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Abstract. We present the first concurrently-secure blind signatures
making black-box use of a pairing-free group for which unforgeability, in
the random oracle model, can be proved without relying on the alge-
braic group model (AGM), thus resolving a long-standing open ques-
tion. Prior pairing-free blind signatures without AGM proofs have only
been proved secure for bounded concurrency, relied on computationally
expensive non-black-box use of NIZKs, or had complexity growing with
the number of signing sessions due to the use of boosting techniques.

Our most efficient constructions rely on the chosen-target CDH
assumption and can be seen as blind versions of signatures by Goh and
Jarecki (EUROCRYPT ’03) and Chevallier-Mames (CRYPTO ’05). We
also give a less efficient scheme with security based on (plain) CDH. The
underlying signing protocols consist of four (in order to achieve regular
unforgeability) or five moves (for strong unforgeability). All schemes are
proved statistically blind in the random oracle model.

1 Introduction

Blind signatures [27] are interactive protocols that allow a user to obtain a
signature on a message in a way that does not reveal anything about the message-
signature pair to the signer. They are a fundamental building block to achieve
anonymity in e-cash [27,28,56], e-voting [39], and credentials [10,24]. They have
also come into use in a number of recent industry applications, such as privacy-
preserving ad-click measurement [2], Apple’s iCloud Private Relay [1], Google
One’s VPN Service [4], and various forms of anonymous tokens [3,44].

PAIRING-FREE BLIND SIGNATURES. There are at least two reasons that make it
desirable to design blind signatures in pairing-free groups. On the one hand,
widely adopted signatures, such as Schnorr signatures [61], EADSA [19], and
ECDSA [7] rely on such curves. On the other hand, many of the aforemen-
tioned applications are implemented in environments such as Internet browsers
where pairing-friendly curves are usually not part of the available cryptographic
libraries (such as NSS and BoringSSL).

The full version of this work can be found at [26].
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The question of designing blind signatures in pairing-free groups has turned
out to be extremely challenging. The main difficulty is finding schemes secure in
the sense of one-more unforgeability [46], even when a malicious user can run sev-
eral concurrent signing interactions with the signer. Pointcheval and Stern [60]
were the first to prove security of blind Okamoto-Schnorr signatures [55] under
bounded concurrency, in the random oracle model (ROM) [16], assuming the
hardness of the discrete logarithm (DL) problem. Their approach was later
abstracted in [43]. Blind Schnorr signatures [29] have also only been proved
secure under bounded concurrency [37,47|, in this case additionally assuming
the Algebraic Group Model (AGM) [36], along with the stronger one-more dis-
crete logarithm (OMDL) assumption [13]. These results are also in some sense
best possible, as recent ROS attacks [18] yield polynomial-time forgery attacks
against these schemes using logp concurrent signing sessions, where p is the
group order.

One can rely on boosting techniques [25,50,59] to increase the number of con-
current sessions where a scheme such as Okamoto-Schnorr remains secure. The
current state of the art [25] requires a 7-move protocol of which the communi-
cation and computational complexity grow logarithmically and linearly, respec-
tively, in the number of signing sessions, which still has to be fixed a priori.

A concurrently secure scheme, i.e., one supporting arbitrary concurrent
adversarial signing sessions, was given by Abe [5], but its proof (in the ROM,
assuming the hardness of DL) later turned out to be incorrect, and was only
recently re-established in the AGM [47]. Similarly, all other provably secure
solutions [33,37,63] fundamentally rely on the AGM. Therefore, this paper aims
to address the following central question.

Can we give blind signatures in pairing-free groups whose concurrent secu-
rity, in the ROM, can be proved without the AGM?

NON-BLACK-BOX BASELINES. It is however often overlooked that, in principle, we
can provide an affirmative answer to this question by relying on expensive non-
black-box techniques. For example, we can instantiate Fischlin’s transform [35]
using generic NIZKs with online extractability in the ROM, such as those from
the MPC-in-the-head paradigm [45]. The signer uses a hash-based signature
scheme (which exists under the hardness of the DL problem) [54] to sign a
Pedersen commitment to the message, and the actual signature for a message
is a proof of knowledge of a signature on a commitment to this message. The
recent work by Fuchsbauer and Wolf [38] also relies on generic NIZKs, and
assumes Schnorr signatures to be secure for a given fixed (non random oracle)
hash function. The resulting protocol has four moves, and is non-black-box as
well.

We point out here that concurrent work [48] made progress in instantiat-
ing a variant of Fischlin’s transform without generic NIZKs while relying on
the Strong RSA assumption and the DDH assumption in pairing-free groups.
However, their construction does not fundamentally leverage pairing-free ellip-
tic curves, as it is built on top of an RSA-based signature while using DDH to
instantiate components which have no RSA-based instantiation. Here, we aim for
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a solution purely based on black-box use of groups, without additional external
assumptions.

OUR CONTRIBUTION. We propose the first blind signatures making black-box use
of a pairing-free group whose concurrent security is proved without relying on
the AGM. We assume the ROM as well as variants of the Computational Diffie-
Hellman (CDH) assumption. In particular, unlike the aforementioned pairing-
free instantiations, we do not rely on implementing group operations as part of
a relation verified by a NIZK proof.

Our results are summarized in Table 1. Our most efficient constructions are
based on the chosen target CDH (CT-CDH) assumption, a falsifiable assump-
tion introduced by Boldyreva [20] to prove security (in the pairing setting) of
Blind BLS [22], which is a one-more version of CDH.! The signing protocols
take four and five moves, respectively, with the difference being that the lat-
ter protocol achieves strong unforgeability. The starting points of these schemes
are the Goh-Jarecki [40] and the Chevallier-Mames [30,51] signature schemes,
respectively, with a number of modifications based on witness indistinguishable
OR-proofs [31] to be able to prove concurrent security. Our third, more com-
plex, scheme dispenses entirely with interactive assumptions, and solely relies
on (plain) CDH, and the signing protocol requires four moves.

ONE-MORE UNFORGEABILITY. Our CT-CDH schemes BS; and BSs; achieve a
weaker than usual notion of one-more (strong) unforgeability (which we refer to
as OM(S)UF-1) where a malicious user cannot come up with more signatures
than the number of sessions it engages in, regardless of whether these terminate
or not. In contrast, our CDH-based scheme BS3 achieves the standard notion [46]
that only counts terminating sessions (we refer to this as OMUF-2).

Some applications inherently require OMUF-2 (e.g., the atomic swap con-
struction from [41]). Nonetheless, we consider both BS; and BSs to be valuable,
despite the weaker security they achieve. First of all, they are simpler and serve
as stepping stones towards BSs. Moreover, while this calls for a more careful
analysis, OM(S)UF-1 appears sufficient for many applications. For example, in
constructions of anonymous tokens [3,44], the weaker OMUF-1 notion means
that the server needs to regard a token as issued as long as the first-round mes-
sage to the user is sent. The advantage of OMUF-2 is that it guarantees that if
the signing protocol aborts, the user will not come up with a valid token, but
this does not appear to be important in this context, as the decision to issue a
token has been made prior to starting the protocol.

This weaker form of accounting for sessions is also common in the definition
of unforgeability used to prove security of many prominent threshold signatures,
such as e.g., SPARKLE [32].

BLINDNESS. For all schemes, we prove statistical blindness assuming bounded
queries to a random oracle. We also give a slightly more efficient version of the
first two schemes which is computationally blind under the discrete logarithm

! We avoid the naming “one-more CDH” to avoid ambiguity, as an alternative inter-
pretation is used e.g. in [8].
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Table 1. Overview of our results and comparison with existing schemes in
the AGM with provable security notions, number of moves, signature size, communi-

cation cost (note: p = |G|), and assumptions required for each security notion.

L . . Blind OMUF
Scheme Security Myvs. Sig. size Comm. Asmp. Asmp.**
comp./stat.
(seBcSlza)* blindness 4 | 1G+42Z, [5G+ 5(or7) Z, ?{16(&0(‘;‘;2)/ CT-CDH
: & OMUF-1 :
comp./stat. ,
?2351(;31)1 blindness 5 | 1G+42Z, [5G+ 5(or7) Z, 11%]6(&0(‘:;2‘2; CT-CDH
& OMSUF-1 .
: A+ G+ | (BA+6)G +
(SBBCSZ)I St dind 14 [z | @A 497, + ROM CDH
’ A2 bits (A + 3)2) bits
comp. blind )

Abe [5,47) | POV RS |3 2G+6Z, |3G+6%Z,+A bits DDH DL + AGM
Clause Blind | perf. blind DL + AGM
Schnorr [37] | & OMSUF-2 | 5 | 1G+1Zp 26+412y - £ mROS

Snowblind perf. blind

53] CoNSU, | 3 1G+22, 2G+417, - DL + AGM

(*): OMUF-X security (for X = 1,2) guarantees that no adversary can output ¢ + 1
message-signature pairs with distinct messages (with distinct pairs for OMSUF-X),
where ¢ denotes the number of started (for X = 1) or completed (for X = 2) signing
sessions. (**): All OMUF guarantees assume the ROM. (}): For BS; and BS,, we give
a computationally blind version and a less efficient statistically blind one. (f): The
efficiencies of BS3 depend on two parameters set to N = 2 and K = \.

assumption. For the first two schemes, our random oracle proofs only require the
Fiat-Shamir heuristic [34] to be sound for proofs (hence, there is no rewinding).
While we do not prove this formally, we expect blindness of our first two schemes
to also hold against quantum adversaries in the QROM |[21], following e.g. [64].

OPEN PROBLEMS: DILOG & ROUND REDUCTION. An elusive open problem is to
give blind signatures based solely on the hardness of the DL problem (or the
stronger OMDL assumption), without resorting to NIZKs. Indeed, techniques
from recent works in the AGM [33,47,63] are not robust to rewinding in several
subtle ways. One may argue the qualitative improvement is not significant (for
several curves, indeed, DL and CDH are somewhat equivalent [52,53]), but even
in the non-blind setting, signatures with security based on DL tend to be actually
more efficient. For example, it seems unlikely that we can obtain a three-move
scheme without considering DL-based schemes. It should also be noted that we
do not expect two-move schemes to be possible even in the AGM.

Recent work by Barreto and Zanon [12] (expanded in [11]) claims a solution
with concurrent security under the OMDL assumption, which hinges upon a
reduction of concurrent security under impersonation attacks (IMP-CA) to the
(concurrent) one-more unforgeability of the associated blind signature scheme.
The proof appears to have some gaps, and we note that in general IMP-CA secu-
rity does not yield concurrently secure blind signatures. For instance, Schnorr
identification [15] achieves IMP-CA but does not yield secure blind signatures.
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PAPER OUTLINE. Section 2 introduces the basic preliminaries. We then discuss
the scheme BS; achieving OMUF-1 based on the CT-CDH assumption in Sect. 3.
Lastly, we discuss the scheme BS3 achieving OMUF-2 based on the CDH assump-
tion in Sect.4. Note that the scheme BSs,, achieving one-more strong unforge-
ability from the CT-CDH assumption, is presented in the full version.

1.1 Technical Overview

CT-CDH Based Schemes. The starting point of our first and simplest scheme
BS; is the signature by Goh and Jarecki [40], which can also be thought of
as a “pairing-free” variant of BLS signatures [23]. Given a cyclic group G with
prime order p and generator g, a secret key sk is a random scalar in Z,, and
the corresponding public key is pk <« g¢¥. The signature of a message m is
Z « H(m)%, where H is a hash function, along with a non-interactive proof
of discrete logarithm equality (DLEQ), showing that log,, pk = logy(,y,) Z.

