the states before passing the result
back to A. Clearly, we have AdvTS-EUF-CMA

A,TS (λ) = Pr [G0 ⇒ 1]. The remainder of
our proof is split into three parts. In the first part (G1-G3), we ensure that the
game no longer needs secret key shares ski to compute pk(2)i in the signing ora-
cle. Roughly, this is done by embedding shifted tags (h, td) ← Shift(par′, g) into
random oracle H for signing queries, and keeping random tags h for the query
related to the forgery. In the second part (G4-G11), we use careful delayed
random oracle programming, observability of the random oracle, and an honest-
verifier zero-knowledge-style programming to simulate the remaining parts of the
signing queries without ski. As a result, ski is only needed when the adversary
corrupts users. In the third part, we analyze G11. This is done by distinguishing
two cases. One of the cases is bounded using a statistical argument. The other
case is bounded using a reduction breaking the t-algebraic translation resistance
of TLF. We now proceed with the details.

Game G1: In this game, we introduce a map b[·] that maps messages m to bits
b[m] ∈ {0, 1}. Concretely, whenever a query H(m) is made for which the hash
value is not yet defined, the game samples b[m] from a Bernoulli distribution
Bγ with parameter γ = 1/(QS + 1). That is, b[m] is set to 1 with probability
1/(QS + 1) and to 0 otherwise. The game aborts if b[m] = 1 for some message m
for which the signing oracle is called, or b[m∗] = 0 for the forgery message m∗.
Clearly, if no abort occurs, games G0 and G1 are the same. Further the view of
A is independent of the map b. We obtain

Pr [G1 ⇒ 1] = γ (1 − γ)QS · Pr [G0 ⇒ 1]

Now, we can use the fact (1 − 1/x)x ≥ 1/4 for all x ≥ 2 and get

γ (1 − γ)QS = 1
QS + 1

(

1 − 1
QS + 1

)QS

= 1
QS

(

1 − 1
QS + 1

)QS+1

≥ 1
4QS

,

where the second equality is shown in the full version [7]. In combination, we get
Pr [G1 ⇒ 1] ≥ 1

4QS
· Pr [G0 ⇒ 1].

Game G2: In game G2, we change the way queries to random oracle H are
answered. Namely, for a query H(m) for which the hash value h[m] is not yet
defined, the game samples h[m] $←− T as a random tag exactly as the previous
game did. However, now, if b[m] = 0, the game samples (h, td) ← Shift(par′, g)
and sets h[m] := h. Further, it stores td in a map tr as tr[m] := td. Clearly, G1
and G2 are indistinguishable by the εt-translatability of TLF. Concretely, one
can easily see that |Pr [G1 ⇒ 1] − Pr [G2 ⇒ 1]| ≤ QHεt.

Game G3: In this game, we change how the values pk(2)i are computed by the
signing oracle. To recall, in the commitment phase of the signing protocol, the
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signing oracle for user i ∈ [n] in G2 would compute the value pk(2)i := T(h, ski),
where h = H(m) and m is the message to be signed. Also, the value pk(2)i :=
T(h, ski) is recomputed in the opening phase of the signing protocol and included
in the output sent to the adversary. From G3 on, pk(2)i is computed differently,
namely, as pk(2)i := Translate(tr[m], pki). Observe that if the game did not abort,
we know that b[m] = 0 (see G1) and therefore h has been generated as (h, td) ←
Shift(par′, g) where tr[m] = td. Thus, it follows from the translatability of TLF,
or more concretely from the translation completeness, that the view of A is not
changed. We get Pr [G2 ⇒ 1] = Pr [G3 ⇒ 1].
Game G4: In this game, we let the game abort if (par′, g) /∈ Reg, where Reg
is the set from the regularity definition of TLF. By regularity of TLF, we have
|Pr [G3 ⇒ 1] − Pr [G4 ⇒ 1]| ≤ εr.

