
POPSTAR: Lightweight Threshold Reporting with Reduced Leakage

Hanjun Li
University of Washington

Sela Navot
University of Washington

Stefano Tessaro
University of Washington

Abstract
This paper proposes POPSTAR, a new lightweight protocol
for the private computation of heavy hitters, also known as
a private threshold reporting system. In such a protocol, the
users provide input measurements, and a report server learns
which measurements appear more than a pre-specified thresh-
old. POPSTAR follows the same architecture as STAR (David-
son et al., CCS 2022) by relying on a helper randomness server
in addition to a main server computing the aggregate heavy
hitter statistics. While STAR is extremely lightweight, it leaks
a substantial amount of information, consisting of an entire
histogram of the provided measurements (but only reveals
the actual measurements that appear beyond the threshold).
POPSTAR shows that this leakage can be reduced at a modest
cost (∼ 7× longer aggregation time). Our leakage is closer to
that of Poplar (Boneh et al., S&P 2021), which relies however
on distributed point functions and a different model which
requires interactions of two non-colluding servers to compute
the heavy hitters.

1 Introduction

Telemetry is essential for assessing the proper functioning of
applications and operating systems. For example, a vendor
would like to record which events lead to a crash to mitigate
potential bugs. The desire to minimize the amount of collected
information in this process has led to the emergence of private

telemetry solutions to compute simple statistics M(s1,s2, . . .)
of the users measurements {si}, such as their sum ∑si or
their heavy hitters, i.e., the set of measurements which appear
more than a pre-defined threshold t times. In these systems,
we expect the provider to only learn M(s1,s2, . . .), whereas the
users learn nothing. While this is a special case of multi-party
computation (MPC), rather than using generic off-the-shelf
solutions, we aim for lightweight solutions that require no
interaction among the users, while tolerating some amount
of leakage. This work will propose a new approach for the
private computation of heavy hitters. Prior to introducing our
contribution, however, we start with some background.

Two-server aggregation. Single-server solutions have pri-
marily emerged in the context of Federated Machine Learn-
ing [9,12,26,27]. They require multiple rounds of interaction,
and consequently need to be robust to client dropouts. In con-
trast, a number of lightweight telemetry systems like Prio [17]
(for sums) and Poplar [13] (for heavy hitters) instead rely on
two non-colluding servers. Clients only send a single mes-
sage to each server. Such systems are the subject of an IETF
standardization [21], have been generalized [19], and have
seen real-world deployment. Crucially, however, the recipient
of the aggregation results (e.g., a browser vendor) needs to
enlist an external entity trusted not to be colluding, willing
to tolerate the same storage cost, and interact during the ag-
gregation protocol. Needless to say, this can be challenging
and expensive, as confirmed by the recent deployment [4] of
Prio as part of Google/Apple’s exposure notification platform
(GAEN). Even if a third party specializes in acting as the
second server for a number of services, its workload would
scale with the number of services supported, and would need
to interact every time a service recovers the output statistics.

An alternative model is offered by STAR [18], a system for
the private computation of heavy hitters which in turn extends
earlier telemetry systems based on anonymous tokens [22].
Here, servers operate independently. The first server, which
we refer to as the randomness server, merely implements an
oblivious pseudorandom function (OPRF). In contrast, the
provider runs a report server which obtains reports (computed
by the clients with help of the randomness server), and recov-
ers the heavy hitters without interacting with the randomness
server. Due to the lack of coordination, the randomness server
is now more likely to be implemented by a third-party ser-
vice. The problem with STAR, however, is that its leakage
is substantial–in fact, an anonymized version of the entire
frequency histogram for the inputs {si} is revealed, but only
the actual measurements appearing beyond a certain threshold
are revealed.

In this paper, we ask the following question: Can we reduce

the leakage of STAR while preserving its architecture and

without significantly impacting its efficiency?

USENIX Association 33rd USENIX Security Symposium 6939

Our contributions. We present a new threshold reporting
system, POPSTAR, to compute heavy hitters which increases
privacy in the STAR system at a moderate cost. Our system,
not unlike STAR and Poplar, will still leak information. For a
truly passive corrupted report server, our leakage is similar to
that of Poplar when reporting totally random measurements,
without the need of the expensive interactions between two
non-colluding servers. We also show the effect of active at-
tacks to be limited.

Our randomness server remains relatively simple (although
not as simple as that of STAR), and our report server is roughly
seven times as slow as that of STAR under suitable parameter
choices. We note that our randomness server is computation-
ally (∼ 70×) heavier than our report server, however the main
benefit is its simplicity and that of being independent. We
also discuss in Section 8.3 potential optimizations to speed
up the randomness server.

We give a full security analysis of our system: we provide a
functionality that captures its leakage precisely, and prove our
protocol to implement it. We also give an empirical analysis
of the leakage and propose a heuristic mechanism to provide
differential privacy. Finally, we benchmark an implementation
of the components of our system.

2 Overview of POPSTAR

Overview of STAR. We start with an overview of STAR [18]
before introducing the key ideas behind POPSTAR. For
starters, STAR’s randomness server implements an oblivi-

ous PRF (OPRF), used to associate with every potential mea-

surement s ∈ {0,1}∗ a randomly chosen degree t polynomial

ps(X) ∈ F[X] over a finite field F. In particular, each client
querying s to the randomness server will learn the same poly-
nomial ps(X), whereas the randomness server learns nothing
about either of s or the polynomial obtained by the client
within this interaction.

A client’s report for a measurement s has the form

rep= [r, ps(r),Enc(ps(0),s)] ,

where Enc here denotes the encryption procedure of a sym-
metric encryption scheme, r ∈ F is uniformly chosen, and
ps(X) is the polynomial associated with s previously obtained
from the randomness server. If the report server then ob-
tains t + 1 reports for the same measurement s, associated
with distinct r values (which is the case with overwhelming
probability), the value ps(0) can be reconstructed via simple
interpolation, and the value s can be recovered via decryption
from any of the reports.1 A client, when ready, sends the re-
port directly to the report server (or, as we explain below, to
an intermediate mixing server first to eliminate the origin and
timing information of the report).

1It is often useful to additionally encrypt application-dependent metadata,
along with s, but we omit this for the sake of brevity.

The problem is that the report server now accumulates
reports for potentially different measurements, but cannot
recognize which reports are associated with the same mea-
surement. For this reason, STAR includes a tag tag(s) in the
report as well—such a tag is also computed from an inde-
pendent OPRF evaluation with the randomness server, and
crucially, tags are deterministic functions of s and unlikely
to collide. With overwhelming probability, any t +1 reports
with the same tag can be used to reconstruct ps(0) efficiently
via interpolation, and then decrypt the associated ciphertexts.

However, tags add unwanted leakage, as the server can
now build histograms for the tags, and while the associated
measurement s is only revealed for tags appearing more than
t times, the histogram information associated with unrevealed
inputs is important information we ideally want to hide.

POPSTAR to the rescue: Reducing leakage. We are now
ready to explain our approach to reducing leakage in POP-
STAR. The main idea is that the randomness server will as-
sociate with every possible string y ∈ {0,1}≤ℓ of length at
most ℓ an independent (pseudo)random polynomial py(X) of
degree t. Here, ℓ is a parameter which we will (empirically)
show to be related to the privacy offered by the system–we
hence often refer to it as the privacy parameter.

By interacting with the randomness server, the client obliv-

iously obtains ℓ polynomials

py1(X), py1y2(X), . . . , py1y2...yℓ(X)

associated with the ℓ prefixes of a (pseudo)random
string y(s) = y1y2 . . .yℓ which is, in turn, derived
from s. The client also obliviously obtains tags
tag(y1), tag(y1y2), . . . , tag(y1y2 . . .yℓ). Crucially, query-
ing the same s multiple times (by multiple clients) will
yield the same polynomials (and tags), whereas querying
distinct measurements s ̸= s′ will very likely lead to different
sequences of polynomials/tags that partially overlap up to
the length of the longest common substring of y(s) and
y(s′). For example, if ℓ = 4, y(s) = 0000 and y(s′) = 0010,
interacting with the randomness server on input s will reveal
the polynomials

p0(X), p00(X), p000(X), p0000(X)

whereas on input s′ the revealed polynomials are

p0(X), p00(X), p001(X), p0010(X) .

POPSTAR’s report for a measurement s ∈ {0,1}∗ has form

rep=
[
r, py1(r), tag(y1),ct

(1), . . . ,ct(ℓ+1)
]
,

where r ∈ F is randomly chosen, and

ct(i) = Enc(py1...yi(0), py1...yiyi+1(r) ∥ tag(y1 . . .yiyi+1))

for i = 1, . . . ,ℓ − 1. The ℓ-th ciphertexts encrypts
ps(r)∥ tag(s), where ps, tag(s) are computed from an

6940 33rd USENIX Security Symposium USENIX Association

independent OPRF evaluation with the randomness server.
The final ciphertext encrypts s.

ct(ℓ+1) = Enc(ps(0),s) .

Now, the report server is always able to “peel off” an ad-
ditional encryption layer from a report for s with y(s) =
y1y2 . . .yℓ whenever more than t reports for a prefix y1, . . . ,yi

have been received.
While the costs of managing reports are higher in POP-

STAR than in STAR, our implementation shows that they
remain within feasible range. For example, aggregating 1
million reports takes 136.1 seconds, which is roughly 7×
slower than STAR. The randomness server is however more
complex and less efficient than in STAR–in fact, after exten-
sive benchmarks, the best performing solution we provide is
still based on garbled circuits. Still, even here the end-to-end
running time of one client interaction with the randomness
server is dominated by network latency (∼ 50ms), rather than
local computation times. In POPSTAR, such an interaction
takes 2 round trips whereas in STAR, 1 round trip. Hence, we
estimate it to be 2× to 3× slower than STAR.

Security Analysis. Our approach substantially reduces leak-
age compared to STAR. A passive server in particular learns:

1. All strings y′ = y1 . . .yi such that > t reports are for a
measurement s such that y1 . . .yi−1 is a prefix of y(s).

2. For each such string y′, which reports are for a measure-
ment s such that y′ is a prefix of y(s).

This leakage profile resembles that of Poplar, which however
uses either the measurement itself in lieu of y(s), or a deter-
ministic hash of s, which makes our system stronger in this
one dimension. However, in contrast to (2) above, each of
the two Poplar servers cannot link a particular report to its
contribution, and hence only learns how many reports are
for a measurement s such that y′ is a prefix of y(s), but not
which reports. As in STAR, we mitigate this by introducing
an abstract mixing server which is used by the clients when
submitting their reports. This could be an actual third-party
service, or could be implemented heuristically by having all
users coordinate sending their reports at pre-specified times
using anonymous communication tools such as ToR.