The generation of such a signature can be seen as an interactive protocol.
The user first sends h < H(m) to the signer. The signer then sends Z « h%
back and initiates an interactive version of the standard DLEQ proof [62]. In
particular, along with Z, the signer sends two nonces R, < ¢" and Rj, < h" to
the user, where r «<—s Z,; upon receiving (Ry, Ry), the user picks a challenge ¢ «
H'(m, h, Z, Ry, Ry,) to send to the signer, and the signer replies with z <« r+c-sk.
The user accepts if and only if R, = g°pk “ and Rj, = h*Z~°, and the signature
is 0 « (Z,7 = (¢,2)). To verify the signature, with h «— H(m), we recover
Ry — g°pk “ and R}, < h*Z ¢ and check whether ¢ = H'(m, h, Z, Ry, Ry).

ONE-MORE UNFORGEABILITY. Our first goal is to prove that the above scheme
achieves the weaker variant of one-more unforgeability (OMUF-1), i.e., the adver-
sary cannot produce signatures for £+1 distinct messages after initiating at most
{ signing sessions. To do so, we rely on the hardness of the chosen-target compu-
tational Diffie-Hellman (CT-CDH) problem [20], where, given ¢g* for a uniformly
random z € Z, and {-time access to a DH oracle that takes any group element Y
as input and outputs Y*, the adversary’s goal is to compute Y;” for at least £+ 1
randomly sampled challenges {Y; € G}. (Here, we assume an oracle which sup-
plies as many challenges as needed, but the attacker just needs to solve £ + 1 of
these.)

The reduction idea appears simple: Given an adversary A that breaks OMUF-
1, we construct an adversary B playing the CT-CDH game that runs A with
pk < ¢®. Random-oracle queries H(m;) for a message m; are answered with a
challenge Y;. When A starts a signing session with A as the first-round message,
B computes Z «— h”* by querying the DH oracle and simulates the rest of the
signing session by itself. (Note that a DH query here is necessary, because h
can be any group element.) For a valid signature (Z;, ;) of a message m;, by
the soundness property of m;, Z; = H(m;)® is a solution to the challenge Y; =
H(m;) with overwhelming probability. Therefore, if the adversary A forges valid
signatures for ¢ + 1 distinct messages, B solves the CT-CDH problem.

The challenge here is that the DLEQ proof is merely honest-verifier zero-
knowledge, and the adversary A sends an arbitrary challenge ¢ to the signer, for
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which B needs to simulate a response. This cannot be done efficiently without
knowing the secret key. To address this, we transform the DLEQ proof into
a witness indistinguishable (WI) OR proof [31] that proves the existence of a
witness sk for the DLEQ proof or knowledge of a witness w = log, W for a
public parameter W € G. (This parameter would be generated transparently
in actual implementation.) Now the proof can be generated, indistinguishably,
both with knowledge of sk or with knowledge of w. The former is what the actual
protocol does, but the latter is what the reduction B would do. (The reduction
clearly chooses W with a known discrete logarithm w.) The challenge of this
proof will be chosen as before as a hash, and the resulting non-interactive proof
7 will be included in the signature o = (Z, 7).

However, this brings a new issue. Namely, the soundness of the OR proof
7 does not guarantee that Z = h™, as it is possible, in principle, to use the
witness w to generate a valid signature (Z, ) for m where Z # H(m)*. Our
key observation here is that any adversary producing such a signature can be
used to compute w, and thus, to break the discrete logarithm assumption. This
argument is rather involved as it requires a careful use of the Forking Lemma [60].
In essence, 7 gives us two valid proof transcripts (Rg, R, d,z) and (4, e,t),
where the former verifies as a valid DLEQ proof for Z = H(m)*, and the latter
attests knowledge of w. Further, we have that d+e = H'(m, h, Z, Ry, Ry, A). If we
fork on this hash query, we can obtain two extra transcripts (Ry, Rp,d’, 2’) and
(A, €', t") such that d’ + e’ # d+e. Still, we succeed in extracting w only if e # €/,
but this is not necessarily guaranteed if we also have d # d’.

Here, we crucially rely on a property of the DLEQ proof: by fixing (R,, R},)
and since Z # H(m)*, there exists at most one d that can generate an accepting
(Rg, Rp,d, z). Therefore, d = d’ must hold, and hence e # €.

BLINDNESS. To make the signing protocol of BS; blind, the user additionally
samples a random scalar 3 and computes h < H(m)g”. After receiving Z = h*k,
the user computes Z' — Zpk . It is easy to verify that Z’ = H(m)%. Then, the
user blinds the OR proof in a way similar to Abe-Okamoto blind signatures [6],
such that after the interaction, the user generates a proof 7/, the distribution of
which is independent of the transcript of the proof.

However, a malicious signer can send an incorrect Z (i.e., Z # h™) in one of
the signing sessions, and later identify the blinded signature (Z’, ') by checking
whether Z’ # H(m)™. Fortunately, for the attack to work, the signer also needs
to let the user accept the OR proof during the session where Z # h. Using a
similar argument as the above, by the soundness of the OR proof, the probability
that this occurs is bounded by the advantage of computing log, W.

If we do not want blindness to rely on the discrete logarithm assumption, we
can alternatively let the signer send a non-interactive proof that Z = h in the
second move. For example, if we use the non-interactive version of the DLEQ
proof, we can show blindness of BS; in the random oracle model. Crucially, this
proof does not need to be blind.

STRONG UNFORGEABILITY. BS; is not strongly unforgeable, i.e., we cannot guar-
antee that the adversary cannot produce (¢ + 1) distinct valid message-signature
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pairs after ¢ signing sessions. Indeed, suppose all signing sessions start with
the same first-round message h = H(m) for some m. Then, BS; shares the
structure of Abe-Okamoto blind signatures [6], and a variant of the recent ROS
attacks [18] yields an adversary that starts [log p] signing sessions and outputs
[log p]+1 distinct signatures for the message m. To transform BS; into a strongly
unforgeable scheme, referred to as BSs, the idea is to let H also take (R , A) as
input, i.e., the group elements from the OR proof which are independent of h. In
particular, we let the signer send (Ry, A) to the user before h is sent, adding an
extra move to the signing protocol. The user then computes h «— H(m, Ry, A)
and the rest of the protocol remains as in BS;. The resulting signature is the
same as the Chevallier-Mames signature scheme [30,51] except that we replace
the DLEQ proof with the OR proof.

Achieving OMUF-2 from CDH. Our security proof of BS; fails to show
the usual one-more unforgeability notion, i.e. OMUF-2, which guarantees that
the adversary cannot output more message-signature pairs than the number of
completed signing sessions. Indeed, the reduction queries its DH oracle to obtain
Z = h* in order to answer the first-round query for each signing session, and
thus, needs to output more solutions than the number of started sessions.

One possible fix is that instead of sending Z and Ry, in the clear, we let the
signer send commitments of Z and Ry, denoted by comz and comp, respectively,
in the first round. Later in the second round, the signer opens these commit-
ments accordingly. If the commitment scheme is homomorphic (with respect to
the group operation) and equivocable, then, we can adapt the security reduction
to simulate the signing protocol given w = log, W as follows: (1) in the first sign-
ing round, generate hcomy as a random commitment and compute hcomp, from
hcomz using the homomorphic property of the commitment scheme (the original
reduction computed R, from Z), (2) in the second signing round, query the DH
oracle for Z = h¢ and use equivocation to open comy to Z. The interactive proof
can still be simulated using w as in the proof of BS;. Notice that the number of
DH oracle queries is now the number of completed signing sessions, as we only
query the oracle when completing the last round.

Unfortunately, all existing homomorphic equivocal commitments based on
pairing-free groups [9,57,58] can only equivocate a random commitment to a
group element of which the discrete logarithm to some pre-established base is
known. This is not the case for Z obtained from the DH oracle, as h is adver-
sarially chosen and the reduction does not know sk. To address this, we instead
realize that a better starting point is to rely on a scheme which is secure under
the CDH assumption directly. In particular, to obtain our third scheme BS3, we
go through the following two steps, which we explain below:

1. We apply ideas similar to those used for BS; above to a recently proposed
pairing-based blind signature scheme, called Rai-Choo [42], which only relies
on the plain CDH assumption. Doing so, we obtain a pairing-free OMUF-1-
secure blind signature scheme based on CDH.
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2. We then realize that the structure of the resulting scheme and its security
proof will allow us to upgrade its security to OMUF-2 using pairing-free
homomorphic equivocal commitments.

PAIRING-FREE RAI-CHOO. Abstractly, one can interpret the CT-CDH assump-
tion as stating the unforgeability of an interactive version of BLS signatures
implemented in a pairing-free setting where efficient verification is not possible
(the DH oracle is the signing oracle, and the challenge oracle corresponds to
the random oracle). Similarly, as an intermediate abstraction, we can think of a
game that captures the unforgeability of (non-blind) Rai-Choo in a pairing-free
setting (where, again, efficient verifiability is lost). Its signing protocol proceeds
as follows (where pk = g*):

e On an input message m, the user computes, for (¢,j) € [K] x [N], a com-
mitment f; ; < H,(m,p; ;) to m and a random value ¢; j, a commitment
com; ; < Heom(fti,5), and a group element h; ; < H(y; ;). Then, it computes
J Hee((comi j, hij)ieir) jeinv)) € [N]¥, describing cut-and-choose indices
for which the user has to reveal y; ; for all i € [K] and j # J;. Finally, the
message sent to the signer is (J, ((ig) 07 i 70 c0m;y 7 )ie(x))-

e The signer then recomputes (comi7j,hi,j)ie[K]7#£ and checks that J =
Hee((comg j, hiz)i ). If the check passes, it uniformly samples (sk;);e[x] con-
ditioning on Zfil sk; = sk and sends ((pk; < ¢°);ex], S < Hfil h:kj)

e The final signature is o = ((pk;, ¢, 7 )ie[k],S) and inefficient verification
checks whether pk = []2 | pk; and S = [T/, H(H,(m, ¢, 7)) 08 Ph

Similar to BS;y, to translate this signing protocol into a blind signature scheme
with efficient verification, we extend it to have the signer interact with the
user to generate a non-interactive proof 7 that shows the knowledge of either
the witness log, W or the witness {sk;};c(x] such that pk; = g and S =

Hfil H(H.(m, gpi,fi))Sk". The final signature consists of o and .

One can show that if there exists an adversary that breaks OMUF-1 for this
scheme, then either (1) the adversary outputs one more valid Rai-Choo signa-
tures than the number of signing sessions, which breaks the OMUF of Rai-Choo
(and in turns this can be reduced to breaking the CDH assumption), or (2) the
adversary outputs an invalid Rai-Choo signature but with a valid OR proof (and

this can be reduced to finding the discrete logarithm of W).