Game G5: In this game, we change the signing oracle again. Specifically, we
change the commitment and opening phase. Recall that until now, in the
commitment phase for an honest party i in a signer set S ⊆ [n] and mes-
sage m, an element ri

$←− D is sampled and the party sends a commitment
comi := Ĥ(S, i, R

(1)
i , R

(2)
i , pk(2)i ) for R

(1)
i := T(g, ri), R

(2)
i := T(h, ri), and

pk(2)i := Translate(tr[m], pki). As before, h is defined as h := H(m). Later, in the
opening phase, the party sends R

(1)
i , R

(2)
i , pk(2)i . Now, we change this as follows:

The signing oracle computes pk(2)i as in G4, but it does not compute R
(1)
i , R

(2)
i

and instead sends a random commitment comi
$←− {0, 1}2λ on behalf of party i. It

also inserts an entry (S, i, comi) into a list Sim that keeps track of these simulated
commitments. If there is already an (S′, i′) �= (S, i) such that (S′, i′, comi) ∈ Sim,
then the game aborts. Note that there are two situations where the preimage of
comi has to be revealed. Namely, R

(1)
i , R

(2)
i , pk(2)i has to be given to the adver-

sary in the opening phase, and whenever party i is corrupted the game needs to
output ri. To handle this, consider the opening phase or the case where party
i is corrupted before it reaches the opening phase. Here, we let the game sam-
ple ri

$←− D and define R
(1)
i := T(g, ri) and R

(2)
i := T(h, ri). Then, the game

checks if ĥ[S, i, R
(1)
i , R

(2)
i , pk(2)i ] = ⊥. If it is not, the game aborts. Otherwise, it

programs ĥ[S, i, R
(1)
i , R

(2)
i , pk(2)i ] := comi and continues. That is, in the opening

phase it would output R
(1)
i , R

(2)
i , pk(2)i , and during a corruption, it would output

ri as part of its state. If a corruption occurs after the opening phase, then ri has
already been defined, and corruption is handled as before. Clearly, the view of A
is only affected by this change if R

(1)
i , R

(2)
i , pk(2)i matches a previous query of A

or the same commitment has been sampled by the game twice. The latter event
occurs only with probability Q2

S/22λ by a union bound over all pairs of queries.
To bound the former event, we use the regularity of TLF, which implies that R

(1)
i

is uniform over the range R. Now, for each fixed pair of signing query and random
oracle query, the random oracle query matches R

(1)
i , R

(2)
i , pk(2)i with probability

at most 1/|R|. Thus, the event occurs only with probability QSQĤ/22λ. We get
|Pr [G4 ⇒ 1] − Pr [G5 ⇒ 1]| ≤ QSQĤ/|R| + Q2

S/22λ.
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Game G6: In this game, we rule out collisions for random oracle Ĥ. Namely,
the game aborts if there are x �= x′ such that ĥ[x] = ĥ[x′] �= ⊥. Clearly, we
have |Pr [G5 ⇒ 1] − Pr [G6 ⇒ 1]| ≤ Q2

Ĥ
22λ . Subsequent games will internally make

use of an algorithm Ĥ−1. On input y the algorithm searches for an x such that
ĥ[x] = y. If no such x is found, or if multiple x are found, then the algorithm
returns ⊥. Otherwise, it returns x. Note that in the latter case the game would
abort anyways, and so we can assume that if there is a preimage of y, then this
preimage is uniquely determined by y.

Game G7: In this game, we introduce a list Pending and associated algorithms
UpdatePending and AddToPending to manage this list. Intuitively, the list keeps
track of honest users i and signing sessions sid for which the game can not
yet extract preimages of all commitments sent in the commitment phase. More
precisely, the list contains a tuple (sid, i, M1) if and only if the following two
conditions hold:

– The opening phase oracle Sig1(sid, i, M1) has been called with valid inputs,
i.e., for this query the game did not output ⊥ due to Allowed(sid, i, 1, M1) =
0, and at that point the following was true: For every commitment comj

in M1 such that (S, j, comj) /∈ Sim, we have Ĥ−1(comj) �= ⊥ and with
(S′, k, R(1), R(2), pk(2)) := Ĥ−1(comj) we have S′ = S and k = j, where
S is the signer set associated with sid.