Another attack by a malicious report server is to maliciously
spawn clients and interact with the randomness server. How-
ever, this attack is rather ineffective due to the randomness
of the mapping between s and y(s), and can intuitively only
help uncover extra information about random processes up to
a small depth. Also, the effect of this attack can be mitigated
via rate limiting measures on the randomness server.

We give a detailed functionality capturing the security of
POPSTAR in Section 7.1 (and which we use then to prove
security in the full version), 2 and then interpret it empirically

2https://eprint.iacr.org/2024/320

in Section 7.2. We also propose a heuristic mechanism to
provide differential privacy in Section 7.3.

Robustness against malicious client input. POPSTAR as
described above is not very robust. For example, a malicious
client may include in its report wrong evaluations of the poly-
nomials, causing interpolations by the report server to produce
wrong decryption keys. Any honest report containing a ci-
phertext that is supposed to be decrypted by those keys will
be affected. We note that STAR is also not robust against such
malicious reports–while clients can verify that the polynomial
is correct (using e.g., a verifiable OPRF), the report server
cannot generally check that the reports contain legitimate
evaluations of the polynomial.

We describe a robust variant of POPSTAR in Section 6
that prevents malicious clients’ reports from affecting honest
reports, assuming the randomness server behaves honestly.

3 Preliminaries

General notations. For a natural number n ∈ N, we write
[n] to represent the set {1, . . . ,n}. We write x∥y to denote the
concatenation of two strings x,y. For a tuple S and an index
set I, we write SI to mean the subset indexed by I.

Shamir’s secret sharing. Although not explicitly using
Shamir’s secret sharing scheme, POPSTAR relies on the same
underlying idea of sharing a secret via polynomial evaluation,
and reconstructing the secret via interpolation.

We briefly describe Shamir’s scheme over a finite field
F, and its correctness and privacy guarantees. They directly
translate to properties of polynomial interpolation.

In the following, M ∈ N is the number of share holders,
t ∈ [M] is a threshold, and E = (pt1, . . . ,ptM) is a tuple of
distinct points in F.

• Y ← Sharet,E(k) outputs shares Y = y1, . . . ,yM of the
secret k ∈ F, computed as yi = fk(pti), where fk(x) =
k+ c1 · x+ . . .+ ct · xt , and c1, . . . ,ct ← F.

• k← Recont,E(I,YI) outputs the secret k, reconstructed
from a subset of > t shares YI as k = fk(0) where fk =
Interpolate(EI ,YI , t).

Lemma 1. Fix any number M ∈N, threshold t ∈ [M], and dis-

tinct points E = (pt1, . . . ,ptM)⊆ F. Let Y = (y1, . . . ,yM)←
Sharet,E(k) be shares of a randomly sampled secret k← F.

1. Any subset of > t shares YI indexed by I ⊆ [M] can re-

cover the correct secret: k = Recont,E(I,YI).

2. Any subset of ≤ t shares YI′ indexed by I′ ⊆ [M] leaks

no information about the secret: (E, I′,YI′)≡ (E, I′,U),
where U denotes random values over F.

USENIX Association 33rd USENIX Security Symposium 6941

Symmetric key encryption with key commitment. An
encryption scheme with key commitment guarantees that a
ciphertext may be only decrypted with the same key used to
produce it. In particular, the decryptor either learns the correct
plaintext or recognizes a decryption failure.

We describe a simple scheme for encrypting l-bit messages
in the random oracle model, based on the simple padding
idea in [2]. Let HE : {0,1}∗ → {0,1}l+λ be a hash function
modeled as a random oracle.

• Enc(k,msg) samples a random string r← {0,1}λ, and
outputs ct= (r,c) where c = HE(k∥r)⊕ (0λ ∥m).

• Dec(k,ct) parses ct = (r,c), and computes (v∗ ∥m∗) =
c⊕HE(k∥r). It outputs m∗ if v∗ = 0λ, and ⊥ otherwise.

In addition to key commitment, the usual correctness and
IND-CPA security holds for the above scheme.

Concretely in our evaluations, we use AES-GCM with the
padding fix described in [2].

Garbled circuit [10] (GC). We use a simplified syntax.

• (Ĉ,K = {k
(i)
0 ,k

(i)
1 }[m])← Garb(1λ,C): given a Boolean

circuit C : {0,1}m→ {0,1}n, outputs a garbled circuit Ĉ

and m pairs of keys K corresponding to the inputs to C.

• C(x) = Eval(Ĉ,Kx): evaluates the garbled circuit Ĉ using
m keys Kx, which are selected from K according to an
input x ∈ {0,1}m.

Correctness and privacy guarantees the evaluator learns C(x)
and nothing else. 3 POPSTAR uses GC to implement an obliv-
ious double PRF protocol (Figure 4), between a client and the
randomness server.

Oblivious transfer (OT). An OT protocol runs between a
sender and a receiver with the following interface.

• OTl .send({msg
(i)
0 ,msg

(i)
1 }i∈[l]). The sender inputs l

pairs of messages msg
(i)
0 ,msg

(i)
1 for i = 1, . . . l.

• {msg
(i)
xi } ← OTl .receive(x). The receiver inputs a

choice vector x∈ {0,1}l , and receives one message from
each pair chosen by the corresponding bit of x.

Security guarantees that the receiver learns only the messages
chosen by x, while the sender learns nothing about x.

POPSTAR uses OT together with a GC scheme introduced
above to implement the oblivious double PRF protocol (Fig-
ure 4). Concretely, we use the OT protocol of [15].

3More precisely, the evaluator also learns the topology of C.

Figure 1: POPSTAR architecture. The server O samples fresh
secret key(s) for each session. In the reporting phase, each
client computes a report by interacting with the server O, and
sends it to the mixing server. In the aggregation phase, the
server S obtains shuffled reports, and locally recovers heavy
hitters and their associated messages.

4 System Overview and Threat Model

4.1 System Overview

Figure 1 illustrates the system model of POPSTAR. We ex-
plain it in more detail below.

The basic threshold reporting system. The basic system
consists of a set of clients P1,P2, . . ., a randomness server O,
and a report server S . We envision the system run in recurring
sessions, during which each client computes a report of a
measurement s and a message msg with the help of the server
O, and sends it to the server S. The server O should learn
nothing, and the server S should only learn the measurements
reported more than t times.

The threshold t is a system parameter set appropriately
depending on the application scenario and the duration of
each session. We emphasize that the server S should not be
able to aggregate reports from different sessions.

Clients do not communicate among themselves and the two
servers S and O do not communicate with each other. Clients
communicate with both servers through private and authenti-
cated asynchronous channels (e.g., both servers deploy TLS
for this purpose, and have each a certificate).

Hiding client identities through a mixing server. In many
applications, it is desirable to hide client identities associated
with each report from the server S, as well as the timing of
each report. For this, we will assume the availability of an
abstract mixing server that collects reports from the clients
during each aggregation session, shuffles them randomly, and
delivers them to the server S in one shot (See Figure 1).

The abstract mixing server could be implemented by an ac-
tual third-party service, or heuristically by having the clients
to coordinate sending their reports at pre-specified times
through anonymous communication tools such as ToR.

6942 33rd USENIX Security Symposium USENIX Association

An alternative suggested in [18] is to also rely on the ran-
domness server O for this purpose. In more detail, we let
the server O act as an oblivious HTTP proxy between the
clients and the server S , which strips away identifying infor-
mation from client messages containing their reports, batches
them until the end of the aggregation session, and delivers all
messages in a shuffled order in one shot.

4.2 Threat Model and Security Goals

We consider a static malicious adversary who initially cor-
rupts a subset of the participants, and controls them through-
out the session. As in prior works [13,18], we assume the two
servers O and S do not collude. More specifically, we only
consider three scenarios: (1) a corrupted server S with collud-
ing clients; (2) corrupted clients only; (3) a corrupted server
O with colluding clients. We explain the security goals and
guarantees of POPSTAR in each scenario below. Section 7.1
will also describe a functionality Freport that captures the se-
curity of POPSTAR precisely, but here we limit ourselves to
an informal overview.

Corrupted server S with colluding clients. In this sce-
nario, the goal is to protect privacy of honest clients’ inputs,
i.e., their measurements and associated messages.

POPSTAR guarantees that if an honest client’s measure-
ment is not a heavy hitter, and not among the ones reported
by the corrupted clients, then its input is hidden from the
adversary, except for a small leakage. (Each colluding client
may choose to make a report of an arbitrary measurement s∗.)

Section 7.1 captures the leakage precisely, and Section 7.2
compares with prior works in detail. In short, POPSTAR has
a leakage similar to the hashing variant of Poplar, and much
smaller than STAR.

We note that a baseline attack by a malicious server S in
POPSTAR (and also in STAR) is to spawn many colluding
clients, and use each of them to statically target a different
measurement s∗. This will cause the malicious server to iden-
tify reports by honest clients’ that are on s∗, which will lose
privacy. (Of course, this only happens if the malicious server
can guess an s∗ for which a report is being made.) This at-
tack is somewhat unavoidable in this model, and also affected
STAR. We do not try to address this attack within POPSTAR,
but argue it can be mitigated by other means in practice. (See
the remark on “client rate limiting”.)

Corrupted clients only. In this scenario, the goal is to pre-
vent maliciously generated reports from damaging the aggre-
gation results, e.g., causing some measurements to be unre-
coverable, even if there are > t honest reports of them.

We first present a very efficient construction of POPSTAR
without trying to defend against such malicious reports. We
then describe a robust variant (Section 6) that minimizes the
effect of malicious reports.

The robust variant of POPSTAR guarantees that malicious
reports get discarded from the final aggregation results, while
ensuring that honest reports are still counted.

Corrupted server O with colluding clients. In this sce-
nario the goal is to protect the privacy of honest clients’ inputs.

POPSTAR completely hides honest clients’ inputs from
the adversary, irrespective of whether the measurements are
heavy hitters or not.

POPSTAR has very limited guarantee against malicious
reports from corrupted clients, and faulty reports from hon-
est clients caused by a malicious server O. Essentially, the
adversary may cause any subset of the honest reports to be
discarded from the final aggregation results.

Remark on colluding servers S and O. POPSTAR is de-
signed with two non-colluding servers in mind. However, we
note that even when they collude, POPSTAR still provides
limited privacy (see Section 5.1). In contrast, Poplar [13] has
no privacy when the servers collude.

