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Abstract. We present the first concurrently-secure blind signatures
making black-box use of a pairing-free group for which unforgeability, in
the random oracle model, can be proved without relying on the alge-
braic group model (AGM), thus resolving a long-standing open ques-
tion. Prior pairing-free blind signatures without AGM proofs have only
been proved secure for bounded concurrency, relied on computationally
expensive non-black-box use of NIZKs, or had complexity growing with
the number of signing sessions due to the use of boosting techniques.

Our most efficient constructions rely on the chosen-target CDH
assumption and can be seen as blind versions of signatures by Goh and
Jarecki (EUROCRYPT ’03) and Chevallier-Mames (CRYPTO ’05). We
also give a less efficient scheme with security based on (plain) CDH. The
underlying signing protocols consist of four (in order to achieve regular
unforgeability) or five moves (for strong unforgeability). All schemes are
proved statistically blind in the random oracle model.

1 Introduction

Blind signatures [27] are interactive protocols that allow a user to obtain a
signature on a message in a way that does not reveal anything about the message-
signature pair to the signer. They are a fundamental building block to achieve
anonymity in e-cash [27,28,56], e-voting [39], and credentials [10,24]. They have
also come into use in a number of recent industry applications, such as privacy-
preserving ad-click measurement [2], Apple’s iCloud Private Relay [1], Google
One’s VPN Service [4], and various forms of anonymous tokens [3,44].

Pairing-freeblind signatures. There are at least two reasons that make it
desirable to design blind signatures in pairing-free groups. On the one hand,
widely adopted signatures, such as Schnorr signatures [61], EdDSA [19], and
ECDSA [7] rely on such curves. On the other hand, many of the aforemen-
tioned applications are implemented in environments such as Internet browsers
where pairing-friendly curves are usually not part of the available cryptographic
libraries (such as NSS and BoringSSL).

The full version of this work can be found at [26].
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The question of designing blind signatures in pairing-free groups has turned
out to be extremely challenging. The main difficulty is finding schemes secure in
the sense of one-more unforgeability [46], even when a malicious user can run sev-
eral concurrent signing interactions with the signer. Pointcheval and Stern [60]
were the first to prove security of blind Okamoto-Schnorr signatures [55] under
bounded concurrency, in the random oracle model (ROM) [16], assuming the
hardness of the discrete logarithm (DL) problem. Their approach was later
abstracted in [43]. Blind Schnorr signatures [29] have also only been proved
secure under bounded concurrency [37,47], in this case additionally assuming
the Algebraic Group Model (AGM) [36], along with the stronger one-more dis-
crete logarithm (OMDL) assumption [13]. These results are also in some sense
best possible, as recent ROS attacks [18] yield polynomial-time forgery attacks
against these schemes using log p concurrent signing sessions, where p is the
group order.

One can rely on boosting techniques [25,50,59] to increase the number of con-
current sessions where a scheme such as Okamoto-Schnorr remains secure. The
current state of the art [25] requires a 7-move protocol of which the communi-
cation and computational complexity grow logarithmically and linearly, respec-
tively, in the number of signing sessions, which still has to be fixed a priori.

A concurrently secure scheme, i.e., one supporting arbitrary concurrent
adversarial signing sessions, was given by Abe [5], but its proof (in the ROM,
assuming the hardness of DL) later turned out to be incorrect, and was only
recently re-established in the AGM [47]. Similarly, all other provably secure
solutions [33,37,63] fundamentally rely on the AGM. Therefore, this paper aims
to address the following central question.

Can we give blind signatures in pairing-free groups whose concurrent secu-
rity, in the ROM, can be proved without the AGM?

Non-black-boxbaselines. It is however often overlooked that, in principle, we
can provide an affirmative answer to this question by relying on expensive non-
black-box techniques. For example, we can instantiate Fischlin’s transform [35]
using generic NIZKs with online extractability in the ROM, such as those from
the MPC-in-the-head paradigm [45]. The signer uses a hash-based signature
scheme (which exists under the hardness of the DL problem) [54] to sign a
Pedersen commitment to the message, and the actual signature for a message
is a proof of knowledge of a signature on a commitment to this message. The
recent work by Fuchsbauer and Wolf [38] also relies on generic NIZKs, and
assumes Schnorr signatures to be secure for a given fixed (non random oracle)
hash function. The resulting protocol has four moves, and is non-black-box as
well.

We point out here that concurrent work [48] made progress in instantiat-
ing a variant of Fischlin’s transform without generic NIZKs while relying on
the Strong RSA assumption and the DDH assumption in pairing-free groups.
However, their construction does not fundamentally leverage pairing-free ellip-
tic curves, as it is built on top of an RSA-based signature while using DDH to
instantiate components which have no RSA-based instantiation. Here, we aim for
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a solution purely based on black-box use of groups, without additional external
assumptions.

Ourcontribution. We propose the first blind signatures making black-box use
of a pairing-free group whose concurrent security is proved without relying on
the AGM. We assume the ROM as well as variants of the Computational Diffie-
Hellman (CDH) assumption. In particular, unlike the aforementioned pairing-
free instantiations, we do not rely on implementing group operations as part of
a relation verified by a NIZK proof.

Our results are summarized in Table 1. Our most efficient constructions are
based on the chosen target CDH (CT-CDH) assumption, a falsifiable assump-
tion introduced by Boldyreva [20] to prove security (in the pairing setting) of
Blind BLS [22], which is a one-more version of CDH.1 The signing protocols
take four and five moves, respectively, with the difference being that the lat-
ter protocol achieves strong unforgeability. The starting points of these schemes
are the Goh-Jarecki [40] and the Chevallier-Mames [30,51] signature schemes,
respectively, with a number of modifications based on witness indistinguishable
OR-proofs [31] to be able to prove concurrent security. Our third, more com-
plex, scheme dispenses entirely with interactive assumptions, and solely relies
on (plain) CDH, and the signing protocol requires four moves.

One-moreunforgeability. Our CT-CDH schemes BS1 and BS2 achieve a
weaker than usual notion of one-more (strong) unforgeability (which we refer to
as OM(S)UF-1) where a malicious user cannot come up with more signatures
than the number of sessions it engages in, regardless of whether these terminate
or not. In contrast, our CDH-based scheme BS3 achieves the standard notion [46]
that only counts terminating sessions (we refer to this as OMUF-2).

Some applications inherently require OMUF-2 (e.g., the atomic swap con-
struction from [41]). Nonetheless, we consider both BS1 and BS2 to be valuable,
despite the weaker security they achieve. First of all, they are simpler and serve
as stepping stones towards BS3. Moreover, while this calls for a more careful
analysis, OM(S)UF-1 appears sufficient for many applications. For example, in
constructions of anonymous tokens [3,44], the weaker OMUF-1 notion means
that the server needs to regard a token as issued as long as the first-round mes-
sage to the user is sent. The advantage of OMUF-2 is that it guarantees that if
the signing protocol aborts, the user will not come up with a valid token, but
this does not appear to be important in this context, as the decision to issue a
token has been made prior to starting the protocol.

This weaker form of accounting for sessions is also common in the definition
of unforgeability used to prove security of many prominent threshold signatures,
such as e.g., SPARKLE [32].

Blindness. For all schemes, we prove statistical blindness assuming bounded
queries to a random oracle. We also give a slightly more efficient version of the
first two schemes which is computationally blind under the discrete logarithm
1 We avoid the naming “one-more CDH” to avoid ambiguity, as an alternative inter-

pretation is used e.g. in [8].
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Table 1. Overview of our results and comparison with existing schemes in
the AGM with provable security notions, number of moves, signature size, communi-
cation cost (note: p “ |G|), and assumptions required for each security notion.

Scheme Security* Mvs. Sig. size Comm. Blind
Asmp.

OMUF
Asmp.**

BS1
(Sec. 3)†

comp./stat.
blindness

& OMUF-1
4 1 G + 4 Zp 5 G + 5(or 7) Zp

DL(comp.)/
ROM(stat.) CT-CDH

BS2 (full
version)

comp./stat.
blindness

& OMSUF-1
5 1 G + 4 Zp 5 G + 5(or 7) Zp

DL(comp.)/
ROM(stat.) CT-CDH

BS3
(Sec. 4)‡

stat. blind
& OMUF-2 4

(λ ` 1) G +
(λ ` 7) Zp +

λ2 bits

(3λ ` 6) G +
(2λ ` 9) Zp +
(λ ` 3λ2) bits

ROM CDH

Abe [5,47] comp. blind
& OMSUF-2 3 2 G ` 6 Zp 3 G`6 Zp `λ bits DDH DL + AGM

Clause Blind
Schnorr [37]

perf. blind
& OMSUF-2 3 1 G ` 1 Zp 2 G ` 4 Zp - DL + AGM

+ mROS
Snowblind

[33]
perf. blind

& OMSUF-2 3 1 G ` 2 Zp 2 G ` 4 Zp - DL + AGM

(*): OMUF-X security (for X “ 1, 2) guarantees that no adversary can output � ` 1
message-signature pairs with distinct messages (with distinct pairs for OMSUF-X),
where � denotes the number of started (for X “ 1) or completed (for X “ 2) signing
sessions. (**): All OMUF guarantees assume the ROM. (†): For BS1 and BS2, we give
a computationally blind version and a less efficient statistically blind one. (‡): The
efficiencies of BS3 depend on two parameters set to N “ 2 and K “ λ.

assumption. For the first two schemes, our random oracle proofs only require the
Fiat-Shamir heuristic [34] to be sound for proofs (hence, there is no rewinding).
While we do not prove this formally, we expect blindness of our first two schemes
to also hold against quantum adversaries in the QROM [21], following e.g. [64].

Openproblems:DLOG&roundreduction. An elusive open problem is to
give blind signatures based solely on the hardness of the DL problem (or the
stronger OMDL assumption), without resorting to NIZKs. Indeed, techniques
from recent works in the AGM [33,47,63] are not robust to rewinding in several
subtle ways. One may argue the qualitative improvement is not significant (for
several curves, indeed, DL and CDH are somewhat equivalent [52,53]), but even
in the non-blind setting, signatures with security based on DL tend to be actually
more efficient. For example, it seems unlikely that we can obtain a three-move
scheme without considering DL-based schemes. It should also be noted that we
do not expect two-move schemes to be possible even in the AGM.

Recent work by Barreto and Zanon [12] (expanded in [11]) claims a solution
with concurrent security under the OMDL assumption, which hinges upon a
reduction of concurrent security under impersonation attacks (IMP-CA) to the
(concurrent) one-more unforgeability of the associated blind signature scheme.
The proof appears to have some gaps, and we note that in general IMP-CA secu-
rity does not yield concurrently secure blind signatures. For instance, Schnorr
identification [15] achieves IMP-CA but does not yield secure blind signatures.
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Paperoutline. Section 2 introduces the basic preliminaries. We then discuss
the scheme BS1 achieving OMUF-1 based on the CT-CDH assumption in Sect. 3.
Lastly, we discuss the scheme BS3 achieving OMUF-2 based on the CDH assump-
tion in Sect. 4. Note that the scheme BS2, achieving one-more strong unforge-
ability from the CT-CDH assumption, is presented in the full version.