– There is a commitment comj in M1 such that Ĥ−1(comj) = ⊥.

To ensure that the list satisfies this invariant, we add a triple (sid, i, M1) to
Pending when the first condition holds. This is done by algorithm AddToPending.
Concretely, whenever A calls Sig1(sid, i, M1), the oracle returns ⊥ in case
Allowed(sid, i, 1, M1) = 0. If Allowed(sid, i, 1, M1) = 1, the game immedi-
ately calls AddToPending(sid, i, 1, M1), which checks the first condition of the
invariant and inserts the tripe (sid, i, 1, M1) into Pending if it holds. Then, the
game continues the simulation of Sig1 as before. Further, we invoke algorithm
UpdatePending whenever the map ĥ is changed, i.e., during queries to Ĥ, and
in corruption and signing oracles (see G5). On every invocation, the algorithm
does the following:

1. Initialize an empty list New.
2. Iterate trough all entries (sid, i, M1) in Pending, and do the following:

(a) Check if the entry has to be removed because it is violating the invariant.
That is, check if for all j in the signer set S associated with session sid,
we have Ĥ−1(comj) �= ⊥, where M1 = (comj)j∈S . If this is not the case,
skip this entry and keep it in Pending.

(b) We know that for all indices j ∈ S, the value (S′
j , kj , R

(1)
j , R

(2)
j , pk(2)j )

= Ĥ−1(comj) exists. Further, it must hold that S′
j = S and kj = j,

as otherwise this entry would not have been added to Pending in the
first place. Remove the entry from Pending, and determine the combined
nonces and secondary public key
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R(1) =
∑

j∈S

R
(1)
j , R(2) =

∑

j∈S

R
(2)
j , pk(2) =

∑

j∈S

�j,Spk(2)j .

(c) Let m be the message associated with the session sid.
(d) If (R(1), R(2), pk(2),m) /∈ New but h̄[pk, pk(2), R(1), R(2),m] �= ⊥, abort

the execution of the entire game (see bad event Defined below).
(e) Otherwise, sample h̄[pk, pk(2), R(1), R(2),m] $←− S and insert the tuple

(R(1), R(2), pk(2),m) into New.

To summarize, this algorithm removes all entries violating the invariant from the
list Pending. For each such entry that is removed, the algorithm computes the
combined nonces R(1), R(2) and secondary public key pk(2). Roughly, it aborts
the execution, if random oracle H̄ for these inputs is already defined. List New
ensures that the abort is not triggered if the algorithm itself programmed h̄
in a previous iteration within the same invocation. In addition to algorithm
UpdatePending, we introduce the following events, on which the game aborts its
execution:

– Event BadQuery: This event occurs, if for a random oracle query to Ĥ for which
the hash value is not yet defined and freshly sampled as com $←− {0, 1}2λ, there
is an entry (sid, i, M1) in Pending such that com is in M1.

– Event Defined: This event occurs, if the execution is aborted during algorithm
UpdatePending.

For shorthand notation, we set Bad := BadQuery ∨ Defined. The probability
of BadQuery can be bounded as follows: Fix a random oracle query to Ĥ for
which the hash value is not yet defined. Fix an entry (sid, i, M1). Note that
over the entire game, there are at most QS of these entries. Further, fix an
index j ∈ [t + 1]. The probability that com collides with the jth entry of M1
is clearly at most 1/22λ. With a union bound over all triples of queries, entries,
and indices, we get that the probability of BadQuery is at most QĤQS(t+1)/22λ.
Next, we bound the probability of Defined assuming BadQuery does not occur.
Under this assumption, one can easily observe that when an entry is removed
from list Pending and R(1) =

∑
j∈S R

(1)
j is the combined first nonce, then there

is an j∗ ∈ S such that the game sampled R
(1)
j∗ just before invoking algorithm

UpdatePending. Precisely, it must have set R
(1)
j∗ := T(g, r) for some random

r
$←− D. By regularity of TLF, this means R

(1)
j∗ is uniform over R, and this means

that the combined first nonce R(1) is also uniform. Thus for any fixed entry of
in Pending, the probability that h̄[pk, pk(2), R(1), R(2),m] is already defined when
the entry is removed, is at most QĤ/|R|. With a union bound over all entries we
can now bound the probability of Defined by QĤQS/|R|. In combination, we get

Pr [Bad] ≤ Pr [BadQuery] + Pr [Defined | ¬BadQuery] ≤ QĤQS(t + 1)
22λ

+
QĤQS

|R| .
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and thus

|Pr [G6 ⇒ 1] − Pr [G7 ⇒ 1]| ≤ Pr [Bad] ≤ QĤQS(t + 1)
22λ

+
QĤQS

|R| .

