
Oblivious Issuance of Proofs

Michele Orrù1(B) , Stefano Tessaro2 , Greg Zaverucha3, and Chenzhi Zhu2

1 CNRS, Paris, France
michele@orru.net

2 Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, USA
{tessaro,zhucz20}@cs.washington.edu

3 Microsoft Research,Redmond, USA
gregz@microsoft.com

Abstract. We consider the problem of issuing zero-knowledge proofs
obliviously. In this setting, a prover interacts with a verifier to pro-
duce a proof, known only to the verifier. The resulting proof cannot
be linked back to the interaction that produced it, and can be verified
non-interactively by anyone. This notion generalizes common approaches
to designing blind signatures, which can be seen as the special case of
proving “knowledge of a signing key”, and extends the seminal work of
Camenisch and Stadler (’97).

We propose two provably-secure constructions of oblivious proofs,
and give three applications of our framework. First, we give a publicly
verifiable version of the classical Diffie-Hellman based Oblivious PRF.
This yields new constructions of blind signatures and publicly verifiable
anonymous tokens. Second, we show how to “upgrade” keyed-verification
anonymous credentials (Chase et al., CCS’14) to also be concurrently
secure blind signatures on the same set of attributes. Our upgrade main-
tains the performance and functionality of the credential in the keyed-
verification setting, we only change issuance. Finally, we provide a varia-
tion of the U-Prove credential system that is provably one-more unforge-
able with concurrent issuance sessions. This constitutes a fix for the
attack illustrated by Benhamouda et al. (EUROCRYPT’21).

Beyond these example applications, as our results are quite general,
we expect they may enable modular design of new primitives with con-
current security, a goal that has historically been challenging to achieve.

1 Introduction

Blind signatures, introduced by Chaum [15], are a fundamental tool in cryptogra-
phy: they are a key component of e-voting applications, e-cash systems, anony-
mous credentials, and privacy-preserving protocols. Today, Google, Microsoft
and Cloudflare use them to provide a VPN service that does not learn the
link between user accounts and network traffic1, Apple similarly uses them in
1

https://one.google.com/about/vpn,
https://techcommunity.microsoft.com/t5/articles/introducing-microsoft-edge-secure-network/
m-p/3367243 .

c© International Association for Cryptologic Research 2024
L. Reyzin and D. Stebila (Eds.): CRYPTO 2024, LNCS 14928, pp. 254–287, 2024.
https://doi.org/10.1007/978-3-031-68400-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68400-5_8&domain=pdf
http://orcid.org/0000-0001-6518-2712
http://orcid.org/0000-0002-3751-8546
http://orcid.org/0000-0002-4276-2797
https://one.google.com/about/vpn
https://techcommunity.microsoft.com/t5/articles/introducing-microsoft-edge-secure-network/m-p/3367243
https://techcommunity.microsoft.com/t5/articles/introducing-microsoft-edge-secure-network/m-p/3367243
https://doi.org/10.1007/978-3-031-68400-5_8

Oblivious Issuance of Proofs 255

their iCloud private relay2, and the GNU Taler system uses them to realize
e-cash3 [20]. Blind signatures are currently undergoing standardization within
IRTF as blind RSA signatures [19] and publicly-verifiable tokens [19]. With a
surge of interest in privacy-preserving technologies, blind signatures have been
extended to more involved use-cases: partially-blind signatures [2] tackle the case
where part of the message is meant to be public; blind signatures with attributes
(also known as Anonymous Credentials Light) [3] tackle issuance of signatures
on commitments of attributes, and U-Prove [36], based on Brands credentials [9],
provides a lightweight anonymous credential system. All these systems can be
seen a proving more complex statements than “knowledge of the preimage of the
verification key”: the relation to be proven is more involved and often times the
user also helps selecting the instance in a way that is oblivious to the issuer. We
ask ourselves the following question:

Can proofs be issued obliviously, similarly to blind signatures?

The common denominator of many blind signature and anonymous creden-
tial systems is their resemblance to Σ-protocols, a family of zero-knowledge
proofs [16] that are executed between an issuer (acting as the prover) and a
user (acting as a verifier). At the end, a non-interactively verifiable proof is cre-
ated by the user. To achieve oblivious issuance of this final proof (i.e., to ensure
that it cannot be linked back by the issuer to the interaction that generated it),
the user carefully re-randomizes the proof transcript. Unfortunately, each of the
above schemes provides a different security analysis, which is often tedious and
difficult. In some schemes security proofs are missing, and some others don’t
capture some realistic adversarial scenarios like interleaved open sessions (so-
called concurrent security). A recent work of Benhamouda et al. [5] provided a
concrete attack for some of these protocols.

Our Contribution. In this work, we introduce the notion of oblivious issuance of
proofs, where a prover interacts with a verifier to issue a proof of a statement,
part of which is chosen by the verifier and hidden to the prover. Moreover, the
issued proof is hidden to the prover. We show that this notion can be realised
and provide a detailed security analysis for our framework.

Theorem 1.1 (informal). There exists an oblivious proof scheme for algebraic
relations.

Algebraic relations are relations of the form (x,X,Y , Z) satisfying Z = Y ·x
and X = Mx for some matrix M ∈ G

n×m and vectors x,X,Y , where X is
known to both the prover and the verifier, x is only known to the prover, and
Y is (partially) chosen by the verifier and hidden to the prover. By the end of
the protocol, the verifier obtains (Y , Z) and a proof of the statement that the
prover knows x such that Z = Y · x and X = Mx. We provide two protocols
or “modes” that operate under different assumptions: one called free (where the
2

https://developer.apple.com/news/?id=huqjyh7k.
3

https://taler.net/.

https://developer.apple.com/news/?id=huqjyh7k
https://taler.net/

256 M. Orrù et al.

user can choose Y freely) which is secure under the q-Strong Discrete Logarithm
(DL) assumption in the algebraic group model (AGM) [22]; one called restricted
(where Y is distributed uniformly in a set determined by some public information
chosen by the verifier) which is secure under the plain DL assumption in the
AGM. The proof size in linear in n. We provide three example applications for
the above protocol:

– In Sect. 5 we design an efficient, publicly verifiable oblivious unpredictable
function based on pairing-free curves, which is a publicly verifiable version of
the classical Diffie-Hellman based Oblivious PRF. This yields, for example, a
construction of a pairing-free partially-unique blind signature scheme which
is built on top of Goh-Jarecki signatures [25], as well as new constructions of
anonymous tokens. The proof size is 4 Zp-elements; verification consists of 7
scalar multiplications and verification only of 4.