UPGRADING TO OMUF-2. Still, this approach can only show OMUF-1 security
for the scheme. The rather technical reason is due to how the random-oracle pro-
gramming of H(H,(m, ¢)) is carried out in the reduction to CDH behind Step 1.
Essentially, if the user signs honestly, the first-round message sent in the k-th ses-
sion uniquely links this session with a message m(*), which can be extracted from
the prior random-oracle queries. To properly simulate the signer’s response to
the first message in the k-th session, the reduction needs to ensure that, with
sufficiently high probability, the random oracles are set up so that the discrete
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logarithm of H(H,,(m®), cpfk})) is known for some ¢ € [K]. For this reason, no
CDH solution can be extracted from a signature on any of the messages asso-
ciated with such a session. Therefore, for the reduction to succeed, a forgery
needs to contain a signature for a message which was not associated with one of
the sessions, regardless of whether these sessions were actually concluded.

To upgrade to OMUF-2 security, we instead use a homomorphic commitment
scheme HECom with special equivocation (formally defined in Sect.4.1) derived
from the commitment scheme in [9]. More precisely, the scheme can embed a base
X # 1g into the commitment key, which then allows opening a commitment of
a group element S to another element S’ = SX¢ for any ¢ thanks to a trapdoor
generated along with the key. Then, instead of sending S in clear, we let the
signer send the commitment hcomg of S. Then, in the second round, the signer
sends the opening of the commitment along with the same OR proof response.

While we defer the rather involved details to the body of the paper, the
crucial point is that this will enable a new reduction which only needs to know the

discrete logarithm of the H(H,, (m®), @Ek} ))’s if the k-th session indeed reaches

the final message and terminates.
2 Preliminaries

NOTATION. For a positive integer n, we write [n] for {1,...,n}. We use A to
denote the security parameter. A group parameter generator is a probabilistic
polynomial time algorithm GGen that takes an input 1* and outputs a cyclic
group G of A-bit prime order p and a generator g of the group. We tacitly
assume standard group operations in G can be performed in time polynomial in
A and adopt multiplicative notation. We will often compute over the finite field
Zy, (for a prime p) and do not write modular reduction explicitly when it is clear
from the context. Also, we write a = log, A € Z, for a group element A € G
where A = g°.

Throughout this paper, we adopt a variant of the “Game-Playing Framework”
by Bellare and Rogaway [17] for both definitions and proofs.

CRYPTOGRAPHIC ASSUMPTIONS. In this paper, we rely on the assumed hardness
of the discrete logarithm (DL), the computational Diffie-Hellman (CDH), and
the chosen-target computational Diffie-Hellman (CT-CDH) [20] problems. To
capture these, for any adversary A, we define the advantage of A playing the
games {DLOG, CDH, CT-CDH} (these games are defined in Fig. 1) as

Advaos/cdh/et-edh 4 3y .~ Pr[(DLOG/CDH/CT-CDH)éce,(A) = 1] .

We note that the hardness of the CT-CDH problem implies the hardness of the
CDH problem, which in turns implies the hardness of the DL problem.

BLIND SIGNATURES. This paper focuses on four-move and five-mowve blind signa-
ture schemes. Formally, a four-move (and five-move respectively) blind signature
scheme BS is a tuple of efficient (randomized) algorithms
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Game DLOGZ,, (M) : Game CDHZ, (N) :

(G,p, g) «<$GGen(1*) ; X <SG (G,p, g) < GGen(1*) ; 2,y S Z,

z — A(G,p,g,X) Z «— A(G,p,9,9",9")

If g* = X then return 1 If g"Y = Z then return 1

Return 0 Return 0

Game CT-CDHZL, (N) : Oracle CHAL :

(G, p, g) <5 GGen(1)) ; z <5 Z, cid «cid +1

cid«—0;£4«0 Yeia <3G

(Gi» Zi)ieper1) < AS™PYG, p, g, 97) Return Yeiq

If [{ji,- - jes1}| =€+ 1and Vie [£+1]: Z; = Y} then |Oracle Du(Y) :
return 1 L—t+1

Return 0 Return Y*

Fig. 1. The DLOG, CDH and CT-CDH games.

BS = (BS.Setup, BS.KG, BS.S;, BS.S,, BS.Uj, BS.Us, BS.Us, BS.Ver);
BS = (BS.Setup, BS.KG, BS.S1, BS.S,, BS.S5, BS.Uy, BS.Us, BS.U3, BS.Ver);

with the following behavior:

e The parameter generation algorithm BS.Setup(1*) outputs a string of public
parameters par, whereas the key generation algorithm BS.KG(par) outputs a
key-pair (sk, pk), where sk is the secret (or signing) key and pk is the public
(or verification) key.? All other algorithms of BS implicitly take par as input.

e The interaction between the user and the signer to sign a message m € {0,1}*
with a key-pair (pk,sk) is defined by the following experiments (1) for four-
move and (2) for five-move blind signatures:

(st¥,umsg;) < BS.U1(pk,m), (st®, smsg;) < BS.S1(sk,umsg;),
(sty,umsg,) < BS.Ux(st¥, smsg; ), smsg, < BS.Sa(st®, umsg,), (1)
o «— BS.Us(sty,smsg,) .

(Stiv Smsgl) - BSSl(Sk)7 (St¥a umSgl) - BSUl(pku m, Smsgl)a
(st5,smsg,) «— BS.Sa(st], umsgy), (sth, umsg,) «— BS.Ua(st},smsgy), » (2)
smsgy «— BS.S3(st5, umsg,), o0 «— BS.Uz(sty, smsgs) .

Here, o is either the resulting signature or an error message 1.
e The (deterministic) verification algorithm outputs a bit BS.Ver(pk,m, o).

We say that BS is (perfectly) correct if for every message m € {0,1}*, with prob-
ability one over the sampling of parameters and the key pair (pk,sk), the corre-
sponding experiment (either (1) or (2)) returns o such that BS.Ver(pk, m, o) = 1.
All of our schemes are perfectly correct.

2 We note that all of our schemes also admits an alternative definition without the
setup algorithm (see some recent works with this definition [48,49]), by hashing a
constant to generate the public parameters.
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r Bl
Game LOI\/IUF—X?S()\)J\, OMSUF—XéAS(/\) : Oracle Sj(sid, umsg) : Ji=1,...,r
PP S / If BS is 5-move and j = 1,
par « BS.Setup(1”) // the input umsg is set as an empty string
(sk, pk) « BS.KG(par) If sid ¢ T T or
L—0:1y,....0r — J ) v

{(m:7 Uf)}ke[éﬂ] s Asl*“"ST(par, pk) sid € Z; then return L

LN L REL ) G Tl S - I; « Z; u {sid}
I 3 by # k2, mf = mif then If j =1 th
,,,,,,,,,,,,,,,,,, 4 ; : ,
H i /) For X =1
g * * _ k * £ |
If 3 k1 # ko, (m.k1 s O'kl) = (mk27 a’k2) then (55, smsg) < BS.Sy (sk, umsg)
return 0 If 5 > 1 then
Ifﬂke[l-&-l]suchthat EIfj:rthen£<—Z+1§ // For X =2
BS.Ver(pk, m§, o) = 0 then (stZq.smsg) < BS.S;(st54, umsg)
return 0 J for j =mrstiy =1
Return 1 Return smsg

Fig.2. The OMUF-X and OMSUF-X security games for a 4-move or 5-move blind
signature scheme BS, where r = 2 if BS is 4-move and r = 3 if BS is 5-move. The
input umsg of S is set as an empty string if BS is 5-move. The highlighted boxes along
with the commented X value indicating how £ is counted in OMUF-X and OMSUF-X.
The OMUF-X game contains everything but the solid boxes, and the OMSUF-X game
contains everything but the dashed boxes.

Note that since this work exclusively consider four-move and five-move blind
signatures, we only give the syntax and security definitions for these objects for
the sake of simplicity. However, the definition for k-move blind signatures can
easily be obtained by generalizing the given definitions.

ONE-MORE UNFORGEABILITY. We consider variants of one-more (strong)
unforgeability, denoted OMUF-X and OMSUF-X for X € {1,2}. OMUF-1 ensures
that no adversary playing the role of a user and starting ¢ signing interac-
tions with the signer, in an arbitrarily concurrent fashion, can issue ¢ + 1 signa-
tures (or more) for distinct messages. For OMSUF-1, we instead only require the
adversary to output £+ 1 distinct message-signature pairs. For the OMUF-2 and
OMSUEF-2 notions, /¢ is defined as the number of completed signing interactions
instead, which is the more standard notion of one-more unforgeability used in
the literature. The OMUF-Xgs and OMSUF-Xgs games for a blind signature
scheme BS are defined in Fig. 2. The corresponding advantage of A is defined as
AdvgeutX/omsuiX 4 \) .= Prl(OMUF-X/OMSUF-X)& (A) = 1.

BLINDNESS. We also consider the standard notion of blindness against a mali-
cious server that can, in particular, attempt to publish a malformed public key.
The corresponding game BLIND“B% is defined in Fig. 3, and for any adversary A,

we define its advantage as Advpe"® (A4, \) := |Pr[BLIND“B“S(/\) =1-1

RANDOM ORACLES. We note that most of our analyses further assume one or
more random oracles, and we will clearly indicate so in the theorem statements.
The random oracles are modeled as additional oracles to which the adversary
A is given access.

FORKING LEMMA. In our proof, we utilize the general forking lemma in the ver-
sion introduced by Bellare and Neven [14] stated below:
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Game BLIND{;‘S()\) : Oracle Uj (i, smsg(¥) : Ji=1,...,3
par « BS.Setup(1*) // If BS is 4-move and j = 1,
b«—s{0,1} // the input smsg(?) is set as an empty string
bp—bi;b«—1—-b If ¢ ¢ {0,1} or sess; # j then return L
b s AT UL, U2.U3 (par) sess; «— sess; + 1
If b’ = b then return 1 If 5 = 1 then
Return 0 (st?, umsg(¥) — BS.U; (pk, my,, smsg(?))
Oracle INIT(p~k, Mg, M) : Return umsg(i)
sessg «— 1 ; sess; « 1 If j = 2 then )
pk «— pk (st?, umsg(¥) — BS.Us(st¥, smsg(?)
mo < Mo ; M1 < M1 Return umsg(i)
oy, < BS.Us(st¥,smsg(*)) Jji=3
If sessp = sess; = 4 then
If g # L and o1 # L then return (oo, 01)
Return (L, 1)
Return (¢, closed)

Fig. 3. The BLIND security game for a 4-move or 5-move blind signature scheme BS.
The only difference between the game defined for 4-move schemes and the game defined
for 5-move schemes is that if BS is a 4-move scheme, the input smsg of U; is set as an
empty string.

Lemma 1 (General Forking Lemma [14]). Fiz an integer ¢ = 1 and a set
H of size h = 2. Let A be a randomized algorithm that on input x,h, ..., hy
returns a pair (I,aux), the first element of which is an integer in the range
1,...,q or L and the second element of which we refer to as a side output. Let
IG be a randomized algorithm that we call the input generator. The accepting
probability of A, denoted acc, is defined as the probability that I # L1 in the
following experiment

z<—slG; hy,...,hg s H; (I,aux) <s A(z,h1,...,hy)

The forking algorithm F4(x) associated with A is a randomized algorithm on
input x defined as follows:

Pick a random tape p for A and sample hi,... hg s H.

Run (I,aux) < A(z,h1,..., hqg; p).

If I = 1, return 0.

Sample h'y, ... by <s H, run (I';aux’) < A(z, hy, ..., hr 1,07, ... hsp).
If I =1 and hy # by, return 1. Otherwise, return 0.