Game G8: In this game, we change algorithm UpdatePending. Specifically, we
change what we insert into list New. Recall from the previous game that when we
removed an entry (sid, i, M1) from Pending, we aborted the game if (R(1), R(2),

pk(2),m) /∈ New but h̄[pk, pk(2), R(1), R(2),m] �= ⊥. Otherwise, we inserted tuples
(R(1), R(2), pk(2),m). Now, we instead abort if (S, R(1), R(2), pk(2),m) /∈ New
but h̄[pk, pk(2), R(1), R(2),m] �= ⊥, and otherwise insert (S, R(1), R(2), pk(2),m),
where S is the signer set associated with session sid. One can see that the
two games can only differ if for two entries (sid, i, M1) and (sid′, i′, M′

1) that
are removed from Pending in the same invocation of UpdatePending, the signer
sets S and S′ differ but the respective tuples (R(1), R(2), pk(2),m) and (R′(1),

R
′(2), pk

′(2),m′) are the same and h̄[pk, pk(2), R(1), R(2),m] �= ⊥. In this case,
game G8 would abort, but game G7 would not. We argue that this can not
happen: Assume that two entries (sid, i, M1) and (sid′, i′, M′

1) with associated
signer sets S and S′ are removed from Pending. Then, we know that algorithm
UpdatePending has been invoked because the game programmed ĥ at some point,
say ĥ[S∗, j∗, R

(1)
∗ , R

(2)
∗ , pk(2)∗ ] := com∗, such that com∗ is in both M1 and M′

1.
Thus, the algorithm only removes the entry (sid, i, M1) from the list if the first
component of Ĥ−1(com∗) is S, i.e., if S∗ = S. Similarly, it only removes the
entry (sid′, i′, M′

1) if the first the first component of Ĥ−1(com∗) is S′, i.e., if
S∗ = S′. Thus, it only removes both if S = S∗ = S′. With that, we have
Pr [G7 ⇒ 1] = Pr [G8 ⇒ 1].

Game G9: We introduce two more algorithms. Intuitively, these allow us to
group tuples of the form (sid, i, M1) that have been inserted into list Pending
into equivalence classes. To be clear, the relation is defined on all triples in
Pending and on all triples that already have been removed from Pending, but not
on any other entries. The intuition, roughly, is that such triples lead to the same
combined nonces if and only if they are in the same equivalence class. The effect
of this is will be that we know the challenge just from the tuple (sid, i, M1).
We now turn to the details. We introduce an algorithm Equivalent that takes
as input two triples (sid, i, M1) and (sid′, i′, M′

1) and decides whether they are
equivalent as follows:

1. Let S, S′ and m,m′ be the signer sets and messages associated with sessions
sid and sid′, respectively. If S �= S′ or m �= m′, the triples are not equivalent.

2. Thus, assume S = S′ and write M1 = (comj)j∈S and M′
1 = (com′

j)j∈S . Let
F ⊆ S (resp. F ′ ⊆ S′) be the set of indices j ∈ S (resp j ∈ S′) such that
Ĥ−1(comj) = ⊥ (resp. Ĥ−1(com′

j) = ⊥). If (comj)j∈F �= (com′
j)j∈F ′ , then the

triples are not equivalent.
3. Define F̄ := S \ F and F̄ ′ := S \ F ′. For each j ∈ F̄ , we know that the value

(S̃j , kj , R′
j
(1)

, R′
j
(2)