– In Sect. 6 we add public verification for CMZ [13] algebraic MACs, which are
the basis for an efficient type of anonymous credential scheme called keyed-
verification anonymous credentials. This type of credential system is used
to privately manage group state in the Signal encrypted messaging applica-
tion [14]. We provide a protocol for issuing CMZ credentials and a security
analysis. Our protocol makes only modest changes to issuance, and does not
require any change to existing keyed verification features (like credential pre-
sentation).

– In Sect. 7 we provide a variant of the U-Prove [36] issuance protocol that is
secure in the concurrent setting. While the previous scheme was affected by
a variant of the ROS attack [5], our variant comes with a proof of security in
the concurrent setting.

As our results are quite general, we expect they may also be applicable to
mitigate the attack of Benhamouda et al. [5] in other contexts, and also enable
modular design of new schemes that are concurrently secure.

Technical Overview. We start from Σ-protocols for linear relations (e.g. as in
Boneh–Shoup [8, Ch. 19]), i.e., relations of the for Mx = X where x ∈ Z

m
p is

the witness and M ∈ G
n×m is a linear map. The transcript (T , e, r) satisfies the

verification equation
Mr = T + eX.

Inspired by blind Schnorr [42] and Okamoto-Schnorr signatures [35] we blind the
transcript with random (ρ, ε) such that

M(r + ρ) = (T + Mρ + εX) + (e − ε) X

and thus obtain a proof (T + Mρ + εX, e − ε, r + ρ) that can be presented
obliviously. In other words, users cannot be tracked in applications exposing
these proofs. Two difficulties however arise here: (a) the instance X must be fully
known to the prover, and this restricts the breath of possible applications, where
often times also part of the instance must be re-randomized (e.g. for user-specific
attributes in anonymous credentials, or public metadata in the signature); (b)

Oblivious Issuance of Proofs 257

one-more unforgeability of the resulting scheme is tricky. Concurrent security
hinges on the ROS assumption [5,40] and is thus inadequate for most practical
instantiations.

To address the first issue, we consider relations where part of the instance
(we call it the argument) is selected by the user. We consider relations of the
form (x,X,Y , Z) satisfying X = Mx and Z = Y · x, where Y is selected by
the user. This allows us to address and extend previous constructions of blind
signatures and anonymous credentials. To address the second issue, we use the
recent techniques of Tessaro and Zhu [43], designed to realize concurrent security
of Schnorr-like blind signatures. Roughly speaking, in the commitment phase,
the prover commits also to an extra challenge a ∈ Zp, and engages in a proof
for Mx and Z = Y · x for some Y controlled by the user. Upon receiving
a challenge e from the user, the server produces a response under challenge
ae, which is uniformly distributed and unpredictable for the adversary. The
resulting protocol is immune to ROS, but the proof of unforgeability demands a
more tedious analysis for one-more unforgeability (Y is now under control of the
adversary, and the AGM analysis is more involved due to the extra statement
part (Y , Z)), obliviousness (the element Z could be miscomputed which leaks
addtional information to the issuer).

Related Works. For more than two decades, it has been folklore in the cryp-
tographic community that Σ-protocols may be issued obliviously, but this idea
has not been investigated or ever formalized. Yet, it is a natural question to
generalize Schnorr blind signatures in a similar way that Schnorr signatures
were generalized to prove relations involving discrete logarithms. In fact, it was
also not clear how security could be guaranteed for more than polylogarithmic
concurrent queries due to an underlying assumption called ROS [5,38,42] that
naturally emerges when studying concurrent security of interactive Σ-protocols.

Similar notions have emerged in the past literature. Belenkiy, Camenisch, and
Chase [4] introduced the notion of randomizable zero-knowledge proofs, demand-
ing that a zero-knowledge proof can be interactively re-randomized without
knowing the witness. The notion applies naturally to Groth–Sahai proofs [27]
and can be used to achieve delegatable anonymous credentials. To the best of
our knowledge, no pairing-free randomizable proofs are known. De Santis and
Yung [18] developed the concept of meta proofs, in which the holder of a proof
can generate a proof that there exists a proof for the verification statement, how-
ever this is expensive (when it is possible at all), whereas our approach maintains
nearly the same costs as the base Σ-protocol.

In the seminal work of Camenisch and Stadler [10] on proofs for statements
about discrete logarithms, we see “blind issuance of Σ-protocols” is left as an
open problem. However, proving concurrent soundness for these protocols has
been historically hard due to the so-called ROS assumption, and a number of
mitigations for it have been attempted over the years: Pointcheval [37] pro-
vided a variant of the Okamoto-Schnorr blind signature scheme [35] that boosts
security using cut-and-choose to catch cheating behavior. Roughly speaking,
in Pointcheval’s fix, the user commits to two challenges at the beginning of