1.1 Technical Overview

CT-CDH Based Schemes. The starting point of our first and simplest scheme
BS1 is the signature by Goh and Jarecki [40], which can also be thought of
as a “pairing-free” variant of BLS signatures [23]. Given a cyclic group G with
prime order p and generator g, a secret key sk is a random scalar in Zp, and
the corresponding public key is pk Ð gsk. The signature of a message m is
Z Ð H(m)sk, where H is a hash function, along with a non-interactive proof π
of discrete logarithm equality (DLEQ), showing that logg pk “ logH(m) Z.

The generation of such a signature can be seen as an interactive protocol.
The user first sends h Ð H(m) to the signer. The signer then sends Z Ð hsk

back and initiates an interactive version of the standard DLEQ proof [62]. In
particular, along with Z, the signer sends two nonces Rg Ð gr and Rh Ð hr to
the user, where r Ð$ Zp; upon receiving (Rg, Rh), the user picks a challenge c Ð
H′(m,h,Z,Rg, Rh) to send to the signer, and the signer replies with z Ð r`c¨sk.
The user accepts if and only if Rg “ gzpk´c and Rh “ hzZ´c, and the signature
is σ Ð (Z, π “ (c, z)). To verify the signature, with h Ð H(m), we recover
Rg Ð gzpk´c and Rh Ð hzZ´c and check whether c “ H′(m,h,Z,Rg, Rh).

One-moreunforgeability. Our first goal is to prove that the above scheme
achieves the weaker variant of one-more unforgeability (OMUF-1), i.e., the adver-
sary cannot produce signatures for �`1 distinct messages after initiating at most
� signing sessions. To do so, we rely on the hardness of the chosen-target compu-
tational Diffie-Hellman (CT-CDH) problem [20], where, given gx for a uniformly
random x ∈ Zp and �-time access to a DH oracle that takes any group element Y
as input and outputs Y x, the adversary’s goal is to compute Y x

i for at least �`1
randomly sampled challenges {Yi ∈ G}. (Here, we assume an oracle which sup-
plies as many challenges as needed, but the attacker just needs to solve � ` 1 of
these.)

The reduction idea appears simple: Given an adversary A that breaks OMUF-
1, we construct an adversary B playing the CT-CDH game that runs A with
pk Ð gx. Random-oracle queries H(mi) for a message mi are answered with a
challenge Yi. When A starts a signing session with h as the first-round message,
B computes Z Ð hx by querying the DH oracle and simulates the rest of the
signing session by itself. (Note that a DH query here is necessary, because h
can be any group element.) For a valid signature (Zi, πi) of a message mi, by
the soundness property of πi, Zi “ H(mi)x is a solution to the challenge Yi “
H(mi) with overwhelming probability. Therefore, if the adversary A forges valid
signatures for � ` 1 distinct messages, B solves the CT-CDH problem.

The challenge here is that the DLEQ proof is merely honest-verifier zero-
knowledge, and the adversary A sends an arbitrary challenge c to the signer, for
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which B needs to simulate a response. This cannot be done efficiently without
knowing the secret key. To address this, we transform the DLEQ proof into
a witness indistinguishable (WI) OR proof [31] that proves the existence of a
witness sk for the DLEQ proof or knowledge of a witness w “ logg W for a
public parameter W ∈ G. (This parameter would be generated transparently
in actual implementation.) Now the proof can be generated, indistinguishably,
both with knowledge of sk or with knowledge of w. The former is what the actual
protocol does, but the latter is what the reduction B would do. (The reduction
clearly chooses W with a known discrete logarithm w.) The challenge of this
proof will be chosen as before as a hash, and the resulting non-interactive proof
π will be included in the signature σ “ (Z, π).

However, this brings a new issue. Namely, the soundness of the OR proof
π does not guarantee that Z “ hsk, as it is possible, in principle, to use the
witness w to generate a valid signature (Z, π) for m where Z ‰ H(m)sk. Our
key observation here is that any adversary producing such a signature can be
used to compute w, and thus, to break the discrete logarithm assumption. This
argument is rather involved as it requires a careful use of the Forking Lemma [60].
In essence, π gives us two valid proof transcripts (Rg, Rh, d, z) and (A, e, t),
where the former verifies as a valid DLEQ proof for Z “ H(m)sk, and the latter
attests knowledge of w. Further, we have that d`e “ H′(m,h,Z,Rg, Rh, A). If we
fork on this hash query, we can obtain two extra transcripts (Rg, Rh, d′, z′) and
(A, e′, t′) such that d′ `e′ ‰ d`e. Still, we succeed in extracting w only if e ‰ e′,
but this is not necessarily guaranteed if we also have d ‰ d′.

Here, we crucially rely on a property of the DLEQ proof: by fixing (Rg, Rh)
and since Z ‰ H(m)sk, there exists at most one d that can generate an accepting
(Rg, Rh, d, z). Therefore, d “ d′ must hold, and hence e ‰ e′.

Blindness. To make the signing protocol of BS1 blind, the user additionally
samples a random scalar β and computes h Ð H(m)gβ . After receiving Z “ hsk,
the user computes Z ′ Ð Zpk´β . It is easy to verify that Z ′ “ H(m)sk. Then, the
user blinds the OR proof in a way similar to Abe-Okamoto blind signatures [6],
such that after the interaction, the user generates a proof π′, the distribution of
which is independent of the transcript of the proof.

However, a malicious signer can send an incorrect Z (i.e., Z ‰ hsk) in one of
the signing sessions, and later identify the blinded signature (Z ′, π′) by checking
whether Z ′ ‰ H(m)sk. Fortunately, for the attack to work, the signer also needs
to let the user accept the OR proof during the session where Z ‰ hsk. Using a
similar argument as the above, by the soundness of the OR proof, the probability
that this occurs is bounded by the advantage of computing logg W .

If we do not want blindness to rely on the discrete logarithm assumption, we
can alternatively let the signer send a non-interactive proof that Z “ hsk in the
second move. For example, if we use the non-interactive version of the DLEQ
proof, we can show blindness of BS1 in the random oracle model. Crucially, this
proof does not need to be blind.

Strongunforgeability. BS1 is not strongly unforgeable, i.e., we cannot guar-
antee that the adversary cannot produce (�`1) distinct valid message-signature



180 R. Chairattana-Apirom et al.

pairs after � signing sessions. Indeed, suppose all signing sessions start with
the same first-round message h “ H(m) for some m. Then, BS1 shares the
structure of Abe-Okamoto blind signatures [6], and a variant of the recent ROS
attacks [18] yields an adversary that starts �log p� signing sessions and outputs
�log p�`1 distinct signatures for the message m. To transform BS1 into a strongly
unforgeable scheme, referred to as BS2, the idea is to let H also take (Rg, A) as
input, i.e., the group elements from the OR proof which are independent of h. In
particular, we let the signer send (Rg, A) to the user before h is sent, adding an
extra move to the signing protocol. The user then computes h Ð H(m,Rg, A)
and the rest of the protocol remains as in BS1. The resulting signature is the
same as the Chevallier-Mames signature scheme [30,51] except that we replace
the DLEQ proof with the OR proof.

Achieving OMUF-2 from CDH. Our security proof of BS1 fails to show
the usual one-more unforgeability notion, i.e. OMUF-2, which guarantees that
the adversary cannot output more message-signature pairs than the number of
completed signing sessions. Indeed, the reduction queries its DH oracle to obtain
Z “ hsk in order to answer the first-round query for each signing session, and
thus, needs to output more solutions than the number of started sessions.

One possible fix is that instead of sending Z and Rh in the clear, we let the
signer send commitments of Z and Rh, denoted by comZ and comRh

respectively,
in the first round. Later in the second round, the signer opens these commit-
ments accordingly. If the commitment scheme is homomorphic (with respect to
the group operation) and equivocable, then, we can adapt the security reduction
to simulate the signing protocol given w “ logg W as follows: (1) in the first sign-
ing round, generate hcomZ as a random commitment and compute hcomRh

from
hcomZ using the homomorphic property of the commitment scheme (the original
reduction computed Rh from Z), (2) in the second signing round, query the DH
oracle for Z “ hsk and use equivocation to open comZ to Z. The interactive proof
can still be simulated using w as in the proof of BS1. Notice that the number of
DH oracle queries is now the number of completed signing sessions, as we only
query the oracle when completing the last round.

Unfortunately, all existing homomorphic equivocal commitments based on
pairing-free groups [9,57,58] can only equivocate a random commitment to a
group element of which the discrete logarithm to some pre-established base is
known. This is not the case for Z obtained from the DH oracle, as h is adver-
sarially chosen and the reduction does not know sk. To address this, we instead
realize that a better starting point is to rely on a scheme which is secure under
the CDH assumption directly. In particular, to obtain our third scheme BS3, we
go through the following two steps, which we explain below:

1. We apply ideas similar to those used for BS1 above to a recently proposed
pairing-based blind signature scheme, called Rai-Choo [42], which only relies
on the plain CDH assumption. Doing so, we obtain a pairing-free OMUF-1-
secure blind signature scheme based on CDH.
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2. We then realize that the structure of the resulting scheme and its security
proof will allow us to upgrade its security to OMUF-2 using pairing-free
homomorphic equivocal commitments.

Pairing-freeRai-Choo. Abstractly, one can interpret the CT-CDH assump-
tion as stating the unforgeability of an interactive version of BLS signatures
implemented in a pairing-free setting where efficient verification is not possible
(the DH oracle is the signing oracle, and the challenge oracle corresponds to
the random oracle). Similarly, as an intermediate abstraction, we can think of a
game that captures the unforgeability of (non-blind) Rai-Choo in a pairing-free
setting (where, again, efficient verifiability is lost). Its signing protocol proceeds
as follows (where pk “ gsk):

• On an input message m, the user computes, for (i, j) ∈ [K] ˆ [N ], a com-
mitment μi,j Ð Hμ(m,ϕi,j) to m and a random value ϕi,j , a commitment
comi,j Ð Hcom(μi,j), and a group element hi,j Ð H(μi,j). Then, it computes
�J Ð Hcc((comi,j , hi,j)i∈[K],j∈[N ]) ∈ [N ]K , describing cut-and-choose indices
for which the user has to reveal μi,j for all i ∈ [K] and j ‰ �Ji. Finally, the
message sent to the signer is ( �J, ((μi,j)j‰ �Ji

, hi, �Ji
, comi, �Ji

)i∈[K]).
• The signer then recomputes (comi,j , hi,j)i∈[K],j‰ �Ji

and checks that �J “
Hcc((comi,j , hi,j)i,j). If the check passes, it uniformly samples (ski)i∈[K] con-
ditioning on

∑K
i“1 ski “ sk and sends ((pki Ð gski)i∈[K], S̄ Ð ∏K

i“1 hski

i, �Ji
).

• The final signature is σ “ ((pki, ϕi, �Ji
)i∈[K], S̄) and inefficient verification

checks whether pk “ ∏K
i“1 pki and S̄ “ ∏K

i“1 H(Hμ(m,ϕi, �Ji
))logg pki .