Remark on client rate limiting. As noted in the case of
a corrupted server S, privacy of POPSTAR relies on the as-
sumption that the adversary cannot collude or spawn too many
malicious clients, nor sending multiple queries through one
colluding client to the server O.

We envision enforcing one query per session from the
clients by requiring them to register accounts with the server
O, who limits the number of interactions per account.

To prevent the adversary from registering multiple ac-
counts, one could use usual measures making the creation
of multiple accounts expensive (e.g., requiring multiple e-
mail addresses, distinct authentication factors, etc).

5 Protocol Description

5.1 Threshold Reporting Protocol

The POPSTAR protocol (Figure 1) consists of a reporting
phase, where each client computes a report with the help of
the server O and sends it to the mixing server, and an aggre-
gation phase, where the report server obtains reports from the
mixing server and locally recovers the heavy hitters. We focus
on the more efficient non-robust variant in this section. We de-
scribe the robust variant in Section 6, and propose a heuristic
mechanism to provide differential privacy in Section 7.3.

The algorithmic descriptions of each client and the report
server are given in Figure 2 and 3. Below we first introduce the
cryptographic tools used, and the interfaces implemented by
the randomness and the mixing servers. We then describe the
two phases in more detail. Finally, we analyze the correctness
and privacy of the protocol. (Formal security definitions can
be found in Section 7.1 and proofs in the full version.)

USENIX Association 33rd USENIX Security Symposium 6943

Cryptographic primitives. The protocol uses the sym-
metric key encryption scheme (Enc,Dec) with key commit-
ment described in Section 3. It also uses two hash functions
(modeled as random oracles): (1) Hs : {0,1}∗ → {0,1}λ, (2)
Hp : {0,1}∗ → Ft+1× {0,1}λ where F is a λ-bit field. The
output of Hp is a degree t polynomial f and a tag.

The randomness and the mixing server interfaces.
The randomness server O implements two interfaces
OPRF,ODPRF short for oblivious (double) PRF. We give
details of the implementations in Section 5.2.

• u← OPRF(x). Each client can call OPRF(x) with an
λ-bit string input, and obtain a single λ-bit string.

• v(1), . . . ,v(ℓ) ← ODPRF(x). Each client can call
ODPRF(x) with an λ-bit string input, and obtain ℓ λ-
bit strings.

The former result u is supposed to be a PRF evaluation:
u = F(sk,x), where sk is known only to the server O. The
latter results v(1), . . . ,v(ℓ) are supposed to be PRF evalua-
tions v(d) = F ′(sk′,prefix(u′,d)), where u′ = F ′(sk′,x), and
prefix(u′,d) denotes the first d bits of u′, padded appropriately.
sk′ is known only to the server O.

The abstract mixing server implements two interfaces.

• Mix.send(R). Each client can call Mix.send(R) to send
its report to the mixing server.

• {R j} ← Mix.collect(). The report server S can call
Mix.collect() to collect reports sent by the clients, in
a randomly shuffled order.

The reporting phase. During the reporting phase, each
client who wishes to report a measurement s and an associated
message msg independently and asynchronously executes the
following steps (formally described in Figure 2).

First, the client hashes its measurement to a λ-bit string
x = Hs(s), and calls the ODPRF and OPRF interfaces of
the server O with the input x to obtain evaluation results
v(1), . . . ,v(ℓ),u. The client hashes, using Hp, the evaluation
results into ℓ+ 1 degree t polynomials f (1), . . . , f (ℓ), f (ℓ+1),
each associated with a tag.

Next, the client derives a secret key k(d) = f (d)(0) from
each polynomial, and a Shamir’s secret share (Section 3) of
the key y(d) = f (d)(pt). The evaluation point pt is chosen at
random for each report so that pt does not leak anything about
the client identity, and also does not collide with other client’s
choices with overwhelming probability.

Finally, the client creates a chain of encryptions. The first
key k(1) is used to encrypt the second share, together with
the second tag: ct(1)← Enc(k(1), tag(2) ∥y(2)), and so on. The
final key k(ℓ+1) is used to encrypt the measurement and the
message: ct(ℓ+1)← Enc(k(ℓ+1),s∥msg). The report consists

of the ciphertexts, the first share and tag, and the evaluation
point: R = (pt, tag(1),y(1),ct(1), . . . ,ct(ℓ+1)). The client sends
it to the mixing server using the interface Mix.send(R).

POPSTAR-Clientℓ,t(s,msg)

1 : x = Hs(s)

2 : v(1), . . . ,v(ℓ)←ODPRF(x)

3 : u←OPRF(x)

4 : for d = 1, . . . ,ℓ do

5 : (f (d),tag(d)) = Hp(v
(d))

6 : f (ℓ+1),tag(ℓ+1) = Hp(u∥s)

7 : pt← F

8 : for d = 1, . . . ,ℓ+1 do

9 : k(d) = f (d)(0), y(d) = f (d)(pt)

10 : for d = 1, . . . ,ℓ do

11 : ct(d)← Enc(k(d),tag(d+1) ∥y(d+1))

12 : ct(ℓ+1)← Enc(k(ℓ+1),s∥msg)

13 : Mix.send(R = (pt,tag(1),y(1),ct(1), . . . ,ct(ℓ+1)))

Figure 2: The client pseudocode of POPSTAR.

The aggregation phase. During the aggregation phase, the
server S collects the reports received by the mixing server
using the interface {R j} j∈[m]←Mix.collect(), and executes
the following steps (formally described in Figure 3).

First, the server S divides the reports into depth-1 sub-
groups according to the depth-1 tags included in each report,
discarding the ones with size ≤ t.

Next, for each depth-1 subgroup G(1), the server uses the
shares {y

(1)
j } j∈G(1) and evaluation points {pt j} j∈G(1) included

in the reports to derive a key k(1) by polynomial interpolation.
The server decrypts the depth-1 ciphertexts {ct(1)} j∈G(1) in

the group using k(1), discarding reports R j for which ct(1)j fails
to decrypt. Note that by using an encryption scheme with key
commitment, the server recognizes decryption failures and
avoids proceeding with garbage results. A successful decryp-
tion of ct(1)j recovers the depth-2 tags and shares tag(2)j ,y

(2)
j

for report R j. After recovering a depth-2 tag and share for
each report in the group G(1), the server divides it further into
depth-2 subgroups, discarding the ones with size ≤ t.

The server proceeds analogously for each depth-2 subgroup
G(2), further dividing it into depth-3 subgroups, and so on. In
the end, the server obtains a list of depth-(ℓ+1) subgroups,
each with size > t.

Finally, for each depth-(ℓ+ 1) group G(ℓ+1), the server
decrypts the depth-(ℓ+ 1) ciphertexts in it, discarding the
ones that fails. A successful decryption of ct(ℓ+1)

j recovers

6944 33rd USENIX Security Symposium USENIX Association

a measurement s and a message msg j for report R j. If the
reports in the group contain the same measurement, then the
server adds it and associated messages to the aggregation
results. Otherwise, the server discards the group.

POPSTAR-Server-Sℓ,t

1 : {R j} j∈[m]←Mix.collect() // m denotes the number of reports.

2 : parse R j = (pt j,tag
(1)
j ,y

(1)
j ,ct

(1)
j , . . . ,ct

(ℓ+1)
j)

3 : d-groups← /0, for d ∈ [ℓ+1]

4 : find-subgroups(G(0) = [m],1)

5 : for d = 1, . . . ,ℓ do

6 : for G(d) ∈ d-groups do

7 : k(d)← derive-key(G(d),d)

8 : for j ∈ G(d) do

9 : if ⊥←Dec(k(d),ct
(d)
j) then G(d)← G(d) \{ j}

10 : else (tag
(d+1)
j ,y

(d+1)
j)←Dec(k(d),ct

(d)
j)

11 : find-subgroups(G(d),d +1)

12 : res← [] // Stores measurements and associated messages.

13 : for G(ℓ+1) ∈ (ℓ+1)-groups do

14 : k(ℓ+1)← derive-key(G(ℓ+1),ℓ+1)

15 : s← null, msgs← /0

16 : for j ∈ G(ℓ+1) do

17 : if ⊥←Dec(k(ℓ+1),ct
(ℓ+1)
j) then go to line 16

18 : else (s j,msg j)←Dec(k(ℓ+1),ct
(ℓ+1)
j)

19 : if s ̸= null∧ s ̸= s j then go to line 13

20 : else s← s j,msgs←msgs∪{msg j}

21 : res[s] = res[s]∪msgs

22 : return res

23 : derive-key(G,d)

1 : f = Interpolate({pt j} j∈G,{y
(d)
j } j∈G, t)

2 : return k = f (0)

24 : find-subgroups(G,d)

1 : for distinct tag(d) indexed by G do

2 : G(d) = { j : R j has tag(d)j = tag(d)}

3 : if |G(d)|≤ t then go to line 1

4 : else d-groups = d-groups∪{G(d)}

Figure 3: The report server S pseudocode of POPSTAR.

Correctness. We note three facts of the aggregation phase.
(1) A subgroup with size > t is decrypted successfully. (2) Re-
ports on the same measurement are put into the same depth-d

subgroup, for all d ∈ [ℓ+1]. (3) Reports on different measure-
ments are put into different depth-(ℓ+1) subgroups.

First, a depth-d subgroup contains only reports with the
same tag(d). Hence, the shares y

(d)
j in this group are eval-

uations on the same degree t polynomial f (d) uniquely as-
sociated with tag(d), and the ciphertexts ct(d)j are encrypted
under the key k(d) = f (d)(0). Interpolation of the > t shares
recovers f (0) and k(d). Hence, decryptions for the group are
successful.

Second, note that the tags tag(1), . . . , tag(ℓ+1) in a report
of s are deterministically derived from s. Hence, reports of
the same s share the same tag(d), and are put into the same
depth-d subgroup for all d ∈ [ℓ+1].

Third, note that the final tag tag(ℓ+1) in a report of s is
derived as f (ℓ+1), tag(ℓ+1) = Hp(u∥s), where Hp is modelled
as a random oracle. With overwhelming probability, different
s leads to different tag(ℓ+1).

We can now conclude correctness. For any measurement
s with > t reports, the subgroups containing these reports all
have size > t by fact (2), hence are successfully decrypted
by fact (1). The final depth-(ℓ+ 1) subgroup contains only
reports of s by fact (3), hence s and the associated messages
are added to the aggregation results.

Privacy. We informally argue privacy for reports of non-
heavy hitter measurements against the report server S. (See
Section 7.1 for formal security definitions and the full version
for proofs.)