Let frk = Prlb = 1: 2 «s|G;b s F4(x)]. Then,

1
frk > acc (acc — h) , or alternatively, acc < \/q - frk + % .
q

3 Four-Move Blind Signatures from CT-CDH

We present a four-move blind signature scheme BS;, described in Fig.4. The
scheme can be viewed as a blind version of the signature scheme by Goh and
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Algorithm BS;.Setup(1?) :

(G,p,g) <$GGen(1*) ; W «$ G
Select H: {0,1}* - G

Algorithm BS;.Us (st , smsg,) :

(C7a0,a17"{07’Y17Z, Z', A, Rg, Ry, st}') « sty
(m, B,pk, k', h) « sti ; (d, e, 20, 21) < smsg,

If c#d+ eor
(Rgpk?, RpZ%) # (g70,h™0) or
AWE® # g*1 then
return L
d «—d+~ ;€ —e+m
20— 20 + Qg ;2 — 21+ o
Return o « (Z',d’, €', 2, 2})
Algorithm BS;.S1(sk, h) :
Z — b
21 e, roB] <3 2,
Rg < g0 s Rp <« h'0 3 A gt W™e
§ < H"(h, g™, Z,9°, h°)
m «— (8,8 + & - sk)
St (sk, 21, €, 70); smsg, — (7, Ry, o, A,[T))
Return (st®, smsg;)
Algorithm BS;.Sa(st?, ¢) :
(sk, z1,e,70) « st®
de«—c—ej;zog«—rg+d-sk
Return (d, e, zo, 21)
Algorithm BS;.Ver(pk, m, o) :
(Z,d,e,zp,21) «— 0
h <« H(m); A« gs1W™¢
Ry « g*0pk=¢ ; R), « h*0Z~ 4
If d+e # H(m,h,Z, Ry, Ry, A) then
return 0
Return 1

Select H’, {0, 1}* - 7,
Return par « (G, p, g, W, H,H’, )
Algorithm BS;.KG(par) :

(G,p, g, W,H,H', ) « par
sk «$Z, ; pk « g

Return (sk, pk)

Algorithm BS;.U; (pk, m) :

B S8 7y

h' — H(m) ; h — h'g?

st} « (m, B, pk, h', h)

Return (sty, h)

Algorithm BS;.Uz (st} smsgy) :
(m, B,pk, h', h) « st}

(Z,Ry, R, A, [T]) < smsg; ; |(J, s') «

If § # H”(h, pk, Z, g pk=%, h*' Z~°) then
return L

g, 1,70, 71 <3 Zyp

Z' « Zpk™? ; Rl « Rgpk™70 g0

R), « RyR;PZ/=70p/*0

A AW gt

¢ «—H((m,h, 2, R;, R}, A"

c—c =y —m

sty «— (¢, a0, a1,70,71, Z, Z', A, Ry, Ry, st})

Return (st3, )

Fig. 4. The blind signature scheme BS; = BS;[GGen]. The public parameters par, as
stated before, are implicit input to every algorithms except BS;.KG. The highlighted
boxes denote the NIZK proof used to show the equality of discrete logarithm of (pk, Z)
to the base (g, h). We also give a protocol diagram of BS; in the full version.

Jarecki [40], where a signature consists of an element Z = H(m)* with a discrete-
log equality (DLEQ) proof proving that the discrete logarithms of (pk, Z) are
equal with respect to the base (g,H(m)). However, we replace this proof with
a witness-indistinguishable OR proof, which additionally accepts the discrete
logarithm of a public random parameter W as a witness. Needless to say, this
parameter is meant to be generated transparently, e.g., by hashing a constant,
and nobody is meant to know this second witness. It is easy to see that the
scheme satisfies correctness.

In the full version, we present a related five-move blind signature scheme BSs
achieving one-more strong unforgeability (OMSUF-1) security from CT-CDH.

BLINDNESS. The following theorem, proved in the full version, shows that BS; is
statistically blind when H” is modeled as a random oracle. This property relies
on the NIZK proof highlighted in Fig. 4 to show equality of discrete logarithms
of (pk,Z) to the base (g,h). In the full version, we also show that if we omit
this NIZK proof, we still achieve computational blindness under the discrete
logarithm assumption, without random oracles.
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Theorem 1 (Blindness of BS;). Assume that GGen outputs the description of
a group of prime order p = p(\), and let BS; = BS;[GGen]. For any adversary
A for the game BLIND making at most Qur = Qu~(\) queries to H”, modeled
as a random oracle, we have

2 nw+ 2
AdVE (A, ) < 22

ONE-MORE UNFORGEABILITY. The following theorem establishes the OMUF-1
security of BS; in the random oracle model under the CT-CDH assumption. We
refer to Sect. 1.1 for a proof sketch, whereas the full proof is in Sect. 3.1.

Theorem 2 (OMUF-1 of BS;). Assume that GGen outputs the description of
a group of prime order p = p(\), and let BS; = BS;[GGen]. For any adversary A
for the game OMUF-1 with running time t4 = t4(\), making at most £ = £(\)
queries to S1 and Qu, = Qn, (A) queries to H, € {H,H',H"}, modeled as random
oracles, there exist adversaries B and B’ for the games DLOG and CT-CDH,
respectively, such that

P p
+ AdVEE (B, N)

Adv%lélluf—l(A’ A) < M (,€ + ]_ <\/QH’AdVélgegn(B )\) QH )

where @H/ = Qn' + £ + 1. Furthermore, B runs in time tg ~ 2t 4, and B’ runs
in time tg ~ ta, makes Qu + £ + 1 challenge queries to CHAL and £ queries to
DH.

3.1 Proof of Theorem 2 (OMUPF-1 of BS,)

To prove one-more unforgeability of BS;, we consider the following sequence of
games.

Game G({‘: The game first generates the public parameters and the secret
and public keys as par <—s BS;.Setup(1*) and (sk, pk) <—s BS;.KG(par). Then, the
game interacts with an adversary A(par, pk) with access to the signing oracles
S1,S> and the random oracles H,H’, H” which are simulated by lazy sampling.
The adversary A queries the signing oracle S; for ¢ times and the random oracles
H,H’ and H” for Qn, Qn/ and Qp times respectively. At the end of the game, A
outputs £+ 1 message-signature pairs (my,, oj,)reje+1)- The adversary A succeeds
if for all ky # ko, my, # mj, and for all k € [¢ + 1], BSy.Ver(pk,mj,0%) = 1.
We w.lo.g. assume that A does not make the same random oracle query twice.
Also, we assume that A makes the random oracle queries that would be made
in BS;.Ver when verifying the forgeries. This adds at most £ + 1 queries to H
and H’, making the total query count QH =Qu+{+1 and QHr Quw +4+1,
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respectively. The success probability of A in game G§' is exactly its advantage
in the game OMUF-1, i.e.,

AdvgE™™ (A, ) = Pr[Ggt = 1] .

Game G1': This game is identical to G(’fl except that for the message-signature
pairs (mj,, 0% )keje+1) output by the adversary A, for k € [¢ + 1], after parsing
(Zs dy, €520 1, 21 1) < OF, the game additionally requires that Z} = H(m ).

Then, by Lemma 2, there exists an adversary B for the game DLOG, running
in time tp ~ 2t 4, such that

PriG =1] > Pr[Gi = 1] — (£ + 1) (\/@H/Adv‘élgfn(l’j‘, A) + Q;’) .
Game G“24: This game is identical to G{* except that when generating the group
element W in par, the game generates w <—s Z, and sets W « g". Since W still
has the same distribution, the success probability of A is exactly as in Gf‘.

PriGy' = 1] = Pr[G{* = 1] .

Game G3': This game is identical to Gi' except that the signing oracle S; gen-
erates m by sampling s, 6 «<s Z,, and programming H" (h, pk, Z, g° pk~?, hle";)
as 0. The game aborts if H” is already defined at (h, pk, Z, g° pk?, hS,Z"s).
The view of A is identical to its view in Gg' if the game does not abort.
Moreover, the game only aborts if (h, pk, Z, gslpkf‘;7 hle"S) has been queried or
programmed beforehand, but gslpk% is uniformly random and independent of
the view of A and previous programming attempts of H” as s’ is uniformly ran-
dom and independent at the time that the oracle tries to program H”. Thus, by
applying the union bound over possible collision events, i.e., all pairs of queries
to oracle S; and queries to both H” and S; (accounting for attempts to pro-
gram H"),
L0+ Qur)
-

Game Gj': This game is identical to G3' except that the signing oracles are
simulated by using w instead of sk. More specifically, (A4, Ry, Rn,d, e, 29, 21) are
now generated as follows:

Pr(G3' = 1] = Pr[Gyt = 1] —

1. Sample r1,d, zp < Z, and set A — g™, (Ry, Ry,) < (gZOpkfd, h# Z~-4).
2. After receiving ¢, set e «— ¢ —d and z1 < r1 + € w.

Since the joint distributions of (A, Ry, Ry, d, e, 2o, z1) in the games G4 and G
are identical, the view of A remains the same. Thus,

PriGft = 1] = Pr[Gg' = 1].

Lastly, we give a reduction B’ playing the CT-CDH game using the adversary
A as a subroutine. The reduction B’ is defined as follows:
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1. The reduction B’ takes as input a CT-CDH instance (G, p, g, X), samples
w «s Zyp, and sets W « ¢g™. It then sends par — (G, p, g, W), pk — X to A.

2. The simulations of H' and H” are done as in G#'. However, for queries to H
(labeling each with j € [@H]), the reduction B’ queries the challenge oracle
CHAL and receives a random group element Y; which it returns as the random
oracle output. (This means that B’ makes @H = Qu +£+1 queries to CHALL.)

3. The signing oracles are also simulated as in Gi' except for the computation
of Z = h* in S; which is done by querying its DH oracle instead, i.c., Z «
DH(h).

4. After receiving the message-signature pairs (mj,, o) reje+1) from A, B’ checks
if all the messages are distinct and all the pairs are valid. If not, it aborts.
Next, B’ identifies jj for each k € [¢ 4+ 1] where jj is the index of the hash
query H(m},) made by A. Since mj, are distinct, there are exactly £+1 distinct
Jk- Lastly, B’ returns (ji, Z;)ke[¢+1) where Zj is the corresponding value in
o

It is clear that the running time of B’ is about that of A. For the success
probability of the reduction, we can see that B’ simulates the oracles identi-
cally to the game Gi'. Then, if A succeeds in the game G', then A returns

Zy = H(mp)* = le:ggx for all k € [¢ + 1] where sk = log, pk = log, X. Thus,
B’ succeeds in the game CT-CDH, as it returns £ + 1 correct CT-CDH solutions
while only querying DH for ¢ times. Therefore, PrjG{ = 1] < Adveccd®(B/, ).

Then, by combining all the advantage changes,

AdvEZ T (A, N) < WJ;?””) +(+1) <\/@H,Advg‘g§n(6, A + Q;')
+ AdVEZIN (B
O

Lemma 2. There exists an adversary B for the game DLOG, running in time
ty ~ 2t 4, such that

PriG{t = 1] = PrGt = 1] — (¢ + 1) <\/@H,Adv‘él§§n(6, A) + Q;’) .
Proof. Let Bad be the event where G64 outputs 1 but Gi* outputs 0. This
corresponds to the following event: 4 outputs £ + 1 message-signature pairs
(M}, of)kepe+1) such that (1) for all ky # ko, my # mj , (2) for all k € [£ + 1],
BS1.Ver(pk, m}, o) = 1, and (3) there exists some k € [¢ + 1] where parsing the
signature (Z},dy,, ey, 20 s 21 1) < Ok, we have that Z; # H(m})*k. Then, we can
write Pr[G{' = 1] = Pr[Gg! = 1] — Pr[Bad].