, pk′
j
(2)) = Ĥ−1(com′

j) exists. Similarly, for each j ∈ F̄ ′,
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we know that the value (S̃′
j , k′

j , R′
j
(1)

, R′
j
(2)

, pk′
j
(2)) = Ĥ−1(com′

j) exists. With
these, we can define partially combined nonces and secondary keys

R̄(1) :=
∑

j∈F̄ R
(1)
j , R̄(2) :=

∑
j∈F̄ R

(2)
j p̄k(2) :=

∑
j∈F̄ �j,Spk(2)j

R̄
′(1) :=

∑
j∈F̄ ′ Rj

′(1), R̄
′(2) :=

∑
j∈F̄ ′ Rj

′(2) p̄k
′(2) :=

∑
j∈F̄ ′ �j,Spkj

′(2).

The triples are not equivalent, if (R̄(1), R̄(2), p̄k(2)) �= (R̄′(1), R̄
′(2), p̄k

′(2)).
Otherwise, they are equivalent.

In summary, two triples are equivalent if their signer sets, messages, partially
combined nonces and secondary public keys, and remaining commitments match.
It is clear that at any fixed point in time during the experiment, this is indeed
an equivalence relation. In the following two claims, we argue that this relation
is preserved over time. For that, we first make some preliminary observations,
using notation as in the definition of equivalence above:

1. The equivalence relation can potentially only change when oracle Ĥ is updated
during queries to Sig1 (i.e., the opening phase) or during corruption queries,
which may make the sets F and F ′ change. This is because triples are only
inserted into Pending if the only commitments without preimages are simu-
lated, and the preimages of these are only set in such calls (see G7).

2. The sets F and F ′ can only get smaller over time, as we assume that no
collisions occur.

3. When the oracle is programmed during such calls, say by setting ĥ[S∗, j∗,

R
(1)
∗ , R

(2)
∗ , pk(2)∗ ] := com∗, then it must hold that (S∗, j∗, com∗) ∈ Sim. In

particular, if in this case some j is removed from F (or F ′) because comj (or
com′

j) now has a preimage, then it must hold that com∗ = comj and j∗ = j.
This is because otherwise, if j �= j∗, then we would have (S̃, j, com∗) ∈ Sim for
some S̃ (because the entry was added to Pending) and (S∗, j∗, com∗) ∈ Sim,
and such a collision was ruled out in G5.

4. Again, assume that the oracle is programmed during such calls by setting
ĥ[S∗, j∗, R

(1)
∗ , R

(2)
∗ , pk(2)∗ ] := com∗. Now, assume that both F and F ′ change.

Then, we know (because of the previous observation), that the same j = j∗
is removed from both F and F ′, and comj = com∗ = com′

j is removed from
both (comj)j∈F and (com′

j)j∈F ′ . Thus, these lists are the same before the
update if and only if they are the same after the update.

5. In the setting of the previous observation, denote the point in time before the
update as t0, and the point in time after the update as t1. Further, denote
the associated partially combined nonces and secondary public keys at time
tb for b ∈ {0, 1} by

R̄
(1)
b , R̄

(2)
b , p̄k(2)b , and R̄

′(1)
b , R̄

′(2)
b , p̄k

′(2)
b .

Now, we observe that

R̄
(1)
1 = R̄

(1)
0 + R

(1)
∗ , R̄

(2)
1 = R̄

(2)
0 + R

(2)
∗ , p̄k(2)1 = p̄k(2)0 + �j∗,S∗pk(2)∗ .
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The same holds for R̄
′(1)
b , R̄

′(2)
b , and p̄k

′(2)
b . Therefore, we see that

(R̄(1)
0 , R̄

(2)
0 , p̄k(2)0 ) = (R̄

′(1)
0 , R̄

′(2)
0 , p̄k

′(2)
0 )

if and only if (R̄(1)
1 , R̄

(2)
1 , p̄k(2)1 ) = (R̄

′(1)
1 , R̄

′(2)
1 , p̄k

′(2)
1 ).

Now, we show that the equivalence relation does not change over time, using our
notation from above and the observations we made.