First consider the server S without colluding clients. A
report of some measurement s can be divided into two parts:
(1) the final ciphertext, ct(ℓ+1), encrypting s and a message
under the secret key k(ℓ+1), and (2) the rest of the report,
encrypting (through a chain of ciphertexts) a share of the key
y(ℓ+1). The final ciphertext ct(ℓ+1) remains secure against the
server S when there are ≤ t reports of s, because ≤ t shares
of the key k(ℓ+1) leaks no information about it.

Next, when the server S colludes with some clients, each
such client allows it to target a certain measurement s∗ and
directly learn the secret key k∗(ℓ+1) used for encrypting s∗.
In more detail, the colluding client is allowed one call to the
interface u∗ ← OPRF(x∗) with x∗ = Hs(s∗). It then derives
k∗(ℓ+1) from u∗. Reports of s∗ lose privacy, while reports for
non-heavy hitters s ̸= s∗ remain private. We emphasize the
server S only chooses targeted measurements s∗ during the
reporting phase, before seeing any honest client’s reports.

Finally, we note that by observing how reports are grouped
together during the aggregation phase, the server S learns
a small amount of leakage of the non-heavy hitter measure-
ments. This is because the tags in a report of some s are
deterministically derived from s. We capture the leakage pre-
cisely in our formal security definition (Figure 6), and give a
detailed comparison with the leakages in prior works in Sec-
tion 7.2. Briefly, our leakage is similar to that of the hashing

USENIX Association 33rd USENIX Security Symposium 6945

variant of [13] (Poplar), and much smaller than that of [18]
(STAR).

Limited privacy against colluding servers S and O. Ob-
serve that a client’s report is derived deterministically from
its measurement s and interactions with the corrupted server
O. So a baseline attack by the adversary is to guess s and
verify against the client’s report. We argue this is the best it
can do in the random oracle model. If the measurements con-
tain sufficient entropy, the adversary cannot efficiently guess
correctly.

First note the client’s input x = Hs(s) to the ODPRF and
OPRF protocols is a hash of s, which looks random to the
adversary without guessing s. The interactions with the server
O as well as the derived keys k(1), . . .k(ℓ+1) and ciphertexts
ct(1), . . . ,ct(ℓ) reveal nothing beyond the hash x.

Next note that the encryption key k(ℓ+1) is derived as an-
other hash of s, which looks random to the adversary without
guessing s. This ensures the final ciphertext ct(ℓ+1) reveals
nothing about s, unless the key k(ℓ+1) is recovered through
guesses of s or more than t reports of s.

Remark on a “Lite” variant. In [18], the authors also pro-
pose a “Lite” variant of STAR, where its randomness server is
replaced with a public hash function. The privacy guarantee
of this variant is weaker, which relies on the client measure-
ments having high entropy. We note that an analogous variant
of POPSTAR can be naturally derived by replacing the server
O with public hash functions.

5.2 Implementing the Randomness Server

The randomness server O implements two interfaces, OPRF
and ODPRF (see Section 5.1). The former can be imple-
mented by any oblivious PRF protocol (OPRF), e.g., the one
of [24], or by a simpler variant of the ODPRF protocol below.

To implement the latter, the server O samples a secret key
sk← {0,1}λ for each aggregation session, and listens for
client messages. Upon receiving init from a client, the server
O executes the ODPRF (Figure 4) protocol with the client
using sk as its input. At the end of the aggregation session, it
deletes sk.

The ODPRF protocol. The protocol has three steps.

1. The server O defines a circuit C such that C(sk,x) com-
putes ℓ λ-bit strings v(1), . . . ,v(ℓ) exactly as required by
the interface. It computes a garbled circuit (GC) Ĉsk of
C(sk, ·) together with λ pairs of inputs keys {k

(i)
0 ,k

(i)
1 }.

2. The serverO and the client run an oblivious transfer (OT)
protocol OTλ. The server calls OTλ.send({k

(i)
0 ,k

(i)
1 }) to

send the input keys, and the client calls Kx = {k
(i)
x }←

OTλ(x) to receive input keys corresponding to x.

ODPRF

client(x) Server-O(sk)
init

Ĉsk,{k
(i)
0 ,k

(i)
1 }i∈[λ]

← Garb(1λ,C(sk, ·))

OTλ

OTλ.receive(x)

Kx = {k
(i)
x }

OTλ.send({k
(i)
0 ,k

(i)
1 })

Ĉsk

v(1), . . . ,v(ℓ)

← Eval(Ĉsk,Kx)

C(sk,x)

1 : u = F(sk,x)

2 : for d = 1, . . . ,ℓ do

3 : v(d) = F(sk,prefix(u,d)) // prefix padded appropriately.

4 : return v(1), . . . ,v(ℓ)

Figure 4: The oblivious double PRF protocol.

3. The server O sends the garbled circuit Ĉsk to the
client, who locally evaluates it to obtain the results
v(1), . . . ,v(ℓ) =C(sk,x).

Correctness follows directly from that of the GC scheme
and the OT protocol. (See Section 3.) Privacy guarantees that
the client’s input x and the server’s secret key sk are hidden
from each other. This also follows directly from the security
of the GC scheme and the OT protocol.

We note that compared to a generic maliciously secure
2PC protocol computing C, our protocol does not enforce the
server O to send the correct garbled circuit corresponding to
C(sk, ·). We make this relaxation for better efficiency.

The observation is that the client’s outputs from the ODPRF
protocol only affect how its report is grouped during the ag-
gregation phase, but not the privacy of the report.

Concrete Choice of F . We instantiate F with the
LowMC [3] block-cipher with 128-bit keys and blocks, and
64-bit data security. LowMC is designed to minimize the
number of AND gates in its circuit, which in turn minimizes
our garbled circuit (with free-XOR) size and computation.

According to the parameter calculation script, 4 our in-
stantiation of F has 1638 AND gates. Hence, the circuit C

computing the double PRF evaluations has 1638 ·(ℓ+1) AND
gates.

4https://github.com/LowMC/lowmc

6946 33rd USENIX Security Symposium USENIX Association

6 The Robust Variant

We describe a robust variant of our protocol to minimize the
effect of malicious reports from corrupted clients, assuming
the randomness server O behaves honestly.

Recall that during the aggregation phase (Figure 3), for
d ∈ [ℓ+ 1], the server S groups reports according to their
revealed depth-d tags. For each group G(d) of size > t, it
interpolates the revealed depth-d shares to obtain a secret key
k(d), and decrypts the depth-d ciphertexts in the group.

A malicious report R∗i in the group may affect the process
in three ways.

1. It may contain a wrong share y
∗(d)
i ̸= f (d)(pti), where

f (d) is the polynomial uniquely associated with the
tag(d) for this group. The server S may derive a wrong
key k∗(d) as a result, and fail at decrypting all ciphertexts
in the group.

2. It may contain a wrong ciphertext ct∗(d) that fails to
decrypt under the correct key for this group. The server
S drops the malicious report R∗i as a result.

3. When d = ℓ+1, it may contain a (ℓ+1)-th ciphertext
decrypting to a different measurement s∗ from the honest
reports in the group. The server S skips the group as a
result.

We describe how to prevent (1) and (3) below. We don’t
prevent (2), as it only results in the malicious report R∗i being
discarded.

Preventing (3). At high level, we prevent (3) by allowing
the server S to verify that a decrypted measurement s indeed
belongs to its depth-(ℓ+1) group. To this end, we augment
the OPRF interface implemented by the randomness server O
with verifiability. (We show how to implement this interface
using a verifiable oblivious PRF protocol in the end.)

• (u,πx)←VOPRF(x). Each client can call VOPRF(x) to
obtain a λ-bit evaluation result u, and a proof πx.

The result u is supposed to be a PRF evaluation u=F(sk,x) as
before, and the proof πx is supposed to be verifiable against a
public key pk by an algorithm Verify: b← Verify(pk,u,x,πx).
We assume a PKI setup where every client and the report
server S learns pk.

During the reporting phase (Figure 2), each client calls
(u,πx)← VOPRF in place of u← OPRF(x) (line 3), and
encrypts u,πx in addition to its measurement and message in
the depth-(ℓ+1) ciphertext: (line 12)

ct
(ℓ+1)
i ← Enc(k(ℓ+1),(s,msgi, u∥πx ∥s∥msg).

During the aggregation phase (Figure 3), the server S
decrypts (u,πx,s,msg)← Dec(k(ℓ+1),ct(ℓ+1)) (line 18), and
checks s against the attached proof πx as follows.

• Compute x = Hs(s), and run b = Verify(pk,us,x,πx).

• If b = 1, then derive f (ℓ+1), tag(ℓ+1) = Hp(u∥s).

• If the derived tagℓ+1 equals the tag for the current depth-
(ℓ+ 1) group, then s is a correct measurement. Other-
wise, discard s.

Preventing (1). Our goal is to prevent the server S from
deriving a wrong key k∗(d) for some depth-d group of > t

reports that contains wrong shares.
We first show a lightweight modification that allows the

server S to efficiently recover the correct key, assuming the
group contains much more than t honest shares, and much
fewer than t wrong shares. When the assumption does not
hold, the server S might time out trying to recover the correct
key, and skips the group. We believe this suffices for many
real world use cases, where the number of corrupted clients
in the system is much smaller than the threshold t, and the
majority of the heavy hitter measurements are reported much
more than t times.

We modify how the server S derives a key for the group.

1. Interpolate a random subset R of t +1 shares to a poly-
nomial f

(d)
R , and derive a candidate key k

(d)
R = f (d)(0).

2. Try decrypting the depth-d ciphertexts in R. If all de-
cryption succeeds, then use k

(d)
R for decrypting the rest

of the group. Otherwise, repeat the above with a fresh
random subset R′.

This procedure succeeds whenever the random subset R con-
tains no malicious reports, which happens with a good prob-
ability when the above assumption holds. As an example,
consider a threshold t = 1000− 1, a group with 50,000 re-
ports, where 50 are malicious. The probability of sampling a
subset R with no malicious reports is

(49,950
1000

)
/
(50,000

1000

)
> 0.36.

Hence, in expectation it takes less than 3 tries to recover the
correct secret key.

It’s also possible to let the server S unconditionally rec-
ognize and discard all wrong shares during the aggregation
process using a polynomial commitment scheme (PC). This
allows us to fully prevent (1). We describe this heavier-weight
method very briefly.