Also, define the event Bady, for k € [¢ + 1] which is event Bad with the con-
dition (3) specified only for the k-th pair (m}, o). This gives Bad = 24;11 Bady,.
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Now, define a wrapper Ay over the adversary A where Ay receives the fol-
lowing inputs: an instance (G, p, g, W), the output tape (cy, ... ,CQH/) of H', and
a random tape p.

1. Extract (Sk € Zp, (Si S Zp,T())i S Zp,ei S Zp,ZLZ‘ S Zp)ie[l]a (hl S G)
(0s € Zp)i€i@y+0, P') from the random tape p.
2. Set par < (G,p, g, W), pk « g**.
3. Run (mj, 0} )kepe+1) < Asl’s%"""'/""”(par7 pk; p’) where each oracle is simu-
lated as follows:
e For the signing query with session ID j (j € [{]) to Sy and So, use
(sk, si,70,, €, 21,4) to answer the query as in BS;.S; and BS;.S; respec-
tively. R
e For the i-th query (i € [Qu]) to H, return h;.
e For the i-th query (i € [Qu/]) to H', return c;.
e For the i-th query (i € [Qu~ +¥]) to H”, return §;. (Note: In these queries,
we accounted for the queries that the wrapper made to generate 7 in each
query to Sp.)

ie[Qu]’

4. If Bady does not occur, return (L, 1). Otherwise, return (I, (m},o})) where
I is the index of the query to H’ that corresponds to the verification of
(my,, 0%). More specifically, after parsing (Zj, dy, ey, 20 1, 21 1) < 0%, 1 is the
index corresponding to the query (m,h, Z, Ry, R, A) to H' where m = mj,
h =H(m),Z = Z;,R, = g?orpk % Ry, = h*0xZ % A = gL W, Note
that I is well-defined as we assume that all random oracle queries in forgery
verification are made by A beforehand. Also, it is easy to see that the running
time of Ay is roughly the running time of A.

Next, we consider the following reduction B playing the discrete logarithm game
defined as follows:

1. On the input (G,p,g, W), B samples ¢y, ... 1€, S Z, along with the ran-
dom tape p of Aj.

2. Run (I,(m,0)) «<s Ax((G,p,g, W), (c1,. .. ,C@H/);p).

3. If I = 1, abort. If not, sample ¢, .., c’@H, s Z, and
run (I, (m/,0")) «—s A ((G,p, g, W), (c1,...,c1-1,¢, ..., c’Cj /); p).

4. If I = I’ and ¢ # ¢, parse (Z,d, e, 20,21) <« 0,(Z',d €, z},2z]) < o', and
return (z; — z})(e — ¢’)~1. Otherwise, abort.

Since B runs Ay twice and the running time of A, is about that of A, tg ~ 2t 4.
Next, we show that if B does not abort (i.e., I = I’ # L and ¢; # ¢}), then
it returns a discrete logarithm of W. Since I = I’ # 1, the message-signature
pairs (m, o) and (m/, o’): (a) are valid signatures corresponding to the I-th query
from A to H' of the form (m,h, Z, Ry, Ry, A) and (b) satisfy Z # H(m)% and
Z' # H(m')**. By (a), we know the following
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(i) m=m/,h =H(m) =H(m'),Z = 2.

(ii) ecr =d+e,cp=d +¢€.
(iii) R, = g7pk ¢ = g#opk ¥ | R, = h*0Z~4 = h# 7~
(iv) A=ga W =gaWw—¢.

We will argue that d = d’. First, the equations in (iii) give Z4-d" = pro-z0 =
g(zo=70)logg h _ pk(dfd,)logy h = psk(d=d") GQince Z # hek, only d = d’ satisfies the
equation. Since d+e = ¢y # ¢ = d'+¢€’, we have e # €'. Thus, by (iv), B returns
(21— 21)(e— €)' =log, W. Hence,

AdVESE (B, \) = Pr[B does not abort] = Pril = I' AT # L ancp # ¢ .

Lastly, by the fact that B rewinds A; which only outputs I # L when Bady
occurs, we can apply the forking lemma (Lemma 1),

~

Pr[Bady] < \/@H/Advélgfn(l?, A) + % .

The lemma statement follows from the union bound over Bady, for k € [¢ +1]. O

4 Achieving OMUF-2 Security from CDH

In this section, we present a four-move blind signature scheme BSg3, described in
Sect. 4.2, achieving the OMUF-2 security based on the CDH assumption. A key
ingredient used in this construction is the homomorphic equivocal commitment
HECom given in Sect. 4.1.

4.1 Homomorphic Equivocal Commitment Scheme

In this section, we present the commitment scheme HECom which is a tuple of
algorithms (Gen, TGen, Com, TCom, TOpen), described in Fig.5. The algorithm
Gen generates a uniform commitment key ck <—s G2*2, which can be done trans-
parently. For the rest of the scheme, one can view our commitment as a variant
of the commitment scheme of [9]. Both commitments commit to a group ele-
ment, and are additively homomorphic and computationally binding based on
the DLOG assumption. For equivocation, we can generate the commitment key
with a base X € G embedded, allowing us to open a commitment of S’ to
S = 5’X¢ for any ¢ € Z,. On the other hand, their equivocation allows opening
a commitment to ¢g*X¢ for a uniformly random a € Z, and any ¢ € Z,. The
following theorem, proved in the full version, summarizes the properties of our
commitment scheme.

Theorem 3. Assume that GGen outputs the description of a group G of prime
order p = p(\). The commitment HECom = HECom[GGen] satisfies the following
properties:
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Algorithm Gen(par = (G, p, g)): Algorithm Com(ck = A € G2*2,5 € G;crnd € ZQ):
Return ck «$ G2*2 Return hcom <« (Acrnd1 Aclr;dg S . AcrndlAcrndz)

Algorithm TGen(par = (G, p, g), X): Algorithm TCom(td = (D, X), S’ € G):
di1,d12,d21,d2s <8 Zp T,p S Zp ; hcom — (g7, 5" XP) ;st — (D, X, S, 7,p)

D < (%11 di2 Return (hcom, st)

d21 da2

gin gdiz Algorithm TOpen(st = (D, X, S’, 7, p),c € Zp):
ck (Xd21 Xd22) If D is not invertible, then return L

. -1 T
Return (ck,td <« (D, X)) Return (S « S"- X¢ ernd < D7 (1,p — ¢)")

Game BindingHAEccm (A):

par «—$ GGen(1*)

ck «<$ Gen(par) ; (S, S’,crnd, crnd’) «<$ A(par, ck)

If Com(ck, S; crnd) # Com(ck S’;ernd’) or S = S’
then return 0

Return 1

Fig. 5. Description of the special commitment scheme HECom = HECom[GGen] and
its binding game. For the algorithms Com, TCom, and TOpen, par = (G, p, g) is taken
as an implicit input.

o Additive Homomorphism. For hcomg, hcom; € G2, denote hcomg - hcom;
as element-wise application of group operation. For all (G, p, g) <s GGen(17),
ck € G2, 5,51 € G, and crndg, crd; € Z2,

Com(ck, Sp; crndg) - Com(ck, S1;crndy) = Com(ck, SoS1; crndg + crndy) .

e Special Equivocation. For all par s GGen(1*), X # 1g and (ck,td) «<s
TGen(par, X) such that D contained in td = (D, X)) is invertible, and for any
group element S = X¢S’, the following distributions Do and D1 are identical:

(hcom, st) <—s TCom(td, S’);

(S, crnd) «<—s TOpen(st, ¢) '

Dy := {(hcom,S,crnd) :crnd «s Zg ; hcom « Com(ck,S;crnd)} .

Dy := {(hcom,S7 crnd) :

e Uniform Keys. For all par <s GGen(1") and X # lg, ck generated by
(ck,td) <—s TGen(par, X) is uniformly distributed in G?*2 (i.e., distributed
identically to ck <s Gen(par) ).

e Computationally Binding. For any adversary A for the game Binding
(described in Fig. 5) with running time t 4 = t o(\), there exists an adversary
B for the game DLOG with running time tp ~ t 4 such that the advantage of
A in the game is bounded by

indin, . . o 1
AdvPEAnE (4 \) = Pr[Bindingfiecom(A) = 1] < AdVaeE (B, \) + S

4.2 Four-Move Blind Signatures from CDH

The scheme BSj is described across Figs.6 and 7. Our starting point is Rai-
Choo [42], a two-move blind signature scheme which is OMUF secure based
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on the CDH assumption in a pairing group. To better abstract our ideas, we
consider a pairing-free analogue of Rai-Choo producing signatures of the form

((pk;, i)ie[k], S) with inefficient verification checking

K K
pk = [ [ pk; and S = T H(H,.(m, @;))'%s i .
i=1 i=1

To make the scheme efficiently verifiable, we apply a witness-indistinguishable
OR proof showing that the signature is valid, i.e., ((pki)ie[K],S) satisfies the
verification equation with regard to (H(H,(m, ¢;)))ie[k], or that we know the
discrete logarithm of a public parameter W. Finally, using the homomorphic
equivocal commitment HECom from Sect. 4.1, the signer commits to the group
element S from the Rai-Choo protocol and the nonce R in the OR proof as
hcomg and hcomg respectively. These commitments are sent in the second move
instead of S and R and opened later in the last move. The final signature consists
of a Rai-Choo signature ((pk;, i)ic(k], S), the OR proof response (d, e, Zy, z1),
and the commitment randomness used to compute hcomg and hcomp. It is easy
to show that this scheme satisfies correctness.

As mentioned in the prior section, the commitment key of HECom can be
generated transparently; thus, so are the public parameters of BS3. We also
remark that the complexity of the scheme depends on two parameters N and
K of which N~¥ needs to be negligible for the OMUF proof. To achieve the

signature size and communication in Table 1, we set N = 2 and K = .
BLINDNESS. The blindness of BS; can be guaranteed by the following steps:

e We apply the blinding procedure from Rai-Choo (as described in Uy, U and
ReRa) to make the distribution of ( (pk;)ie[ K] S') in the signature independent
of the transcript.

e We then blind the OR proof (as described in Uz and Us) to make the distri-
bution of (d’,€’, %, 27) in the signature independent of the transcript.

e To blind S and R according to the above points, we use the homomorphic
property of HECom and blind hcomg and hcom z instead. We also rerandomize
the commitments as the commitment randomness is included in the final
signature.

e Finally, we need to ensure that the signer cannot send ((pk;);e[x],S) such

that S # Hfil hioif’ P where h; 7 for i € [K] are group elements contained
in the user’s first message. Otherwise, a malicious signer can link the signa-
tures back to the signing sessions by checking whether one of the signatures
contains the values ((pkj,¢;)ic(x],S’) with S # Hfil H(H,(m, ¢;))"8s pk;
To avoid this, we include a proof 7 in the signer’s second response attesting

that ((pk;)ie[x],S) is honestly generated. For this, we use the non-interactive
proof system II = (H.ProveH", II.Ver"m)  described in Fig.7, with access
to the hash function Hy : {0,1}* — Z, modeled as a random oracle in
the security proofs. We require that II satisfies completeness, soundness, and
zero-knowledge in the random oracle model. The formal definitions and proofs
are given in the full version.
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Algorithm BS3.Setup(1*, K, N) :
(G, p, g) <% GGen(1*)
W «$G ; ck «<$ HECom.Gen((G, p, g))
Select H,,, Heom : {0,1}* — {0,1}*
Select H: {0,1}* - G
Select Hg, H',Hp : {0, 1}* - Zyp
Select Hee : {0,1}* — [N]X
par — (G,p, g, W,ck, K, N,

Hu, Heoms HyHg, H'  Hir, Hee)
Return par
Algorithm BS3.KG(par) :
(G,p,g,W,ck, K, N,

H., Heom, H,Hg, H' Hr, Hee) < par

sk «$ Z, 5 pk < g”
Return (sk, pk)

Algorithm BS3.S;(sk, umsg,) :

(5 ((rig) 2 7, c0my 70 by 7 )ie[K])
«— umsg;

If Check(umsg,) = 0

then return L
For ie [K — 1]:

ski «$ Z,, ; pk; — g™
sk« sk — 2K sk;
pkg — QSKK
z1,e <S8 72y, To <—$Zf
a K pskg
S« Hi:l hi’fi
A giWwe
R (g701,. ..