Equivalence Claim 1. If two triples (sid, i, M1) and (sid′, i′, M′
1) are equivalent

at some point in time, then they stay equivalent for the rest of the game.

Proof of Equivalence Claim 1. Both signer set and message do not change over
time. For the other components that determine whether the triples are equiva-
lent, we consider two cases: Either, on an update of Ĥ, both do not change. In this
case the triples trivially stay equivalent. In the other case, both of them change,
as the lists (comj)j∈F and (com′

j)j∈F ′ are the same before the update. Now, it
easily follows from our last observation above that the triples stay equivalent.

Equivalence Claim 2. If two triples (sid, i, M1) and (sid′, i′, M′
1) are not equiva-

lent at some point in time, then the probability that they become equivalent later
is negligible. Concretely, if Converge is the event that any two non-equivalent
triples become equivalent at some point in time, then

Pr [Converge] ≤ Q2
S(QS + t)

|R| .

Proof of Equivalence Claim 2. Clearly, if m �= m′ or S �= S′, then the triples will
stay non-equivalent. Now, consider an update of Ĥ that is caused by a query to
Sig1 or the corruption oracle and will potentially change the equivalence relation.
We consider two cases: In the first case, the lists (comj)j∈F and (com′

j)j∈F ′ are
the same before the update. In this case, they either do not change, in which
case the triples trivially stay non-equivalent, or they both change, in which case
it follows from our last observation above that they stay non-equivalent. In the
second case, the lists (comj)j∈F and (com′

j)j∈F ′ are different before the update.
If they stay different after the update, the triples stay non-equivalent. If they
become the same after the update, this means that an entry was removed from
only one of them, say j = j∗ from F and thus comj = com∗ from (comj)j∈F . For
this case, use notation R̄

(1)
b and R̄

′(1)
b as in the last observation above and notice

that R̄
′(1)
1 = R̄

′(1)
0 because (com′

j)j∈F ′ is not changed during the update. On the
other hand, (comj)j∈F is changed by the update and we have R̄

(1)
1 = R̄

(1)
0 +R

(1)
∗ .

Thus, if the triples become equivalent, we must have

R̄
′(1)
0 = R̄

′(1)
1 = R̄

(1)
1 = R̄

(1)
0 + R

(1)
∗ .

Notice that R
(1)
∗ is sampled in the signing or corruption oracle by sampling some

r∗
$←− D and setting R

(1)
∗ = T(g, r∗). Thus, R

(1)
∗ is uniformly distributed over R
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by the regularity of TLF and independent of R̄
′(1)
0 and R̄

(1)
0 , which means that

this equation holds with probability at most 1/|R|. Taking a union bound over
all pairs of triples and all queries to the signing oracle and the corruption oracle,
the claim follows.

With our equivalence relation at hand, we introduce an algorithm
GetChallenge that behaves as a random oracle on equivalence classes. That is, it
assigns each class a random challenge c

$←− S in a lazy manner. More precisely, it
gets as input a triple (sid, i, M1) and checks if a triple in the same equivalence
class5 is already assigned a challenge c. This is done using algorithm Equivalent.
If so, it returns this challenge c. If not, it assigns a random challenge c

$←− S to
the triple (sid, i, M1).

These two new algorithms are used in the following way: Recall that in previ-
ous games, algorithm UpdatePending would program h̄[pk, pk(2), R(1), R(2),m] $←−
S whenever an entry (sid, i, M1) is removed from Pending and no abort occurs,
where pk(2), R(1), R(2),m are the corresponding secondary public keys, combined
nonces, and messages. Now, instead of sampling h̄[pk, pk(2), R(1), R(2),m] at ran-
dom, the algorithm sets h̄[pk, pk(2), R(1), R(2),m] := GetChallenge(sid, i, M1).
We need to argue that this way of programming the random oracle does not
change the view of the adversary. Concretely, all we need to argue is that two
different inputs x �= x′ to random oracle H̄ get independently sampled outputs.
Clearly, it is sufficient to consider inputs of the form

x = (pk, pk(2), R(1), R(2),m), x′ = (pk, pk
′(2), R

′(1), R
′(2),m′),

which both are covered by the newly introduced programming in algorithm
UpdatePending. Let (sid, i, M1) be the entry removed from Pending associated
with x and (sid′, i′, M′