At high level, a PC scheme allows each client to compute a
commitment Cf to a polynomial f , and a proof πpt, f ,y that an
evaluation y is computed correctly from the committed poly-
nomial as y = f (pt). We use a PC scheme, e.g. that of [25],
where the commitment Cf is deterministically derived from
f , so that Cf also functions as a unique tag for f .

In the reporting phase, each client replaces tag(d) with a
commitment C

(d)
f to the polynomial f (d) and a proof π

(d)
pti, f ,yi

,
for d ∈ [ℓ+1]. During the aggregation phase, the server first
proceeds optimistically without checking the commitments
and proofs. (Our use of key-committing encryption ensures

USENIX Association 33rd USENIX Security Symposium 6947

successful decryption results are correct.) Only in case of a
decryption failure, indicating a wrong key k∗(d) is derived,
does the server verify the shares used for interpolation against
their commitments and proofs to discard the wrong ones.

Thanks to the optimistic server strategy, we do not expect
significant changes in server loads, even though polynomial
commitment checks could be expensive.

Implementing the interface VOPRF. We can implement
the interface using any existing verifiable oblivious PRF (VO-
PRF) protocol, e.g. the one of [24] with an extra step.

At high level, a VOPRF protocol allows a client and the
randomness server O securely evaluate a PRF based on the
client’s input x and the server’s secret key sk. Additionally,
the client can verify the evaluation result against a public key
pk, using a proof π from the server.

This almost matches the desired interface, except the proof
is only intended to be verified by the client. To output a proof
that can be verified by anyone holding pk, we simply let the
client attach its view during the protocol, including its internal
randomness, to the proof.

7 Security Analysis

7.1 Ideal Functionality and Security Proofs

We formalize the security properties of POPSTAR into an
ideal functionality Freport (Figure 5, 6, 7) in the universal
composability (UC) framework. (See the full version for an
overview of UC.) The functionality has the following param-
eters.

• M ∈ N is an upper bound on the number of clients, and
t ∈ [M] is the threshold for heavy hitters.

• ℓ ∈ N is the depth of the prefix tree T internally main-
tained by Freport. As we will explain, the leakage to a
corrupted server S is captured by a set of leaked nodes
on T . Asymptotically, setting ℓ= O(λ), where λ is the
security parameter, bounds the number of leaked nodes
to be O(λ ·M/t) with overwhelming probability.

The honest interface. Figure 5 describes the interface with
honest clients and the two servers O and S, which captures
the following correctness guarantee. If all parties behave

honestly, then Freport reveals exactly the measurements (with

associated messages) reported by > t clients to the server S .

We can verify every distinct measurement s is mapped to a
distinct leaf node on the prefix tree T , and that in the end only
the leaf nodes with count > t are revealed to the server S .

Functionality FM,t,ℓ
report

The functionality runs with up to M clients P1,P2, . . ., a
randomness server O and an report server S .
Honest Interface:
Ignore all messages associated with sid before receiv-
ing (init,sid) from the server O and after receiving
(collect,sid) from the server S .

1. Upon receiving (init,sid) from the server O, initialize
two data structures (associated with sid):

• tb: a random table mapping received measure-
ments to ℓ-bit strings.

• T : an ℓ-level binary tree where each node stores
a count (initially 0) and a state (initially hidden).

We call the initial nodes of T inner nodes. The func-
tionality will add a leaf node for each distinct received
measurement.

2. Upon receiving (i,s,msg,sid) from a client Pi, interpret
paths = tb[s] ∈ {0,1}ℓ as a path on the tree T .

• Add a leaf node labelled by s at the end of paths if
there is not one already, and store msg on it. (Let
paths denote the path including the leaf node.)

• Increase the count of each node on paths.

• If a node has count > t, set its state to revealed.

3. Upon receiving (collect,sid) from the server S, col-
lect the measurements and messages stored on each
revealed leaf node, and send them to the server S .

Figure 5: The interface with honest parties. It captures the
correctness of POPSTAR.

The leakage to a corrupted server S. Figure 6 describes
the interface with an adversary who statically corrupts the
server S and a subset of the clients. It captures two ways
the adversary learns additional information (i.e., the leakage)
about the honest reports besides the legitimate aggregation
results.

First, without any colluding clients, the server S learns the
count of every revealed node and its children on the tree T .
(See Figure 8 for an illustration.) This leakage does not reveal
the clients’ reports directly, but only how they are partially
grouped together on the tree T .

To understand this leakage, we focus on the deepest leaked
nodes, which we call end nodes. (The counts on the remaining
leaked nodes can be inferred from those on the end nodes.)
In the extreme case where all nodes on T are leaked, the
end nodes are all the leaves. The counts on them essentially
leaks an anonymized histogram of all received measurements.

6948 33rd USENIX Security Symposium USENIX Association

Functionality FM,t,ℓ
report Continued

Corrupted report server S and colluding clients:
For each corrupted client Pi, the adversary may send
(i,s, inner,sid) and (i,s′, leaf,sid) in any order.

• Upon receiving (i,s, inner,sid), set all nodes on
paths to revealed, and leak paths to the adversary;

• Upon receiving (i,s′, leaf,sid), set the leaf for s′ to
revealed, and leak its location on T to the adversary.

In the end, leak all revealed nodes and their children (i.e.,
their locations on T and stored counts) to the adversary.

Figure 6: The interface with the adversary corrupting the
report server S and a subset of clients. It captures the potential
leakages to a corrupted report server S .

We argue the leakage in POPSTAR is much smaller than the
extreme case by showing the number of end nodes on T is
much less than the number of all leaves.

• If a revealed path has length l < ℓ, then it creates ≤ l+1
end nodes: two children by the last node on the path, and
1 child by each of the rest.

• The case of l = ℓ is similar, except the last node on
the path causes all its leaves to be end nodes. When
ℓ=O(λ), there are O(1) leaves with overwhelming prob-
ability. Hence, ℓ+O(1) end nodes are created.

There are at most M/(t + 1) revealed paths, which creates
at most O(ℓ ·M/(t + 1)) end nodes. If the threshold t is a
constant fraction of M, there are O(ℓ) = O(λ) end nodes.

Second, with each corrupted client Pi, the adversary may
cause Freport to reveal a length-ℓ path and a leaf node, through
the messages (i,s, inner,sid) and (i,s′, leaf,sid). A revealed
path adds at most ℓ+O(1) leaked end nodes in the leakage
above. A revealed leaf (for s′) lets the adversary learn the
count of reports for s′ and their associated messages.

The effect of malicious reports. Figure 7 describes the
interfaces with an adversary who statically corrupts a subset
of clients, and with one who additionally corrupts the server
O. It captures the effects of malicious reports.

When only clients are corrupted, for each corrupted client
Pi, the adversary may first send (i,s,sid) to submit a mea-
surement, but then instruct Freport to update the prefix tree T

based on an arbitrary path∗ of length ℓ∗ ≤ ℓ+1.
In more detail, we assume every node in T is labelled with

some tag τ, and path∗ contains ℓ∗ tags τ1, . . . ,τℓ∗ . The first
tag τ1 indicates the child of the root labelled with τ1. Add
such a child if it does not exist in T . Inductively, the d-th tag
τd indicates the child of τd−1 labelled with τd .

Functionality FM,t,ℓ
report Continued

Corrupted clients only:
For each corrupted client Pi, the adversary sends
(i,s, inner,sid) to Freport, who replies with paths. The ad-
versary then sends one of the following, where path∗ is
an arbitrary path of length ℓ∗ ≤ ℓ+1.

• (path∗,msg,sid): update the count and state for each
node on path∗ as in the honest interface. If path∗

includes a leaf node, then store msg on it.

• (path∗,damage,sid): after updating the counts and
states for nodes on path∗, set the sub-tree rooted at
its last node to damaged, which can no longer be
revealed.

Corrupted randomness server O and colluding clients:
Denote the set of corrupted clients C, and the rest H. No-
tify the adversary upon receiving an honest input message.
Upon receiving (collect,sid) from the server S, notify
the adversary, who replies ({i,s∗i ,msg∗i }C,Discard

∗,sid),
where Discard∗ is a circuit that takes {si}i∈H as inputs,
and outputs a subset D⊆ [H].
Run D = Discard∗({si}H), and discard the inputs indi-
cated by D. Output the aggregation results over the re-
maining inputs to the server S .

Figure 7: The interface with the adversary corrupting a sub-
set of clients and possibly also the randomness server O. It
captures the potential damages caused by malicious reports.

In addition to updating the tree T according to path∗, the
adversary specifies one of the two further actions for Freport.
(1) (path∗,msg,sid) instructs Freport to store msg on the leaf
node, if any, specified by path∗. (2) (path∗,damage,sid) in-
structs Freport to mark the sub-tree rooted at the last node on
path∗ as damaged and never revealed.

When the serverO plus a subset of clients are corrupted, the
adversary is allowed to specify an arbitrary function Discard∗

that decides a subset D⊆ [H] of client inputs to discard. More
specifically, the adversary first commits a measurement and
message (s∗i ,msg∗i) for every corrupted client, and specifies
the function Discard∗. Then Freport runs it over received hon-
est measurements D = Discard∗({si}i∈H), and computes the
aggregation results over the remaining inputs.

The robust variant. A weakness of Freport, is that even
when only one client is corrupted, its malicious report could
cause many valid measurements to become un-recoverable.
This is modeled as the (path∗,damage,sid) command in Fig-
ure 7, which damages the entire sub-tree rooted at the last
node of path∗. We describe a robust variant of POPSTAR
in Section 6 that prevents this attack. Formally, the robust

USENIX Association 33rd USENIX Security Symposium 6949

Figure 8: Example of a prefix-tree visible to the report server
for a threshold t = 4 and depth ℓ = 4. The numbers in the
boxes correspond to the number of reports associated with the
end nodes. Here, only a single measurement “Hello” exceeds
the threshold.

functionality is identical to Freport, except it does not allow
the (path∗,damage,sid) command.

Theorem statement. We state the security of POPSTAR
below. See the full version for the formally stated theorem,
the analogous theorem for the robust variant, and the proofs.

Theorem 1 (Informal). The protocol described in Section 5

UC-realizes the functionality Freport in the random oracle

model, against a malicious adversary that statically corrupts

at most one of the servers S,O and any number of colluding

clients.

7.2 Leakage Comparisons with Prior Work

This section compares our leakage profile, formally captured
by our ideal functionality, to that of prior works, and offers
a heuristic evaluation of the profile. It is helpful to refer to
Figure 8, which illustrates an example of the prefix tree visible
to the server.