R [T, n0

i=1"

970K )

crndg, crnd g <8 Zg
hcomg <« Com(S;crndg)
hcompz <« Com(R;crnd)
Return ((pk;)ie[x —1], hcomg, 1% hcomp, A)
Algorithm BS3.S2(c) :
d«—c—e
For i € [K]:
Zo,i < To,i +d-sk; _
input « (g: (hzfl ) pkz’,)ie[K]v S)
m «— Provellm (input, (ski)se[x])

Return (d, e, Zy, 21, S, R,crndg, crnd i, )

Algorithm BS3.U; (pk, m) :

For (i,j) € [K] x [N]:

@i «<${0, 13 5 pij — Hu(m, @i ;)

€5, <${0, 1} 5 Bi; — Halei )

Fij < (Wij:€i,5) 5 comij < Heom(rs,;)

By o= Hpij) 5 hiy < h;,JgBi’j
com «— (com; j)ie(k],je[N] ; B — (hij)ie[K],je[N]
J Hec(com, k)

Return (7, (i) ;4 7,-com, 7., b, 7 )ie(x])

Algorithm BS3.Uz(smsg;) :

((Pk;)ierx 17 hcoms, R, hcomp, A) — smsg,
pkg < pk niE[K] qu,_l
1,70, 71 <8 Ly 5 Go S Ly 5 8s,0p S L7

J— -8, =
hcomg « hcomg - Com(ck, [TX, pk; e 5s)
((PK}) e[k, hcom’s, 7)

% ReRa((pk,, h;,fi)ie[K] ,hcomg)
For i € [K] : ﬁ; — R‘ipk;*’mg&o,i
—— =B, 7. -
hcomp « Com([[X | R, v h;’jiao,i;(;R)
hcom’s «— hcom g - hcom’s ™
Al — AW g1
¢« H'(m, (h;ji7 pK} ) e[ i), hcom’y, R, hcom’;, A”)

70 - hcomp

7
C—C —7% — 7
Return ¢

Algorithm BS3.Ug(smsg,) :

(d,e, %0, 21,5, R,crndg, crnd g, ) < smsg,
If c#d+eor AW® # g*1 or
Ji e [K], Ripkd # g0t or
»ad K 20,4
RS # [[;L, hi,fi or
hcomg # Com(S;crndg) or
hcomp # Com(R;crndg) or
Vertn (g, (h; 7., PK;)ie[KTs S), ) = 0 then
return L !
a g - i,.fL- 7.
S’ “«— SHf{=1 pki h:fl 2
d —d+n0; e — e+
Zy—Zo+do+d T2 — 21+
crndy «— crndg + ds
crnd’; < erndz — Yo »crn_dlg +0r
o — ((pK;, 0, 7 )ierx], S’ d' €', Z, 21, crnd’y, crnd’y)
Return o )

Fig. 6. The setup and key generation algorithms along with the signing protocol of
the blind signature scheme BS3 = BS3[GGen]. The verification algorithm BSs.Ver, the
algorithms Check, ReRa and the proof system II = (II.Prove"'7, II.Ver') are given
separately in Fig. 7. For the ease of understanding, we omitted the states of both the
user and signer algorithms and assume that any values initialized in the prior rounds
are accessible to the later rounds. The public parameters par, as stated before, are
implicit input to every algorithms except BS3.KG. The notation Com(- ; -) denotes
HECom.Com(ck, - ; -) for the commitment scheme HECom from Sect.4.1. Similarly,
we write (Prove"'7 Ver"T) instead of (IT.Prove7 IT.Ver"T). We also give a protocol

diagram of BS3 in the full version.
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Algorithm BS3.Ver(pk, m, o) : Algorithm ReRa((pk;, hi)ie[x], hcomg):
(ki @2)ie(ae) 5o e Zo 21, crmds, emd ) o |Lot 7 € 25
For i€ [K] : Ty Tl <8 Lps Tre — — 2 ' 7

3. 20,i k4 -
h; <—0Il-|(HI:(7n UL,A%)) Ry «— g pk; For i € [K]: pk/ «— pk;g"i
7 z —e
R« STl hy A —gtW hcom’y « hcomg - Com(l_[f( N h:’“ 0)
hcomg «— Com(S crnd 5) Return ((Pk;)ic[ 7, hcom’s, 7)
hcomp « Com(R;crndR) ’

¢ — H'(m, (hi, pk;)ic[x], hcomg, R, hcomp, A) | I1.Prove™ T ((g, (hi, pk;)ic(x], S); (ski)ierx))

1If pk;él_[ie[K] pk, or d 4+ e # ¢ then Ty T <5 2y
return 0 For i € [ ] R; <« g"
Return 1 R« HK hrv
Algorithm Check(open): c— Hn(g (h'u pk;)ic[x]s S, (Ri)ie(x], R)

= Forie [K]:s; « 1; + c-sk;
(1, ((ri )27, c0m; 7.5y 7 )ier) < open Return 7 < (c, (51)1e(x1)

For i € [K] and j € [N|\{J;}:

com; j < Hcom(rz‘,j) I1.Ver'nt ((97 (hi: pki)iE[K]7S)7 )
(i, €i.5) < rig i Biy < Hp(eij) (c, (si)ie[x)) < 7
hij — H(pi ;)g"d For i e [K] R; « g®ipk; ©
com <« (com; ;) ie[K],je[N] R §- HK I 0 i
h (t (hi,j)ie[K],je[N] If ¢ # Hi (g, (h“ pk )iE[K]’g7 (Ri)ie[x]s R)
If J # Hce(com, h) then return 0. then return 0
Return 1 Return 1

Fig. 7. The verification algorithm BSs.Ver and the algorithms Check and ReRa used
in the signing protocol of BSs and the proof system II. The public parameters par are
implicit input to BS3.Ver.

Similar to BS; and BSs, one could also not include IT in the protocol, and show
computational blindness based on the DL assumption. Still, this proof would
depend on the random oracle model since the original blindness proof of Rai-
Choo also required random oracles. Thus, we only consider the variant with IT
included, and prove the following theorem in the full version.

Theorem 4. (Blindness of BS3). Assume that GGen outputs the description of
a group of prime order p = p(X\), and let BS; = BS3[GGen] and K = K(\), N =
N()) be positive integer inputs to BSs.Setup. For any adversary A for the game
BLIND making at most Qu, = Qu,(X) queries to H, € {H,,Hs,Heom, Hrr },
modeled as random oracles, we have

2Qu, +2  2KNQu,  2KQu,  2KQq
P 22 22 22

com

AV (A ) <

ONE-MORE UNFORGEABILITY. The following theorem, proved in Sect. 4.3, estab-
lishes the OMUF-2 security of BS3 in the random oracle model under the CDH
assumption.

Theorem 5. (OMUF-2 of BS;3). Assume that GGen outputs the description of
a group of prime order p = p(\), and let BSg = BS3[GGen] and K = K(\),N =
N () be positive integer inputs to BSs.Setup. For any adversary A for the game
OMUF-2 with running time t4 = t4(\), making at most Qs, = Qg,(\) and
£ = L(\) queries to S; and Sa, respectively, and Qu, = Qu, (\) queries to Hy €
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{H,H',H,,Heom, Hee, Hir }, modeled as random oracles, there exist adversaries B
for the game Binding of HECom, B’ for the game DLOG, and B" for the game
CDH, such that

Advgs, (A N) <(C+1) (\/ Qu (AdVREER (B.X) + AdVges, (B, ) ) + Qp”’)

Qs,  Qhn T Qh, + Qe Qn.. + QnQn,,
+ NE + %)

L UHOny 1 12) Q;” 12 g AdvER (B |

where Qu = Qu + (0 + 1)K, Qu = Qu + €+ 1, and Qn, = Qu, + ({ + 1)K.
Furthermore, B, B and B run in time tg,tp ~ 2t 4, and tg: ~ t4 Tespectively.

The proof below consists of the game sequence Gg — G113 which is split into
the following parts, with G corresponding to the OMUF-2 game:

e Game G forbids the adversary from returning a message-signature pair that
contains ((pk;, ¢i)ie(x], S) with S # Hfil H(H,,(m, ¢;))'°8s P%i. If such event
occurs, we rewind A to either break the binding of HECom or extract the
discrete logarithm of W in the public parameters.

e Games Gy — Gy change the simulation of the interactive proof in the protocol
to now use w = log, W instead of {sk;};c(x]-

e Games G5 — Gqg follow the security proof of Rai-Choo [42] and program the
random oracles such that, in any signing session where the signer’s second
response is requested, log, h,. 7 for some i* € [K] is known, and that there
is still a message-signature pair output by the adversary from which one can

extract a CDH solution. Essentially, the proof does the following:

1. First, the proof argues that for each of the user’s first message, there
exists some i* € [K] where h;. 7. is computed honestly, ie. h;. 7 =
H(H.(m, p)) for some (m, ) (extractable from the random oracle tran-
script). This then binds each signing session with some message.

2. Then, it programs the random oracles such that, still with non-negligible
probability, the discrete logarithm of H(H,(m, ¢)) is known for the ses-
sions where the adversary requested the signer’s second response. Since
there is at most ¢ such sessions, it is still possible to program the oracles
to extract CDH solution from one of the ¢ + 1 forgeries. Note that for the
sessions where only the user’s first message is received, it does not matter
whether such discrete logarithm is known.

e Games Gi; — Gi3 generate the commitment key ck with the base X = pk

embedded and simulate the rest of each signing session (i.e., (pk;)icx], hcomg,
and S) without the secret key. More specifically, one can sample sk; «s Z,
for i # i*, set pk; « g¢°% and compute pk;. such that pk = Hfil pk;. Then,
observe that S as computed in the protocol can be written as

K

g ks sk—3", .+ ski sk; log, h;. 7 sk; 7 —sk;

S = L = h h¥ i = pk gl’Jz‘*llhah @
II i, e g 11 i, P AR
i=1 Qi it
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Since we know log, h,. 7 only for sessions where the signer’s second response
s/ g* _

is requested, we cannot compute S without sk for every first signer’s response.