1) be the entry removed from Pending associated with x′.
Consider the point in time where the second entry, say (sid′, i′, M′

1) has been
removed. One can see that the outputs H̄(x) and H̄(x′) are independent, unless
at this point in time (sid, i, M1) and (sid′, i′, M′

1) were equivalent. However,
by definition of equivalence (algorithm Equivalent), them being equivalent would
mean that m = m′ and (pk(2), R(1), R(2)) = (pk

′(2), R
′(1), R

′(2)), as the sets F
and F ′ are both empty because both entries have been removed from Pending.
Thus, we would have x = x′. This shows that the distribution of random oracle
outputs does not change, and so we have Pr [G8 ⇒ 1] = Pr [G9 ⇒ 1].

Game G10: In this game, we change the signing oracle and corruption oracle.
Roughly, we use an honest-verifier zero-knowledge-style simulation to simulate
signing without secret keys. Intuitively, we can do that, because now we know the
challenge already in the opening phase before fixing nonces. More precisely, recall
that until now, signers in the opening phase, i.e., on a query Sig1(sid, i, M1),
sampled a random ri

$←− D and set R
(1)
i := T(g, ri) and R

(2)
i := T(h, ri).

Later, in the response phase, the signer sent si := c · �i,S · ski + ri where
5 It is essential for this algorithm that we have shown that equivalence classes are

preserved over time. Otherwise, the behavior of this algorithm would be ambiguous.
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c := H̄(pk, pk(2), R(1), R(2),m) and pk(2), R(1), R(2) are the combined secondary
public key and nonces. Additionally, when the signer is corrupted, it has to send
ri as part of its state. We change this as follows: In the opening phase, consider
two cases: First, if (sid, i, M1) has not been added to the list Pending, then the
signer sets c := 0. Observe that in this case, we can assume that the signer never
reaches the response phase for this session due to our changes in G6 and G7.
Otherwise, it sets c̃ := GetChallenge(sid, i, M1). In both cases, the signer samples
si

$←− D and sets R
(1)
i := T(g, si)− c̃ · �i,S ·pki and R

(2)
i := T(h, si)− c̃ · �i,S ·pk(2)i .

Later, when the signer has to output something in the response phase, it out-
puts the si that it sampled in the opening phase. Further, when the signer is
corrupted after the opening phase, it sets ri := si − c̃ · �i,S · ski. To argue indis-
tinguishability, we need to show that c̃ and c = H̄(pk, pk(2), R(1), R(2),m) are the
same. This is established as follows:

1. When the signer is queried in the response phase and does not return ⊥, we
know that the entry (sid, i, M1) has been removed from Pending.

2. When it was removed from the list, the combined nonce and secondary public
key that have been computed are exactly R(1), R(2), and pk(2).

3. Therefore, in the invocation of UpdatePending in which the entry was removed
from the list, one of two events happened:
(a) Either the map h̄ has been programmed as h̄[pk, pk(2), R(1), R(2),m] :=

GetChallenge(sid, i, M1);
(b) Or, the map h̄ has been programmed as h̄[pk, pk(2), R(1), R(2),m] :=

GetChallenge(sid′, i′, M′
1) for some triple (sid′, i′, M′

1) with the same
associated signer set S (see G8) and message m. In this case, we know that
(sid′, i′, M′

1) is equivalent to (sid, i, M1) and therefore GetChallenge(sid′,
i′, M′

1) returned the same as what the query GetChallenge(sid, i, M1)
would have returned at that point.

4. Thus, we only need to argue that the output of GetChallenge(sid, i, M1) did
not change over time. This follows from our claims about the stability of
equivalence classes over time, assuming event Converge does not occur.

We get

|Pr [G9 ⇒ 1] − Pr [G10 ⇒ 1]| ≤ Pr [Converge] ≤ Q2
S(QS + t)

|R| .

Game G11: We change the game by no longer assuming that (par′, g) ∈ Reg.
Clearly, we have |Pr [G10 ⇒ 1] − Pr [G11 ⇒ 1]| ≤ εr.