258 M. Orrù et al.

the protocol and then has to open one of them. The resulting scheme, how-
ever requires the signer to stop issuing signatures to the user caught cheat-
ing, which is tricky in scenarios with a large, potentially anonymous, userbase.
Abe [1] used OR-composition for Σ-protocols to yield an ordinary blind signa-
ture scheme under the DDH assumption that is secure in the concurrent setting,
but with a tedious security analysis revisited in [31] and with small variations
susceptible to attacks [3,5]. Katz, Loss, and Rosenberg [32] revisit the work of
Pointcheval [37] and extend the cut-and-choose from 1-out-of-2 to 1-out-of-N ,
but require the server keep state of size N and increase it with the number of
executions (and thus affecting the concrete communication complexity of the pro-
tocol). This line of work was refined further in recent works [12,28]. Fuchsbauer,
Plouviez, and Seurin [23] proposed a framework for blind issuance of Schnorr
signatures, relying on a different computational assumption called modified ROS
(mROS). Roughly speaking, they have the issuer provide two possible commit-
ments, and then give a response for only one of them, selected at random after the
user has sent the challenge. However, the assumption requires larger parameters
for concrete security, discouraging its use in practice. Fuchsbauer and Wolf [24]
proposed a different approach, based on generic zero-knowledge proofs. Roughly
speaking, the user proves that the challenge has been generated correctly while
keeping private the blinding factors. This requires embedding the hash function
inside the proof, which is expensive in practice and limits the provable security
(since the hash function may not be formally modelled as a random oracle).

In our generic framework, we instead use Tessaro and Zhu’s approach for
mitigating the ROS attack [43]. Roughly speaking, here the issuer commits to
a random value a when sending the commitment message of the Σ-protocol,
and after receiving the challenge e from the user, sends a response that is valid
under challenge ea. This effectively re-randomizes the challenges and thwarts
ROS attacks making them statistically negligible [43]. We opt for this approach
because, despite the fact that the final transcript is slightly different from the
one of a Σ-protocol, it presents strong security guarantees while only requiring
small changes to the initial Σ-protocol that are easily adoptable by protocol
designers.

2 Preliminaries

Notation. We denote by (G, p,G) the description of a group G of prime order
p, with generator G. We denote group operations additively, and given a scalar
x ∈ Zp we denote with xG scalar multiplication. We are going to use H to denote
another group generator whose discrete logarithm base G is not known. To ease
readability, we denote with 0 both the identity element in the group and in the
field. We denote probabilistic algorithms in sans-serif, and by writing y ← M(x)
we denote the act of sampling the value y from the probabilistic algorithm M on
input x. The range of M on input x is denoted [M(x)].

The entries of a column vector x are denoted inline as [x1;x2;x3], entries of a
row vector xT as (x1, x2, x3). We use xi..j to denote the subvector of x consisting

Oblivious Issuance of Proofs 259

Table 1. Summary of variable names in this work. Variables marked with a prime (′)
denoted the blinded values.

Variable Domain Description

Γ = (G, p, G) group description

Λ extra relation parameters

x Z
m
p witness

X G
n statement

Z G auxiliary statement

(υ) Y G
1×m (blind factor of) auxiliary argument

[Y ; M] G
(n+1)×m Σ-protocol morphism

T G
n+1 Σ-protocol commitment

(ε) e Zp (blind factor of) Σ-protocol challenge

(ρ) r Z
m
p (blind factor of) Σ-protocol response

(α, β) C G (blind factors of) Pedersen comm. to a

of elements from i to j. Assignment of a to the expression b is denoted as a := b;
vectors are denoted in bold font. The identity matrix of size n×n over some field
Zp is denoted In (the field will be clear from the context). To ease readability, we
denote with 0 the identity element in the group, in the field, and in the matrix
space. It will be clear from the context which one is meant.

We assume that probabilistic algorithms run in time polynomial in the secu-
rity parameter λ (abbrev p.p.t.) and have the security parameter implicitly as
input. A summary of the variable names used throughout the protocol is avail-
able in Table 1.

The Decisional Diffie-Hellman Problem. The Decisional Diffie-Hellman (DDH)
problem is hard for a group generator GrGen if it is infeasible, given a group
description Γ := (G, p,G) ← GrGen(1λ) and a tuple (aG, bG,C) ∈ G

3, the
advantage Advddh

GrGen,A(λ) in distinguishing if C = abG or C is a uniformly-random
element of G is negligible. This assumption is relevant only for one specific
application of our framework described in Sect. 6.

The Discrete Logarithm problem. The Discrete Logarithm (DL) problem is
hard for a group generator GrGen if it is infeasible, given a group description
Γ = (G, p,G) ← GrGen(1λ) and a uniformly-random group element X ←$G,
to compute x ∈ Zp such that xG = X. We denote the advantage of a p.p.t.
adversary A in winning the above game DLGrGen,A(λ) as Advdl

GrGen,A(λ).

The q-Strong Discrete Logarithm Problem. The q-Strong Discrete Logarithm
problem (q-SDL) is hard for a group generator GrGen if it is infeasible,
given a group description Γ := (G, p,G) ← GrGen(1λ) and the powers
G, xG, x2G, . . . , xqG ∈ G, to compute x ∈ Zp We denote the advantage of a

260 M. Orrù et al.

p.p.t. adversary A in winning the above game SDLq,GrGen,A(λ) as Advsdl
q,GrGen,A(λ).

This assumption is solely used for OPAR[GrGen, rstr] in Theorem 4.4.

Kernel Matrix Diffie-Hellman. The Kernel Matrix Diffie-Hellman (KMDH)
problem [34, Def. 13] is hard for a group generator GrGen and a matrix distribu-
tion D if it is infeasible, given a group description Γ := (G, p,G) ← GrGen(1λ)
and a matrix M ← D(Γ) in G

n×m to find non-trivial elements of the null space,
that is, to exhibit an r ∈ Z

n
p such that Mr = 0 and r �= 0. We denote the

advantage of a p.p.t. adversary A in winning the above game KMDHGrGen,D,A(λ)
as Advkmdh

GrGen,D,A(λ). For the distributions we study, this assumption reduces to
DL.

The ROS Problem. The ROS (Random inhomogeneities in a Overdetermined
Solvable system of linear equations) problem for dimension � asks, given a prime
number p and access to a random oracle Hros with range in Zp, to find (� + 1)
vectors ρ̂j ∈ Z

�
p for j ∈ [� + 1], and a vector e = (e1, . . . , e�) such that:

Hros(ρ̂j) = 〈ρ̂j ,e〉 for all j ∈ [� + 1] .