Leakage comparison with [18] (STAR). We first consider
the case where only the report server S is corrupted, without
any colluding clients. Every report in STAR contains a tag de-
terministically computed from the measurement s. The server
learns an unlabeled histogram of the reported measurements
by grouping them according to their tags.

While POPSTAR’s leakage profile is complex, and could
lead to more refined leakage abuse attacks, here we discuss
the simplest type of inference attack which exploits the report
counts for the end nodes in the prefix tree, and attempts to
reconstruct the frequency histogram leaked by STAR. In gen-
eral, because measurements are assigned to uniformly random
paths, the deeper an end node in the tree, the more likely its

count is attributed to reports for a single measurement. How-
ever, we argue that in POPSTAR many end nodes represent
counts coming from reports for different measurements, and
this therefore strictly reduces leakage.

To verify this experimentally, we sample 1,000,000 reports
from a Zipf power-law distribution with a support N = 10,000
and parameter s := 1.03, matching the evaluation settings in
Section 8 and in [18]. In Table 1, we report the number of
end nodes in the prefix tree of POPSTAR, (excluding the leaf
nodes for actual heavy hitters), compared against the number
of non-heavy hitter report groups formed in STAR. We also
report the number of end nodes whose count is attributed to a
single measurement (denoted “exact counts”) in Table 1.

t = 10,000 t = 1000 t = 100
Groups (STAR) 9990 9899 9059

End nodes (POPSTAR) 175 1071 4568
Exact counts (POPSTAR) 19 167 2120

Table 1: Leakage comparison between STAR and POPSTAR
(with ℓ= 16). A group in STAR leaks the exact count of a non-
heavy hitter. An end node in POPSTAR leaks the combined
count of ≥ 1 non-heavy hitters. The end nodes leaking 1 non-
heavy hitter are called exact counts.

In the above experiment setting, increasing ℓ from 1 to 16
leads to a decrease in the number of end nodes. Increasing ℓ
beyond 16 does not change the numbers anymore.

From Table 1, we observe that POPSTAR is most effective
at leakage reduction at high thresholds. At a 0.1% threshold
(t = 1000), which is the main setting considered by STAR
and Poplar, STAR leaks the exact counts of 9899 non-heavy
hitters, while POPSTAR leaks only 1071 combined counts.
Among them, only 167 are exact counts.

Finally, we briefly note that in POPSTAR, a corrupted
server S, with each colluding client, may actively cause a
path on the prefix tree to leak. In the worst case, i.e., when
the leaked path corresponds to a non-heavy hitter reported by
honest clients, this causes ≤ ℓ leaked end nodes. Otherwise,
the leaked path is likely to only overlap with the prefix tree
at top levels, causing few leaked end nodes. In practice, the
attack can be further mitigated by other means, such as rate
limiting measures in the server O.

Leakage comparison with [13] (Poplar). We compare
with Poplar in the setting where one of its report servers is
corrupted. Similar to POPSTAR, the leakage in Poplar can
be captured by the report counts for the end nodes in a prefix
tree. The difference, however, lies in how each measurement
s maps to a path of the prefix tree.

In the main variant of Poplar, s maps to a path correspond-
ing to itself in the clear. (In contrast, in POPSTAR, s maps
to a path corresponding to ODPRF(H(s)).) The leakage to
the corrupted server reveals the counts of heavy hitter pre-

6950 33rd USENIX Security Symposium USENIX Association

fixes of reported measurements, which can sometimes be
dangerous. Consider an example borrowed from [18], where
the measurements are country names, and a heavy hitter is
’united states’ with count 4. A leaked prefix ’united’

with a count 5 indicates the existence of a non-heavy hitter
among only a few possibilities (e.g., ’united kingdom’).

In the (slower) hashing variant ([13], Appendix B) of
Poplar, s maps to a path corresponding to a public hash H(s).
The leakage only reveals the counts of heavy hitter prefixes
of hashes of the measurements, which is much safer. Still, a
possible attack from the corrupted server is to locally evaluate
H(·) and try matching possible measurements to the leaked
prefixes. Such an attack is impossible in POPSTAR because
the corrupted server S cannot evaluate ODPRF locally.

Finally, we briefly note that in Poplar, a corrupted report
server may actively, and adaptively, cause nodes on the prefix
tree to leak. This is because the prefix tree is interactively
reconstructed from the root by the two servers. For each node
with count > t, the servers continue to reconstruct its two chil-
dren. A corrupted server may arbitrarily inflate the count of
any node, causing its two children to be leaked. The only re-
striction is that the total (inflated) counts of each level cannot
exceed M.

7.3 Adding Differential Privacy Heuristically

In the setting where each client reports only its measure-
ment without any associated messages, we propose a heuristic
mechanism that we conjecture satisfies a meaningful notion
of differential privacy 5 for sufficiently large M and when the
threshold t = O(M) is a constant fraction of M. We leave it
as an important open question to analyze this method, and/or
to provide attacks.

The idea is to let each client, in addition to the report of its
actual measurement, send up to two fake reports:

1. with probability p = O(1/M), send a fake report of
its measurement (i.e., reporting the same measurement
twice);

2. send a fake report of a random λ-bit measurement.

For a measurement with an actual count c, the fake reports
may inflate the count to c′ = c · (1+ p)+O(λ). To counteract
the inflation, we increase the original threshold t to t ′ = t ·
(1+ p)+O(λ).

We provide some intuitions for the conjectured privacy.
First consider a report of some measurement s with an (in-
flated) count c′ > t ′. The leakage with respect to this report
is exactly the count c′, which contains at least a noise of
Bin(t, p) = Bin(O(M),O(1/M)) contributed by the type-(1)
fake reports, where Bin(t, p) denotes the binomial distribution
with t trials and probability p.

5The mechanism may still reduce the leakage to a corrupted server S
even if we can not prove it provides differential privacy.

Next consider a report of some s with a count c′ ≤ t ′. The
leakage with respect to this report is the count on a leaked
inner node at some depth d. If c′ is still relatively large,
c′ > t ′/2, then the leakage still contains at least a noise of
Bin(t/2, p) = Bin(O(M),O(1/M)).

If the count c′ of s is small, c′ < t ′/2, we will argue that
with 1−O(λ/M) probability, the leaked inner node is at a low
depth d < log(4M). In this case, each type-(2) fake report
of a random measurement has a chance 2−d > 1/(4M) of
being mapped also to this leaked node. They contribute to
at least a noise of Bin(M,1/(4M)) = Bin(O(M),O(1/M)) to
the leaked count of the inner node.

It remains to analyze the probability that the leaked inner
node for s has depth d > log(4M). Recall that such a leaked
inner node is a child of a revealed parent node at depth d−
1 > log(2M). Multiple measurements, including s, with a
total count > t ′ are mapped to this parent node. That is, s

is mapped onto the same length-(d− 1) path together with
other measurements with a total count of > t ′/2. We further
distinguish two cases, at least one of which must happen.

1. More than λ other measurements are mapped to the
length-(d − 1) path together with s. Let this number
be k > λ. Then this case happens with probability(

M
k

)
/2(d−1)·k < (M/2(d−1))k < 2−k < 2−λ.

2. At least 1 other measurement with count > t ′/(2λ)
is mapped to the length-(d − 1) path together with s.
As there are at most M/(t ′/2λ) = O(λ) such measure-
ments, this case happens with probability O(λ)/2d−1 =
O(λ/M).

In summary, for a report of some measurement s, the
relevant leakage in our system is the number of actual
report of s plus at least a binomial noise of parameter
Bin(O(M),O(1/M)) contributed by the fake reports. We con-
jecture that such noises are enough to hide the contribution of
any single report.

8 Evaluation

We implement (in C++) the clients and the report server S
following the (non-robust) protocol in Figure 2 and 3.

Below we report performances of the components in POP-
STAR and compare them with prior threshold reporting sys-
tems STAR [18] and Poplar [13].

8.1 Implementation Details

Concretely, we choose F = GF(2128), and use the NTL 6

library for polynomial evaluation and interpolation over F.
We use SHA-256 to implement the two hash func-

tions Hs,Hp in the protocol, and use AES-GCM with

6https://libntl.org/

USENIX Association 33rd USENIX Security Symposium 6951

128-bit keys to implement the symmetric key encryption
scheme (Enc,Dec). To ensure the encryption scheme is key-
committing [2], we always append a 96-bit vector 0 to the
encrypted messages. We use the CryptoPP 7 library for the
above cryptographic primitives.

We use the half-gate GC scheme of [34] and the actively
secure OT scheme of [15] to implement our ODPRF and
OPRF protocols. We use existing implementations from the
emp-toolkit library. 8

All benchmarks are run using a desktop machine with
32 Gigabyte of memory and a Ryzen 7 3800x CPU. Our
prototype implementations run only on a single thread. For
computation time measurements, we report the average over
10 experiment runs.

Client measurement sampling. We follow the same sam-
pling process as in [18] (STAR) to sample measurements from
a Zipf power-law distribution with a support of N = 10,000
and parameter s = 1.03. Each client’s report contains a sam-
pled 256-bit measurement and a 256-byte message.

Choosing the leakage parameter ℓ. Concretely, we bench-
mark three choices. As discussed in Section 7.2, choosing
ℓ = 16 is optimal for the setting of 1,000,000 reports sam-
pled from a Zipf power-law distribution with a support of
N = 10,000 and parameter s = 1.03. We also benchmark a
more aggressive choice ℓ= 8, and a more conservative choice
ℓ= 32, which will be suitable when the reports are sampled
from much smaller and larger supports respectively.

8.2 Communication Costs

Each client’s communication with the server O consists of
two parts: (1) receiving garbled circuits (GC) for double-PRF
and PRF evaluations v(1), . . . ,v(d), and u; (2) running λ 1-out-
of-2 OT with λ-bit strings as the receiver to obtain input keys
Kx for evaluating the GCs.

Part (1) has size 1638 · (ℓ+2) ·2 ·λ bits using LowMC [3]
as our choice of PRF, and [34], our choice of GC. Part (2) is
much smaller compared to the former. We report concrete GC
sizes in Table 2.

Each client’s communication with the server S consists
only of its report, which contains two field elements in the
clear, ℓ encryptions of field element and tag pairs, and a final
encryption of the client’s measurement and message. We
report concrete report sizes in Table 2.

8.3 Computational Costs

Client computation time. Client computation has two parts
(Figure 2, and 4): (1) evaluating the GCs received from the
server O; (2) computing its report using the evaluations.