Similar to BS1, to translate this signing protocol into a blind signature scheme
with efficient verification, we extend it to have the signer interact with the
user to generate a non-interactive proof π that shows the knowledge of either
the witness logg W or the witness {ski}i∈[K] such that pki “ gski and S̄ “
∏K

i“1 H(Hμ(m,ϕi, �Ji
))ski . The final signature consists of σ and π.

One can show that if there exists an adversary that breaks OMUF-1 for this
scheme, then either (1) the adversary outputs one more valid Rai-Choo signa-
tures than the number of signing sessions, which breaks the OMUF of Rai-Choo
(and in turns this can be reduced to breaking the CDH assumption), or (2) the
adversary outputs an invalid Rai-Choo signature but with a valid OR proof (and
this can be reduced to finding the discrete logarithm of W ).

UpgradingtoOMUF-2. Still, this approach can only show OMUF-1 security
for the scheme. The rather technical reason is due to how the random-oracle pro-
gramming of H(Hμ(m,ϕ)) is carried out in the reduction to CDH behind Step 1.
Essentially, if the user signs honestly, the first-round message sent in the k-th ses-
sion uniquely links this session with a message m(k), which can be extracted from
the prior random-oracle queries. To properly simulate the signer’s response to
the first message in the k-th session, the reduction needs to ensure that, with
sufficiently high probability, the random oracles are set up so that the discrete
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logarithm of H(Hμ(m(k), ϕ
(k)

i, �Ji
)) is known for some i ∈ [K]. For this reason, no

CDH solution can be extracted from a signature on any of the messages asso-
ciated with such a session. Therefore, for the reduction to succeed, a forgery
needs to contain a signature for a message which was not associated with one of
the sessions, regardless of whether these sessions were actually concluded.

To upgrade to OMUF-2 security, we instead use a homomorphic commitment
scheme HECom with special equivocation (formally defined in Sect. 4.1) derived
from the commitment scheme in [9]. More precisely, the scheme can embed a base
X ‰ 1G into the commitment key, which then allows opening a commitment of
a group element S to another element S′ “ SXc for any c thanks to a trapdoor
generated along with the key. Then, instead of sending S̄ in clear, we let the
signer send the commitment hcomS̄ of S̄. Then, in the second round, the signer
sends the opening of the commitment along with the same OR proof response.

While we defer the rather involved details to the body of the paper, the
crucial point is that this will enable a new reduction which only needs to know the
discrete logarithm of the H(Hμ(m(k), ϕ

(k)

i, �Ji
))’s if the k-th session indeed reaches

the final message and terminates.

2 Preliminaries

Notation. For a positive integer n, we write [n] for {1, . . . , n}. We use λ to
denote the security parameter. A group parameter generator is a probabilistic
polynomial time algorithm GGen that takes an input 1λ and outputs a cyclic
group G of λ-bit prime order p and a generator g of the group. We tacitly
assume standard group operations in G can be performed in time polynomial in
λ and adopt multiplicative notation. We will often compute over the finite field
Zp (for a prime p) and do not write modular reduction explicitly when it is clear
from the context. Also, we write a “ logg A ∈ Zp for a group element A ∈ G

where A “ ga.
Throughout this paper, we adopt a variant of the “Game-Playing Framework”

by Bellare and Rogaway [17] for both definitions and proofs.

Cryptographicassumptions. In this paper, we rely on the assumed hardness
of the discrete logarithm (DL), the computational Diffie-Hellman (CDH), and
the chosen-target computational Diffie-Hellman (CT-CDH) [20] problems. To
capture these, for any adversary A, we define the advantage of A playing the
games {DLOG,CDH,CT-CDH} (these games are defined in Fig. 1) as

Adv
dlog/cdh/ct-cdh
GGen (A, λ) :“ Pr[(DLOG/CDH/CT-CDH)AGGen(λ) “ 1] .

We note that the hardness of the CT-CDH problem implies the hardness of the
CDH problem, which in turns implies the hardness of the DL problem.

Blind signatures. This paper focuses on four-move and five-move blind signa-
ture schemes. Formally, a four-move (and five-move respectively) blind signature
scheme BS is a tuple of efficient (randomized) algorithms
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Fig. 1. The DLOG,CDH and CT-CDH games.

BS “ (BS.Setup,BS.KG,BS.S1,BS.S2,BS.U1,BS.U2,BS.U3,BS.Ver);
BS “ (BS.Setup,BS.KG,BS.S1,BS.S2,BS.S3,BS.U1,BS.U2,BS.U3,BS.Ver);

with the following behavior:

• The parameter generation algorithm BS.Setup(1λ) outputs a string of public
parameters par, whereas the key generation algorithm BS.KG(par) outputs a
key-pair (sk, pk), where sk is the secret (or signing) key and pk is the public
(or verification) key.2 All other algorithms of BS implicitly take par as input.

• The interaction between the user and the signer to sign a message m ∈ {0, 1}˚
with a key-pair (pk, sk) is defined by the following experiments (1) for four-
move and (2) for five-move blind signatures:

(stu1 , umsg1) Ð BS.U1(pk,m), (sts, smsg1) Ð BS.S1(sk, umsg1),
(stu2 , umsg2) Ð BS.U2(stu1 , smsg1), smsg2 Ð BS.S2(sts, umsg2),
σ Ð BS.U3(stu2 , smsg2) .

⎫
⎬

⎭
(1)

(sts1, smsg1) Ð BS.S1(sk), (stu1 , umsg1) Ð BS.U1(pk,m, smsg1),
(sts2, smsg2) Ð BS.S2(sts1, umsg1), (stu2 , umsg2) Ð BS.U2(stu1 , smsg2),
smsg3 Ð BS.S3(sts2, umsg2), σ Ð BS.U3(stu2 , smsg3) .

⎫
⎬

⎭
(2)

Here, σ is either the resulting signature or an error message K.
• The (deterministic) verification algorithm outputs a bit BS.Ver(pk,m, σ).

We say that BS is (perfectly) correct if for every message m ∈ {0, 1}˚, with prob-
ability one over the sampling of parameters and the key pair (pk, sk), the corre-
sponding experiment (either (1) or (2)) returns σ such that BS.Ver(pk,m, σ) “ 1.
All of our schemes are perfectly correct.

2 We note that all of our schemes also admits an alternative definition without the
setup algorithm (see some recent works with this definition [48,49]), by hashing a
constant to generate the public parameters.
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Fig. 2. The OMUF-X and OMSUF-X security games for a 4-move or 5-move blind
signature scheme BS, where r “ 2 if BS is 4-move and r “ 3 if BS is 5-move. The
input umsg of S1 is set as an empty string if BS is 5-move. The highlighted boxes along
with the commented X value indicating how � is counted in OMUF-X and OMSUF-X.
The OMUF-X game contains everything but the solid boxes, and the OMSUF-X game
contains everything but the dashed boxes.

Note that since this work exclusively consider four-move and five-move blind
signatures, we only give the syntax and security definitions for these objects for
the sake of simplicity. However, the definition for k-move blind signatures can
easily be obtained by generalizing the given definitions.

One-moreunforgeability. We consider variants of one-more (strong)
unforgeability, denoted OMUF-X and OMSUF-X for X ∈ {1, 2}. OMUF-1 ensures
that no adversary playing the role of a user and starting � signing interac-
tions with the signer, in an arbitrarily concurrent fashion, can issue � ` 1 signa-
tures (or more) for distinct messages. For OMSUF-1, we instead only require the
adversary to output �`1 distinct message-signature pairs. For the OMUF-2 and
OMSUF-2 notions, � is defined as the number of completed signing interactions
instead, which is the more standard notion of one-more unforgeability used in
the literature. The OMUF-XA

BS and OMSUF-XA
BS games for a blind signature

scheme BS are defined in Fig. 2. The corresponding advantage of A is defined as
Adv

omuf-X/omsuf-X
BS (A, λ) :“ Pr[(OMUF-X/OMSUF-X)ABS(λ) “ 1].

Blindness. We also consider the standard notion of blindness against a mali-
cious server that can, in particular, attempt to publish a malformed public key.
The corresponding game BLINDA

BS is defined in Fig. 3, and for any adversary A,
we define its advantage as AdvblindBS (A, λ) :“ ∣

∣Pr[BLINDA
BS(λ) “ 1] ´ 1

2

∣
∣ .

Randomoracles. We note that most of our analyses further assume one or
more random oracles, and we will clearly indicate so in the theorem statements.
The random oracles are modeled as additional oracles to which the adversary
A is given access.

Forking lemma. In our proof, we utilize the general forking lemma in the ver-
sion introduced by Bellare and Neven [14] stated below:
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Fig. 3. The BLIND security game for a 4-move or 5-move blind signature scheme BS.
The only difference between the game defined for 4-move schemes and the game defined
for 5-move schemes is that if BS is a 4-move scheme, the input smsg of U1 is set as an
empty string.

Lemma 1 (General Forking Lemma [14]). Fix an integer q ě 1 and a set
H of size h ě 2. Let A be a randomized algorithm that on input x, h1, . . . , hq

returns a pair (I, aux), the first element of which is an integer in the range
1, . . . , q or K and the second element of which we refer to as a side output. Let
IG be a randomized algorithm that we call the input generator. The accepting
probability of A, denoted acc, is defined as the probability that I ‰ K in the
following experiment

x Ð$ IG; h1, . . . , hq Ð$ H; (I, aux) Ð$ A(x, h1, . . . , hq)

The forking algorithm FA(x) associated with A is a randomized algorithm on
input x defined as follows:

• Pick a random tape ρ for A and sample h1, . . . , hq Ð$ H.
• Run (I, aux) Ð A(x, h1, . . . , hq; ρ).
• If I “ K, return 0.
• Sample h′

I , . . . , h
′
q Ð$ H, run (I ′, aux′) Ð A(x, h1, . . . , hI´1, h

′
I , . . . , h

′
q; ρ).

• If I “ I ′ and hI ‰ h′
I , return 1. Otherwise, return 0.

Let frk “ Pr[b “ 1 : x Ð$ IG; b Ð$ FA(x)]. Then,

frk ě acc

(
acc

q
´ 1

h

)

, or alternatively, acc ď √
q ¨ frk ` q

h
.

3 Four-Move Blind Signatures from CT-CDH

We present a four-move blind signature scheme BS1, described in Fig. 4. The
scheme can be viewed as a blind version of the signature scheme by Goh and
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Fig. 4. The blind signature scheme BS1 “ BS1[GGen]. The public parameters par, as
stated before, are implicit input to every algorithms except BS1.KG. The highlighted
boxes denote the NIZK proof used to show the equality of discrete logarithm of (pk, Z)
to the base (g, h). We also give a protocol diagram of BS1 in the full version.

Jarecki [40], where a signature consists of an element Z “ H(m)sk with a discrete-
log equality (DLEQ) proof proving that the discrete logarithms of (pk, Z) are
equal with respect to the base (g,H(m)). However, we replace this proof with
a witness-indistinguishable OR proof, which additionally accepts the discrete
logarithm of a public random parameter W as a witness. Needless to say, this
parameter is meant to be generated transparently, e.g., by hashing a constant,
and nobody is meant to know this second witness. It is easy to see that the
scheme satisfies correctness.