However, using the special equivocation property, we can send hcomg as a

it hSk wh Skq and open it later to S = pk'*%s "7 G/

e Finally, we construct a reductlon to CDH using an adversary playing the
game Gi3.

commitment to S’ =[]

4.3 Proof of Theorem 5 (OMUF-2 of BS3)

Let A be an adversary playing the OMUF-2 game of BS3. We consider the
following sequence of games.

Game G{': The game first generates the public parameters par <—s BS3.Setup(1*,
N, K) and the secret and public keys (sk, pk) «s BS3.KG(par). Then, the game
interacts with an adversary A(par, pk) with access to the signing oracles Si, Sy
and the hash functions H, H’, H,, Heom, Hee, Hz, modeled as random oracles and
simulated via lazy sampling. The adversary A queries the signing oracles S;
and Sy for (s, and ¢ times respectively, and the random oracles H, for Qn,
times for H, € {H,H’,H,,,Hcom,Hee, Hir}. At the end of the game, A outputs
¢ + 1 message-signature pairs (my, oy )reje+1)- The adversary A succeeds if for
all k1 # ka,mj, # my, and for all k € [¢ + 1],BS3.Ver(pk,mj,0;) = 1. We
w.l.o.g. assume that A4 does not make the same random oracle query twice.
Also, we assume that A makes the random oracle queries that would be made
in BS;z.Ver when verifying the forgeries. Thus, the total query counts become
QH —QH+(£+1)K QH’ Quw +2+1, andQH —QH +(€+1)Kfor H, H/
and H,, respectively. The success probability of A in the game G is exactly its
advantage in OMUF-2 i.e.

AdvEE (A N) = Pr(Ggt = 1] .

Game G1': In this game, in addition to the adversary A outputting £ + 1 valid
message-signature pairs (my, o), the game requires that for each k € [¢ + 1],
after parsing ((pk; x, ] 1.)ic(K]» Sks Dis €hs 2 p> 21 5> €My, erdy ) < of, the
game checks that

K
Si = [T HOu %

where pj = H,(my, ¢} 1), sk; , = logg pk; ;.. If this check fails, the game aborts.
We note that if the game knows log, H(y; ), the game can efficiently check if
S; =115, pk; 1 logg H(Kik) ingtead.

Let Bad denote the event that A succeeds in game GA but not G+', which
gives PriG{* = 1] > Pr[Gg' = 1] — Pr[Bad]. Then, by Lemma 3, there exist
adversaries B and B’ for the games Binding of HECom and DLOG, respectively,
both running in time tg,tg ~ 2t4, such that



198 R. Chairattana-Apirom et al.

PriG{ = 1] = Pr[Gy! = 1]

—(+1) <\/@H, (AdVEEERE(B, A) + Advacs,(B/, ) ) + QW) .

p

w

Game G3': In this game, the game generates W in par as W « g% for w «s L.

Then, the signing oracles S; and So now generate (é, R, A, d,e, zy, ) as follows:

e Sample r1,d «s Zyp, Zp < Z{f.
o Set A «— g“,ﬁ — (ggovlpkfd, . ,gEO’ka;(d) —d HZ 1 j
o After receiving ¢, set e «— c—d and z1 < 11 + € - w.

Since the joint distributions of (ﬁ, R,A,d,e,Z,7) in this game and the game
G+! are identical, we have

PriGs' = 1] = Pr[G{t = 1].

Game G3#': In this game, hcom is generated as hcom -Com(ck, Hl 1 h ho 5R)

with §z <s Z2, and the game now sets crndg «— 6z — d - crndg. Here, crndR is
still umformly random over Z2 and hcomy still commits to the same R. Thus,

PriGs' = 1] = Pr[Gs' = 1].

Note that in G3!, we only need S and crndg when opening hcomp in Sy, while
computing hcomp in S; only requires hcomg.

Game Gj': In this game, the signing oracle Sy now generates the proof m by
using a simulator Sim(g, (h; 7 ,pk;)ic[x],S) defined as follows:

e Sample § «s Zj, 5 s fo.
e If Hir (g, (hy, pki)ie[K]7§, (ggipki—(s)ie[K],5”‘s Hil hff) is defined, abort.
e Otherwise, program Hj; of that input to ¢ and return 7 < (¢, §).

If the simulator abort, the game aborts.

The view of A is identical to its view in G except when the game aborts
(i-e., the simulator fails to program Hj7). Also, notice that gglpkf‘s is uniformly
random and independent of the view of A and previous programming attempts
of Hyy. Thus, by the union bound over possible collision events, i.e., all pairs of
queries to oracle Sy and queries to both Hy and Ss (accounting for attempts to
program Hpy),

l (f + Qn n)
-

Game Gz': In this game, the game aborts if one of the following occurs.

Pr(Gi' = 1] = Pr[G3l = 1] —

(a) For each H, € {Hcom,H,}, there exist two queries x # 2’ to H, such that
Hi(z) = Ho(2").
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(b) The game additionally keeps track of a mapping #[-] : {0,1}* — {0,1}?*.
Then, for each query (com,h) to H.. where com = (com; ;)ic(k],je[n] and
h = (hij)icix),je[n) the game does the following: For each i € [K] and
J € [N], check if there exists a query r’ to Heom such that Heom(r") = com, ;,
then if there is one, set f[com; ;] < r’; otherwise, set f[com; ;] < L and abort
if later there is a query r’ to Heom where Heom(r') = com, ;.

The view of A in this game only differs from its view in G£' if the game aborts.
The abort probability for (a) corresponds to the probability of collisions in the
outputs of Heom and H,, which is bounded by (QF  + @a#) /2*. Also, since the
output of Heom is uniformly random in {0,1}*, the abort probability for (b) is
bounded by Qu_,, @n,./ 22, considering all pairs of queries to Heom and He.. Thus,
Qi

com

+Qf, + Qe Q..

PriGz' = 1] = Pr[G' = 1] - "

Before proceeding to the next game, we consider an event where A queries Sy
with the input umsg, = (J, ((rig)jez-com; 7, by 7 )ie(r]). We consider the case
where Check(umsg;) = 1 which would define values com = (com; ;)ic[x],je[n]
and h = (hq;)ie[k),jev) such that He.(com,h) = J. Also, consider the values
f[com; ;] related to the query H..(com,h) defined in G¢'. For each instance i €

[K], we have the following observations:

o If for some j € [N], t[com; ;] = L, then j = J;. For other j' +# J;, since ri ;1S
revealed in umsg; and Check(umsg;) = 1, com; j; = Heom(rs ;), by the abort
(b) introduced in Gg', f[com; /] # L.

e If for some j € [N], f[com; ;] = (u,e) # L, but h;; # H(u)g? where 8
Hs(ei ), then j = J;. This is because of the no collision condition (abort (a))
in Heom introduced in G£', meaning for j/ # j;-, tlcom; o] = rijr = (i jr, €65 )-
Then, with Check(umsg;) = 1, we have h; ; = H(u; ;)g™e 7).

We say the adversary A successfully cheats in instance i € [K] if one of the two
cases above occurs while Check(umsg;) = 1. Since the values f[com; ;] are fixed
when J := Hee(com, h) is queried and J is uniformly random, the probability
which A successfully cheats in instance ¢ € [K] is at most 1/N. Then, the
probability in which A successfully cheats in all instance is at most 1/N¥,

Game G¢': In this game, if A successfully cheats in all instance i € [K] in some
signing query to S, the game aborts. By the above discussion and applying the
union-bound over all queries to Sy,

Q

PriGg = 1] = Pr[GZ = 1] — NS]; :

Game G“74: In this game, the game aborts if A queries H with g such that there
is no « where H,(z) = p at the time, but later on there is a query z to H,
where H,(z) = p. The view of A only changes if the game aborts. Then, since
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the outputs to H,(-) is uniformly random, we can bound the probability of the
abort by considering all pairs of queries to H and H,,. Thus,

~ o~

QuQmn,
22 '

PriG#t = 1] > Pr[Gg' = 1] -

Game Gj': In this game, the game introduces two mappings B[], b[:] such that
when A queries H,(m, ¢) and no query of the form (m, -) has been made before,
blm] is set to 1 with probability 1/(£+ 1) and 0 otherwise. Moreover, when there
is a query H(u) of which the value is not defined, the game searches for a previous
query (m, ) such that H,(m, ) = u and set b[u] < b[m]. If such query does
not exist, set b[x] < 0. Since both b and b are hidden from the view of A, the
view of A remains the same. Thus,

PriGg' = 1] = Pr[G2t = 1] .

Note that by the change in G2, it cannot be the case that b[m] = 1 but b[u] = 0
for some m and p = H,(m,-), since this means that the query H(y) is made
before H,,(m, ).

Game G3': In this game, we made the following changes to Gg' as follows:

e The game introduce a list L.

e Recall that by the change in Gg‘, for each signing session, there exists an
instance i* € [K] where A does not successfully cheat. Thus, the game can
extract r = (u,¢) such that Heom(r) = com, 7 and H(u)gHs(®) = i .-
Then, for each query to So, the game aborts if b[u] = 1. Otherwise, the
game tries to find a previous query (m,-) such that p = H,(m,-) and sets
L — LU{(u,m)}, if such m exists.

e When A returns ¢ + 1 forgeries for distinct messages, since A queries Sy for
¢ times, there exists m* from one of the message-signature pairs such that

(-,m*) ¢ L. The game aborts if b[m*] = 0.
Consider the success probability of A.
Pr[Gg' = 1] = Pr[A succeeds|Gg' does not abort]Pr[Gy' does not abort] .

Notice that the view of A, if the game does not abort, is exactly as in Gé“. Thus,
we consider the probability that Gg' does not abort, which corresponds to the
event that for all (1, m) € £,b[u] = 0 and b[m*] = 1. Hence, we can bound

Pribm*] =1 A V(u,m) € L : blu] = 0]
= Pr[b[m*] = 1]Pr[¥(p,m) € L : bjm] = 0]

1 1\ 1 1\
> = (1-—) =2 (1—-—) =—.
{+1 {+1 12 {+1 4
The first equality follows from the independence of sampling each b and that
bl] = b[m]. The next inequality follows from |[£| < ¢ (since the game appends
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to £ only in Sy) and b[m] for distinct m being independently sampled. The last
inequality follows from (1 — 1/x)* > 1/4 for & > 2. Therefore, we have

impé:ﬂ.

mp§=u>M

Game G1}: In this game, the game keeps track of a mapping ¢[] : {0,1}* — Z,
and initialize a Y «<s G at the start of the game. Then, for each new query H(u),
the game returns H(p) « YW gtl) where t[u] <—s Z, and b[u] is as defined in
Gg'. The view of A is the same as in Gg' since H(p) is still uniformly random
over G. Thus,

PriGf} = 1] = PriGg' = 1] .

Game G1}: In this game, the game generates {sk }ielk) in each signing ses-
sion as follows: recall the non-cheating instance 7* from G6, the game now
generates sk; <sZ, for i # i* and sets sk; <« sk — Z#Z sk;, along with
pk; < pk[[;.;- pk; *. This is only a syntactical change and the view of A stays
the same.

PriGyi = 1] = Pr[G{, = 1] .

