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Abstract. Authenticated PIR enables a server to initially commit to a
database of N items, for which a client can later privately obtain indi-
vidual items with complexity sublinear in N , with the added guarantee
that the retrieved item is consistent with the committed database. A
crucial requirement is privacy with abort, i.e., the server should not learn
anything about a query even if it learns whether the client aborts.

This problem was recently considered by Colombo et al. (USENIX
’23), who proposed solutions secure under the assumption that the
database is committed to honestly. Here, we close this gap for their
DDH-based scheme, and present a solution that tolerates fully malicious
servers that provide potentially malformed commitments. Our scheme
has communication and client computational complexity Oλ(

√
N), does

not require any additional assumptions, and does not introduce heavy
machinery (e.g., generic succinct proofs). We do so by introducing vali-
dation queries, which, from the server’s perspective, are computationally
indistinguishable from regular PIR queries. Provided that the server suc-
ceeds in correctly answering κ such validation queries, the client is con-
vinced with probability 1 − 1

2κ that the server is unable to break privacy
with abort.

1 Introduction

Private Information Retrieval (PIR) [16] allows a client to retrieve items from a
database of N items held by a server, without revealing which items are being
retrieved. Crucially, both the communication and the client’s runtime are sub-
linear in N . In this paper, we are interested in the more challenging setting
of single server PIR [35], for which constructions are known from a variety of
assumptions (cf. e.g. [1,3,11,18,21,22,24,30,35,38,42]).

Maliciously secure PIR. The literature has by now surfaced countless appli-
cations of PIR, such as anonymous web search [29], anonymous messaging [4,15],
private media delivery [28], certificate transparency logs [30,39], secure analyt-
ics [27], secure breach alerts [2] and more. In most use cases, a PIR service
is queried by multiple clients, but PIR schemes usually assume a semi-honest
server and do not ensure integrity. Hence, clients are not guaranteed consistent
answers. This paper considers a setting, referred to as authenticated PIR, where
the server succinctly commits to a database x, and then can only provide answers
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consistent with this commitment. At first, it appears easy to solve the problem:
The server publishes a succinct vector commitment d to x (e.g., the root of a
Merkle Tree), and then runs a PIR scheme on a modified database x′ where x′[i]
consists of x[i] and a valid proof πi of inclusion with respect to d.

While this solution indeed guarantees integrity, Kushilevitz and Ostro-
vsky [35] already observed that this approach is prone to so-called selective-
failure attacks, where the server intentionally includes an invalid proof πi for a
position i ∈ [N ], and learning about a failure reveals that the client’s query is
for this particular index. Such attacks are realistic, as failures are hard to hide
(e.g., because an application will behave differently in an observable way), and
they have been considered in a number of settings, such as encryption [8,40] and
two-party computation [12,31,33,37].

Authenticated PIR. Early proposals to make single-server PIR authen-
tic [41,44] have not considered selective-failures, and only provide authenticity
guarantees that a query is consistent with some valid database, but not a specific
one the server a-priori committed to. In contrast, multi-server verifiable PIR [43]
considers a similar functionality, however without covering selective-failures.

Only very recently, Colombo et al. [17] initiated the study of selective-failure
attacks in the context of PIR. They propose in particular single-server PIR
schemes based on the LWE and DDH assumptions, both with Oλ(

√
N) com-

plexity, which, while less practical than non-authenticated counterparts, offer
acceptable performance, integrity, and privacy under selective-failure attacks.
However, their model explicitly disallows maliciously generated digests.

Still, it is natural and prudent to assume that a data owner willing to devi-
ate maliciously from a PIR protocol would also attempt to do so with help of
a malicious digest. Say, the PIR server is maintained by a streaming service,
where the server obviously has the power to choose the digest that represents
a commitment to the database. Then, it is not possible for a client to obtain
the digest with “out-of-band” means as described in [17] without involvement of
the malicious server, hence protection against selective abort attacks would not
apply here. Or, consider a different database that is used for password breach
checking [2]. Again, if the database owner has the power of choosing the digest
maliciously, they may infer private data about users’ passwords.

Our contributions. In this paper, we prove that under the DDH assumption,
a variant of the scheme from [17] is in fact secure against a fully malicious
server generating malicious digests, achieving both integrity and privacy against
selective-failure attacks. To achieve the latter property, our solution requires the
client to ask λ additional validation queries which are indistinguishable from
regular PIR queries from the perspective of the server—privacy under selective-
failure attacks holds provided these validation queries are successful. We note
that our protocol comes with no overhead compared to that of [17], except for the
λ initial validation queries, after which an unbounded number of database queries
can be made. This means that our scheme retains communication complexity
Oλ(

√
N) for PIR queries, and the digest can be made constant size.
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Furthermore, by reducing the number of validation queries from λ to any
smaller integer κ, the client will still be convinced with probability 1 − 1

2κ that
the server is unable to break privacy. For example, in a scenario where the
database is simultaneously accessed by sufficiently many users seeing the same
digest, it may be in fact enough to choose κ = 1, assuming we can rely on a
mechanism that allows users to voice complaints should they fail the validation
phase. In particular, validation would fail for roughly half of the users, and this
is a strong incentive for the server to behave honestly.

We give an overview of our scheme and our analysis in Sect. 1.2. The core of
our approach is a new technique which turns an adversary that succeeds in the
validation phase into an extraction algorithm able to answer any query to the
PIR server. This shows that the information of whether a query would abort can
be simulated, thus reducing selective-failure privacy to regular privacy.

In Sect. 1.1, we first discuss other related and concurrent works, along with
less efficient generic baseline solutions using existing cryptographic techniques.
This discussion will highlight a unique feature of our work, namely that unlike all
alternative solutions, we do not rely on adding additional proof machinery to a
PIR scheme to verify validity of a digest. Rather, we show that the much simpler
machinery from the scheme of [30] is already sufficient, as is, for verifiability.

1.1 Related Works and Generic Baselines

We discuss here some more related work, including concurrent work on authen-
ticated PIR and less efficient baseline solutions to the problem.

Concurrent work. We first point out that concurrently to this work, de Cas-
tro and Lee [14] propose an alternative authenticated PIR scheme that provides
security against a maliciously generated digest. It extends SimplePIR [30] by
adding proofs to each answer to convince the client that computation has been
done correctly and is consistent with a digest. Further, as in our scheme, an
additional validation phase ensures validity of the digest. However, there are
also several aspects in which VeriSimplePIR differs from our work:

– VeriSimplePIR utilizes lattices assumptions that are more expressive than
DDH, and in order avoid several additional rounds of interaction it also
requires assuming the Random Oracle Model. Our protocol is based on plain
DDH, and therefore gives a theoretically stronger result.

– The two solutions achieve different communication/computation tradeoffs:
VeriSimplePIR can be expected to be scheme with better computational effi-
ciency, as it only works with lattices. On the other hand, it also comes at
the cost of either large per-query communication cost or large client stor-
age cost. For example, the evaluation in [14] shows that for a database of
size N = 4GiB, the preprocessing phase requires almost 2 GiB of commu-
nication, out of which more than 600 MiB need to be permanently stored
on the client’s device. Our scheme (instantiated with 256-bit elliptic curves
and κ = 80) would have a validation phase with about 260 MiB of commu-
nication, and requires no client storage except for the digest of size 6 MiB.
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Thus, our scheme could even be used on mobile devices, provided that the
server has sufficient resources to offset its larger computational cost through
parallelization.

– There are several unique features of our protocol: our validation phase is
entirely oblivious to the server, because each validation query looks identical
to a regular PIR query. In fact, we can take an existing server that implements
the scheme from [17], and let a client validate that the server will be unable
to break privacy with abort. Furthermore, each client will only need to run
validation once in its lifetime. In contrast, VeriSimplePIR requires restarting
the expensive preprocessing phase whenever cheating was detected during a
single query, or when the client erases its storage.

Generic baselines. We also discuss a few alternative solutions based on generic
(and heavier) techniques added on top of the authenticated PIR from [17]. For
instance, the server could include in each query response a succinct proof of
knowledge of an opening of the digest d to which this response is consistent. This
could be done using a SNARK (for which constructions under standard falsifiable
assumptions hit well-known barriers [25]), or a succinct two-move proof (which
are, as of now, not known to be easier to achieve than SNARKs).

Alternatively, leveraging the fact that the schemes from [17] are already
secure for honestly generated digests, the validation phase may be used for a
succinct interactive proof of knowledge of an opening of the digest d to a binary
database. (In essence, the same extractor as the one we use to prove our scheme’s
security could be used to achieve the crucial notion of answer extractability here.)
One could use Kilian’s four-round protocol [32], which has also been shown to be
a proof of knowledge [5]. Roughly, the first protocol round, which consists of a
description of a collision-resistant hash function, would be included in the public
parameters. Then, Kilian’s second round, which is a succinct Merkle commitment
to a suitable PCP, would be merged with the digest, whereas the remaining two
rounds would constitute the actual validation stage verifying the (committed)
PCP by opening a random subset of Merkle paths. However, this solution would
have to rely on non-black box techniques or stronger assumptions. Therefore,
we cannot expect them to be concretely more efficient than our PIR protocol in
terms of communication complexity or computation time.

We also note that for the specific case of the DDH-based scheme from [17]
we use in this paper, the inner-product argument from Bulletproofs [10] would
provide a fully-algebraic pairing-free solution. This is specific to our setting, in
which the digest is supposed to have the form of a commitment d =

∏
i∈[N ] h[i]x[i]

given the database x. The techniques would allow us to prove that all elements
in the commitment are binary, but this incurs linear computation cost O(N) for
the verifier, thus violating an important requirement of a PIR scheme. It also
requires either a random oracle (to make the proof non-interactive), or O(log N)
rounds. In contrast, our protocol has a communication complexity of O(κ

√
N)

group elements per validation phase, only needs a single round-trip, and does
not require a random oracle.
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Finally, we note that none of the generic baselines we presented here preserves
the property of an oblivious validation phase that does not require modification
of the server implementation.