It remains to bound the probability that game G11 outputs 1. Before turning
to that, we emphasize the main property we have established via our changes:
We do not longer need secret key shares ski to simulate the signer oracle. We
only need them on corruption queries. Due to space constraints, we postpone
the final part of the proof to the full version [7] and only give a short summary
here. To bound the probability that game G11 outputs 1, we consider two cases
depending on the final forgery (m∗, σ∗) with σ∗ = (pk∗(2), c∗, s∗). First, if there
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is no x0 ∈ D such that T(g, x0) = pk and T(h∗, x0) = pk∗(2), where h∗ = H(m∗),
then we can bound the probability using Lemma 1. Second, if there is such
an x0, then we bound the probability using a reduction against the t-algebraic
translation resistance of TLF. The reduction defines all keys from its initial input
by interpolation, simulates the signing oracle without any secret keys as in G11,
and uses its own oracle to answer corruption queries. From the forgery and the
corruption queries, it can then interpolate a solution for t-algebraic translation
resistance. See the full version [7] for details. ��

4 Instantiations

In this section, we instantiate our threshold signature scheme by providing con-
crete tagged linear function families.

4.1 Instantiation from (Algebraic) One-More CDH

We can instantiate the tagged linear function family by mapping a tag h ∈ G

and a domain element x ∈ Zp to hx ∈ G. Regularity and translatability are easy
to show, and algebraic translation resistance follows from an algebraic one-more
variant of CDH. We postpone the details to the full version [7].

4.2 Instantiation from DDH

Here, we present our construction TLFDDH = (GenDDH,TDDH) of a tagged linear
function family based on the DDH assumption. Recall that the DDH assump-
tion states that it is hard to distinguish tuples (G, p, g, h, ga, ha) from tuples
(G, p, g, h, u, v), where G is a cyclic group with generator g and prime order p,
h, u, v are random group elements, and a ∈ Zp is a random exponent. From now
on, let GGen be an algorithm that takes as input 1λ and outputs the descrip-
tion of a group G of prime order p, along with some generator g ∈ G. Algo-
rithm GenDDH simply runs GGen and outputs the description of G, p, and g
as parameters par. We make use of the implicit notation for group elements
from [39]. That is, we write [A] ∈ G

r×l for the matrix of group elements with
exponents given by the matrix A ∈ Z

r×l
p . Precisely, if A = (Ai,j)i∈[r],j∈[l], then

[A] := (gAi,j )i∈[r],j∈[l]. With this notation, observe that one can efficiently com-
pute [AB] for any matrices A ∈ Z

r×l
p , B ∈ Z

l×s
p with matching dimensions from

either [A] and B or from A and [B]. For our tagged linear function family, we
define the following sets of scalars, tags, and the domain and range, respectively:
S := Zp, T := G

2×2, D := Z
2
p, R := G

2. Clearly, D and R are vector spaces over
S. For a tag [G] ∈ G

2×2 and an input x ∈ Z
2
p, the tagged linear function TDDH

is defined as TDDH([G],x) := [Gx] ∈ G
2. We emphasize that the tag [G] is given

in the group, and the domain element x is given over the field. It is clear that
TDDH can be computed efficiently and that it is a homomorphism. What remains
is to show regularity, translatability and algebraic translation resistance.
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Lemma 2. TLFDDH is εr-regular, where εr ≤ (p + 1)/p2.

Lemma 3. TLFDDH is εt-translatable, where εt ≤ (3 + 3p)/p2.

Lemma 4. Let t ∈ N be a number polynomial in λ. If the DDH assumption
holds relative to GGen, then TLFDDH is t-algebraic translation resistant.

We postpone the proofs to the full version [7].

5 Concrete Parameters and Efficiency

Our schemes are slightly less efficient than previous schemes, but they are still in
a highly practical regime. Given the strong properties that our schemes achieve
from conservative assumptions without the algebraic group model, it is natural
to pay such a small price in terms of efficiency. We present a more detailed
discussion on efficiency in the full version [7].
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