Game G7y: In this game, the game now aborts if sk = 0, and if this abort
does not occur, the commitment key ck is now generated along with a trapdoor
td with a base pk embedded i.e., (ck,td) <sHECom.TGen((G,p,g), pk). The
probability of the abort occurring is at most 1/p. Also, by the uniform key
property of HECom, ck generated with pk # 1g is distributed identically to
ck <—s HECom.Gen((G, p, g)). Thus,
mmgzlpﬂwcﬂ:u—l.

Game G74: In this game, the game does not compute sk;- in each signing session
anymore and changes the way hcomg is computed and opened as follows:

e First, observe that we can write S as

R | TR St | Rl | (s
7,J7, i le lezJ

1#T* 1#1*

Then, in Sp, the game now computes (hcomg, steom) «<s HECom.TCom(td, S”)

ki 7.—sk;
for " =TJ._.. LA .
§" = Il i Ji it

e When S, of the same session is queried, by the change in G{;‘, we know that

hg. 5. = H(u)g” for some (u,€) with § = Hg(¢) and that b[u] = 0 (otherwise,
the game aborts). Then, by the change in Gfo, the game knows log, h,. 7 =
B + t[u]. Thus, the game opens hcomg as (S, crndg) «<—s HECom.TOpen(stcom,

B+ t[u])-
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By the special equivocation property of HECom, the view of A stays the same,
unless the matrix D € Z2*? contained in td is not invertible, which occurs with
probability at most 2/p by the Schwartz-Zippel lemma. Thus,

2

PrGfA =1] = Pr[Gyy = 1] — =.
p

Lastly, we give a reduction B” playing the CDH game as follows:

e The reduction B” takes input (G, p, g, X,Y). If X = 1g, B” returns 1g. Oth-
erwise, the game sets pk «— X, par — (G,p, g, W,ck, K, N), with W and ck
generated as in Gt}, and runs A(par, pk).

e The random oracles H,,, Hcc, Heom, H’ Hp are simulated as in Gf},); however,
for H, the game uses the CDH input Y in place of the Y used in Gf}.

e The signing oracles are simulated without sk as in G}.

e When the adversary returns ¢ + 1 message-signature pairs, the reduction
checks if all the pairs are valid and the messages are distinct. If not, B”
aborts. Then, the reduction identifies m* as in Gg' and let o* be the cor-
responding signature for m*. The reduction parses ((pk;, ©})ic[k]; S*, d*, e*,
Z5, 27, crndg, erndi) < o, computes pf = H,(m*, ¢}), and returns

K
7 = 57* . H pk:*t[/‘:] .
=1

First, we can see that the running time of B” is about that of A. Next, we will
show the correctness of the reduction. We can see that if X = 1g, the game is
trivial for B”; otherwise, B” simulates the game G} perfectly. Then, suppose A
succeeds in Gty. By the change in G{', this means that for (m*,c*), we have

S5 =15, pk: '8 HD) | Thus,

K K K
o* — H pkrlogg H(pi) _ H pk;b[ui]-logg Y+i[pf] _ pklogg Y H pk:t[ui] 7
i=1 i=1 i=1

where the third equality follows from b[u}] = b[m*] = 1 for any i € [K] (due
to the changes in games G#' — Gg' and that H,(m*,¢f) = uf). Hence, B”
succeeds in the CDH game as Z = pk'% ¥ = X'°% Y implying Pr[G7} = 1] <
AdvER: (B”,)). Finally, combining all the advantage changes,

Advge ™ (A4, X) <(£+1) <\/ Qw (Adv‘;i,;*g;*:ng(zs, ) + Adves (B, A)) + Qp“’)

Qs,  Qhn T QA + QHenQn.. + QnQu,,
NK + 22

it 12
p A Q1) g agvedh (573)

+
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Lemma 3. Let Bad be the event where A succeeds in game Gg' but not Gi*.
Then, there exist adversaries B for the game Binding of HECom and B’ for the
game DLOG both with running time tg,tg ~ 2t 4 such that

Pr[Bad] < (£ + 1) <\/@H/ (AdVEESRS(B. A) + Advaes,(B/, ) ) + Qp“’) .
Proof. First, observe that Bad corresponds to the following event: A outputs
£+ 1 message-signature pairs (mj,, o3 )reje+1) such that (1) for all ky # kg, mj #
my,, (2) for all k € [¢ + 1], BS3.Ver(pk,oy,m;) = 1, and (3) there exists
k € [¢ + 1] such that after parsing the signature ((pk;k,@j’k)ie[K],gz,d};,ez,
EE‘;JC,zik,crndz—.yk,crnd%’k) < o}, and setting uj, <« H“(mz,@;k), we have

S # Hfil H(u;k)loga PKik. Also, define the event Badj, for k € [£ + 1] which
is event Bad with the condition (3) specified only for the k-th message-signature
pair (m}, 0}). We can see that Bad = ;;111 Bady,.

To bound Bady, define the following wrapper A, over A, which takes inputs:
the instance (G, p, g, W, ck, K, N), the outputs (¢q,. .., C@H/) of H’, and a random

tape p.

1. Extract from the random tape p, the following

(Sk7 ((Skj,i)iG[Kfl] 5 FO,jaeja Zl,ja pH,ja Crnd57j7 CrndR,j)jE[Qsl]7

(ti)ie[@H]v Hua Hcom7 HH, Hcc7 Pl)

where sk € Z,, and for i € [K],j € [Qs,], ski j,e;,21,j € Zp,To,; € Zfﬂ while
pm,; denotes the randomness used to generate 7 in the j-th signing session,
crndg j,crndp 5 € Z127 denote the randomness for the commitments in the j-
th signing session, (ti)ie[QH} denotes a list of values from Z, which will be
used to program H, H, € {H,,Hcom, Hee} denote a lists of Qn, values (@HH
values for H, = H,,) in the codomain of H,, and Hj; denotes a list of Qu, + ¢
values in Z,. Additionally, we denote H,[i] as the i-th entry in the list for
H, € {H,,Heom; Hee, Hrr .
2. Set par «— (G, p, g, W,ck) and pk « g.
3. Run (mj, 0} )keper1) < Asl’Sz’H’H/’H"’H“’H”m’HCC(par, pk; p') where each oracle
is answered as follows:
e For the signing query with session ID j (j € [Qs,]) to S; and S, use
(sk, (skji)ie[x-1],T0,5: €45 21,5, pi1,j>Crndg ;,crndg ;) to answer the query
as in BS3.S; and BS3.S; respectively.
e For the i-th query to H (i € [Qn]), return g' and set t[-] «< t; accordingly.
e For the i-th query to H' (i € [Qu/]), return ¢;.
e For the i-th query to H, € {H,,Hcom,Hcc} (7 € [Qn,] and i € [Q\Hu] for
H, = H,), return H,[i].
e For the i-th query to Hyz (i € [Qu,, +¢]), return Hy[i]. (In these queries,
we accounted for the queries that the wrapper made to generate 7 in each
query to Ss.)
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4. If the event Bady does not occur, return (L, 1).
Otherwise, return (I, (m},, 0})) where I is the index of the query to H' from
A corresponding to the verification of (mj,o}). More specifically, I is the
index of a query of the form (m, (hi, pk;)icix], hcomg,ﬁ, hcomp, A), where
each value is defined as:
e m=mj.
e For i € [K], pk;
e hcomg = Com(c

= k oo i = H(H#(m};,goj}k)), and R; = g%%ipk;d;
k, Sg;ernd ;)
ck,

e hcomp = Com R crndy ;) where R = (Sg)~d Hfil Bk

o A=W ¢k gz1,
Note that I and all the values above are well-defined as we assume that all
RO queries done in forgery verification are made by A beforehand. Also, the

way we program H in Ay allows us to check for event Bady, efficiently, i.e., by
checking 5’,’; # Hfil pk;kt[’”v’“], which means that the running time of Ay is
roughly that of A.

Now, consider another wrapper Fork** taking the input (G,p, g, W, ck) defined
as follows:

1. First, Fork™* samples c1,...,c5 <sZ, along with the random tape p.
Qur p

2. Run (I,(m,0)) «<s Ax((G,p,g, W,ck, K, N), (¢1, ... ,C@H/);p).

3. If I =0, abort. If not, sample ¢/, ...,
run (I', (m/,0")) «s A ((G,p, g, W,ck, K, N), (c1,...,¢cr-1,¢, .. ., c’@ )i p)-

— H/

4. 1f I # I' or ¢} = ¢y, abort. Otherwise, parse ((pk;,¥i)ic(k),S,d,e, 2, 21,
crndg,crnd) < o and ((pk}, @g)ie[K],S’,d’,e’,%,zi,crnds,crnd') — o
Then, compute R = 5~ [[X, b and B = §'~* [TX, b/ and return

/
c. <«sZ, and
Quw P

(5,5, R, R ,crndg, crnd 5, crnds, crnd’s, 21 — 21,e — €') .

Since Fork** runs Ay twice and the running time of Ay is about that of A, we
have tg, 4, ~ 2t4. Next, we consider the event where Fork”* does not abort
(i.e., I =1 # 1L and ¢ # ¢}). Notice that I = I’ # L, so the message-signature
pairs (m, o) and (m/, o’): (a) are valid signatures corresponding to the I-th query
of A to H, and (b) for i € [K], let u; < H,(m,p;), p; — H,(m/, ¢}), we have
S # Hl L H(u)8s P and S # Ht L H(p )logg Pki Consider two events: (Ey)
S#8 orR#R',and (E;) S=5 and R=R'. We can see that

PriI = I' # L A ¢; # ¢;] = Pr[Fork™ does not abort] < Pr[E;] + Pr[E] .

For the event Ej, by the observation (a), we have that Com(ck,S;crndg)
= Com(ck, 8’;crnds) and Com(ck, R;crndz) = Com(ck, R';crndz). Thus, we can
construct a reduction B playing the binding game of HECom and using ForkA"',
with running time tp ~ troear , such that PriE;] < Advyeein®(B, A).

For the event Fy (S = S’ and R = R'), we have that
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§ IS, b = R R =5 "I o

For i € K], pk, = pkl, and H(ji;) = by = b = H(s).
cr = d—|—ecl—d’+e

For i € [K], pk; Zol—pk’ g%l.

i)
ii)
(111)
iv)
)A_gzlw e_gzlw e/

(v

Next, we will argue that d = d’. As a result from (i, ii, iv), for all i € [K], we
have pkl(‘did/)bg = (pk?pkfd,)l"gg hi = glFo.i=Zo.)logy hi — hzo X . Then,

K K K
ad-d _ adg—d Zo.i 10— Z0. Z0,i=%0,; (d—d')log h;
S = gdg T — T hi™hy ot = T b7 =[] pk; :
i=1 i=1

i=1

Since S # Hfil pkiogg hi’, only d = d’ satisfies the equation. Since d + e = ¢j #
¢y = d' +¢, we have e # €. Therefore, we have that (21 —2])(e—¢’)~" =log, W.
Hence, we can construct a reduction B’ playing the DLOG game and using
ForkA’“ with running time tp: ~ tpops » Such that Pr[Es] < Advdlog (B, ).

Flnally7 by the forking lemma (Lemma 1) and that A only outputs I#1
when Badj occurs,

~

Pr(Bady] < \/QuPrll = I' # L nc # ¢)] + %

<  (ravpton .0 + Aot @) + 2

The lemma statement follows from the union bound over Bady, for k € [{ +1]. O
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