In the full version, we present a related five-move blind signature scheme BS2
achieving one-more strong unforgeability (OMSUF-1) security from CT-CDH.

Blindness. The following theorem, proved in the full version, shows that BS1 is
statistically blind when H′′ is modeled as a random oracle. This property relies
on the NIZK proof highlighted in Fig. 4 to show equality of discrete logarithms
of (pk, Z) to the base (g, h). In the full version, we also show that if we omit
this NIZK proof, we still achieve computational blindness under the discrete
logarithm assumption, without random oracles.
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Theorem 1 (Blindness of BS1). Assume that GGen outputs the description of
a group of prime order p “ p(λ), and let BS1 “ BS1[GGen]. For any adversary
A for the game BLIND making at most QH′′ “ QH′′(λ) queries to H′′, modeled
as a random oracle, we have

AdvblindBS1
(A, λ) ď 2QH′′ ` 2

p
.

One-moreunforgeability. The following theorem establishes the OMUF-1
security of BS1 in the random oracle model under the CT-CDH assumption. We
refer to Sect. 1.1 for a proof sketch, whereas the full proof is in Sect. 3.1.

Theorem 2 (OMUF-1 of BS1). Assume that GGen outputs the description of
a group of prime order p “ p(λ), and let BS1 “ BS1[GGen]. For any adversary A
for the game OMUF-1 with running time tA “ tA(λ), making at most � “ �(λ)
queries to S1 and QH�

“ QH�
(λ) queries to H� ∈ {H,H′,H′′}, modeled as random

oracles, there exist adversaries B and B′ for the games DLOG and CT-CDH,
respectively, such that

Advomuf-1
BS1

(A, λ) ď �(� ` QH′′)
p

` (� ` 1)

(√

Q̂H′AdvdlogGGen(B, λ) ` Q̂H′

p

)

` Advct-cdhGGen (B′, λ) ,

where Q̂H′ “ QH′ ` � ` 1. Furthermore, B runs in time tB « 2tA, and B′ runs
in time tB′ « tA, makes QH ` � ` 1 challenge queries to Chal and � queries to
Dh.

3.1 Proof of Theorem 2 (OMUF-1 of BS1)

To prove one-more unforgeability of BS1, we consider the following sequence of
games.
Game GA

0 : The game first generates the public parameters and the secret
and public keys as par Ð$ BS1.Setup(1λ) and (sk, pk) Ð$ BS1.KG(par). Then, the
game interacts with an adversary A(par, pk) with access to the signing oracles
S1,S2 and the random oracles H,H′,H′′ which are simulated by lazy sampling.
The adversary A queries the signing oracle S1 for � times and the random oracles
H,H′ and H′′ for QH, QH′ and QH′′ times respectively. At the end of the game, A
outputs �`1 message-signature pairs (mk̊, σk̊)k∈[�`1]. The adversary A succeeds
if for all k1 ‰ k2,mk̊1

‰ mk̊2
and for all k ∈ [� ` 1], BS1.Ver(pk,mk̊, σk̊) “ 1.

We w.l.o.g. assume that A does not make the same random oracle query twice.
Also, we assume that A makes the random oracle queries that would be made
in BS1.Ver when verifying the forgeries. This adds at most � ` 1 queries to H
and H′, making the total query count Q̂H “ QH ` � ` 1 and Q̂H′ “ QH′ ` � ` 1,
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respectively. The success probability of A in game GA
0 is exactly its advantage

in the game OMUF-1, i.e.,

Advomuf-1
BS1

(A, λ) “ Pr[GA
0 “ 1] .

Game GA
1 : This game is identical to GA

0 except that for the message-signature
pairs (mk̊, σk̊)k∈[�`1] output by the adversary A, for k ∈ [� ` 1], after parsing
(Zk̊, dk̊, ek̊, z0̊,k, z1̊,k) Ð σk̊, the game additionally requires that Zk̊ “ H(mk̊)

sk.
Then, by Lemma 2, there exists an adversary B for the game DLOG, running

in time tB « 2tA, such that

Pr[GA
1 “ 1] ě Pr[GA

0 “ 1] ´ (� ` 1)

(√

Q̂H′AdvdlogGGen(B, λ) ` Q̂H′

p

)

.

Game GA
2 : This game is identical to GA

1 except that when generating the group
element W in par, the game generates w Ð$ Zp and sets W Ð gw. Since W still
has the same distribution, the success probability of A is exactly as in GA

1 .

Pr[GA
2 “ 1] “ Pr[GA

1 “ 1] .

Game GA
3 : This game is identical to GA

2 except that the signing oracle S1 gen-
erates π by sampling s′, δ Ð$ Zp and programming H′′(h, pk, Z, gs′

pk´δ, hs′
Z´δ)

as δ. The game aborts if H′′ is already defined at (h, pk, Z, gs′
pk´δ, hs′

Z´δ).
The view of A is identical to its view in GA

2 if the game does not abort.
Moreover, the game only aborts if (h, pk, Z, gs′

pk´δ, hs′
Z´δ) has been queried or

programmed beforehand, but gs′
pk´δ is uniformly random and independent of

the view of A and previous programming attempts of H′′ as s′ is uniformly ran-
dom and independent at the time that the oracle tries to program H′′. Thus, by
applying the union bound over possible collision events, i.e., all pairs of queries
to oracle S1 and queries to both H′′ and S1 (accounting for attempts to pro-
gram H′′),

Pr[GA
3 “ 1] ě Pr[GA

2 “ 1] ´ �(� ` QH′′)
p

.

Game GA
4 : This game is identical to GA

3 except that the signing oracles are
simulated by using w instead of sk. More specifically, (A,Rg, Rh, d, e, z0, z1) are
now generated as follows:

1. Sample r1, d, z0 Ð$ Zp and set A Ð gr1 , (Rg, Rh) Ð (gz0pk´d, hz0Z´d).
2. After receiving c, set e Ð c ´ d and z1 Ð r1 ` e ¨ w.

Since the joint distributions of (A,Rg, Rh, d, e, z0, z1) in the games GA
3 and GA

4

are identical, the view of A remains the same. Thus,

Pr[GA
4 “ 1] “ Pr[GA

3 “ 1] .

Lastly, we give a reduction B′ playing the CT-CDH game using the adversary
A as a subroutine. The reduction B′ is defined as follows:
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1. The reduction B′ takes as input a CT-CDH instance (G, p, g,X), samples
w Ð$ Zp, and sets W Ð gw. It then sends par Ð (G, p, g,W ), pk Ð X to A.

2. The simulations of H′ and H′′ are done as in GA
4 . However, for queries to H

(labeling each with j ∈ [Q̂H]), the reduction B′ queries the challenge oracle
Chal and receives a random group element Yj which it returns as the random
oracle output. (This means that B′ makes Q̂H “ QH ` �`1 queries to Chal.)

3. The signing oracles are also simulated as in GA
4 except for the computation

of Z “ hsk in S1 which is done by querying its Dh oracle instead, i.e., Z Ð
Dh(h).

4. After receiving the message-signature pairs (mk̊, σk̊)k∈[�`1] from A, B′ checks
if all the messages are distinct and all the pairs are valid. If not, it aborts.
Next, B′ identifies jk for each k ∈ [� ` 1] where jk is the index of the hash
query H(mk̊) made by A. Since mk̊ are distinct, there are exactly �`1 distinct
jk. Lastly, B′ returns (jk, Zk̊)k∈[�`1] where Zk̊ is the corresponding value in
σk̊.

It is clear that the running time of B′ is about that of A. For the success
probability of the reduction, we can see that B′ simulates the oracles identi-
cally to the game GA

4 . Then, if A succeeds in the game GA
4 , then A returns

Zk̊ “ H(mk̊)
sk “ Y

logg X

jk
for all k ∈ [� ` 1] where sk “ logg pk “ logg X. Thus,

B′ succeeds in the game CT-CDH, as it returns � ` 1 correct CT-CDH solutions
while only querying Dh for � times. Therefore, Pr[GA

4 “ 1] ď Advct-cdhGGen (B′, λ).
Then, by combining all the advantage changes,

Advomuf-1
BS1

(A, λ) ď �(� ` QH′′)
p

` (� ` 1)

(√

Q̂H′AdvdlogGGen(B, λ) ` Q̂H′

p

)

` Advct-cdhGGen (B′, λ) .

��
Lemma 2. There exists an adversary B for the game DLOG, running in time
tB « 2tA, such that

Pr[GA
1 “ 1] ě Pr[GA

0 “ 1] ´ (� ` 1)

(√

Q̂H′AdvdlogGGen(B, λ) ` Q̂H′

p

)

.

Proof. Let Bad be the event where GA
0 outputs 1 but GA

1 outputs 0. This
corresponds to the following event: A outputs � ` 1 message-signature pairs
(mk̊, σk̊)k∈[�`1] such that (1) for all k1 ‰ k2,mk̊1

‰ mk̊2
, (2) for all k ∈ [� ` 1],

BS1.Ver(pk,mk̊, σk̊) “ 1, and (3) there exists some k ∈ [� ` 1] where parsing the
signature (Zk̊, dk̊, ek̊, z0̊,k, z1̊,k) Ð σk̊, we have that Zk̊ ‰ H(mk̊)

sk. Then, we can
write Pr[GA

1 “ 1] ě Pr[GA
0 “ 1] ´ Pr[Bad].

Also, define the event Badk for k ∈ [� ` 1] which is event Bad with the con-
dition (3) specified only for the k-th pair (mk̊, σk̊). This gives Bad “ ⋃�`1

k“1 Badk.
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Now, define a wrapper Ak over the adversary A where Ak receives the fol-
lowing inputs: an instance (G, p, g,W ), the output tape (c1, . . . , c ̂QH′ ) of H′, and
a random tape ρ.

1. Extract (sk ∈ Zp, (si ∈ Zp, r0,i ∈ Zp, ei ∈ Zp, z1,i ∈ Zp)i∈[�], (hi ∈ G)i∈[ ̂QH]
,

(δi ∈ Zp)i∈[QH′′ `�], ρ
′) from the random tape ρ.

2. Set par Ð (G, p, g,W ), pk Ð gsk.
3. Run (mk̊, σk̊)k∈[�`1] Ð AS1,S2,H,H′,H′′

(par, pk; ρ′) where each oracle is simu-
lated as follows:

• For the signing query with session ID j (j ∈ [�]) to S1 and S2, use
(sk, si, r0,i, ei, z1,i) to answer the query as in BS1.S1 and BS1.S2 respec-
tively.

• For the i-th query (i ∈ [Q̂H]) to H, return hi.
• For the i-th query (i ∈ [Q̂H′ ]) to H′, return ci.
• For the i-th query (i ∈ [QH′′ `�]) to H′′, return δi. (Note: In these queries,

we accounted for the queries that the wrapper made to generate π in each
query to S1.)