Other related work. Ben David et al. [7] recently studied a different and
unrelated notion of verifiable PIR which allows the server to prove properties
about the database with sublinear complexity. A number of works [6,19,23,
26,34] studied robustness of PIR against malicious servers, i.e., the goal is to
guarantee answers even when some of the servers fail/deviate, but they rely on
the availability of some honest server. There have also been impressive advances
on single-server PIR with sublinear server complexity [9,13,36], but this is not
considered in the context of this work.

1.2 Technical Overview

The CNCWF DDH-based scheme. Our starting point is the DDH-based
scheme from [17] (henceforth referred to as CNCWF), which only provides secu-
rity against selective-failure attacks when the digest was selected honestly. The
scheme relies on a cyclic group G of order q in which the DDH assumption holds.
We only discuss here the unbalanced version of the scheme, for which queries
consist of N group elements, whereas responses are a single group element. (One
can turn this into a scheme with O(

√
N) size queries and responses via standard

re-balancing techniques which will preserve all claimed properties.)
In CNCWF, the server initially commits to an N -bit database x ∈ {0, 1}N via

a digest d =
∏N

i=1 h[i]x[i], where h is a vector of N independent generators of G,
included in the public parameters of the scheme, along with an extra generator
g. To retrieve item i ∈ [N ], the client samples r ← Zq, α ← Z

∗
q , and computes a

query vector ẽ ∈ G
N , where

ẽ[j] =
{
h[j]r · gα if j = i,
h[j]r if j ∈ [N ] \ {i} .

We also write this succinctly as ẽ = hr ◦(gei)α, where ei is the i-th unit vector, ◦
denotes component-wise vector multiplication, and gv = (gv[1], . . . , gv[N ]). The
server’s response is ẽ =

∏N
j=1 ẽ[j]x[j], and the client computes e = (d−r ẽ)α−1 . It

returns 1 if e = g, 0 if e = 1, and otherwise aborts if e /∈ {1, g}.

Integrity, but no privacy with abort. Under the DDH assumption, we will
show that this scheme already prevents an attacker from providing a malicious
digest d along with two different valid answers e′

0, e′
1 to the same query. This is

a stronger notion of integrity than what is shown in [17].
However, there is a simple selective-failure attack, in which a malicious server

can commit to an (invalid) database with x1 = 2 and x2 = 1. An honest client
would abort on a query for i = 1, as g2 /∈ {1, g}, but succeed for a query with
i = 2. Learning whether the operation aborts or not hence tells the adversary
whether the query was for i = 1 or i = 2.
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Digest validation. In an attempt to mitigate the above attack, we introduce
an initial digest validation phase, which consists of a single round-trip of interac-
tion between the client and the server. If successfully completed, we expect the
scheme to be private even under selective-failure attacks, a notion we henceforth
refer to as “privacy with abort.”

Our validation approach leverages the fact that a client can actually learn gx·s

(where · denotes inner product) for any vector s via the query s̃ = (h)r ◦ (gs)α,
with no modification to the server. Further, under the DDH assumption, the
server cannot distinguish such a query from a regular query, which corresponds
to the case s = ei. Concretely, the client asks λ queries s̃1, . . . , s̃λ associated
with s1, . . . , sλ ←$ {0, 1}N , and accepts if all of them return a value in the range
{g0, g1, . . . , gN }.

Intuitively, this ensures that the server answers using a database with entries
x[i] which are small enough (say, in {−N, . . . , N}), hence preventing the above
attack if we additionally modify processing a query answer to output 1 whenever
e ∈ {g−N , . . . , gN } \ {1}, instead of e = g as in the original CNCWF scheme. Of
course, we need to prove that any other attack is prevented, and furthermore,
we want to do so while relying solely on the DDH assumption.
Answer extractability. The stepping stone to proving privacy with abort,
upon passing validation, is proving a notion we call answer extractability. To
define it, we consider any two-stage adversary (D, V), where D initially outputs a
digest d, along with a state stD. Then, V, on input validation queries s1, . . . , sλ,
as well as stD, returns answers s̃1, . . . , s̃λ. Validation passes if these answers
reconstruct to values s1, . . . , sλ ∈ {g0, g1, . . . , gN }.

Answer extractability asks for an extractor Eans which, on input stD and d,
is able to answer each honest PIR query ẽ = (h)r ◦ (gei)α in a non-aborting way,
i.e., Eans(ẽ, stD, d) returns with overwhelming probability ẽ ∈ G such that

(d−r ẽ)1/α ∈ {g−N , . . . , gN } .

This is too strong of a requirement, so we will only require Eans to succeed
whenever the state stD is such that V is able to pass the validation stage with
non-negligible probability ν given that state. We also do allow the running time
of Eans to depend polynomially on 1/ν.

When combined with standard PIR privacy and integrity, we will show that
answer extractability implies privacy with abort. Intuitively, the idea is to use the
extractor to simulate the abort information in the standard privacy experiment.
We omit details here, and refer to the body of the paper.
The extractor construction. The core of the security proof is our con-
struction of an extractor Eans for answer extractability, along with its analysis.
Given an honest query ẽ = hr ◦ (gei)α, along with d and stD, a natural strategy
for Eans to answer this query is to repeatedly invoke V as

(s̃1, . . . , s̃λ) ← V(stD, (ẽ, s̃2, . . . , s̃λ)) .

where s̃2, . . . , s̃λ are “fake” validation queries The hope is that the fact that
V passes validation with non-negligible probability ν also implies that, with
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overwhelming probability, s̃1 is a good answer for ẽ after poly(1/ν) attempts.
There are however two obvious challenges:

(1) V is only guaranteed to provide accurate answers for validation queries, but
it is not clear why this would imply that it provides correct answers for a
regular PIR query.

(2) We need to be able to check when s̃1 is correct without knowing the random-
ness r, α.

To overcome (2), we will show that the following strategy works: in each iteration
we invoke V twice, the second call as

(s̃′
1, . . . , s̃λ) ← V(stD, (ẽ′, s̃′

2, . . . , s̃′
λ)) , (1)

where ẽ′ is obtained by randomizing ẽ, i.e., ẽ′ = hr′ ◦ ẽα′
, and s̃′

2, . . . , s̃′
λ are

fresh validation queries. Then Eans outputs s̃1 whenever for two such calls we
have (d−r′

s̃′
1)1/α′ = s̃1. If this never happens, it outputs ⊥.

To achieve sufficient independence for this argument to go through, the
extractor needs to in fact also re-randomize ẽ itself for each iteration, and then
remove this randomization from answers s̃1 and s̃′

1. This has the added benefit of
simplifying notation, as a statistical argument implies the fact that Eans(d, stD, ẽ)
returning a value ẽ such that (d−r ẽ)1/α ∈ {g−N , . . . , gN } is equivalent to

Eans(d, stD, gei) ∈ {g−N , . . . , gN } ,

where the input gei is not randomized.

Correctness. To prove that Eans works as desired, hence overcoming (1), a
crucial property we establish is that it behaves homomorphically—with over-
whelming probability, for any p1, . . . ,pm ∈ G

N and t1, . . . , tm ∈ Zq, if we let
pm+1 =

∏m
i=1 p

ti
i and compute pi ← Eans(d, stD,pi) for i ∈ [m + 1], then

p1, . . . , pm+1 �= ⊥ =⇒ pm+1 =
m∏

i=1
pti

i . (2)

Then, the proof considers an extended experiment where we initially run D to
sample (d, stD), and subsequently:

– Compute ei ← Eans(d, stD, gei) for all i ∈ [N ].
– Pick sj,k ←$ {0, 1}N for k ∈ [λ] and sufficiently many j’s, then run sj,k ←

Eans(d, stD, gsj,k ) for each j and k ∈ [λ].

In this experiment, we prove that, with overwhelming probability, the event that
(d, stD) is good implies the following two events:

(1) ei �= ⊥ for all i ∈ [N ]
(2) There exists j∗ such that sj∗,k ∈ {1, g, . . . , gN } for all k ∈ [λ]
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Both properties are non-obvious to prove, but they follow from the fact that V
does well on a good (d, stD). Then, Eq. 2 yields

sj∗,k =
N∏

i=1
e
sj∗,k[i]
i ∈ {1, g, . . . , gN } for all k ∈ [λ] .

A simple statistical lemma shows that if e1, . . . , eN were not all in {g−N , . . . , gN },
then due to sj,k being uniformly sampled from {0, 1}N , the above was unlikely
to have happened. Hence, all ei’s are in {g−N , . . . , gN }, which implies that the
extractor can answer any honest query.

1.3 Open Problems

The most obvious open question is to develop a lattice analogue of our results,
e.g., on top of the simple LWE-based scheme from [17]. The main challenge here
seems to be the step from answer extractability to privacy with abort. To show
the latter, we need to simulate the abort-bit, which we do in the case of DDH
by first extracting a “good” answer that correctly answers the query without
aborting. However, for lattices, even when it is possible to extract a database x,
any honest answer w.r.t. x would itself already be noisy, and therefore comparing
it with the actual answer given by the adversary does not necessarily allow for
a correctly computed abort-bit. Despite lattices, another interesting question is
to add updatability to the scheme.

2 Preliminaries

Basic notation and computational model. We let λ denote the security
parameter, and use poly(λ) and negl(λ) as placeholders for a generic polynomial
and negligible function in λ, respectively. All algorithms in this paper are ran-
domized unless otherwise stated. We assume a standard model of computation,
and refer to our adversaries as “ppt” to indicate they run in polynomial time. For
convenience, we assume these algorithms are non-uniform (i.e., they can also use
polynomial-time advice), although it is not hard to extend our treatment to the
uniform setting. Throughout this paper, we use ← to denote the random sam-
pling of an output of a randomized algorithm, ←$ to denote the uniform sampling
of an element from a set, and := to denote assignment of a value to a variable.
We say that two families of distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
computationally indistinguishable, denoted X ≈c Y , if the size of Xλ, Yλ is poly-
nomial in λ, and, for all ppt A, we have Pr[A(Xλ) = 1]−Pr[A(Yλ) = 1] = negl(λ).

Group-theoretic preliminaries. We will work with cyclic groups through-
out this paper. We will typically use a group parameter generator GG to sample
parameters. Such an algorithm, on input 1λ, outputs (G, g, q) consisting of the
description of a group G with generator g and order 2λ ≤ q < 2λ+1. The group
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also allows for computing group operations in time poly(λ), and in particular its
elements are also represented as polynomially-sized strings.