While � “trivial” solutions are easy to find by setting ρj := (δ1,j , δ2,j , . . . , δ�,j)
(where δi,j is the Kronecker delta) and e := (H(ρ1), H(ρ2), . . . , H(ρ�)), the
hardness of the problem relies in finding a non-trivial linear combination of hash
functions with range in Zp for which a hash preimage is known. This problem
was originally studied by Schnorr [42] in the context of blind signature schemes.
Using a solver for the ROS problem, Wagner [44] showed that the unforgeabil-
ity of the Schnorr and Okamoto–Schnorr blind signature schemes [35,41] can
be attacked in subexponential time whenever more than polylog(λ) signatures
are issued concurrently, using a generalization of the birthday paradox. More
recently, Benhamouda et al. [5] provide a polynomial-time solver for the ROS
problem. At the core of their attack, there is the observation that Wagner’s attack
fixes the vector ρ�+1 = (1, 1, 1, · · · , 1) while the ROS problem offers much more
flexibility in choosing arbitrary subsets and linear combinations of the elements
in c.

In this work, we study a variant of this problem that is unconditionally hard
for fields of large characteristic, called weighted-fractional ROS [43, Section 3].
We display it in Fig. 1, simplified for expositional purposes. We restate the main
result here, for completeness.

Theorem 2.1 ([43, Theorem 1]). For any q > 0 and prime number p, any
adversary A for the game WFROSq,p,A(λ) making at most qh queries to the
random oracle H, we have

Advwfros
q,p,A (λ) ≤ qh(2q + qh)

p − 1
.

Roughly speaking, similarly to ROS, the adversary is asked to provide a
vector e and � + 1 linear combinations of its elements for which a preimage is

Oblivious Issuance of Proofs 261

Fig. 1. The WFROSq,p,A(λ) game. Vectors a, b ∈ Z
q+1
p are indexed from 0 to q, and

aux ∈ {0, 1}∗. Further, e ◦ s := [e1s1; . . . ; eqsq].

known. However, here the linear combination is also re-randomized (weighted)
by a random vector s chosen by the challenger whose elements are available to
the adversary only once the corresponding element ei has been set, which makes
the problem unconditionally hard. Similarly to the ROS case, also here � vectors
are trivial to find: for j = 1, . . . , � set aj := bj := (0, δ1,j , δ2,j , . . . , δ�,j), where
δi,j is 1 for i = j and 0 otherwise, and ej := H(aj , bj , j).

Σ-protocols. We briefly recap Σ-protocols, using the standard definition from
Cramer [16] (as formalized by Boneh–Shoup [8]). Given a morphism described
by a matrix M ∈ G

n×m, a Σ-protocol for the linear relation RM = {(x,X) ∈
Z

m
p ×G

n : Mx = X} is a 3-message protocol Σ between a prover and a verifier:

– Σ.Prv0(x): the prover chooses a random vector t ←$Z
n
p and sends the com-

mitment T := Mt to the verifier.
– the verifier sends a random challenge e ←$Zp

– Σ.Prv1(st := (x, t), e): computes and sends the response r := t + ex.

We call T the commitment, e the challenge, and r response. Together, we call
the messages sent (T , e, r) the transcript. The transcript satisfies the verification
equation:

Mr = T + eX.

262 M. Orrù et al.

Σ-protocols satisfy 2-special soundness and honest-verifier zero-knowledge
(cf. [16] for more information). The protocol can be compiled into a non-
interactive zero-knowledge proof (Prv,Ver) via the Fiat-Shamir heuristic [21].

In the following, we will study how to issue such proofs obliviously. Since often
times, in practical scenarios, parts of the statement will be decided at issuance
time, we will slightly modify the above syntax to accommodate for more general
relations.

3 Oblivious Issuance of Proofs

Syntax. For a quadripartite relation R whose elements are tuples of the form
(x,X,Y , Z), denote

L(R) :={(X,Y , Z) : ∃ x such that (x,X,Y , Z) ∈ R} ,

Core(R) :={(x,X) : ∃ Y , Z such that (x,X,Y , Z) ∈ R} , and
Arg(R) :={Y : ∃ x,X, Z such that (x,X,Y , Z) ∈ R} .

We call Y the argument, and Z the augmented statement. As an example, the
discrete logarithm equality (DLEQ) (employed in [11]) relation Rdleq is indexed
in the group description Γ = (G, p,G) and can be seen as a quadripartite relation
whose elements (x,X, Y, Z) ∈ Rdleq satisfy x[G;Y] = [X;Z].

In this paper, we will actually deal with families of relations, i.e. relations
Rcrs parametrized by some common reference string crs ∈ [oNIP.Setup(1λ)]. For
those, we assume the proof system is defined over R = {Rcrs}crs and that the
setup algorithm implicitly fixes the relation used during the protocol.

Oblivious issuance of (non-interactive) proofs. An oblivious proof oNIP =
(Setup,Prv, Iss,Usr,Ver) for a quadripartite relation R consists of:

– crs ← oNIP.Setup(1λ), the setup algorithm, which generates the public
parameters crs.

– π ← oNIP.Prv(crs,x,X,Y , Z) the prover algorithm, that given as input
(x,X,Y , Z) ∈ R, produces a non-interactive proof π.