4. If Badk does not occur, return (K, K). Otherwise, return (I, (mk̊, σk̊)) where
I is the index of the query to H′ that corresponds to the verification of
(mk̊, σk̊). More specifically, after parsing (Zk̊, dk̊, ek̊, z0̊,k, z1̊,k) Ð σk̊, I is the
index corresponding to the query (m,h,Z,Rg, Rh, A) to H′ where m “ mk̊,
h “ H(m), Z “ Zk̊, Rg “ gz˚

0,kpk´d˚
k , Rh “ hz˚

0,kZ´d˚
k , A “ gz˚

1,kW ´e˚
k . Note

that I is well-defined as we assume that all random oracle queries in forgery
verification are made by A beforehand. Also, it is easy to see that the running
time of Ak is roughly the running time of A.

Next, we consider the following reduction B playing the discrete logarithm game
defined as follows:

1. On the input (G, p, g,W ), B samples c1, . . . , c ̂QH′ Ð$ Zp along with the ran-
dom tape ρ of Ak.

2. Run (I, (m,σ)) Ð$ Ak((G, p, g,W ), (c1, . . . , c ̂QH′ ); ρ).
3. If I “ K, abort. If not, sample c′

I , . . . , c
′
̂QH′

Ð$ Zp and
run (I ′, (m′, σ′)) Ð$ Ak((G, p, g,W ), (c1, . . . , cI´1, c

′
I , . . . , c

′
̂QH′

); ρ).
4. If I “ I ′ and c′

I ‰ cI , parse (Z, d, e, z0, z1) Ð σ, (Z ′, d′, e′, z′
0, z

′
1) Ð σ′, and

return (z1 ´ z′
1)(e ´ e′)´1. Otherwise, abort.

Since B runs Ak twice and the running time of Ak is about that of A, tB « 2tA.
Next, we show that if B does not abort (i.e., I “ I ′ ‰ K and cI ‰ c′

I), then
it returns a discrete logarithm of W . Since I “ I ′ ‰ K, the message-signature
pairs (m,σ) and (m′, σ′): (a) are valid signatures corresponding to the I-th query
from A to H′ of the form (m,h,Z,Rg, Rh, A) and (b) satisfy Z ‰ H(m)sk and
Z ′ ‰ H(m′)sk. By (a), we know the following
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(i) m “ m′, h “ H(m) “ H(m′), Z “ Z ′.
(ii) cI “ d ` e, c′

I “ d′ ` e′.
(iii) Rg “ gz0pk´d “ gz′

0pk´d′
, Rh “ hz0Z´d “ hz′

0Z´d′
.

(iv) A “ gz1W ´e “ gz′
1W ´e′

.

We will argue that d “ d′. First, the equations in (iii) give Zd´d′ “ hz0´z′
0 “

g(z0´z′
0) logg h “ pk(d´d′) logg h “ hsk(d´d′). Since Z ‰ hsk, only d “ d′ satisfies the

equation. Since d`e “ cI ‰ c′
I “ d′ `e′, we have e ‰ e′. Thus, by (iv), B returns

(z1 ´ z′
1)(e ´ e′)´1 “ logg W . Hence,

AdvdlogGGen(B, λ) “ Pr[B does not abort] “ Pr[I “ I ′ ^ I ‰ K ^ cI ‰ c′
I ] .

Lastly, by the fact that B rewinds Ak which only outputs I ‰ K when Badk

occurs, we can apply the forking lemma (Lemma 1),

Pr[Badk] ď
√

Q̂H′AdvdlogGGen(B, λ) ` Q̂H′

p
.

The lemma statement follows from the union bound over Badk for k ∈ [� ` 1]. ��

4 Achieving OMUF-2 Security from CDH

In this section, we present a four-move blind signature scheme BS3, described in
Sect. 4.2, achieving the OMUF-2 security based on the CDH assumption. A key
ingredient used in this construction is the homomorphic equivocal commitment
HECom given in Sect. 4.1.

4.1 Homomorphic Equivocal Commitment Scheme

In this section, we present the commitment scheme HECom which is a tuple of
algorithms (Gen,TGen,Com, TCom,TOpen), described in Fig. 5. The algorithm
Gen generates a uniform commitment key ck Ð$ G

2ˆ2, which can be done trans-
parently. For the rest of the scheme, one can view our commitment as a variant
of the commitment scheme of [9]. Both commitments commit to a group ele-
ment, and are additively homomorphic and computationally binding based on
the DLOG assumption. For equivocation, we can generate the commitment key
with a base X ∈ G embedded, allowing us to open a commitment of S′ to
S “ S′Xc for any c ∈ Zp. On the other hand, their equivocation allows opening
a commitment to gaXc for a uniformly random a ∈ Zp and any c ∈ Zp. The
following theorem, proved in the full version, summarizes the properties of our
commitment scheme.

Theorem 3. Assume that GGen outputs the description of a group G of prime
order p “ p(λ). The commitment HECom “ HECom[GGen] satisfies the following
properties:
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Fig. 5. Description of the special commitment scheme HECom “ HECom[GGen] and
its binding game. For the algorithms Com,TCom, and TOpen, par “ (G, p, g) is taken
as an implicit input.

• Additive Homomorphism. For hcom0, hcom1 ∈ G
2, denote hcom0 ¨ hcom1

as element-wise application of group operation. For all (G, p, g) Ð$ GGen(1λ),
ck ∈ G

2ˆ2, S0, S1 ∈ G, and crnd0, crnd1 ∈ Z
2
p,

Com(ck, S0; crnd0) ¨ Com(ck, S1; crnd1) “ Com(ck, S0S1; crnd0 ` crnd1) .

• Special Equivocation. For all par Ð$ GGen(1λ),X ‰ 1G and (ck, td) Ð$

TGen(par,X) such that D contained in td “ (D,X) is invertible, and for any
group element S “ XcS′, the following distributions D0 and D1 are identical:

D0 :“
{

(hcom, S, crnd) :
(hcom, st) Ð$ TCom(td, S′);
(S, crnd) Ð$ TOpen(st, c)

}

,

D1 :“ {
(hcom, S, crnd) : crnd Ð$ Z

2
p ; hcom Ð Com(ck, S; crnd)

}
.

• Uniform Keys. For all par Ð$ GGen(1λ) and X ‰ 1G, ck generated by
(ck, td) Ð$ TGen(par,X) is uniformly distributed in G

2ˆ2 (i.e., distributed
identically to ck Ð$ Gen(par)).

• Computationally Binding. For any adversary A for the game Binding
(described in Fig. 5) with running time tA “ tA(λ), there exists an adversary
B for the game DLOG with running time tB « tA such that the advantage of
A in the game is bounded by

AdvbindingHECom (A, λ) “ Pr[BindingA
HECom(λ) “ 1] ď AdvdlogGGen(B, λ) ` 1

p
.

4.2 Four-Move Blind Signatures from CDH

The scheme BS3 is described across Figs. 6 and 7. Our starting point is Rai-
Choo [42], a two-move blind signature scheme which is OMUF secure based
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on the CDH assumption in a pairing group. To better abstract our ideas, we
consider a pairing-free analogue of Rai-Choo producing signatures of the form
((pki, ϕi)i∈[K], S̄) with inefficient verification checking

pk “
K∏

i“1

pki and S̄ “
K∏

i“1

H(Hμ(m,ϕi))logg pki .

To make the scheme efficiently verifiable, we apply a witness-indistinguishable
OR proof showing that the signature is valid, i.e., ((pki)i∈[K], S̄) satisfies the
verification equation with regard to (H(Hμ(m,ϕi)))i∈[K], or that we know the
discrete logarithm of a public parameter W . Finally, using the homomorphic
equivocal commitment HECom from Sect. 4.1, the signer commits to the group
element S̄ from the Rai-Choo protocol and the nonce R̄ in the OR proof as
hcomS̄ and hcomR̄ respectively. These commitments are sent in the second move
instead of S̄ and R̄ and opened later in the last move. The final signature consists
of a Rai-Choo signature ((pki, ϕi)i∈[K], S̄), the OR proof response (d, e, �z0, z1),
and the commitment randomness used to compute hcomS̄ and hcomR̄. It is easy
to show that this scheme satisfies correctness.

As mentioned in the prior section, the commitment key of HECom can be
generated transparently; thus, so are the public parameters of BS3. We also
remark that the complexity of the scheme depends on two parameters N and
K of which N´K needs to be negligible for the OMUF proof. To achieve the
signature size and communication in Table 1, we set N “ 2 and K “ λ.

Blindness. The blindness of BS3 can be guaranteed by the following steps:

• We apply the blinding procedure from Rai-Choo (as described in U1,U2 and
ReRa) to make the distribution of ((pk′

i)i∈[K], S̄
′) in the signature independent

of the transcript.
• We then blind the OR proof (as described in U2 and U3) to make the distri-

bution of (d′, e′, �z′
0, z

′
1) in the signature independent of the transcript.

• To blind S̄ and R̄ according to the above points, we use the homomorphic
property of HECom and blind hcomS̄ and hcomR̄ instead. We also rerandomize
the commitments as the commitment randomness is included in the final
signature.

• Finally, we need to ensure that the signer cannot send ((pki)i∈[K], S̄) such
that S̄ ‰ ∏K

i“1 h
logg pki

i, �Ji
where hi, �Ji

for i ∈ [K] are group elements contained
in the user’s first message. Otherwise, a malicious signer can link the signa-
tures back to the signing sessions by checking whether one of the signatures
contains the values ((pk′

i, ϕi)i∈[K], S̄
′) with S̄′ ‰ ∏K

i“1 H(Hμ(m,ϕi))logg pk′
i .

To avoid this, we include a proof π in the signer’s second response attesting
that ((pki)i∈[K], S̄) is honestly generated. For this, we use the non-interactive
proof system Π “ (Π.ProveHΠ , Π.VerHΠ ), described in Fig. 7, with access
to the hash function HΠ : {0, 1}˚ → Zp modeled as a random oracle in
the security proofs. We require that Π satisfies completeness, soundness, and
zero-knowledge in the random oracle model. The formal definitions and proofs
are given in the full version.
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Fig. 6. The setup and key generation algorithms along with the signing protocol of
the blind signature scheme BS3 “ BS3[GGen]. The verification algorithm BS3.Ver, the
algorithms Check, ReRa and the proof system Π “ (Π.ProveHΠ , Π.VerHΠ ) are given
separately in Fig. 7. For the ease of understanding, we omitted the states of both the
user and signer algorithms and assume that any values initialized in the prior rounds
are accessible to the later rounds. The public parameters par, as stated before, are
implicit input to every algorithms except BS3.KG. The notation Com(¨ ; ¨) denotes
HECom.Com(ck, ¨ ; ¨) for the commitment scheme HECom from Sect. 4.1. Similarly,
we write (ProveHΠ ,VerHΠ ) instead of (Π.ProveHΠ , Π.VerHΠ ). We also give a protocol
diagram of BS3 in the full version.
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Fig. 7. The verification algorithm BS3.Ver and the algorithms Check and ReRa used
in the signing protocol of BS3 and the proof system Π. The public parameters par are
implicit input to BS3.Ver.

Similar to BS1 and BS2, one could also not include Π in the protocol, and show
computational blindness based on the DL assumption. Still, this proof would
depend on the random oracle model since the original blindness proof of Rai-
Choo also required random oracles. Thus, we only consider the variant with Π
included, and prove the following theorem in the full version.