Decisional Diffie-Hellman. Our results rely on the Decisional Diffie-
Hellman (DDH) assumption, which we repeat below for completeness.

Definition 1 (DDH). The Decisional Diffie-Hellman assumption (DDH) holds
for a group generator GG if, for pp = (G, q, g) ← GG(1λ),

{
(pp, ga, gb, gab)

∣
∣ a, b ←$ Zq

} ≈c
{

(pp, ga, gb, gc)
∣
∣ a, b, c ←$ Zq

}
.

We will also repeatedly need the following commonly used lemma.

Lemma 1. If the DDH assumption holds, then for all polynomials N(λ) =
poly(λ), and pp′ = (G, q, g) ← GG(1λ), we have
{

(pp′,h,hr)
∣
∣ h ←$ GN , r ←$ Zq

} ≈c
{

(pp′,h,h)
∣
∣ h ←$ GN , h ←$ GN

}
.

3 Authenticated PIR: Definitions and Basic Properties

3.1 Basic Definitions

PIR Syntax. In this section, we define our notion of authenticated PIR. In
contrast to prior work, we allow for a short validation phase. Here, we do not
impose any restrictions on how this phase is run, although our concrete scheme
(Sect. 4) will guarantee that server is unable to tell validation queries from regular
ones, which is a fundamental feature of such a scheme.

Definition 2 (Authenticated PIR). An authenticated PIR scheme (APIR)
APIR consists of the following eight algorithms:

– The setup algorithm, on input the security parameter and the database length,
both in unary, outputs the public parameters pp ← Setup(1λ, 1N ).

– The digest algorithm, on input pp and database x ∈ {0, 1}N , outputs a digest
d ← Digest(pp,x).

– The client’s validation query algorithm only takes as input pp, and outputs
(st, v) ← VQuery(pp), where st is a state and v is the validation query.

– The server’s validation response algorithm takes as input pp, the database x,
and a validation query v, and returns a response av ← VAnswer(pp,x, v).

– The client’s validation check algorithm takes as inputs pp, the state st, digest
d, and a response av, and returns a decision bit VCheck(pp, st, d, av) ∈ {0, 1}.

– The client’s query algorithm takes as input pp, along with a query index
i ∈ [N ], and outputs a pair (st, q) ← Query(pp, i) consisting of a state st and
a query q.

– The server’s query response algorithm takes as input pp, the database x, and
the query q, and returns an answer a ← Answer(pp,x, q).

– The client’s reconstruction algorithm takes as inputs pp, the state st, digest
d, and an answer a, and returns a value Rec(pp, st, d, a) ∈ {0, 1, ⊥}.
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Fig. 1. Definition of the configuration generation process (left) and of the integrity
definition game (right).

For correctness, we require that for all λ, N ∈ N and pp ∈ Supp(Setup(1λ, 1N )),
databases x ∈ {0, 1}N , and indices i ∈ [N ],

Pr

⎡

⎣VCheck(pp, st, d, av) = 1

∣
∣
∣
∣
∣
∣

d ← Digest(pp,x)
st, v ← VQuery(pp)

av ← VAnswer(pp,x, v)

⎤

⎦ = 1 ,

Pr

⎡

⎣Rec(pp, st, d, a) = x[i]

∣
∣
∣
∣
∣
∣

d ← Digest(pp,x)
st, q ← Query(pp, i)

a ← Answer(pp,x, q)

⎤

⎦ = 1 .

Remark 1. We can assume without loss of generality that VCheck and Rec are
both deterministic, as their randomness can be chosen ahead of time by VQuery
and Query, and included in the state. We will also often omit pp from the algo-
rithms when they are understood from the context.

Digest generators. We introduce a number of security properties that are
meant to hold against fully malicious adversaries. These are in particular allowed
to choose the digest themselves. All of our adversaries will proceed in stages, and
we denote by D the initial stage of the adversary (common to all of our security
games) that generates the digest d and outputs a state stD that may be used by
later stages of the adversary. We refer to such adversaries as digest generators.
It will be convenient to introduce the following formalism that will be reused
across definitions to capture the initial stage of the game.

Definition 3 (Configuration). For an APIR scheme APIR, and adversar-
ial digest generator D, we define a configuration c = (pp, d, stD) as a triple
consisting of pp, d, and stD, where pp ∈ Supp(Setup(1λ, 1N )) and (stD, d) ∈
Supp(D(pp)). We define ConfD

APIR(λ, N) as the random process generating a con-
figuration c as on the left-hand side of Fig. 1.

Integrity. We target a strong definition of integrity which prevents the adver-
sary from coming up with two different non-aborting answers for the same query,
even if they reconstruct to the same value.
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Definition 4 (Integrity). The APIR scheme APIR fulfills integrity if for all
ppt adversaries A∗ = (D, A), database sizes N = N(λ) ≤ poly(λ), and indices
i = i(λ) ∈ [N(λ)],

Pr
[
INTEGRITYA∗

APIR(λ, N, i) = 1
]

≤ negl(λ) ,

where INTEGRITYA∗
APIR(λ, N, i) is defined on the right-hand side of Fig. 1.

Remark 2. Another natural definition of integrity would send two independently
generated queries for the same index i to the adversary A, who then wins if they
are able to produce answers that successfully reconstruct to different values.
This notion follows from Definition 4 for any APIR scheme that allows to re-
randomize a query q into another query q′, and to recover an answer a′ for query
q′ into an answer a for query q. This is indeed the case for our protocol in Sect. 4.

Privacy. We consider two notions of privacy. The former is the standard defi-
nition of APIR privacy in a setting where the adversary can generate malicious
digests, whereas the latter allows the attacker to additionally learn whether a
response to a query aborts. The two notions are defined by the games described
in Fig. 2.

Definition 5 (Standard Privacy). We say the APIR scheme APIR fulfills
privacy if for all ppt adversaries A∗ = (D, A), database sizes N = N(λ) ≤
poly(λ), and indices i0 = i0(λ), i1 = i1(λ) ∈ [N(λ)],

| Pr[PRIVA∗
APIR(λ, N, i0) = 1] − Pr[PRIVA∗

APIR(λ, N, i1) = 1]| ≤ negl(λ) ,

where PRIVA∗
(λ, N, i) is defined on the left of Fig. 2.

Definition 6 (Privacy with abort). The APIR scheme fulfills privacy with
abort if for all ppt adversaries A∗ = (D, A1, A2, A3), database sizes N = N(λ) ≤
poly(λ), and indices i0 = i0(λ), i1 = i1(λ) ∈ [N(λ)],

| Pr[PRIV/AA∗
APIR(λ, N, i0) = 1] − Pr[PRIV/AA∗

APIR(λ, N, i1) = 1]| ≤ negl(λ) ,

where PRIVA∗
(λ, N, i) is defined on the right of Fig. 2.

One can also consider an alternative definition where validation and the PIR
query happen concurrently, and the client learns if either of them aborts. It is
not hard to show that this notion is implied by that in Definition 6. (We discuss
this in the full version of this paper [20]).

Uniform definitions. Our definitions quantify over functions of the security
parameter, e.g., N(λ), i0(λ), i1(λ). Without further restrictions, this leads to
non-uniform proofs of security. One could alternatively give uniform counterparts
of all definitions by allowing adversarial choice of these values. Our results would
easily extend, although with significant notational clutter we seek to avoid here.
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Fig. 2. Authenticated PIR Privacy Notions. The two above experiments define
our standard privacy (left) and privacy with abort (right) security notions.

3.2 Answer Extractability

Our approach to proving that an APIR scheme fulfills privacy with abort relies on
an intermediate notion which we refer to as answer extractability. Informally, this
notion means that ability to pass the validation phase implies ability to answer
arbitrary PIR queries. The correct definition of this notion is rather tricky, along
with showing that answer extractability, when combined with (regular) privacy
and integrity, implies privacy with abort. Our definition relies on measuring
the adversary’s probability of passing validation, conditioned on a particular
configuration c having been produced, which we now define.

Definition 7 (Validation success probability). Let APIR be an APIR
scheme, (D, V) be an adversary, where D generates a digest and V attempts
to pass validation queries. Then, for any fixed λ, N ∈ N and configuration
c = (pp, d, stD) ∈ Supp(ConfD

APIR(λ, N)), the adversary’s validation success prob-
ability is defined as

νAPIR
D,V (c) := Pr [VCheck(st, d, V(c, v)) = 1 | st, v ← VQuery(pp)] .

For a pair (D, V), a corresponding answer extractor Eans is a ppt algorithm that
takes a running time parameter 1r, the configuration c output by ConfD

APIR(λ, N),
and an arbitrary query q. Its task is to give a non-aborting answer for q. The
extractor construction will typically depend on V (this is the case for our con-
struction in Sect. 4.4), and it is natural that its response time is inversely pro-
portional to νAPIR

D,V (c), i.e., when V has a low validation success probability for
some configuration c, then this will also make it “harder” for Eans to extract
the answer for any given query. For this reason, the actual definition of answer
extractability given next sets the running time parameter 1r so that the running
time of Eans may grow with the inverse of νAPIR

D,V (c).

Definition 8 (Answer extractability). The validation step of an APIR
scheme APIR fulfills answer extractability if for all ppt adversaries (D, V), there
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exists an answer extractor Eans s.t. for all database sizes N(λ) ≤ poly(λ), indices
i(λ) ∈ [N ], and polynomials r(λ):

Pr
[

νAPIR
D,V (c) ≥ 1

r(λ)
⇒ Rec(stq, d, Eans(1r(λ), c, q)) �= ⊥

∣
∣
∣
∣

c ← ConfD
APIR(λ, N)

stq, q ← Query(pp, i)

]

≥ 1 − negl(λ) . (3)

Proving privacy with abort. Together with integrity and standard privacy,
our notion of answer extractability implies privacy with abort: We can transform
an adversary A∗ for privacy with abort into an adversary B∗ that breaks standard
privacy. The idea is that B∗ makes use of the extractor Eans guaranteed by
extractability, to simulate the abort-bit by itself without knowing whether the
answer given by A∗ actually aborts. In particular, B∗ simply asks Eans for the
“correct” answer to the given query, and compare it with the actual answer to
check whether there will be an abort.