– two interactive p.p.t. algorithms oNIP.Iss (the issuer) and oNIP.Usr (the
user) such that, given as input respectively witness and statement (x,X) ∈
Core(R), the user outputs an augmented statement Z for the argument Y
chosen by the user together with a non-interactive proof π. Since the argu-
ment Y ∈ Arg(R) is chosen freely by the user, we call the oblivious issuance
protocol free and we denote the interaction as:

(
(Z, π),⊥) ← 〈oNIP.Usr(crs,X,Y), oNIP.Iss(crs,x,X)〉

where (x,X,Y , Z) ∈ R. We also consider a more restricted setting, where
Y is not chosen by the user freely but instead distributed uniformly in a set
Arg(R, info) determined by some public information info. We call the protocol
restricted and denote the interaction as:

(
(Y , Z, π),⊥) ← 〈oNIP.Usr(crs,X, info), oNIP.Iss(crs,x,X, info)〉

Oblivious Issuance of Proofs 263

Fig. 2. Game OBLVb
oNIP,R,A(λ). Free-mode (Y is chosen by the user) contains everything

but the solid boxes . Restricted-mode (the user can only choose a public information
info related to Y) contains everything but the dashed boxes , where we additionally

require Arg(R, info0) = Arg(R, info1).

where Y ∈ Arg(R, info) and (x,X,Y , Z) ∈ R.
– true/false ← oNIP.Ver(crs,X,Y , Z, π) outputs a bit to indicate whether π

is a valid proof.

Security. We require (oNIP.Setup, oNIP.Prv, oNIP.Ver) to be a non-interactive
proof system for the language L(R) with witness relation R satisfying the stan-
dard notions of completeness and soundness. In particular, soundness guarantees
that for any (X,Y , Z) �∈ L(R), the adversary cannot create a proof π such that
oNIP.Ver(crs,X,Y , Z, π) outputs true. Besides, we also ask that the issuance
protocol is correct, that is: every honest execution of the issuance protocol leads
to a verifying proof. Two notions are pivotal for security of oNIP: the issuer
cannot link (Y , Z, π) to its respective issuance (obliviousness); the user does not
gain sufficient knowledge of the witness to produce forgeries (one-more unforge-
ability). This can be seen as a generalization of blind signatures.

Below, we provide definitions for 2-round protocols both in free and restricted
mode, indexing the i-message functions as oNIP.Usri and oNIP.Issi: the user ini-
tiates the protocol via the procedure oNIP.Usr0 that takes as input crs,X, and

264 M. Orrù et al.

Fig. 3. Game OMUFoNIP,R,A(λ). Free-mode contains everything but the solid boxes.
Restricted-mode (the user can only choose a public information info) contains every-
thing.

(respectively) Y and info in free and restricted mode. The procedure outputs
some state stu,0 together with some user message um0. The issuer, in turn, runs
oNIP.Iss1 taking as input crs,x and the user message um0, returning im1 along
with some state sti,1. The protocol continues through oNIP.Usr1(stu,0, im1) and
oNIP.Iss2(stu,0,um1), returning again a new state and the next message. Finally,
the procedure oNIP.Usr2(stu,1, im2) returns either ⊥ or an argument Y , an aug-
mented statement Z, and a proof π.

Obliviousness. Obliviousness means that proofs cannot be linked back to the
issuance session that created them even given the associated arguments. More
specifically, a non-interactive proof oNIP with oblivious issuance for a quadri-
partite relation R is oblivious if for all p.p.t. adversaries A the advantage
Advoblv

oNIP,R,A(λ) in distinguishing OBLV0
oNIP,R,A(λ) from OBLV1

oNIP,R,A(λ) (defined
in Fig. 2) is negligible.

Unforgeability. In one-more unforgeability, we demand that no p.p.t. adver-
sary A can produce � + 1 different valid proofs after seeing � interactions. We
denote the advantage of A in winning the game OMUF(λ) (defined in Fig. 3)
OMUFoNIP,R,A(λ) by Advomuf

oNIP,R,A(λ).

4 Oblivious Issuance of Proofs for Algebraic Relations

In this section, we will first introduce the notion of algebraic relations, then
describe our oblivious issuance of proofs for the algebraic relations with two
modes, and finally analyse the security of our scheme.

Oblivious Issuance of Proofs 265

4.1 Algebraic Relations

For any integers n,m ≥ 1, a family of algebraic relations is a family of quadri-
partite relations, denoted as {AlgRΓ,M}(Γ,M), where Γ = (G, p,G) is a group
description, M is a matrix in G

n×m, and

AlgRΓ,M :=
{

(x,X,Y , Z) : x ∈ Z
m
p , Y ∈ G

1×m ,

[
Z
X

]
=

[
Y
M

]
· x

}
.

(Y is Considered as a Row Vector.) In order to make the relation non-trivial,
we require M �= 0G, where 0 ∈ Z

n×m
p is the zero matrix.

As an example, consider the Schnorr [39] and Okamoto-Schnorr [35] signature
schemes. Both can be seen as “proofs” that some signing key associated to some
verification key. In particular, these relations are algebraic: for blind Schnorr [39]
the algebraic relation proven is indeed:

Rsch := {(x,X,⊥,⊥) : x ∈ Zp , xG = X} ,

where M =
[
G

]
. For Okamoto-Schnorr [35] the algebraic relation would be:

Ros :=
{
(x,X,⊥,⊥) : x ∈ Z

2
p , X = [G;W] · x

}
,

where M = [G;W], and W is another generator of G for which the discrete-
logarithm base G is not known. As yet another example, consider discrete log-
arithm equality (DLEQ) proofs used in VOPRF constructions [11,30]. We can
define the DLEQ relations in the framework of the algebraic relations, where
M =

[
G

]
, and the relation is

Rdleq :=
{

(x,X, Y, Z) : ∀ x ∈ Zp and Y ∈ G,

[
Z
X

]
=

[
Y
G

]
· x

}
.

4.2 Oblivious Issuance Protocol of Proofs

The holy grail would be to show that general Σ-protocols, as described in Sect. 2,
satisfy oblivious issuance, but known attacks make this hard to achieve. We
show that, with a small variation, it is possible to provide oblivious issuance for
a large class of relations, including the algebraic relations described above. We
denote our generic protocol OPAR, which stands for oblivious proofs of algebraic
relations. The protocol actually admits two possible issuance modes (cf. Fig. 5):
in free-mode, part of the statement (the argument Y) is controlled by the user;
in restricted-mode, the argument is selected by the server, possibly using some
public information provided by the user. This results formally in two protocols
that, when composed with a group generator GrGen, we denote OPAR[GrGen, free]
and OPAR[GrGen, rstr]. The modality used depends on the concrete real-world
scenario and allows to have more exact security guarantees.