7https://www.cryptopp.com/
8https://github.com/emp-toolkit

ℓ= 8 ℓ= 16 ℓ= 32
GC size (MB) 0.50 0.90 1.70

Report Size (KB) 0.93 1.49 2.62

Table 2: Communication sizes of a client with the randomness
serverO (first row), and with the report server S (second row).

Client inter-
action w/ O

Client com.
w/ S

Client local
comp.

Server S
comp.

STAR 1 round 0.45 (KB) 0.33* (ms) 20 (s)
POPSTAR 2 rounds 1.49 (KB) 4.82 (ms) 136.1 (s)

Table 3: Comparison between STAR (with 129-bit field) and
POPSTAR (with ℓ= 16) for 1 million reports and a threshold
t = 1,000 (0.1%). The client computation time (*) for STAR
excludes the VOPRF verification time.

The cost of (1) are 1.7/3.4/7.1 ms when ℓ = 8/16/32
respectively. We benchmark the cost of (2) for thresholds
t = 200 to t = 1,000, i.e. 0.1% of 200,000 to 1,000,000 re-
ports, and plot the combined computation cost of both steps in
Figure 9a. We observe the computation cost of (2) increases
linearly with t, which comes from expanding the double PRF
and PRF evaluations v(1), . . . ,v(ℓ),u into degree t +1 polyno-
mials, and computing their evaluations at a random point.

Server computation times. The computation cost of the
server O consists mainly of preparing garbled circuits for
each client. The costs per client are 1.9/4.1/8.4 ms when ℓ=
8/16/32 respectively, and don’t depend on the total number
of reports or the threshold. We benchmark the computation
cost of the server S for aggregating m = 200,000 to m =
1,000,000 reports, and with thresholds at 0.01%, 0.1%, and
1% respectively. The results are plotted in Figure 9.

Computation costs of OT. The above computation times
for each client and the server O exclude the costs of running
λ = 128 OTs where the client is the receiver and the server O
is the sender. Assuming the state-of-art protocol of [15], the
main computation costs are 2λ and 2+λ group exponentia-
tions for the receiver and the sender respectively.

While the computation costs of group exponentiations are
significant (6.5 ms for the client and 5.8 ms for the server
O), we argue that they are categorically different from the
rest of the costs that we benchmark. The OT protocol con-
sists of two round trips, 9 and the group exponentiations hap-
pen in between. In the end-to-end running time of λ parallel
OT protocols, the computation times are insignificant com-
pared to the network latency (e.g., ∼ 50ms between AWS
datacenters). 10 In contrast, the rest of the computations we

9The first sender OT message in the protocol of [15] can be reused across
different OT instances. Assuming a PKI setup where every client learns this
message from the server O, we only need 1 round trip for each OT protocol.

10According to https://www.cloudping.co/grid.

6952 33rd USENIX Security Symposium USENIX Association

(a) Client report generation time. (b) Server comp. time, t = 100. (c) Server comp. time, t = 1000. (d) Server comp. time, t = 10000.

Figure 9: The computation times for each client and the report server S .

benchmark above happen entirely locally. Finally, we note
that the group exponentiations during λ OT protocols can
be completely parallelized via multi-threading to increase
throughput.

Computation costs of GC. We also note the cost of GC can
be further reduced as our ODPRF protocol repeatedly garbles
a fixed circuit, and some of the costs in managing the XOR
gates are due to the generic nature of emp-toolkit. Instead
of reading from a data structure in memory to determine the
next gate to garble, a more optimized implementation can
hard-code the circuit to avoid memory access costs.

Heavier server O than server S. Throughout an aggre-
gation session, the computation of the randomness server O
is significantly (∼ 70×) heavier than the aggregation server
S: under our main setting with 1 million reports at a 0.1%
threshold and ℓ= 16, the computation per client of the server
O is 10 ms (4.1 ms for GC generation and 5.8 ms for OT),
while that of the server S is 0.14 ms. (In fact, this is also true
for STAR: as reported, its server O is ∼ 40× heavier than its
server S .)

However, we believe the heavier server O does not create a
bottleneck because its computation are distributed throughout
an entire session as the clients asynchronously decide to make
reports.

8.4 Comparing with STAR

In Table 3 we show the comparison in the setting of 1 million
reports with a threshold t = 1,000 (0.1%) and ℓ= 16. Overall,
POPSTAR significantly reduces the leakage of STAR, at the
cost of moderately increasing the computation times of each
client (∼ 15×) and the report server S (∼ 7×). Each report
in POPSTAR is roughly 3× larger than in STAR.

Admittedly, each client’s interaction with the randomness
server O is significantly heavier in POPSTAR, both com-
munication wise and computation wise due to our oblivious
double PRF protocol based on GC and OT. However, we ar-
gue that the end-to-end running time of this interaction is
bottlenecked by network latency rather than communication

size or computation time. In POPSTAR, the oblivious dou-
ble PRF protocol requires two round trips, assuming the OT
protocol of [15], while in STAR the oblivious PRF protocol
requires only one round trip. Therefore, we estimate each
client’s interaction with the server O to be 2× to 3× slower
than in STAR. Finding a more efficient oblivious double PRF
protocol is an intriguing direction for future work.

We note that in [18], the authors implemented STAR us-
ing the partially oblivious verifiable PRF protocol of [33].
The added verifiability in STAR lets a client detect whenever
the randomness server deviates from the protocol and abort
early, while the partially oblivious feature is not used. Our
non-robust system uses an oblivious PRF without verifiability,
hence giving up clients’ ability to detect a malicious random-
ness server. To make the comparison fair, we exclude the
verification time (0.301 ms) from the reported client compu-
tation time of STAR.

8.5 Comparing with Poplar

POPSTAR achieves a similar leakage profile to the hashing
variant of Poplar ([13], Appendix B), while reducing the ag-
gregation time dramatically. Note that the authors of [13] only
benchmarked the more efficient variant without hashing. We
use those reported numbers as an optimistic estimate for their
hashing variant to compare with our system.

According to the benchmarking results in [13], the through-
put for aggregating 1 million reports with a 0.1% threshold
is ∼ 120/s. Our randomness server O achieves a through-
put of 100/s, while our aggregation server S achieves more
than ∼ 7300/s. Comparing only the end-to-end aggregation
time after all reports are collected, POPSTAR takes roughly
2 minutes while Poplar roughly 2 hours, i.e., a ∼ 60× reduc-
tion. Communication wise, each client in POPSTAR needs to
communicate ∼ 0.9 MB while in Poplar, only 70 KB, i.e. a
∼ 13× increase.

Again, we stress that we view the stateless nature of the
server O and the decoupling between the two servers a much
bigger benefit of POPSTAR.

USENIX Association 33rd USENIX Security Symposium 6953

9 Related Work

We briefly discuss alternative approaches (that do not rely on
generic MPC) to privately compute heavy hitters.

Single server aggregation. Single server aggregation sys-
tems [8, 9, 12, 26, 27] allow the server to securely compute
the sum of the clients’ inputs. Melis et al. [28] shows that
these systems can compute approximate heavy hitters using
the count-min sketch data structure [16]. A drawback of these
systems is that aggregation requires multiple rounds of inter-
action, hence need to tolerate client dropouts.

Out-sourced MPC. A common paradigm is to let each
client secret share its input to multiple (≥ 2) servers, who
then run a secure protocol to compute the heavy hitters. A
subclass of such systems [1, 13, 17] (with two non-colluding
servers) is formulated in [19] as verifiable distributed aggre-
gation functions (VDAF). Their server protocols involve (1)
a parallelizable phase where the shares are verified, and (2)
a final phase where heavy hitters are computed. Other sys-
tems that do not fit the VDAF model include [7, 31, 32] (with
two servers), and [11, 20, 23, 29] (with three servers). A chal-
lenge in deploying these systems is enlisting external entity(s)
trusted not to be colluding, and willing to interact during the
aggregation protocols.

Two non-communicating servers. STAR [18], as well as
POPSTAR, involve two non-colluding servers that do not
communicate with each other. One server, upon requests, pro-
vides randomness for clients to compute their reports. The
other receives reports from the clients and computes the heavy
hitters locally. To break the link between reports and clients,
an abstract mixing server may be implemented as a buffer
between the clients and the report server.

Randomized response. The systems for private analytics
based on randomized response [5,6,14,30,35,36] involve each
client just sending a message to a single server. A downside
of these systems is that the clients’ messages leak a non-
negligible amount of information about their private inputs.

10 Conclusions

In this work, we have introduced POPSTAR, a threshold re-
porting system in the two server model, following the same
architecture as STAR [18], and reducing its leakage at a mod-
erate cost. Our prototype implementation is able to aggregate
1 million reports in ∼ 2 minutes (roughly 7× longer than
STAR, but still within feasible range).

We provide an ideal functionality definition that captures
the leakage in POPSTAR precisely, and a heuristic evaluation
of this leakage profile. However, we believe further leakage

analysis (both for POPSTAR and for STAR/Poplar) is needed
to better understand leakage-abuse attacks. We pose this as an
important open direction for future work which goes beyond
the scope of this work.

Acknowledgements

Hanjun Li was supported by a NSF grant CNS-2026774 and
a Cisco Research Award.

Stefano Tessaro was supported in part by NSF grants
CNS-2026774, CNS-2154174, a JP Morgan Faculty Award, a
CISCO Faculty Award, and a gift from Microsoft.

References

[1] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky,
and Antigoni Polychroniadou. Prio+: Privacy preserv-
ing aggregate statistics via boolean shares. In Clemente
Galdi and Stanislaw Jarecki, editors, Security and Cryp-

tography for Networks - 13th International Conference,

SCN 2022, Amalfi, Italy, September 12-14, 2022, Pro-

ceedings, volume 13409 of Lecture Notes in Computer

Science, pages 516–539. Springer, 2022.

[2] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl,
Atul Luykx, and Sophie Schmieg. How to abuse and fix
authenticated encryption without key commitment. In
Kevin R. B. Butler and Kurt Thomas, editors, USENIX

Security 2022, pages 3291–3308. USENIX Association,
August 2022.

[3] Martin R. Albrecht, Christian Rechberger, Thomas
Schneider, Tyge Tiessen, and Michael Zohner. Ciphers
for MPC and FHE. In Elisabeth Oswald and Marc Fis-
chlin, editors, EUROCRYPT 2015, Part I, volume 9056
of LNCS, pages 430–454. Springer, Heidelberg, April
2015.

[4] Apple and Google. Exposure notification privacy-
preserving analytics (enpa) white paper, 2021. Available
at https://covid19-static.cdn-apple.com/
applications/covid19/current/static/

contact-tracing/pdf/ENPA_White_Paper.pdf.