Theorem 4. (Blindness of BS3). Assume that GGen outputs the description of
a group of prime order p “ p(λ), and let BS3 “ BS3[GGen] and K “ K(λ), N “
N(λ) be positive integer inputs to BS3.Setup. For any adversary A for the game
BLIND making at most QH�

“ QH�
(λ) queries to H� ∈ {Hμ,Hβ ,Hcom,HΠ},

modeled as random oracles, we have

AdvblindBS3
(A, λ) ď 2QHΠ

` 2
p

` 2KNQHμ

2λ
` 2KQHβ

2λ
` 2KQHcom

2λ
.

One-moreunforgeability. The following theorem, proved in Sect. 4.3, estab-
lishes the OMUF-2 security of BS3 in the random oracle model under the CDH
assumption.

Theorem 5. (OMUF-2 of BS3). Assume that GGen outputs the description of
a group of prime order p “ p(λ), and let BS3 “ BS3[GGen] and K “ K(λ), N “
N(λ) be positive integer inputs to BS3.Setup. For any adversary A for the game
OMUF-2 with running time tA “ tA(λ), making at most QS1 “ QS1(λ) and
� “ �(λ) queries to S1 and S2, respectively, and QH�

“ QH�
(λ) queries to H� ∈
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{H,H′,Hμ,Hcom,Hcc,HΠ}, modeled as random oracles, there exist adversaries B
for the game Binding of HECom, B′ for the game DLOG, and B′′ for the game
CDH, such that

Advomuf-2
BS3

(A, λ) ď(� ` 1)

(√

Q̂H′
(
AdvbindingHECom (B, λ) ` AdvdlogGGen(B′, λ)

)
` Q̂H′

p

)

` QS1

NK
` Q2

Hcom
` Q̂2

Hμ
` QHcomQHcc

` Q̂HQ̂Hμ

2λ

` �(� ` QHΠ
` 12)

p
` 4� ¨ AdvcdhGGen(B′′, λ) .

where Q̂H “ QH ` (� ` 1)K, Q̂H′ “ QH′ ` � ` 1, and Q̂Hμ
“ QHμ

` (� ` 1)K.
Furthermore, B, B′ and B′′ run in time tB, tB′ « 2tA, and tB′′ « tA respectively.

The proof below consists of the game sequence G0 ´ G13 which is split into
the following parts, with G0 corresponding to the OMUF-2 game:

• Game G1 forbids the adversary from returning a message-signature pair that
contains ((pki, ϕi)i∈[K], S̄) with S̄ ‰ ∏K

i“1 H(Hμ(m,ϕi))logg pki . If such event
occurs, we rewind A to either break the binding of HECom or extract the
discrete logarithm of W in the public parameters.

• Games G2´G4 change the simulation of the interactive proof in the protocol
to now use w “ logg W instead of {ski}i∈[K].

• Games G5 ´G10 follow the security proof of Rai-Choo [42] and program the
random oracles such that, in any signing session where the signer’s second
response is requested, logg hi˚, �Ji˚ for some i˚ ∈ [K] is known, and that there
is still a message-signature pair output by the adversary from which one can
extract a CDH solution. Essentially, the proof does the following:
1. First, the proof argues that for each of the user’s first message, there

exists some i˚ ∈ [K] where hi˚, �Ji˚ is computed honestly, i.e. hi˚, �Ji˚ “
H(Hμ(m,ϕ)) for some (m,ϕ) (extractable from the random oracle tran-
script). This then binds each signing session with some message.

2. Then, it programs the random oracles such that, still with non-negligible
probability, the discrete logarithm of H(Hμ(m,ϕ)) is known for the ses-
sions where the adversary requested the signer’s second response. Since
there is at most � such sessions, it is still possible to program the oracles
to extract CDH solution from one of the � ` 1 forgeries. Note that for the
sessions where only the user’s first message is received, it does not matter
whether such discrete logarithm is known.

• Games G11 ´ G13 generate the commitment key ck with the base X “ pk
embedded and simulate the rest of each signing session (i.e., (pki)i∈[K], hcomS̄ ,
and S̄) without the secret key. More specifically, one can sample ski Ð$ Zp

for i ‰ i˚, set pki Ð gski and compute pki˚ such that pk “ ∏K
i“1 pki. Then,

observe that S̄ as computed in the protocol can be written as

S̄ “
K∏

i“1

hski

i, �Ji
“ h

sk´∑

i‰i˚ ski

i˚, �Ji˚

∏

i‰i˚
hski

i, �Ji
“ pk

logg hi˚, �Ji˚
∏

i‰i˚
hski

i, �Ji
h´ski

i˚, �Ji˚
.
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Since we know logg hi˚, �Ji˚ only for sessions where the signer’s second response
is requested, we cannot compute S̄ without sk for every first signer’s response.
However, using the special equivocation property, we can send hcomS̄ as a
commitment to S′ “ ∏

i‰i˚ hski

i, �Ji
h´ski

i˚, �Ji˚
and open it later to S̄ “ pk

logg hi˚, �Ji˚ S′.
• Finally, we construct a reduction to CDH using an adversary playing the

game G13.

4.3 Proof of Theorem 5 (OMUF-2 of BS3)

Let A be an adversary playing the OMUF-2 game of BS3. We consider the
following sequence of games.
GameGA

0 : The game first generates the public parameters par Ð$ BS3.Setup(1λ,
N,K) and the secret and public keys (sk, pk) Ð$ BS3.KG(par). Then, the game
interacts with an adversary A(par, pk) with access to the signing oracles S1,S2

and the hash functions H,H′,Hμ,Hcom,Hcc,HΠ , modeled as random oracles and
simulated via lazy sampling. The adversary A queries the signing oracles S1

and S2 for QS1 and � times respectively, and the random oracles H� for QH�

times for H� ∈ {H,H′,Hμ,Hcom,Hcc,HΠ}. At the end of the game, A outputs
� ` 1 message-signature pairs (mk̊, σk̊)k∈[�`1]. The adversary A succeeds if for
all k1 ‰ k2,mk̊1

‰ mk̊2
and for all k ∈ [� ` 1],BS3.Ver(pk,mk̊, σk̊) “ 1. We

w.l.o.g. assume that A does not make the same random oracle query twice.
Also, we assume that A makes the random oracle queries that would be made
in BS3.Ver when verifying the forgeries. Thus, the total query counts become
Q̂H “ QH ` (� ` 1)K, Q̂H′ “ QH′ ` � ` 1, and Q̂Hμ

“ QHμ
` (� ` 1)K for H,H′,

and Hμ, respectively. The success probability of A in the game GA
0 is exactly its

advantage in OMUF-2 i.e.

Advomuf-2
BS3

(A, λ) “ Pr[GA
0 “ 1] .

Game GA
1 : In this game, in addition to the adversary A outputting � ` 1 valid

message-signature pairs (mk̊, σk̊), the game requires that for each k ∈ [� ` 1],
after parsing ((pk˚

i,k, ϕi̊,k)i∈[K], S̄k̊, dk̊, ek̊, �z0̊,k, z1̊,k, crnd˚̄
S,k, crnd˚̄

R,k) Ð σk̊, the
game checks that

S̄˚
k “

K∏

i“1

H(μ˚
i,k)

sk˚
i,k .

where μi̊,k “ Hμ(mk̊, ϕi̊,k), sk
˚
i,k “ logg pk

˚
i,k. If this check fails, the game aborts.

We note that if the game knows logg H(μi̊,k), the game can efficiently check if
S̄k̊ “ ∏K

i“1 pk
˚
i,k

logg H(μ˚
i,k) instead.

Let Bad denote the event that A succeeds in game GA
0 but not GA

1 , which
gives Pr[GA

1 “ 1] ě Pr[GA
0 “ 1] ´ Pr[Bad]. Then, by Lemma 3, there exist

adversaries B and B′ for the games Binding of HECom and DLOG, respectively,
both running in time tB, tB′ « 2tA, such that
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Pr[GA
1 “ 1] ě Pr[GA

0 “ 1]

´ (� ` 1)

(√

Q̂H′
(
AdvbindingHECom (B, λ) ` AdvdlogGGen(B′, λ)

)
` Q̂H′

p

)

.

Game GA
2 : In this game, the game generates W in par as W Ð gw for w Ð$ Zp.

Then, the signing oracles S1 and S2 now generate (�R, R̄, A, d, e, �z0, z1) as follows:

• Sample r1, d Ð$ Zp, �z0 Ð$ Z
K
p .

• Set A Ð gr1 , �R Ð (g�z0,1pk´d
1 , . . . , g�z0,Kpk´d

K ), R̄ Ð S̄´d
∏K

i“1 h
�z0,i

i, �Ji
.

• After receiving c, set e Ð c ´ d and z1 Ð r1 ` e ¨ w.

Since the joint distributions of (�R, R̄, A, d, e, �z0, z1) in this game and the game
GA

1 are identical, we have

Pr[GA
2 “ 1] “ Pr[GA

1 “ 1] .

Game GA
3 : In this game, hcomR̄ is generated as hcom´d

S̄ ¨Com(ck,
∏K

i“1 h
�z0,i

i, �Ji
; δR̄)

with δR̄ Ð$ Z
2
p, and the game now sets crndR̄ Ð δR̄ ´ d ¨ crndS̄ . Here, crndR̄ is

still uniformly random over Z
2
p and hcomR̄ still commits to the same R̄. Thus,

Pr[GA
3 “ 1] “ Pr[GA

2 “ 1] .

Note that in GA
3 , we only need S̄ and crndS̄ when opening hcomR̄ in S2, while

computing hcomR̄ in S1 only requires hcomS̄ .

Game GA
4 : In this game, the signing oracle S2 now generates the proof π by

using a simulator Sim(g, (hi, �Ji
, pki)i∈[K], S̄) defined as follows:

• Sample δ Ð$ Zp, �s Ð$ Z
K
p .

• If HΠ(g, (hi, pki)i∈[K], S̄, (g�sipk´δ
i )i∈[K], S̄

´δ
∏K

i“1 h�si
i ) is defined, abort.

• Otherwise, program HΠ of that input to c and return π Ð (c, �s).

If the simulator abort, the game aborts.
The view of A is identical to its view in GA

3 except when the game aborts
(i.e., the simulator fails to program HΠ). Also, notice that g�s1pk´δ is uniformly
random and independent of the view of A and previous programming attempts
of HΠ . Thus, by the union bound over possible collision events, i.e., all pairs of
queries to oracle S2 and queries to both HΠ and S2 (accounting for attempts to
program HΠ),

Pr[GA
4 “ 1] ě Pr[GA

3 “ 1] ´ �(� ` QHΠ
)

p
.

Game GA
5 : In this game, the game aborts if one of the following occurs.

(a) For each H� ∈ {Hcom,Hμ}, there exist two queries x ‰ x′ to H� such that
H�(x) “ H�(x′).
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(b) The game additionally keeps track of a mapping r̂[¨] : {0, 1}λ → {0, 1}2λ.
Then, for each query (com, h) to Hcc where com “ (comi,j)i∈[K],j∈[N ] and
h “ (hi,j)i∈[K],j∈[N ] the game does the following: For each i ∈ [K] and
j ∈ [N ], check if there exists a query r′ to Hcom such that Hcom(r′) “ comi,j ,
then if there is one, set r̂[comi,j ] Ð r′; otherwise, set r̂[comi,j ] Ð K and abort
if later there is a query r′ to Hcom where Hcom(r′) “ comi,j .