All relations R have associated a setup algorithm Setup that takes as input
Γ = (G, p,G) ← GrGen(1λ) as input and outputs a relation parameter Λ,

266 M. Orrù et al.

Fig. 4. Setup and verification algorithms for OPAR[GrGen] for relation R. H is a random
oracle with range in Zp.

which determines M . For restricted-mode, an additional (randomized) algo-
rithm SampleArg is defined for R, which takes (crs, info) and randomness γ as
input and outputs a row vector Y ∈ G

1×m, and Args(R, info) := {vY : v ∈
Zp, γ ←$ R, Y ← SampleArg(crs, info; γ)}, where R denotes the space of the ran-
domness.

The protocol is identical to non-interactive Σ-protocols described in the pre-
vious section, except that the prover additionally commits to another challenge
that is used to re-randomize the one produced by the random oracle. We illus-
trate setup and verification procedures in Fig. 4. Given (x,X,Y , Z) ∈ AlgRΓ,M

proving algorithm OPAR.Prv(x,X,Y , Z) samples a, b ←$Zp, t ←$Z
n
p and com-

putes C := aH +bG, T := Mt. Then, computes the challenge e := H(Y , Z,T , C)
and returns (e, a, b, r := t+eax). Our oblivious issuance protocol with two modes
for an algebraic relation R is showed in Fig. 4 (the setup and verification algo-
rithms) and Fig. 5 (the issuing protocol).

Completeness of the protocol is immediate; soundness follows special sound-
ness of the underlying Σ-protocol. For instance, note that the protocol described
in the random oracle model is also computationally special sound: given two
transcripts (T , C, e, a, b, r) and (T , C, e′, a′, b′, r′), it must hold that a = a′ must
(by the binding property of the commitment scheme and verification equation),
and using the canonical Σ-protocol extractor for the morphism [Y ;M] using
transcripts (T , ae, r) and (T ′, a′e′, r′), one can the extract the witness x. Below,
we show correctness of the issuance protocol.

Lemma 4.1. The protocol OPAR is correct (in either mode).

Proof. With overwhelming probability, υ �= 0. Define R :=
[
υ 0
0 In

]
. Note

that [Y ′;M] = R[Y ;M]. By definition, we have: Y ′ = υY, e′ = εα−1e, r′ =
εr + ρ, a′ = αa,T ′ = εRT + [Y ′;M]ρ. Therefore, from the definition of r′ as
computed by Iss r′ = t′ + e′a′ · x =⇒ R[Y ;M](εr + ρ) = εRT + R[Y ;M]ρ +
(εα−1e)(αa)R[Y ;M] · x =⇒ [Y ;M]r = T + ea · [Y ;M] · x which is the
verification equation for (Y , Z), (a, b, e, r).

Oblivious Issuance of Proofs 267

4.3 Security

For security, we only consider simple algebraic relations, which are defined as
follows.

Definition 4.2. An algebraic relation R is simple if there exists an efficient
algorithm Setup′ that takes Γ = (G, p,G) as input and outputs Λ together with
a trapdoor td such that the DL of each entry of M to base G can be efficiently
computed given td and the distribution of Λ is identical to that of the original
setup algorithm Setup.

In restricted mode, we additionally require there exists an efficient algorithm
SampleArg′ that takes (crs, info, td) as inputs and outputs Y ∈ G

1×m together

Fig. 5. The oblivious zero-knowledge proof protocol for an algebraic relation R, in

restricted mode (that is, OPAR[GrGen, rstr] where the user only chooses some public

information info ∈ {0, 1}∗), and in free mode (that is, OPAR[GrGen, free] where the
user chooses the full argument Y).

268 M. Orrù et al.

with its DL y ∈ Z
m
p to base G such that the distribution of Y is identical to that

of Setup given (Λ, info) as input.

We show the protocol is one-more unforgeable and oblivious.

One-More Unforgeability. We show that (i) protocol OPAR[GrGen, free]
is one-more unforgeable for the DLEQ relation Rdleq, and (ii) protocol
OPAR[GrGen, rstr] is one-more unforgeable for any simple algebraic relations
where the kernel matrix Diffie-Hellman problem (KMDH) (defined in Sect. 2) is
hard for M with distribution DR, where DR(Γ) denotes the distribution of M
after sampling Λ ← R.Setup(Γ). For the relations we study in Sects. 6 and 7,
this reduces to the DL assumption. Below, qh denotes the maximum number of
random oracle queries and q denotes the maximum number of signing queries to
Iss1 in the OMUF game.

Theorem 4.3. If the (q + 1)-SDL assumption is hard for GrGen, the protocol
OPAR[GrGen, free] for the DLEQ relation Rdleq is one-more unforgeable in the
algebraic group model and the random oracle model with advantage

Advomuf
OPAR[GrGen,free],Rdleq

(λ) ≤ Adv
(q+1)-sdl
GrGen (λ) + Advdl

GrGen(λ) +
(qh + 3q)2

p − 1
.

Theorem 4.4. If DL is hard for GrGen and KMDH is hard for GrGen and R,
the protocol OPAR[GrGen, rstr] is one-more unforgeable in the algebraic group
model and the random oracle model with advantage

Advomuf
OPAR[GrGen,rstr],R(λ) ≤ 2Advdl

GrGen(λ) + Advkmdh
GrGen,DR

(λ) +
(qh + 3q)2

p − 1
.