Lemma 2. If an APIR scheme APIR fulfills (1) integrity, (2) standard privacy,
and (3) answer extractability, then it also fulfills privacy with abort.

We give the proof of Lemma 2 in the full version [20].

3.3 Alternative Notion for Relaxed Validation

In our definition of privacy with abort, passing the validation phase is very strict:
if the server succeeds, then the client may assume that for all subsequent queries,
the server’s distinguishing advantage will be negligible. Below we sketch a way
of formalizing a tradeoff, which potentially allows for better efficiency in cases
where it is acceptable to have a lower confidence in the server’s honesty.

First, we augment the VQuery algorithm for initiating the validation phase,
by letting it take an additional parameter κ. Then, privacy with abort can be
relaxed by decoupling the adversary into (1) V attempting to pass the validation
phase, and (2) A answering queries and later making a decision based on query
and abort-bit. Denoting the success probability of V by ν(c), and the advantage
of A by δ(c), privacy with abort now states that for any polynomial p(λ) it is
highly unlikely that simultaneously

δ(c) >
1

p(λ) and ν(c) >
1

p(λ) + 1
2κ

hold (over the random choice of the configuration c ← ConfD(λ, N)).
Intuitively, this means that with probability 1

2κ , the validation phase may
succeed despite the server’s ability to break privacy in any of its subsequent,
unbounded number of queries (i.e., validation has false negatives). In other
words, κ serves as a tunable confidence parameter: higher κ means more confi-
dence in the validation phase (e.g., choosing κ = λ means overwhelming confi-
dence), while lower κ may allow for a more efficient APIR scheme.
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Fig. 3. Rebalancing APIR of an PIR scheme APIR. We assume that the public
parameters pp output by Setup are available to all algorithms, but omit them for ease
of readability.

Similar to Lemma 2, this relaxed notion of privacy with abort can be proven
under the assumption of integrity, standard privacy, and a modified type of
answer extractability. The latter requires the probability in Eq. (3) to hold with
probability 1 − 1

2κ − negl(λ) only, but also imposes a restriction that requires
all non-⊥ answers given by Eans to reconstruct correctly (except with negligible
probability).

Concretely, in our APIR construction (Sect. 4), κ may correspond to the
number of individual “challenges” that the client includes in a single validation
query. Since each such challenge has a success probability of at most 1

2 +negl(λ)
if the server is cheating, the client’s confidence in the server’s inability to break
privacy with abort will be 1− 1

2κ −negl(λ). Given this, it is possible to prove the
modified answer extractability sketched above, but for the purpose of a clean
presentation we will stick to the setting with κ = λ for the remainder of this
paper.

3.4 Rebalancing

We revisit the standard rebalancing trick, originally proposed in [35], in the
context of Authenticated PIR. Given a PIR scheme APIR, we construct a rebal-
anced scheme APIR. It splits a database of size N into

√
N chunks of size

√
N
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Fig. 4. Our PIR scheme. We assume that the public parameters pp output by Setup
are available to all algorithms, but omit them for ease of readability.

(w.l.o.g. we may assume that N is a perfect square, as the database can always
be padded with dummy values).

For database x ∈ {0, 1}N , we denote by xi the i-th chunk (which is a vector
in {0, 1}

√
N ), s.t. x = (xT

1 , . . . ,xT√
N

). Any index i ∈ [N ] can be split into two
values irow ∈ [

√
N ] and icol ∈ [

√
N ], s.t. x[i] = xicol [irow] (icol denotes the chunk

that i is in, and irow denotes the position within that chunk). The full scheme is
described in Fig. 3.

It is easy to see that if APIR fulfills integrity, then APIR fulfills integrity as
well, and if APIR fulfills standard privacy, then APIR fulfills standard privacy.
Furthermore, we can prove that if APIR fulfills answer extractability, then APIR
does so as well.

Lemma 3. If APIR fulfills answer extractability, then the re-balanced scheme
APIR fulfills answer extractability as well.

We give the proof of Lemma 3 in the full version [20].

Remark 3. As in [17], we can compress the digest by letting APIR.Digest return
a short hash of (d1, . . . , d√

N ) (any collision-resistant hash function chosen by
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APIR.Setup suffices). Then, APIR.VAnswer and APIR.Answer would both out-
put the full digest (d1, . . . , d√

N ) (in addition to the actual answers), and
APIR.VCheck and APIR.Rec test whether it matches the digest hash before doing
anything else.

4 The Authenticated PIR Scheme and Its Security

4.1 Description and Security

This section describes our APIR scheme, and states the security theorems we
then prove below. A description of the scheme is given in Fig. 4.

Main ideas behind the scheme. We discuss first the unbalanced version of
our scheme, which we refer to as APIR. We obtain a re-balanced version APIR
which achieve O(

√
N) complexity following the transformation of Sect. 3.4. The

scheme is based on the DDH scheme from Colombo et al. [17]. The server is
in fact identical: It initially publishes a Pedersen hash d =

∏
i∈[N ] h[i]x[i] of

the database as the digest, where h ∈ G
N is a vector of independent random

generators for G. The server then answers any query vector p ∈ G
N by returning

the product
∏

i∈[N ] p[i]x[i].

Item retrieval. To retrieve an item i ∈ [N ] privately, the client sends a ran-
domized version of the vector e = gei , where ei is the i-th unit vector. The
easiest way to hide the query, under the DDH assumption, is to multiply e
component-wise with a blinding vector hr. Then, the client would receive the
response ẽ = dr · gx[i], and e = gx[i] is recovered by dividing off dr. To achieve
integrity, however, we will need to additionally randomize e by exponentiating it
with a non-zero α ←$ Z∗

q , where q is the group order. Then, if the server answers
honestly with a value ẽ, we get the final answer as e = (d−r ẽ)1/α. However, in
contrast to [17], to accommodate the validation process we describe next, we will
need to allow e to take values in {g−N , . . . , gN }. We think of any value different
than 1 = g0 as corresponding to the output 1, whereas 1 = g0 is mapped to 0.

In summary, we define a general query randomization mechanism (and the
associated recovery operation), used for both validation and normal queries in
Fig. 4, as

randomize(p)
1 : r ←$ Zq

2 : α ←$ Z∗
q

3 : return st := (r, α), p̃ := hr ◦ pα

recover(st = (r, α), d, p̃)
1 : return p := (d−r · p̃)1/α

Generalized queries. It will be convenient to think of queries in a more
general sense, where the client can ask for any selection vector p ∈ Z

N
q , turning it

into a corresponding vector of group elements p = gp, which is then randomized
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as p̃. We usually denote the answer as p̃, and the de-randomized answer as p.
This defines some notational conventions we follow throughout our proofs.

Digest validation. Our digest validation procedure consists of λ paral-
lel generalized queries where the selection vectors are independent random
binary vectors. The client accepts if all results of these queries are in the set
{g0, g1, . . . , gN }. Note that if the server produces the digest and answers hon-
estly, the check passes. It also passes on a “slightly malformed” database, in
which the sum of any subset of database components is between 0 and N (say
one database entry is N , all others are 0.) This is the main reason why we do
relax the allowable range of values for e for PIR queries.

Security of APIR. Below, we prove the following three theorems in Sects. 4.2,
4.3, and 4.4, respectively.

Theorem 1. Assuming that the DDH assumption holds, APIR fulfills integrity.

Theorem 2. Assuming that the DDH assumption holds, APIR fulfills standard
privacy.

Theorem 3. Assuming that the DDH assumption holds, APIR fulfills answer
extractability.

Combining these theorems with Lemmas 2 and 3 immediately yields the
following corollary.

Corollary 1. Assuming that the DDH assumption holds, both APIR and its
rebalancing APIR fulfill integrity, standard privacy, and privacy with abort.

Efficiency. After rebalancing our scheme as described in Sect. 3.4, a single
query and its answer both have size proportional to that of

√
N group elements.

Each validation consists of λ individual queries, each with cost identical to that
of a regular query (thus, v consists of λ

√
N group elements in total). The relaxed

security notion described in Sect. 3.3 is achieved by performing only κ instead
of λ individual queries per validation phase.

Note that if we apply the rebalancing transformation naïvely, APIR.Rec would
run APIR.Rec for

√
N times, each of them re-computing the same 2

√
N+1 powers

of g during the call to recover. This would result in computational complexity
O(N). Obviously, a client should compute these powers only once, store them in
a suitable data structure (e.g., a hash table), and perform a single constant-time
look up. While we did not perform own benchmark, it should be clear that the
same performance profile as in [17] would emerge here.

Remark 4. In order to remove clutter, when clear from context (e.g., configura-
tion c = (pp, d, stD) is fixed) we will typically omit the parameter d passed to
recover(st, d, p̃) when proving security of APIR in the following sections.

In some places, an answer p̃ ∈ G ∪ {⊥} may be equal to ⊥. Any operations
involving p̃ = ⊥ will result in ⊥, e.g. recover(st, d, ⊥) = ⊥.
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4.2 Proof of Theorem 1 (Integrity)

Lemma 4 establishes a slightly stronger version of integrity that will be useful
within proofs of other theorems below. Specifically:
1. We let A choose the query vector p ∈ G

N that will be randomized. For
integrity, it suffices to consider p = gei .

2. We let A choose a small set S, along with its answers p̃, p̃′. The adversary
wins whenever their two answers p̃ and p̃′ are distinct, and the ratio between
the two recovered answers is in S.

We show that the probability of winning is small, and we refer to this as “Evasive
ratio” lemma. Below, we show integrity easily follows.
Lemma 4 (Evasive Ratio). Assuming that the DDH assumption holds, then
for any ppt adversaries D, A1, A2 (where A1(c) outputs state stA and a query
vector p ∈ G

N , and A2(stA, p̃) outputs two answers p̃, p̃′ ∈ G ∪ {⊥} and a set
S ⊆ G of size |S| ≤ poly(λ, N)) and database sizes N(λ) ≤ poly(λ):

Pr

⎡

⎢
⎢
⎣

p̃ �= p̃′ ∧
recover(st, p̃′)
recover(st, p̃) ∈ S

∣
∣
∣
∣
∣
∣
∣
∣

c = (pp, d, stD) ← ConfD(λ, N)
stA,p ← A1(c)
st, p̃ ← randomize(p)
p̃, p̃′, S ← A2(stA, p̃)

⎤

⎥
⎥
⎦ ≤ negl(λ) .