The view of A in this game only differs from its view in GA
5 if the game aborts.

The abort probability for (a) corresponds to the probability of collisions in the
outputs of Hcom and Hμ which is bounded by (Q2

Hcom
` Q̂2

Hμ
)/2λ. Also, since the

output of Hcom is uniformly random in {0, 1}λ, the abort probability for (b) is
bounded by QHcomQHcc

/2λ, considering all pairs of queries to Hcom and Hcc. Thus,

Pr[GA
5 “ 1] ě Pr[GA

4 “ 1] ´ Q2
Hcom

` Q̂2
Hμ

` QHcomQHcc

2λ
.

Before proceeding to the next game, we consider an event where A queries S1

with the input umsg1 “ ( �J, ((ri,j)j‰ �Ji
, comi, �Ji

, hi, �Ji
)i∈[K]). We consider the case

where Check(umsg1) “ 1 which would define values com “ (comi,j)i∈[K],j∈[N ]

and h “ (hi,j)i∈[K],j∈[N ] such that Hcc(com, h) “ �J . Also, consider the values
r̂[comi,j ] related to the query Hcc(com, h) defined in GA

5 . For each instance i ∈
[K], we have the following observations:

• If for some j ∈ [N ], r̂[comi,j ] “ K, then j “ �Ji. For other j′ ‰ �Ji, since ri,j′ is
revealed in umsg1 and Check(umsg1) “ 1, comi,j′ “ Hcom(ri,j′), by the abort
(b) introduced in GA

5 , r̂[comi,j′ ] ‰ K.
• If for some j ∈ [N ], r̂[comi,j ] “ (μ, ε) ‰ K, but hi,j ‰ H(μ)gβ where β Ð
Hβ(εi,j), then j “ �Ji. This is because of the no collision condition (abort (a))
in Hcom introduced in GA

5 , meaning for j′ ‰ �Ji, r̂[comi,j′ ] “ ri,j′ “ (μi,j′ , εi,j′).
Then, with Check(umsg1) “ 1, we have hi,j “ H(μi,j′)gHβ(εi,j′ ).

We say the adversary A successfully cheats in instance i ∈ [K] if one of the two
cases above occurs while Check(umsg1) “ 1. Since the values r̂[comi,j ] are fixed
when �J :“ Hcc(com, h) is queried and �J is uniformly random, the probability
which A successfully cheats in instance i ∈ [K] is at most 1/N . Then, the
probability in which A successfully cheats in all instance is at most 1/NK .

Game GA
6 : In this game, if A successfully cheats in all instance i ∈ [K] in some

signing query to S1, the game aborts. By the above discussion and applying the
union-bound over all queries to S1,

Pr[GA
6 “ 1] ě Pr[GA

5 “ 1] ´ QS1

NK
.

Game GA
7 : In this game, the game aborts if A queries H with μ such that there

is no x where Hμ(x) “ μ at the time, but later on there is a query x to Hμ

where Hμ(x) “ μ. The view of A only changes if the game aborts. Then, since
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the outputs to Hμ(¨) is uniformly random, we can bound the probability of the
abort by considering all pairs of queries to H and Hμ. Thus,

Pr[GA
7 “ 1] ě Pr[GA

6 “ 1] ´ Q̂HQ̂Hμ

2λ
.

Game GA
8 : In this game, the game introduces two mappings b̂[¨], b[¨] such that

when A queries Hμ(m,ϕ) and no query of the form (m, ¨) has been made before,
b̂[m] is set to 1 with probability 1/(�`1) and 0 otherwise. Moreover, when there
is a query H(μ) of which the value is not defined, the game searches for a previous
query (m,ϕ) such that Hμ(m,ϕ) “ μ and set b[μ] Ð b̂[m]. If such query does
not exist, set b[μ] Ð 0. Since both b and b̂ are hidden from the view of A, the
view of A remains the same. Thus,

Pr[GA
8 “ 1] “ Pr[GA

7 “ 1] .

Note that by the change in GA
7 , it cannot be the case that b̂[m] “ 1 but b[μ] “ 0

for some m and μ “ Hμ(m, ¨), since this means that the query H(μ) is made
before Hμ(m, ¨).
Game GA

9 : In this game, we made the following changes to GA
8 as follows:

• The game introduce a list L.
• Recall that by the change in GA

6 , for each signing session, there exists an
instance i˚ ∈ [K] where A does not successfully cheat. Thus, the game can
extract r “ (μ, ε) such that Hcom(r) “ comi˚, �Ji˚ and H(μ)gHβ(ε) “ hi˚, �Ji˚ .
Then, for each query to S2, the game aborts if b[μ] “ 1. Otherwise, the
game tries to find a previous query (m, ¨) such that μ “ Hμ(m, ¨) and sets
L Ð L ∪ {(μ,m)}, if such m exists.

• When A returns � ` 1 forgeries for distinct messages, since A queries S2 for
� times, there exists m� from one of the message-signature pairs such that
(¨,m�) /∈ L. The game aborts if b̂[m�] “ 0.

Consider the success probability of A.

Pr[GA
9 “ 1] “ Pr[A succeeds|GA

9 does not abort]Pr[GA
9 does not abort] .

Notice that the view of A, if the game does not abort, is exactly as in GA
8 . Thus,

we consider the probability that GA
9 does not abort, which corresponds to the

event that for all (μ,m) ∈ L, b[μ] “ 0 and b̂[m�] “ 1. Hence, we can bound

Pr[b̂[m�] “ 1 ^ ∀(μ,m) ∈ L : b[μ] “ 0]

“ Pr[b̂[m�] “ 1]Pr[∀(μ,m) ∈ L : b̂[m] “ 0]

ě 1
� ` 1

(

1 ´ 1
� ` 1

)�

“ 1
�

(

1 ´ 1
� ` 1

)�`1

ě 1
4�

.

The first equality follows from the independence of sampling each b̂ and that
b[μ] “ b̂[m]. The next inequality follows from |L| ď � (since the game appends
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to L only in S2) and b̂[m] for distinct m being independently sampled. The last
inequality follows from (1 ´ 1/x)x ě 1/4 for x ě 2. Therefore, we have

Pr[GA
9 “ 1] ě 1

4�
Pr[GA

8 “ 1] .

Game GA
10: In this game, the game keeps track of a mapping t[¨] : {0, 1}λ → Zp

and initialize a Y Ð$ G at the start of the game. Then, for each new query H(μ),
the game returns H(μ) Ð Y b[μ]gt[μ] where t[μ] Ð$ Zp and b[μ] is as defined in
GA

8 . The view of A is the same as in GA
9 since H(μ) is still uniformly random

over G. Thus,
Pr[GA

10 “ 1] “ Pr[GA
9 “ 1] .

Game GA
11: In this game, the game generates {ski}i∈[K] in each signing ses-

sion as follows: recall the non-cheating instance i˚ from GA
6 , the game now

generates ski Ð$ Zp for i ‰ i˚ and sets ski˚ Ð sk ´ ∑
i‰i˚ ski, along with

pki˚ Ð pk
∏

i‰i˚ pk
´1
i . This is only a syntactical change and the view of A stays

the same.
Pr[GA

11 “ 1] “ Pr[GA
10 “ 1] .

Game GA
12: In this game, the game now aborts if sk “ 0, and if this abort

does not occur, the commitment key ck is now generated along with a trapdoor
td with a base pk embedded i.e., (ck, td) Ð$ HECom.TGen((G, p, g), pk). The
probability of the abort occurring is at most 1/p. Also, by the uniform key
property of HECom, ck generated with pk ‰ 1G is distributed identically to
ck Ð$ HECom.Gen((G, p, g)). Thus,

Pr[GA
12 “ 1] ě Pr[GA

11 “ 1] ´ 1
p

.

Game GA
13: In this game, the game does not compute ski˚ in each signing session

anymore and changes the way hcomS̄ is computed and opened as follows:

• First, observe that we can write S̄ as

S̄ “
K∏

i“1

hski

i, �Ji
“ h

sk´∑

i‰i˚ ski

i˚, �Ji˚

∏

i‰i˚
hski

i, �Ji
“ pk

logg hi˚, �Ji˚
∏

i‰i˚
hski

i, �Ji
h´ski

i˚, �Ji˚
.

Then, in S1, the game now computes (hcomS̄ , stcom) Ð$ HECom.TCom(td, S′)
for S′ “ ∏

i‰i˚ hski

i, �Ji
h´ski

i˚, �Ji˚
.

• When S2 of the same session is queried, by the change in GA
9 , we know that

hi˚, �Ji˚ “ H(μ)gβ for some (μ, ε) with β “ Hβ(ε) and that b[μ] “ 0 (otherwise,
the game aborts). Then, by the change in GA

10, the game knows logg hi˚, �Ji˚ “
β ` t[μ]. Thus, the game opens hcomS̄ as (S̄, crndS̄) Ð$ HECom.TOpen(stcom,
β ` t[μ]).
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By the special equivocation property of HECom, the view of A stays the same,
unless the matrix D ∈ Z

2ˆ2
p contained in td is not invertible, which occurs with

probability at most 2/p by the Schwartz-Zippel lemma. Thus,

Pr[GA
13 “ 1] ě Pr[GA

12 “ 1] ´ 2
p

.

Lastly, we give a reduction B′′ playing the CDH game as follows:

• The reduction B′′ takes input (G, p, g,X, Y ). If X “ 1G, B′′ returns 1G. Oth-
erwise, the game sets pk Ð X, par Ð (G, p, g,W, ck,K,N), with W and ck
generated as in GA

13, and runs A(par, pk).
• The random oracles Hμ,Hcc,Hcom,H′,HΠ are simulated as in GA

13; however,
for H, the game uses the CDH input Y in place of the Y used in GA

10.
• The signing oracles are simulated without sk as in GA

13.
• When the adversary returns � ` 1 message-signature pairs, the reduction

checks if all the pairs are valid and the messages are distinct. If not, B′′

aborts. Then, the reduction identifies m� as in GA
9 and let σ� be the cor-

responding signature for m�. The reduction parses ((pk�
i , ϕ

�
i )i∈[K], S̄�, d�, e�,

�z�
0 , z

�
1 , crnd�

S̄ , crnd�
R̄) Ð σ�, computes μ�

i “ Hμ(m�, ϕ�
i ), and returns

Z “ S̄� ¨
K∏

i“1

pk�
i

´t[μ�
i ] .