Proof. (of Theorem 4.3 and Theorem 4.4) Since the proofs of the two theo-
rems are very similar, we prove them together and highlight where the proofs
differ. In free (respectively, restricted) mode, denote with A an adversary for
OMUFOPAR[GrGen,free/rstr],R,A(λ). We assume that A makes exactly q queries to
Iss1 and � = q (i.e., all sessions are finished at the end of A’ s execution).
This is proven in the full version. Also, assume without loss of generality, that
each

(
Y ∗

j , Z
∗
j , π∗

j = (a∗
j , b

∗
j , e

∗
j , r

∗
j)

)
output by A, a RO query H(Y ∗

j , Z
∗
j ,T ∗

j , C
∗
j)

is made, where

T ∗
j :=

[
Y ∗

j

M

]
rj − e∗

ja
∗
j

[
Z∗

j

X

]
, (1)

C∗
j := b∗

jG + a∗
jH . (2)

In restricted mode, without loss of generality, we assume M1,1 �= 0G and denote
μ as the DL matrix of M which satisfies M = μG. Denote the k-th RO query as
(Y k, Zk,T k, Ck). Since A is algebraic, A also provides the algebraic representa-
tions of the query with respect to all the group elements received by A. Denote
the transcript of signing session i as (Y ′

i, Z
′
i,T

′
i, C

′
i, e

′
i, r

′
i, a

′
i, b

′
i), and we have

Z ′
i = 〈Y ′

i,x〉 and T ′
i = [Y ′

i;M]r′
i − e′

ia
′
i[Z

′
i;X].

Let h := logG H, μ := logG M , and y′
i := logG Y ′

i. We first show the following
Lemma.

Oblivious Issuance of Proofs 269

Lemma 4.5. For each RO query, we can represent

Tk,2 = (αk(x1) + α′
k(x1) · h)G ,

Ck = (βk(x1) + β′
k(x1) · h)G ,

(3)

where αj(X), α′
j(X), βj(X), β′

j(X) ∈ Zp[X] can be computed efficiently when A
returns given μ, {y′

i}i∈[q] (only in restricted mode), and (x2, . . . , xm).

Proof. In free mode for Rdleq, we have the length of x is 1 and therefore we just
use x to denote x1. We first show how to compute ηi(·), η′

i(·) for each i ∈ [q] such
that

Y ′
i = (ηi(x) + η′

i(x) · h)G . (4)

– For i = 1, since A is algebraic, we know Y ′
1 = ξ(G)G + ξ(X)X + ξ(H)H where

ξ(G), ξ(X), ξ(H) are constants given by A, and we let η1(X) := ξ(G) + ξ(X)X
and η′

1(X) := ξ(H).
– For 1 < i ≤ q, since A is algebraic, we know Y ′

i = ξ(G)G + ξ(X)X + ξ(H)H +∑
j∈[i−1](ξ

(T ′
j,1)T ′

j,1 + ξ(T ′
j,2)T ′

j,2 + ξ(C′
j)C ′

j + ξ(Y ′
j)Y ′

j + ξ(Z′
j)Z ′

j), where ξ(·) are
given by A. Since T ′

j,1 = (r′
j−e′

ja
′
jx)Y ′

j , T ′
j,2 = (r′

j−e′
ja

′
jx)G, C ′

j = (b′
j+a′

jh)G,
and Z ′

j = xY ′
j , we let

ηi(X) := ξ(G) + ξ(X)X +
∑

j∈[i−1]

(
ξ(Tj,2)

′
(r′

j − e′
ja

′
jX) + ξ(C′

j)b′
j

+ (ξ(T ′
j,1)(r′

j − e′
ja

′
jX) + ξ(Y ′

j) + ξ(Z′
j)X)ηj(X)

)
,

η′
i(X) :=ξ(H) +

∑

j∈[i−1]

(
ξ(C′

j)a′
j + (ξ(T ′

j,1)(r′
j − e′

ja
′
jX)ξ(Y ′

j) + ξ(Z′
j)X)η′

j(X)
)

.

(5)

Then, for the k-th RO query (Yk, Zk,T k, Ck), since A is algebraic, we know
a representation of Tk,2 and Ck as a linear combination of G,X,H, {T ′

i,1, T
′
i,2,

C ′
i, Y

′
i , Z ′

i}i∈[q]. Thus, we can compute αj(·), α′
j(·), βj(·), β′

j(·) using the same
argument as in the previous step.

In restricted mode, since A is algebraic, for the k-th RO query, we know
Tk,2 and Ck as a linear combination of G,X,H, {T ′

i, C
′
i,Y

′
i, Z

′
i}i∈[q]. Since T ′

i =
[Y ′

i;M](r′
i −a′

ie
′
ix), C ′

i = a′
iH + b′

iG, Z ′
i = 〈Y ′

i,x〉, and we are given μ, {y′
i}i∈[q]

and (x2, . . . , xm), we can compute {α̃j , β̃j}j∈[q+3] ∈ Zp such that

Tk,2 = (α̃1 + α̃2x + α̃3h)G +
∑

i∈[q]

α̃i+3(r′
i,1 − a′

ie
′
ix)G ,

Ck = (β̃1 + β̃2x + β̃3h)G +
∑

i∈[q]

β̃i+3(r′
i,1 − a′

ie
′
ix)G .

(6)

Thus, we can compute αj(·), α′
j(·), βj(·), β′

j(·) from {α̃j , β̃j}j∈[q+3].
�

270 M. Orrù et al.

We proceed by means of a hybrid argument.

Hyb1 this is the original game, described above
Hyb2 We replace the procedures R.Setup and R.SampleArg with (respectively)

R.Setup′ and R.SampleArg′, which will provide μ and y′
i whenever it also

outputs a new argument Y ′
i during the i-th query. Since the relation is

simple, this change is perfectly indistinguishable from the previous one.
Hyb3 we strengthen the game and add another condition before returning. Let us

index in kj ∈ [qh] the random oracle query that the adversary makes associ-
ated with the j-th forgery. If, among the proofs returned by the adversary,
∃j ∈ [q + 1] such that β′

kj
(x1) �= a∗

j , the game immediately aborts and the
adversary loses.
This hybrid is computationally indistinguishable from the first one and
follows from the binding property of the commitment scheme. We con-
sider an adversary B for the game BINDCom[GrGen],B(λ) that, upon receiv-
ing a group description Γ = (G, p,G) and a commitment key H, computes
Λ ← R.Setup(Γ), samples x ←$Z

m
p , runs A on input ((Γ,H,Λ),X := Mx).