[5] Raef Bassily, Kobbi Nissim, Uri Stemmer, and
Abhradeep Thakurta. Practical locally private heavy
hitters. J. Mach. Learn. Res., 21:16:1–16:42, 2020.

[6] Raef Bassily and Adam D. Smith. Local, private, ef-
ficient protocols for succinct histograms. In Rocco A.
Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC,
pages 127–135. ACM Press, June 2015.

[7] James Bell, Adrià Gascón, Badih Ghazi, Ravi Ku-
mar, Pasin Manurangsi, Mariana Raykova, and Phillipp

6954 33rd USENIX Security Symposium USENIX Association

https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf

Schoppmann. Distributed, private, sparse histograms in
the two-server model. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022,
pages 307–321. ACM Press, November 2022.

[8] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu
Li, Sarah Meiklejohn, Mariana Raykova, and Cathie
Yun. ACORN: input validation for secure aggregation.
In Joseph A. Calandrino and Carmela Troncoso, edi-
tors, 32nd USENIX Security Symposium, USENIX Secu-

rity 2023, Anaheim, CA, USA, August 9-11, 2023, pages
4805–4822. USENIX Association, 2023.

[9] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón,
Tancrède Lepoint, and Mariana Raykova. Secure single-
server aggregation with (poly)logarithmic overhead. In
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 2020, pages 1253–1269. ACM
Press, November 2020.

[10] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway.
Foundations of garbled circuits. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, ACM CCS 2012,
pages 784–796. ACM Press, October 2012.

[11] Jonas Böhler and Florian Kerschbaum. Secure multi-
party computation of differentially private heavy hitters.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS

2021, pages 2361–2377. ACM Press, November 2021.

[12] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. Practical secure
aggregation for privacy-preserving machine learning. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 1175–
1191. ACM Press, October / November 2017.

[13] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv
Gilboa, and Yuval Ishai. Lightweight techniques for
private heavy hitters. In 2021 IEEE Symposium on

Security and Privacy, pages 762–776. IEEE Computer
Society Press, May 2021.

[14] Mark Bun, Jelani Nelson, and Uri Stemmer. Heavy
hitters and the structure of local privacy. ACM Trans.

Algorithms, 15(4):51:1–51:40, 2019.

[15] Tung Chou and Claudio Orlandi. The simplest protocol
for oblivious transfer. In Kristin E. Lauter and Francisco
Rodríguez-Henríquez, editors, LATINCRYPT 2015, vol-
ume 9230 of LNCS, pages 40–58. Springer, Heidelberg,
August 2015.

[16] Graham Cormode and S. Muthukrishnan. An improved
data stream summary: The count-min sketch and its
applications. In Martin Farach-Colton, editor, LATIN

2004, volume 2976 of LNCS, pages 29–38. Springer,
Heidelberg, April 2004.

[17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In Aditya Akella and Jon Howell, editors, 14th USENIX

Symposium on Networked Systems Design and Imple-

mentation, NSDI 2017, Boston, MA, USA, March 27-29,

2017, pages 259–282. USENIX Association, 2017.

[18] Alex Davidson, Peter Snyder, E. B. Quirk, Joseph
Genereux, Benjamin Livshits, and Hamed Haddadi.
STAR: Secret sharing for private threshold aggregation
reporting. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022, pages 697–710.
ACM Press, November 2022.

[19] Hannah Davis, Christopher Patton, Mike Rosulek, and
Phillipp Schoppmann. Verifiable distributed aggregation
functions. Proc. Priv. Enhancing Technol., 2023(4):578–
592, 2023.

[20] F. Betül Durak, Chenkai Weng, Erik Anderson, Kim
Laine, and Melissa Chase. Precio: Private aggre-
gate measurement via oblivious shuffling. Cryptol-
ogy ePrint Archive, Paper 2021/1490, 2021. https:

//eprint.iacr.org/2021/1490.

[21] Tim Geoghegan, Christopher Patton, Brandon Pitman,
Eric Rescorla, and Christopher A. Wood. Distributed
Aggregation Protocol for Privacy Preserving Measure-
ment. Internet-Draft draft-ietf-ppm-dap-09, Internet
Engineering Task Force, December 2023. Work in
Progress.

[22] Sharon Huang, Subodh Iyengar, Sundar Jeyaraman,
Shiv Kushwah, Chen-Kuei Lee, Zutian Luo, Payman
Mohassel, Ananth Raghunathan, Shaahid Shaikh,
Yen-Chieh Sung, and Albert Zhang. DIT: Deidentified
authenticated telemetry at scale, 2021. Technical
report, Facebook Inc., https://research.fb.com/wp-
content/uploads/2021/04/DIT-DeIdentified-

Authenticated-Telemetry-at-Scale_final.pdf.

[23] Pranav Jangir, Nishat Koti, Varsha Bhat Kukkala, Arpita
Patra, Bhavish Raj Gopal, and Somya Sangal. Vogue:
Faster computation of private heavy hitters. Cryptol-
ogy ePrint Archive, Report 2022/1561, 2022. https:

//eprint.iacr.org/2022/1561.

[24] Stanislaw Jarecki, Aggelos Kiayias, and Hugo
Krawczyk. Round-optimal password-protected
secret sharing and T-PAKE in the password-only
model. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
233–253. Springer, Heidelberg, December 2014.

USENIX Association 33rd USENIX Security Symposium 6955

https://eprint.iacr.org/2021/1490
https://eprint.iacr.org/2021/1490
https://research.fb.com/wp-content/uploads/2021/04/DIT-DeIdentified-Authenticated-Telemetry-at-Scale_final.pdf
https://research.fb.com/wp-content/uploads/2021/04/DIT-DeIdentified-Authenticated-Telemetry-at-Scale_final.pdf
https://research.fb.com/wp-content/uploads/2021/04/DIT-DeIdentified-Authenticated-Telemetry-at-Scale_final.pdf
https://eprint.iacr.org/2022/1561
https://eprint.iacr.org/2022/1561

[25] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their ap-
plications. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 177–194. Springer, Hei-
delberg, December 2010.

[26] Hanjun Li, Huijia Lin, Antigoni Polychroniadou, and
Stefano Tessaro. LERNA: secure single-server aggre-
gation via key-homomorphic masking. In Jian Guo
and Ron Steinfeld, editors, Advances in Cryptology -

ASIACRYPT 2023 - 29th International Conference on

the Theory and Application of Cryptology and Informa-

tion Security, Guangzhou, China, December 4-8, 2023,

Proceedings, Part I, volume 14438 of Lecture Notes in

Computer Science, pages 302–334. Springer, 2023.

[27] Yiping Ma, Jess Woods, Sebastian Angel, Antigoni Poly-
chroniadou, and Tal Rabin. Flamingo: Multi-round
single-server secure aggregation with applications to
private federated learning. In 2023 IEEE Symposium on

Security and Privacy, pages 477–496. IEEE Computer
Society Press, May 2023.

[28] Luca Melis, George Danezis, and Emiliano De Cristo-
faro. Efficient private statistics with succinct sketches.
In NDSS 2016. The Internet Society, February 2016.

[29] Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios
Tsoutsos. PLASMA: Private, lightweight aggregated
statistics against malicious adversaries with full secu-
rity. Cryptology ePrint Archive, Report 2023/080, 2023.
https://eprint.iacr.org/2023/080.

[30] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao,
and Kui Ren. Heavy hitter estimation over set-valued
data with local differential privacy. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages
192–203. ACM Press, October 2016.

[31] Mayank Rathee, Conghao Shen, Sameer Wagh, and
Raluca Ada Popa. ELSA: Secure aggregation for fed-
erated learning with malicious actors. In 2023 IEEE

Symposium on Security and Privacy, pages 1961–1979.
IEEE Computer Society Press, May 2023.

[32] Kunal Talwar, Shan Wang, Audra McMillan, Vo-
jta Jina, Vitaly Feldman, Bailey Basile, Áine Cahill,
Yi Sheng Chan, Mike Chatzidakis, Junye Chen, Oliver
Chick, Mona Chitnis, Suman Ganta, Yusuf Goren, Filip
Granqvist, Kristine Guo, Frederic Jacobs, Omid Javid-
bakht, Albert Liu, Richard Low, Dan Mascenik, Steve
Myers, David Park, Wonhee Park, Gianni Parsa, Tommy
Pauly, Christian Priebe, Rehan Rishi, Guy N. Rothblum,
Michael Scaria, Linmao Song, Congzheng Song, Karl
Tarbe, Sebastian Vogt, Luke Winstrom, and Shundong

Zhou. Samplable anonymous aggregation for private
federated data analysis. CoRR, abs/2307.15017, 2023.

[33] Nirvan Tyagi, Sofía Celi, Thomas Ristenpart, Nick Sul-
livan, Stefano Tessaro, and Christopher A. Wood. A fast
and simple partially oblivious PRF, with applications.
In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part II, volume 13276 of LNCS,
pages 674–705. Springer, Heidelberg, May / June 2022.

[34] Samee Zahur, Mike Rosulek, and David Evans. Two
halves make a whole - reducing data transfer in garbled
circuits using half gates. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 220–250. Springer, Heidelberg,
April 2015.

[35] Mingxun Zhou, Tianhao Wang, T.-H. Hubert Chan, Giu-
lia Fanti, and Elaine Shi. Locally differentially private
sparse vector aggregation. In 2022 IEEE Symposium on

Security and Privacy, pages 422–439. IEEE Computer
Society Press, May 2022.

[36] Wennan Zhu, Peter Kairouz, Brendan McMahan,
Haicheng Sun, and Wei Li. Federated heavy hitters
discovery with differential privacy. In Silvia Chiappa
and Roberto Calandra, editors, The 23rd International

Conference on Artificial Intelligence and Statistics, AIS-

TATS 2020, 26-28 August 2020, Online [Palermo, Sicily,

Italy], volume 108 of Proceedings of Machine Learning

Research, pages 3837–3847. PMLR, 2020.

6956 33rd USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2023/080

	Introduction
	Overview of POPSTAR
	Preliminaries
	System Overview and Threat Model
	System Overview
	Threat Model and Security Goals

	Protocol Description
	Threshold Reporting Protocol
	Implementing the Randomness Server

	The Robust Variant
	Security Analysis
	Ideal Functionality and Security Proofs
	Leakage Comparisons with Prior Work
	Adding Differential Privacy Heuristically

	Evaluation
	Implementation Details
	Communication Costs
	Computational Costs
	Comparing with STAR
	Comparing with Poplar

	Related Work
	Conclusions