Proof. By unrolling the calls to randomize and recover in the probability above,
we need to show

Pr[Hyb0(λ, N) = 1] ≤ negl(λ) ,

where Hyb0 is defined as follows.

Hyb0(λ, N)
1 : c = (pp, d, stD) ← ConfD(λ, N)
2 : stA,p ← A1(c)
3 : (r, α) ←$ Zq × Z

∗
q

4 : p̃ := hr ◦ pα

5 : p̃, p̃′, S ← A2(stA, p̃)

6 : return I

[

p̃ �= p̃′ ∧
(

p̃′

p̃

)1/α

∈ S

]

We do so by a hybrid argument.
Hyb1 Note that in Hyb0, the random r ←$ Zq is only used for computing hr. By

DDH (Lemma 1), this means that hr looks identical to a uniformly random
vector in G

N . Therefore, in Hyb1, we replace the lines

(r, α) ←$ Zq × Z
∗
q

p̃ := hr ◦ pα
by

α ←$ Z∗
q

h ←$ GN

p̃ := h ◦ pα

.
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We use the following ppt adversary B distinguishing between the two distri-
butions in Lemma 1:

• B(pp′,h): Run (stD, d) ← D(pp) (with pp := (pp′,h)) to create the
configuration c := (pp, d, stD), and run stA,p ← A1(c). Then, sample
α ←$ Z∗

q and compute p̃ := h ◦ pα. Run p̃, p̃′, S ← A2(stA, p̃), and return
I[( p̃′

p̃ )1/α ∈ S \ {1}].
Note that running B on left-hand side distribution in Lemma 1 is identical to
Hyb0 (i.e., h := hr for r ←$ Zq), and that running B on the right-hand side
distribution is identical to Hyb1 (i.e., h ←$ GN ). Thus, by Lemma 1, we get

|Pr[Hyb1(λ, N) = 1] − Pr[Hyb0(λ, N) = 1]| ≤ negl(λ) .

Hyb2 Note that p̃ := h ◦ pα for random h ←$ GN is identically distributed as a
uniformly random vector in G

N . Thus, in Hyb2, we replace the lines

h ←$ GN

p̃ := h ◦ pα
by p̃ ←$ GN .

We have Hyb2 ≡ Hyb1.

Note that in Hyb2, α ←$ Z
∗
q is only used in the very last line, which returns

I[p̃ �= p̃′ ∧ ( p̃′

p̃ )1/α ∈ S]. Furthermore, if p̃ �= p̃′ (i.e., p̃′

p̃ �= 1), then ( p̃′

p̃ )1/α will be
⊥ or a uniformly random element in G \ {1}. Thus, the probability of returning
1 is at most |S|

q−1 . Because of |S| ≤ poly(λ, N), we get

Pr[Hyb2(λ, N) = 1] ≤ negl(λ) ,

which concludes the proof by our hybrid argument. ��
Now we prove integrity: let D, A be an adversary for the integrity game,

N(λ) ≤ poly(λ) the database size, and i(λ) ∈ [N ] an index. We need to show

Pr

⎡

⎣
p̃ �= p̃′ ∧
Rec(st, d, p̃) �= ⊥ ∧
Rec(st, d, p̃′) �= ⊥

∣
∣
∣
∣
∣
∣

c = (pp, d, stD) ← ConfD(λ, N)
st, p̃ ← randomize(gei)
p̃, p̃′ ← A(c, p̃)

⎤

⎦ ≤ negl(λ) .

Note that the event Rec(st, d, p̃) �= ⊥ holds iff recover(st, p̃) ∈ {g−N , . . . , gN }
(and analogously for p̃′). Therefore,

p̃ �= p̃′ ∧
Rec(st, d, p̃) �= ⊥ ∧
Rec(st, d, p̃′) �= ⊥

⇒
p̃ �= p̃′ ∧
recover(st, p̃′)
recover(st, p̃) ∈ {g−2N , . . . , g2N } ,

and it suffices to prove that the probability of the event on the right-hand side
is negligible. This follows immediately by applying Lemma 4 to the following
adversary D, B1, B2.
– B1(c) outputs stB := c, p := gei .
– B2(stB, p̃) runs p̃, p̃′ ← A(c, p̃), chooses S := {g−2N , . . . , g2N }, and outputs

p̃, p̃′, S.
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4.3 Proof of Theorem 2 (Standard Privacy)

We prove a stronger notion of privacy, called chosen-vector indistinguishability,
which will be useful elsewhere, and whose security game is as follows:

Game CVAA∗
(λ, N, b)

1 : c = (pp, d, stD) ← ConfD(λ, N)
2 : stA,v0,v1 ← A1(c); r ←$ Zq

3 : return A2(stA,hr ◦ vb)

Lemma 5 (Chosen Vector Indistinguishability). Assuming that the DDH
assumption holds, then for any ppt adversaries A∗ = (D, A1, A2) and database
sizes N(λ) ≤ poly(λ),

| Pr[CVAA∗
(λ, N, 0) = 1] − Pr[CVAA∗

(λ, N, 1) = 1]| ≤ negl(λ) .

Remark 5. In order to simplify reductions involving CVAA∗
, we defined this

experiment to sample a configuration c = (pp, d, stD) ← ConfD(λ, N). Lemma 5
would still hold if CVAA∗

does not run the digest generator stD, d ← D(pp), and
instead only provides pp ← Setup(1λ, 1N ) as input to A1.

Proof. We show that both CVAA∗
(λ, N, 0) and CVAA∗

(λ, N, 1) are close to Hyb
defined below.

Hyb(λ, N)
1 : c = (pp, d, stD) ← ConfD(λ, N)
2 : stA,v0,v1 ← A1(c)

3 : ṽ ←$ GN

4 : return A2(c, ṽ)

By a hybrid argument, it suffices to show

| Pr[CVAA∗
(λ, N, b) = 1] − Pr[Hyb(λ, N) = 1]| ≤ negl(λ), (4)

for both b = 0, 1.
To show that Eq. 4 holds, we construct an adversary B that distinguishes

between the two distributions stated in Lemma 1 in the following way:

– B(pp′,h): Run (stD, d) ← D(pp) (with pp := (pp′,h)) to create the configu-
ration c := (pp, d, stD). Then, compute stA,v0,v1 ← A1(c). Run and output
A2(stA,h ◦ vb).

Note that running B on the left-hand side distribution of Lemma 1 is identical
to CVAA∗

(λ, N, b). Furthermore, running B on the right-hand side distribution
of Lemma 1 is identical to Hyb(λ, N). Equation 4 follows. ��
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Fig. 5. Description of the extractor Eans (left-hand side) used in the proof of Theorem 3.
The right-hand side describes a sub-procedure used within Eans.

Now we prove standard privacy. Let D, A be an adversary for the privacy
game, N(λ) ≤ poly(λ) the database size, and i0(λ), i1(λ) ∈ [N ] indices.

We plug in the following adversary B∗ := (D, B1, B2) into Lemma 5:

– B1(c): sample α ←$ Z∗
q and output stA := c, v0 := (gei0 )α, v1 := (gei1 )α.

– B2(c, ṽ): run and output A(c, ṽ).

Privacy follows from Lemma 5 because of CVAB∗
(λ, N, b) ≡ PRIVD,A(λ, N, ib).

4.4 Proof of Theorem 3 (Answer Extractability)

Let (D, V) be an adversary against answer extractability for our PIR scheme,
where D is the digest generator, and V answers validation queries. Our answer
extractor Eans(1r, c,p) is described in Fig. 5. The core idea is to repeatedly invoke
V to get answers for p. Because V expects a list v = (s̃1, . . . , s̃λ) of λ validation
queries, we use a wrapper procedure V(c, p̃) which embeds p̃ as the first com-
ponent of a vector consisting of otherwise honestly generated λ − 1 validation
queries.

Throughout λr3 iterations, the extractor Eans queries first V(c, p̃) on a fresh
randomization p̃ of p, and obtains answer p̃. Then, Eans generates a fresh random-
ization p̃′ of p̃, and runs V(c, p̃′). Intuitively, we use the fact that the recovered
answer p̃′ matches p̃ as an indication that V has answered correctly. Therefore,
in this case, Eans returns recover(st, p̃). However, if no iteration is successful, then
Eans returns ⊥.

Roadmap. We now give an informal description of why Eans indeed works. We
refer to several lemmas that we will state formally afterwards, followed by the
full proof of answer extractability using these lemmas.

First, Lemma 9 establishes what we refer to as the answer guarantee prop-
erty, i.e., the fact that Eans never answers with ⊥ on any (even adversarially
chosen) query, as long as νD,V(c) is large enough. The proof will use crucially
the indistinguishability of any two randomized queries.
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The bulk of the proof considers the scenario in which we query Eans on gei

for all i ∈ [N ], obtaining answers

ei ← Eans(1r(λ), c, gei) ∀i ∈ [N ] .

The queries gei are not randomized, which is going to simplify our analysis–
Lemma 6 (randomization independence) shows that this is equivalent to ran-
domizing gei first, and later recovering Eans’s answer. Therefore, to infer answer
extractability, we simply need to show that ei ∈ {g−N , . . . , gN } for each i ∈ [N ].

Also, assume that we already know that Eans answers validations successfully,
i.e., for λ random vectors s1, . . . , sλ ∈ {0, 1}N the answers s′

k ← Eans(1r(λ), c, gsk )
will fulfill s′

1, . . . , s′
λ ∈ {g0, . . . , gN }. To draw a connection to the individual

answers ei, we need a homomorphism property (Lemma 8), which states that

s′
k =

∏

i∈[N ]

e
sk[i]
i ∀k ∈ [λ] .