First, we can see that the running time of B′′ is about that of A. Next, we will
show the correctness of the reduction. We can see that if X “ 1G, the game is
trivial for B′′; otherwise, B′′ simulates the game GA

13 perfectly. Then, suppose A
succeeds in GA

13. By the change in GA
1 , this means that for (m�, σ�), we have

S̄� “ ∏K
i“1 pk

�
i
logg H(μ�

i ). Thus,

S̄� “
K∏

i“1

pk�
i
logg H(μ�

i ) “
K∏

i“1

pk�
i
b[μ�

i ]¨logg Y `t[μ�
i ] “ pklogg Y

K∏

i“1

pk�
i
t[μ�

i ] ,

where the third equality follows from b[μ�
i ] “ b̂[m�] “ 1 for any i ∈ [K] (due

to the changes in games GA
7 ´ GA

9 and that Hμ(m�, ϕ�
i ) “ μ�

i ). Hence, B′′

succeeds in the CDH game as Z “ pklogg Y “ X logg Y , implying Pr[GA
13 “ 1] ď

AdvcdhGGen(B′′, λ). Finally, combining all the advantage changes,

Advomuf-2
BS3

(A, λ) ď(� ` 1)

(√

Q̂H′
(
AdvbindingHECom (B, λ) ` AdvdlogGGen(B′, λ)

)
` Q̂H′

p

)

` QS1

NK
` Q2

Hcom
` Q̂2

Hμ
` QHcomQHcc

` Q̂HQ̂Hμ

2λ

` �(� ` QHΠ
` 12)

p
` 4� ¨ AdvcdhGGen(B′′, λ) .

��
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Lemma 3. Let Bad be the event where A succeeds in game GA
0 but not GA

1 .
Then, there exist adversaries B for the game Binding of HECom and B′ for the
game DLOG both with running time tB, tB′ « 2tA such that

Pr[Bad] ď (� ` 1)

(√

Q̂H′
(
AdvbindingHECom (B, λ) ` AdvdlogGGen(B′, λ)

)
` Q̂H′

p

)

.

Proof. First, observe that Bad corresponds to the following event: A outputs
�`1 message-signature pairs (mk̊, σk̊)k∈[�`1] such that (1) for all k1 ‰ k2,mk̊1

‰
mk̊2

, (2) for all k ∈ [� ` 1], BS3.Ver(pk, σk̊,mk̊) “ 1, and (3) there exists
k ∈ [� ` 1] such that after parsing the signature ((pk˚

i,k, ϕi̊,k)i∈[K], S̄k̊, dk̊, ek̊,
�z0̊,k, z1̊,k, crnd˚̄

S,k, crnd˚̄
R,k) Ð σk̊, and setting μi̊,k Ð Hμ(mk̊, ϕi̊,k), we have

S̄k̊ ‰ ∏K
i“1 H(μi̊,k)

logg pk˚
i,k . Also, define the event Badk for k ∈ [� ` 1] which

is event Bad with the condition (3) specified only for the k-th message-signature
pair (mk̊, σk̊). We can see that Bad “ ⋃�`1

k“1 Badk.
To bound Badk, define the following wrapper Ak over A, which takes inputs:

the instance (G, p, g,W, ck,K, N), the outputs (c1, . . . , c ̂QH′ ) of H′, and a random
tape ρ.

1. Extract from the random tape ρ, the following

(sk, ((skj,i)i∈[K´1], �r0,j ,ej , z1,j , ρΠ,j , crndS̄,j , crndR̄,j)j∈[QS1 ]
,

(ti)i∈[ ̂QH]
,Hμ,Hcom,HΠ ,Hcc, ρ

′)

where sk ∈ Zp and for i ∈ [K], j ∈ [QS1 ], ski,j , ej , z1,j ∈ Zp, �r0,j ∈ Z
K
p , while

ρΠ,j denotes the randomness used to generate π in the j-th signing session,
crndS̄,j , crndR̄,j ∈ Z

2
p denote the randomness for the commitments in the j-

th signing session, (ti)i∈[ ̂QH]
denotes a list of values from Zp which will be

used to program H, H� ∈ {Hμ,Hcom,Hcc} denote a lists of QH�
values (Q̂Hμ

values for H� “ Hμ) in the codomain of H�, and HΠ denotes a list of QHΠ
` �

values in Zp. Additionally, we denote H�[i] as the i-th entry in the list for
H� ∈ {Hμ,Hcom,Hcc,HΠ}.

2. Set par Ð (G, p, g,W, ck) and pk Ð gsk.
3. Run (mk̊, σk̊)k∈[�`1] Ð AS1,S2,H,H′,HΠ ,Hμ,Hcom,Hcc(par, pk; ρ′) where each oracle

is answered as follows:
• For the signing query with session ID j (j ∈ [QS1 ]) to S1 and S2, use

(sk, (skj,i)i∈[K´1], �r0,j , ej , z1,j , ρΠ,j , crndS̄,j , crndR̄,j) to answer the query
as in BS3.S1 and BS3.S2 respectively.

• For the i-th query to H (i ∈ [Q̂H]), return gti and set t[¨] Ð ti accordingly.
• For the i-th query to H′ (i ∈ [Q̂H′ ]), return ci.
• For the i-th query to H� ∈ {Hμ,Hcom,Hcc} (i ∈ [QH�

] and i ∈ [Q̂Hμ
] for

H� “ Hμ), return H�[i].
• For the i-th query to HΠ (i ∈ [QHΠ

` �]), return HΠ [i]. (In these queries,
we accounted for the queries that the wrapper made to generate π in each
query to S2.)
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4. If the event Badk does not occur, return (K, K).
Otherwise, return (I, (mk̊, σk̊)) where I is the index of the query to H′ from
A corresponding to the verification of (mk̊, σk̊). More specifically, I is the
index of a query of the form (m, (hi, pki)i∈[K], hcomS̄ , �R, hcomR̄, A), where
each value is defined as:

• m “ mk̊.
• For i ∈ [K], pki “ pk˚

i,k, hi “ H(Hμ(mk̊, ϕi̊,k)), and �Ri “ g�z˚
0,k,ipk

´d˚
k

i .
• hcomS̄ “ Com(ck, S̄k̊; crnd

˚̄
S,k)

• hcomR̄ “ Com(ck, R̄; crnd˚̄
S,k) where R̄ “ (S̄k̊)

´d˚
k
∏K

i“1 h
�z˚
0,k,i

i .
• A “ W ´e˚

kgz˚
1,k .

Note that I and all the values above are well-defined as we assume that all
RO queries done in forgery verification are made by A beforehand. Also, the
way we program H in Ak allows us to check for event Badk efficiently, i.e., by
checking S̄k̊ ‰ ∏K

i“1 pk
˚
i,k

t[μ˚
i,k], which means that the running time of Ak is

roughly that of A.

Now, consider another wrapper ForkAk taking the input (G, p, g,W, ck) defined
as follows:

1. First, ForkAk samples c1, . . . , c ̂QH′ Ð$ Zp along with the random tape ρ.
2. Run (I, (m,σ)) Ð$ Ak((G, p, g,W, ck,K,N), (c1, . . . , c ̂QH′ ); ρ).
3. If I “ 0, abort. If not, sample c′

I , . . . , c
′
̂QH′

Ð$ Zp and
run (I ′, (m′, σ′)) Ð$ Ak((G, p, g,W, ck,K,N), (c1, . . . , cI´1, c

′
I , . . . , c

′
̂QH′

); ρ).

4. If I ‰ I ′ or c′
I “ cI , abort. Otherwise, parse ((pki, ϕi)i∈[K], S̄, d, e, �z0, z1,

crndS̄ , crndR̄) Ð σ and ((pk′
i, ϕ′

i)i∈[K], S̄′, d′, e′, �z′
0, z

′
1, crnd

′̄
S , crnd′̄

R) Ð σ′.

Then, compute R̄ “ S̄´d
∏K

i“1 hi
�z0,i and R̄′ “ S̄′´d′ ∏K

i“1 h′
i
�z′
0,i and return

(S̄, S̄′, R̄, R̄′, crndS̄ , crndR̄, crnd′̄
S , crnd′̄

R, z1 ´ z′
1, e ´ e′) .

Since ForkAk runs Ak twice and the running time of Ak is about that of A, we
have tForkAk « 2tA. Next, we consider the event where ForkAk does not abort
(i.e., I “ I ′ ‰ K and cI ‰ c′

I). Notice that I “ I ′ ‰ K, so the message-signature
pairs (m,σ) and (m′, σ′): (a) are valid signatures corresponding to the I-th query
of A to H′, and (b) for i ∈ [K], let μi Ð Hμ(m,ϕi), μ′

i Ð Hμ(m′, ϕ′
i), we have

S̄ ‰ ∏K
i“1 H(μi)logg pki and S̄′ ‰ ∏K

i“1 H(μ
′
i)

logg pk′
i . Consider two events: (E1)

S̄ ‰ S̄′ or R̄ ‰ R̄′, and (E2) S̄ “ S̄′ and R̄ “ R̄′. We can see that

Pr[I “ I ′ ‰ K ^ cI ‰ c′
I ] “ Pr[ForkAk does not abort] ď Pr[E1] ` Pr[E2] .

For the event E1, by the observation (a), we have that Com(ck, S̄; crndS̄)
“ Com(ck, S̄′; crnd′̄

S) and Com(ck, R̄; crndR̄) “ Com(ck, R̄′; crnd′̄
R). Thus, we can

construct a reduction B playing the binding game of HECom and using ForkAk ,
with running time tB « tForkAk , such that Pr[E1] ď AdvbindingHECom (B, λ).

For the event E2 (S̄ “ S̄′ and R̄ “ R̄′), we have that
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(i) S̄´d
∏K

i“1 hi
�z0,i “ R̄ “ R̄′ “ S̄′´d′ ∏K

i“1 h′
i
�z′
0,i

(ii) For i ∈ [K], pki “ pk′
i, and H(μi) “ hi “ h′

i “ H(μ′
i).

(iii) cI “ d ` e, c′
I “ d′ ` e′.

(iv) For i ∈ [K], pki
´dg�z0,i “ pk′

i
´d′

g�z′
0,i .

(v) A “ gz1W ´e “ gz′
1W ´e′

.

Next, we will argue that d “ d′. As a result from (i, ii, iv), for all i ∈ [K], we
have pk

(d´d′) log hi

i “ (pkd
i pk

′
i
´d′

)logg hi “ g(�z0,i´�z′
0,i) logg hi “ h

�z0,i´�z′
0,i

i . Then,

S̄d´d′ “ S̄dS̄′´d′ “
K∏

i“1

hi
�z0,ih′

i
´�z′

0,i “
K∏

i“1

h
�z0,i´�z′

0,i

i “
K∏

i“1

pk
(d´d′) log hi

i .

Since S̄ ‰ ∏K
i“1 pk

logg hi

i , only d “ d′ satisfies the equation. Since d ` e “ cI ‰
c′
I “ d′ `e′, we have e ‰ e′. Therefore, we have that (z1 ´z′

1)(e´e′)´1 “ logg W .
Hence, we can construct a reduction B′ playing the DLOG game and using
ForkAk , with running time tB′ « tForkAk , such that Pr[E2] ď AdvdlogGGen(B′, λ).

Finally, by the forking lemma (Lemma 1) and that Ak only outputs I ‰ K
when Badk occurs,

Pr[Badk] ď
√

Q̂H′Pr[I “ I ′ ‰ K ^ cI ‰ c′
I ] ` Q̂H′

p

ď
√

Q̂H′
(
AdvbindingHECom (B, λ) ` AdvdlogGGen(B′, λ)

)
` Q̂H′

p
.

The lemma statement follows from the union bound over Badk for k ∈ [� ` 1]. ��
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