Because vectors sk are random, a simple argument (Lemma 10, random subset
testing) shows that, due to the small range of all s′

k, with probability at least
1 − 1

2λ , all the individual answers are also in a small range: ei ∈ {g−N , . . . , gN }.
It remains to ensure that there is a good chance of Eans answering all val-

idation queries s1, . . . , sλ correctly. Indeed, whenever V(c, p̃) manages to reply
to the randomization p̃ of a query gsk with a value sk ∈ {g0, . . . , gN }, then
w.h.p., Eans will output the exact same value s′

k = sk (Lemma 7, Eans agrees with
small answers). Therefore, whenever νD,V(c) is large enough, we can be sure
that (after testing sufficiently many different validations), Eans’s responses fulfill
s′
1, . . . , s′

λ ∈ {g0, . . . , gN }, thereby implying e1, . . . , eN ∈ {g−N , . . . , gN }.
Basic extractor properties. We state four essential properties of our Eans
construction that suffice to prove answer extractability. We defer the proofs of
the first three properties to Sects. 4.5, 4.6, and 4.7, and the lengthy proof of
Lemma 9 can be found in the full version of this paper [20].
Lemma 6 (Randomization Independence). For all λ, N ∈ N and config-
urations c = (pp, d, stD) ∈ Supp(ConfD(λ, N)), queries p ∈ G

N , randomizations
(st, p̃) ∈ Supp(randomize(p)) of p, and runtime parameters r ∈ N, the following
two distributions are exactly the same:

Eans(1r, c,p) and recover(st, Eans(1r, c, p̃))

Lemma 7 (Agrees with Small Answers). Assuming the DDH assumption
holds, then for all ppt adversaries A1, A2 (where A1(c) outputs a state stA and
a query vector p ∈ G

N , and A2(stA, p̃∗) outputs an answer p∗ ∈ G ∪ {⊥}),
database sizes N(λ) ≤ poly(λ), and polynomials r(λ):

Pr

⎡

⎢
⎢
⎢
⎢
⎣

p∗ ∈ {g0, . . . , gN }
⇒ p ∈ {p∗, ⊥}

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c = (pp, d, stD) ← ConfD(λ, N)
stA,p ← A1(c)
st∗, p̃∗ ← randomize(p)
p∗ ← recover(st∗, A2(stA, p̃∗))
p ← Eans(1r(λ), c,p)

⎤

⎥
⎥
⎥
⎥
⎦

≥ 1 − negl(λ) .



Fully Malicious Authenticated PIR 135

Lemma 8 (Homomorphism). Assuming the DDH assumption holds, then
for all ppt adversaries A (where A(c) outputs m query vectors p1, . . . ,pm ∈ G

N

and m exponents t1, . . . , tm ∈ Zq), and N(λ), r(λ) ≤ poly(λ),

Pr

⎡

⎢
⎢
⎣

p, p1, . . . , pm �= ⊥
⇒ p =

∏

i∈[m]

pti
i

∣
∣
∣
∣
∣
∣
∣
∣

c = (pp, d, stD) ← ConfD(λ, N)
p1, . . . ,pm, t1, . . . , tm ← A(c)
p ← Eans(1r(λ), c,

∏
i∈[m] p

ti
i )

pi ← Eans(1r(λ), c,pi) ∀i ∈ [m]

⎤

⎥
⎥
⎦ ≥ 1 − negl(λ) .

Lemma 9 (Answer Guarantee). Assuming the DDH assumption holds, then
for all ppt adversaries A (where A(c) outputs a query vector p ∈ G

N ), database
sizes N(λ) ≤ poly(λ), and polynomials r(λ),

Pr
[

νD,V(c) ≥ 1
r(λ)

⇒ Eans(1r(λ), c,p) �= ⊥
∣
∣
∣
∣
c = (pp, d, stD) ← ConfD(λ, N)

p ← A(c)

]

≥ 1 − negl(λ) .

Random Subset Testing. We will also make use of the following lemma, which
is proved in Sect. 4.8.

Lemma 10 (Random Subset Testing). Let N ∈ N, let G be a cyclic group
with generator g ∈ G, and let e1, . . . , eN ∈ G be arbitrary group elements. Fur-
ther, assume that for at least one i∗ ∈ [N ], we have ei∗ /∈ {g−N , . . . , gN }. Then,
for s1, . . . , sλ ←$ {0, 1}N ,

Pr

⎡

⎣∀k ∈ [λ] :
∏

i∈[N ]

e
sk[i]
i ∈ {g0, . . . , gN }

⎤

⎦ ≤ 1
2λ

.

The actual proof. We are now ready to combine all of the above elements and
prove answer extractability (Eq. 3), i.e., for all database sizes N(λ) ≤ poly(λ),
indices i(λ) ∈ [N(λ)], polynomials r(λ) ≤ poly(λ),

Pr

⎡

⎣νD,V(c) ≥ 1
r(λ) ⇒

Rec(st, d, ẽ) �= ⊥

∣
∣
∣
∣
∣
∣

c = (pp, d, stD) ← ConfD(λ, N)
st, ẽ ← Query(i)

ẽ ← Eans(1r(λ), c, ẽ)

⎤

⎦ ≥ 1 − negl(λ) .

Using Lemma 6, this simplifies to

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

e ∈ {g−N , . . . , gN }
∣
∣
∣
∣
c = (pp, d, stD) ← ConfD(λ, N)

e ← Eans(1r(λ), c, gei)

]

≥ 1 − negl(λ) .

In fact, we will prove something even stronger, which is that for all database
sizes N(λ) ≤ poly(λ) and polynomials r(λ), the answers of Eans on the whole
database (not just a single index i) is in {g−N , . . . , gN }:

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

∀i ∈ [N ] : ei ∈ {g−N , . . . , gN }
∣
∣
∣
∣

c = (pp, d, stD) ← ConfD(λ, N)
ei ← Eans(1r(λ), c, gei) ∀i ∈ [N ]

]

≥ 1 − negl(λ) . (5)



136 M. Dietz and S. Tessaro

To prove this, it is helpful to consider the following augmented experiment,
which additionally introduces several validation queries, and both V’s and Eans’s
answers to those:

1. First, sample configuration c = (pp, d, stD) ← ConfD(λ, N).
2. Second, query Eans on the whole database:

ei ← Eans(1r(λ), c, gei) ∀i ∈ [N ]

3. Third, sample λ · r(λ) random validations, and run V on them:

sj,k ←$ {0, 1}N ∀j ∈ [λ · r(λ)], k ∈ [λ]
stj,k, s̃j,k ← randomize(gsj,k ) ∀j ∈ [λ · r(λ)], k ∈ [λ]
s̃j,1, . . . , s̃j,λ ← V(c, (s̃j,1, . . . , s̃j,λ)) ∀j ∈ [λ · r(λ)]
sj,k ← recover(stj,k, s̃j,k) ∀j ∈ [λ · r(λ)], k ∈ [λ]

4. And finally, we run Eans on the same validation queries:

s′
j,k ← Eans(1r(λ), c, gsj,k ) ∀j ∈ [λ · r(λ)], k ∈ [λ]

We are now going to apply Lemmas 7, 8, and 9. In each of the following prob-
abilities, we refer to the distribution of all c, ei, sj,k, sj,k, and s′

j,k as described
above.

– Note that Step 3 performs λ · r(λ) independently sampled validations iden-
tically to VQuery(). Thus, under the assumption that configuration c has a
high success probability (νD,V(c) ≥ 1

r(λ) ), there will be at least one validation
that succeeds: The probability that for no j∗ ∈ [λ · r(λ)], the j∗-th validation
succeeds, is at most

(

1 − 1
r(λ)

)λ·r(λ)
≤ e− 1

r(λ) ·λ·r(λ) = e−λ ≤ negl(λ) .

A successful validation (as defined by VCheck({stj∗,k}, d, {s̃j∗,k})) means that
sj∗,1, . . . , sj∗,λ ∈ {g0, . . . , gN }, and therefore:

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

∃j∗ ∈ [λ · r(λ)] with sj∗,1, . . . , sj∗,λ ∈ {g0, . . . , gN }
]

≥ 1 − negl(λ) (6)

– For all j ∈ [λ · r(λ)] and k ∈ [λ], we apply Lemma 7 (Eans agrees with small
answers) to the following adversary A:

• A1(c) samples sj,k ←$ {0, 1}N and returns stA := (c, sj,k) and gsj,k .
• A2(stA, s̃j,k), for all k′ ∈ [λ] \ {k}, samples sj,k′ ←$ {0, 1}N and

randomizes stj,k′ , s̃j,k′ ← randomize(gsj,k′ ), then runs s̃j,1, . . . , s̃j,λ ←
V(c, (s̃j,1, . . . , s̃j,λ)) and outputs s̃j,k.

Then, by Lemma 7, for sj,k produced by V that is within the set {g0, . . . , gN },
we can be certain that Eans’s answer s′

j,k is equal to sj,k or ⊥:

Pr
[

sj,k ∈ {g0, . . . , gN } ⇒
s′

j,k ∈ {sj,k, ⊥}
]

≥ 1 − negl(λ) ∀j ∈ [λ · r(λ)], k ∈ [λ] (7)
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– For all j ∈ [λ · r(λ)] and k ∈ [λ], we apply Lemma 8 (homomorphism) to the
following adversary A:

• A(c) samples sj,k ←$ {0, 1}N , and outputs the N unit queries
ge1 , . . . , geN , and exponents sj,k[1], . . . , sj,k[N ].

Then, by Lemma 8, we can be certain that Eans’s answer s′
j,k to validation

query gsj,k is equal to the product
∏

i∈[N ] e
sj,k[i]
i of answers ei (as long as

none of these answers is ⊥):

Pr
[

s′
j,k, e1, . . . , eN �= ⊥ ⇒

s′
j,k =

∏
i∈[N ] e

sj,k[i]
i

]

≥ 1 − negl(λ) ∀j ∈ [λ · r(λ)], k ∈ [λ] (8)

– For all i ∈ [N ], we apply Lemma 9 (guaranteed to answer) to the following
adversary A:

• A(c) returns gei .
Then, by Lemma 9, whenever c has high validation success probability (i.e.,
νD,V(c) ≥ 1

r(λ) ), then w.h.p. Eans answered all queries without ever returning
⊥:

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

ei �= ⊥
]

≥ 1 − negl(λ) ∀i ∈ [N ] (9)

Similarly, Lemma 9 also shows that none of the answers s′
j,k of Eans is ⊥:

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

s′
j,k �= ⊥

]

≥ 1 − negl(λ) ∀j ∈ [λ · r(λ)], k ∈ [λ] (10)

We can now take the union bound of the probabilities in Eqs. 6 through 10. If
all of the given events hold, and furthermore νD,V(c) ≥ 1

r(λ) for the sampled
configuration c, then:

– By Eq. 6, there is a j∗ ∈ [λ · r(λ)], s.t. V’s answers to the j∗-th validation are
good: sj∗,1, . . . , sj∗,λ ∈ {g0, . . . , gN }.

– By Eq. 7, this in turn means that Eans answers to the same queries are good
or ⊥: s′

j∗,1, . . . , s′
j∗,λ ∈ {⊥, g0, . . . , gN }.

– By Eq. 10, we know that none of s′
j∗,k is ⊥, and therefore we can infer:

s′
j∗,1, . . . , s′

j∗,λ ∈ {g0, . . . , gN }.
– By Eqs. 9 and 8, we can infer that not only s′

j∗,k’s themselves, but also the
answers to gsj,k computed as combinations of ei’s are all good. That is, for
all k ∈ [λ]:

∏
i∈[N ] e

sj∗,k[i]
i ∈ {g0, . . . , gN }.

In summary, this yields:

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

∃j∗ s.t. ∀k ∈ [λ] :
∏

i∈[N ] e
sj∗,k[i]
i ∈ {g0, . . . , gN }

]

≥ 1 − negl(λ) (11)
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Now we use Lemma 10, which says that for any set of fixed ei’s, if at least one
of them is not within {g−N , . . . , gN }, then w.h.p. at least one of the products
∏

i∈[N ] e
sj∗,k[i]
i will be outside of {g0, . . . , gN }. More precisely:

Pr
[

∀i ∈ [N ] : ei ∈ {g−N , . . . , gN } ∨
∃k ∈ [λ] :

∏
i∈[N ] e

sj,k[i]
i /∈ {g0, . . . , gN }

]

≥ 1 − negl(λ) ∀j ∈ [λ · r(λ)]

(12)

Taking the union bound of Eqs. 11 and 12, we get that w.h.p., whenever
νD,V(c) ≥ 1

r(λ) , then ei ∈ {g−N , . . . , gN } for all i ∈ [N ] (Eq. 5). This concludes
the proof of Theorem 3.

Remark 6. By applying the statistical Lemma 10 to κ instead of λ, we would
achieving the relaxed version of privacy with abort (see Sect. 3.3), because Eans
would return a non-aborting answer with probability 1 − 1

2κ − negl(λ) only.

4.5 Proof of Lemma 6 (Randomization Independence)

The randomization independence property of Eans follows from the simple sta-
tistical observation that randomizing a query vector multiple times is identical
to randomizing it a single time. Any new randomization “absorbs” the previous
randomization, as captured by the following lemma.

Lemma 11 (Double Randomization). For all λ, N ∈ N, configurations
c = (pp, d, stD) ∈ Supp(ConfD(λ, N)), queries p ∈ G

N and its randomizations
(st∗,p∗) ∈ Supp(randomize(p)), and unbounded adversaries A (with output in
G ∪ {⊥}), the following two distributions are identical:

{recover(st, A(p̃)) | (st, p̃) ← randomize(p)}
≡ {recover(st∗, recover(st, A(p̃∗))) | (st, p̃∗) ← randomize(p∗)}

Proof. Let st∗ = (r∗, α∗) and p∗ = hr∗ ◦pα∗ . By unrolling randomize and recover,
the two distributions are equal to

{(
d−r · A(hr ◦ pα)

)1/α
∣
∣
∣ (r, α) ←$ Zq × Z

∗
q

}

and
{(

d−r−r∗α · A(hr+r∗α ◦ pα∗α)
)1/(α∗α)

∣
∣
∣
∣ (r, α) ←$ Zq × Z

∗
q

}

.

When substituting r by r + r∗α, and α by α∗α in the first distribution, the
result is exactly the second one. This substitution does not have any impact on
distribution, because for any fixed r∗ ∈ Zq and α∗ ∈ Z

∗
q , the following identity

holds.

{(r, α) | (r, α) ←$ Zq × Z
∗
q} ≡ {(r + r∗α

︸ ︷︷ ︸
over Zq

, α∗α︸︷︷︸
over Z∗

q

) | (r, α) ←$ Zq × Z
∗
q}

This concludes the proof. ��
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Now we can prove randomization independence of Eans, meaning that for any
query p ∈ G

N , and its randomization (st∗,p∗) ∈ Supp(randomize(p)), applying
Eans to p yields the same outcome as applying Eans to p∗, and then recovering:

Eans(1r, c,p) ≡ recover(st∗, Eans(1r, c,p∗))

To see that this holds, consider the k-th iteration (where k ∈ [λ ·r3]) of Eans, and
apply Lemma 11 with the following adversary.
– A(p̃) simulates lines 3–5 of Eans by running p̃ ← V(c, p̃), st′, p̃′ ←

randomize(p̃), and p̃′ ← recover(st′, V(c, p̃′)). Then, if p̃ = p̃′, output p̃. Oth-
erwise, output ⊥.

The k-th iteration of Eans can be rewritten as

st, p̃ ← randomize(p)
p ← recover(st, A(p̃))
if p �= ⊥, return p

By Lemma 11, the behavior stays the same when replacing p by p∗ and returning
recover(st∗, p) instead of p (since p �= ⊥ is equivalent to recover(st∗, p) �= ⊥). The
result is exactly recover(st∗, Eans(1r, c,p∗)), thereby concluding the proof of Eans’s
randomization independence.

Remark 7. Note that in both randomization independence of Eans, and
double randomization for arbitrary adversary A, the first randomization
(st∗,p∗) ∈ Supp(randomize(p)) does not need to be sampled by actually calling
randomize(p). There simply need to exist r∗ ∈ Zq and α∗ ∈ Z

∗
q with st∗ = (r∗, α∗)

and p∗ = hr∗ ◦ pα∗ .

4.6 Proof of Lemma 7 (Agrees with Small Answers)

In this section, we prove Lemma 7, i.e., that if an adversary A is capable of
answering a query p with p∗ ∈ {g0, . . . , gN }, then the value p returned by Eans
on p is equal to p∗ (if it is not ⊥).

To do so, we open up the definition of Eans: let p̃ and p̃′ be the two answers to p̃
as defined in Fig. 5. Furthermore, let p := recover(st, p̃) and p′ := recover(st, p̃′)
be the two recovered answers. Note that Eans returns p whenever p̃ = p̃′ (or
equivalently, p = p′, due to the bijectivity of recover(st, ·)).

Therefore, by a union bound over all λ · r(λ) iterations of Eans, we just need
to prove the following (which states that it is unlikely that Eans terminates in
the current iteration if the answer does not match p∗):

Pr

⎡

⎣
p∗ ∈ {g0, . . . , gN }
∧ p = p′

∧ p �= p∗

∣
∣
∣
∣
∣
∣

c = (pp, d, stD) ← ConfD(λ, N)
stA,p ← A1(c)
(p, p′, p∗) ← Answers(stA,p)

⎤

⎦ ≤ negl(λ) . (13)

To remove clutter in our calculations, the three answers p, p′, p∗ are generated
by the following procedure Answers(λ, N), which computes p and p′ exactly as
an iteration of Eans would, and p∗ as the answer computed by A2.
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Procedure Answers(stA,p)
1 : p∗ ← recover(st∗, A2(stA, p̃∗)), where st∗, p̃∗ ← randomize(p)
2 : p ← recover(st, V(c, p̃)), where st, p̃ ← randomize(p)
3 : p′ ← recover(st, recover(st′, V(c, p̃′))), where st′, p̃′ ← randomize(p̃)
4 : return (p, p′, p∗)

To provide some intuition for the remainder of this proof, note that our general-
ized notion of integrity (evasive ratio, Lemma 4) shows that for any two different
ways of answering a query, it is impossible to predict their ratio. However, if the
probability above were not negligible, then there is (1) the option of answering
with p∗, given by A2, and (2) the option of answering with p′, given by V. Fur-
thermore, it would be easy to predict the ratio p′

p∗ : we just need to query V again
to get another answer p. Then, with non-negligible probability, the ratio would
be in the small set { p

g0 , . . . , p
gN }.

To formalize this idea, note that the probability in Eq. 13 is upper bounded by

Pr

⎡

⎣
p′ �= p∗

∧ p′

p∗ ∈
{

p
g0 , . . . , p

gN

}

∣
∣
∣
∣
∣
∣

c = (pp, d, stD) ← ConfD(λ, N)
stA,p ← A1(c)
(p, p′, p∗) ← Answers(stA,p)

⎤

⎦ . (14)

We face one technical difficulty preventing us from applying Lemma 4: we would
need an adversary that computes two answers p̃′ and p̃∗ from the same ran-
domization st∗, p̃∗ ← randomize(p) of query p (without knowing st∗). While
p̃∗ = A2(stA, p̃∗) is an answer to p̃∗, the value p̃′ ← recover(st′, V(c, p̃′)) is an
answer to p̃, a separate randomization of p. We fix this issue using double ran-
domization (Lemma 11) twice with adversary V(c, ·): we may replace line 3 of
Answers(stA,p) by

p′ ← recover(st∗, recover(st′, V(c, p̃′))), where st′, p̃′ ← randomize(p̃∗) ,

to obtain the procedure Answers′(stA,p) which behaves identical to
Answers(stA,p). Now, we use Lemma 4 (evasive ratio) with the following adver-
sary B1, B2.

– B1(c): run stA,p ← A1(c), and output stB := (stA, c) and p.
– B2(stB, p̃∗): Compute the first answer as p̃∗ ← A2(stA, p̃∗), and the second

answer by running st′, p̃′ ← randomize(p̃∗) and p̃′ ← recover(st′, V(c, p̃′)).
Choose the set S :=

{
p

g0 , . . . , p
gN

}
by running p ← recover(st, V(c, p̃)) with

st, p̃ ← randomize(p̃). Output p̃∗, p̃′, S.

Lemma 4, applied to adversary B1, B2 shows that
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Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p̃′ �= p̃∗∧
recover(st∗,p̃′)
recover(st∗,p̃∗) ∈

{
p

g0 , . . . , p
gN

}

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c = (pp, d, stD) ← ConfD(λ, N)
stA,p ← A1(c)
st∗, p̃∗ ← randomize(p)
p̃∗ ← A2(stA, p̃∗)
st′, p̃′ ← randomize(p̃∗)
p̃′ ← recover(st′, V(c, p̃′))
st, p̃ ← randomize(p)
p ← recover(st, V(c, p̃))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ negl(λ) . (15)

Note that for p′ := recover(st∗, p̃′) and p∗ := recover(st∗, p̃∗), the equivalence

p̃′ �= p̃∗ ⇔ p′ �= p∗

holds due to the bijectivity of recover(st∗, ·). Therefore, we can observe that
the probability in Eq. 15 is identical to the one in Eq. 14 (after replacing
Answers(stA,p) by the equivalent Answers′(stA,p)). This concludes the proof
of Lemma 7. ��

4.7 Proof of Lemma 8 (Homomorphism)

In this section, we prove the homomorphism property of Eans. Let A be a ppt
adversary, and let N(λ) and r(λ) be polynomials. W.l.o.g., we may assume that
ti∗ �= 0 holds for each ti∗ chosen by A (otherwise, the adversary would only
increase its success probability by not returning pi∗ and ti∗ in the first place,
because neither p = Eans(1r(λ), c,

∏
i∈[m] p

ti
i ) nor

∏
i∈[m] pti

i would be affected by
doing so.)

Consider the following hybrid experiment Hybi∗(λ, N) (for any i∗ ∈
{0, . . . , m}) that corresponds to the statement of Lemma 8, except that the
first i∗ queries have been changed from pi to 1 (where 1 is the vector consisting
of N times the neutral group element 1).

Hybi∗(λ, N)
1 : c = (pp, d, stD) ← ConfD(λ, N)
2 : p1, . . . ,pm, t1, . . . , tm ← A(c)

3 : p ← Eans(1r(λ), c,
∏

i∈{i∗+1,...,m} p
ti
i )

4 : pi ← Eans(1r(λ), c,1) ∀i ∈ {1, . . . , i∗}
5 : pi ← Eans(1r(λ), c,pi) ∀i ∈ {i∗ + 1, . . . , m}
6 : return I

[
p, p1, . . . , pm �= ⊥ ⇒ p =

∏
i∈[m] pti

i

]

Note that the statement of Lemma 8 is identical to

Pr[Hyb0(λ, N) = 1] ≥ 1 − negl(λ) ,

which is what we will show with a hybrid argument. That is, we need
∣
∣Pr[Hybi∗−1(λ, N) = 1] − Pr[Hybi∗(λ, N) = 1]

∣
∣ ≤ negl(λ) ∀i ∈ [w] , (16)
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and

Pr[Hybm(λ, N) = 1] ≥ 1 − negl(λ) . (17)

We start with proving Eq. 16, by applying Lemma 5 (chosen vector indistin-
guishability) to the following ppt adversary B1, B2:

– B1(c): Run p1, . . . ,pm, t1, . . . , tm ← A(c). Output state stB := (c, {pi}, {ti})
and vectors v0 := p

ti∗
i∗ , v1 := 1.

– B2(stB, ṽ): Compute the two answers p̃ ← Eans(1r(λ), c, ṽ · ∏i∈{i∗+1,...,m} p
ti
i )

and p̃i∗ ← Eans(1r(λ), c, ṽ). Further, compute answers pi ← Eans(1r(λ), c,1) for
each i ∈ [i∗ − 1] and pi ← Eans(1r(λ), c,pi) for each i ∈ {i∗ + 1, . . . , m}. Then
output

I

[
p̃, p1, . . . , pi∗−1, p̃i∗ , pi∗+1, . . . , pm �= ⊥ ⇒ p̃ = p̃i∗ · ∏i∈[m]\{i∗} pti

i

]
.

Note that the chosen-vector experiment CVAD,B1,B2(λ, N, 0) for bit b = 0 (as
defined in Lemma 5) is exactly the following:

Game CVAD,B1,B2(λ, N, 0)
1 : c = (pp, d, stD) ← ConfD(λ, N)
2 : p1, . . . ,pm, t1, . . . , tm ← A(c)
3 : r ←$ Zq

4 : p̃ ← Eans(1r(λ), c,hr ◦ ∏
i∈{i∗,...,m} p

ti
i )

5 : pi ← Eans(1r(λ), c,1) ∀i ∈ {1, . . . , i∗ − 1}
6 : p̃i∗ ← Eans(1r(λ), c,hr ◦ p

ti∗
i∗ )

7 : pi ← Eans(1r(λ), c,pi) ∀i ∈ {i∗ + 1, . . . , m}
8 : return I

[
p̃, p1, . . . , pi∗−1, p̃i∗ , pi∗+1, . . . , pm �= ⊥ ⇒ p̃ = p̃i∗ · ∏

i∈[m]\{i∗} pti
i

]

By randomization independence (Lemma 6) (which we can apply due to ti∗ �= 0),
the following two equivalences hold:

p̃ = Eans(1r(λ), c,hr ◦ ∏
i∈{i∗,...,m} p

ti
i ) ≡ dr · Eans(1r(λ), c,

∏
i∈{i∗,...,m} p

ti
i ) ,

p̃i∗ = Eans(1r(λ), c,hr ◦ p
ti∗
i∗ ) ≡ dr · (Eans(1r(λ), c,pi∗))ti∗ .

Thus, without affecting the distribution, in CVAD,B1,B2(λ, N, 0) we can replace
line 4 by p ← Eans(1r(λ), c,

∏
i∈{i∗,...,m} p

ti
i ), line 6 by pi∗ ← Eans(1r(λ), c,pi∗),

and the return value by

I

[
dr · p, p1, . . . , pi∗−1, dr · pti∗

i∗ , pi∗+1, . . . , pm �= ⊥ ⇒ dr · p = dr · ∏i∈[m] pti
i

]
.

We note that dr · p = ⊥ ⇔ p = ⊥ and dr · pti∗
i∗ ⇔ pi∗ = ⊥, and that the

factor dr cancels out on both sides in the equality test. The result is identical to
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Hybi∗−1(λ, N), i.e., CVAD,B1,B2(λ, N, 0) ≡ Hybi∗−1(λ, N). Analogously, we also
get CVAD,B1,B2(λ, N, 1) ≡ Hybi∗(λ, N). Therefore, Eq. 16 follows from Lemma 5.

It remains to prove Eq. 17. Note that in Hybm(λ, N), Eans is only ever called
on query 1. If all those calls to Eans return ⊥ or 1, then Hybm(λ, N) will output 1.
Indeed, we do have such a property, captured by the following lemma. Applying
it to all m + 1 calls to Eans(1r(λ), c,1) in Hybm(λ, N) concludes the proof of
homomorphism.

Lemma 12. For any λ ∈ N and polynomials N(λ) ≤ poly(λ) and r(λ) ≤
poly(λ):

Pr
[
Eans(1r(λ), c,1) ∈ {1, ⊥} | c ← ConfD(λ, N)

]
≥ 1 − negl(λ)

Proof. We show that in each of the [λ · (r(λ))3] iterations of Eans(1r(λ), c,1), the
probability of returning anything �= 1 is negligible. The full lemma then follows
by a union bound.

By unrolling randomize and recover, we can rewrite a single iteration of Eans
as on the left-hand side in the following equation.

r, r′ ←$ Zq and α, α′ ←$ Z∗
q

p̃ ← V(c,hr)

p̃′ ← (d−r′ · V(c,hr′+rα′
))1/α′

if p̃ = p̃′, return (d−r · p̃)1/α

≡

r, r′ ←$ Zq and α, α′ ←$ Z∗
q

p̃ ← V(c,hr)

p̃′ ← V(c,hr′
)

if d−r · p̃ = (d−r′ · p̃′)1/α′
, return (d−r · p̃)1/α

By replacing r′ with (r′ − rα′) mod q (which are identically distributed for
r′ ←$ Zq), we obtain the right-hand side. Note that α′ is only used for checking
the final if -condition. For any x, y ∈ G with x �= 1, it is easy to see that (due to
the group size q being prime)

Pr
[
x = y1/α′

∣
∣
∣ α′ ←$ Z∗

q

]
≤ 1

q − 1 ≤ negl(λ) .

Thus, plugging in x = d−r · p̃ and y = d−r′ · p̃′ shows that the probability of
Eans returning a value �= 1 is negligible. ��

4.8 Proof of Lemma 10 (Random Subset Testing)

Note that, since all sk are sampled independently of each other, it suffices to
show the following:

Pr
s←${0,1}N

⎡

⎣
∏

i∈[N ]

e
s[i]
i ∈ {g0, . . . , gN }

⎤

⎦ ≤ 1
2 .
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Fix s[i] ∈ {0, 1} for all i ∈ [N ] \ {i∗}. It suffices to show that

Prs[i∗]←${0,1}

⎡

⎣e
s[i∗]
i∗ ·

∏

i∈[N ]\{i∗}
e
s[i]
i ∈ {g0, . . . , gN }

⎤

⎦ ≤ 1
2 ,

i.e., at most one of
∏

i∈[N ]\{i∗}
e
s[i]
i and ei∗ ·

∏

i∈[N ]\{i∗}
e
s[i]
i

is in {g0, . . . , gN }. Note that if this is the case for the left term, then the right
term will be equal to ei∗ · gm for some m ∈ {0, . . . , N}.

Now assume that, additionally, ei∗ · gm ∈ {g0, . . . , gN }. This implies that
ei∗ = gm′ for some m′ ∈ {−N, . . . , N}, which contradicts this lemma’s assump-
tions. ��
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