B responds to the signing queries just as the challenger in the game
OMUFOPAR,R,A(λ). Once the adversary returns, if ∃j ∈ [q + 1] such that
β′

kj
(x1) �= a∗

j , then B outputs the commitment Ck along with two valid
openings (aj , bj), (β′

kj
(x1), βkj

(x1)). In fact, (aj , bj) are valid if the proof
π∗

j verifies, while the second opening is correctly given by any algebraic
adversary. Therefore, the distinguishing advantage between Hyb2 and Hyb3

is bounded by Advdl
GrGen(λ).

Hyb4 we add one additional condition before returning. If there exists j ∈ [q +
1] such that coe1(αkj

(X) + α′
kj

(X) · h) �= −μ1,1e
∗
ja

∗
j , where coe1(f(X))

denotes the coefficient of the first degree term X in polynomial f , the
game immediately aborts and the adversary loses.

– In free mode for the DLEQ relation Rdleq, this hybrid is computationally
indistinguishable from the previous if the (q + 1)-strong DL assumption
is hard for GrGen.

– In restricted mode, this hybrid is computationally indistinguishable from
the previous one if DL is hard for GrGen.

The full analysis can be found in the full version.
Hyb5 we add another condition before returning. We first define introduce some

notation and a lemma before defining the condition. Denote Opnk the set
of sessions open (i.e., a query to Iss1 for a session i was made but no query
to Iss2 for i was made yet) during the k-th random oracle query. Denote
b̂i as the DL of C ′

i to base G and t′
i as the DL of T ′

i to base G. Denote
a polynomial PS(X) :=

∏
i∈S(r′

i,1 − e′
ia

′
iX) for each S ⊆ [q]. In particular,

P∅(X) := 1.

Oblivious Issuance of Proofs 271

Lemma 4.6. For each j ∈ [qh], αj(·), α′
j(·), β′

j(·) have the following form

αj(X) + α′
j(X) · h =

∑

S⊆Opnj

α̃
(S)
j (X)PS(X) ,

β′
j(x1) = β̃

(0)
j +

∑

i∈[q]

β̃
(i)
j a′

i ,

where each β̃
(i)
j and the coefficients of each α

(S)
j (X) can be efficiently computed

when the j-th RO query is made given μ, {y′
i}i∈[q] (only in restricted mode),

(x2, . . . , xm), h, and {t′
i, b̂i}i∈[q].

After A returns, the game aborts and A immediately loses, if there exists
j ∈ [q+1] such that αkj

(·), α′
kj

(·) does not satisfy αkj
(X)+α′

kj
(X) ·h = α̃

(∅)
kj

(X)+
∑

i∈Opnkj

α̃
({i})
kj ,0 · (r′

i,0 − e′
ia

′
iX), where α̃

({i})
kj ,0 denotes the constant term of the

polynomial α̃
({i})
kj

(X). This hybrid change is indistinguishable from the previous
hybrid by constructing a p.p.t. adversary B that wins WFROSq,p,B(λ) (defined
in Fig. 1) every time that A wins in Hyb4 but not in Hyb5.

Finally, we can conclude the theorems by Lemma 4.7.

Lemma 4.7. PrA wins Hyb5 ≤ (qh+q)q
p−1 .

The proof of Lemma 4.6 and 4.7 and full analysis can be found in the full version

Remark 4.8. Our scheme OPAR can be extended for proofs with a label attached
to the statement, to serve as a message (known only to the user) for a more
general blind signature. This would require to slightly change the syntax and
accommodate for an additional input τ ∈ {0, 1}∗ in the use algorithm, that is
OPAR.Usr(crs,X,Y , τ) (in free mode) and OPAR.Usr(crs,X,Y , τ) (in restricted
mode), and compute the challenge from (Y , Z,T , C, τ). The tag τ would be
appended to the final proof. Unforgeability immediately follows from our main
theorems (Theorems 4.4and 4.3).

We elaborate more on this in the full version. Given the above, one-more
unforgeability for the blind Schnorr variant given in [43] is immediate. Recall
the relation Rsch that contains all tuples (x,X, 0, 0) ∈ Zp × G

3, where Y , Z are
trivial and always fixed to zero (even when sampled via SampleArg), and also
the morphism is trivially M = [G]. Then

Corollary 4.9 ([43]). The protocol OPAR[GrGen, rstr] for relation Rsch is one-
more unforgeable.

Obliviousness. We show our scheme is oblivious under the discrete logarithm
assumption.

272 M. Orrù et al.

Theorem 4.10. If DL is hard for GrGen, the protocol OPAR[GrGen, free] for the
DLEQ relation Rdleq is oblivious with advantage

Advoblv
OPAR[GrGen,free],Rdleq

(λ) ≤ 2
√

Advdl
GrGen(λ) +

2
p

,

and the protocol OPAR[GrGen, rstr] for any simple algebraic relation R is obliv-
ious with advantage

Advoblv
OPAR[GrGen,rstr],R(λ) ≤ 2

√
Advdl

GrGen(λ) +
2
p

.

To prove the above theorem, we first show that under the discrete logarithm
assumption, we can assume a malicious prover always sends Z ′ = 〈Y ′,x〉, since,
otherwise, an honest verifier will abort except for negligible probability. We call
such an adversary, an argument-honest adversary. Then, we show our schemes
are perfectly oblivious against argument-honest adversaries.

Proof. (of Theorem 4.10) We only prove the second half of the statement, i.e.,
obliviousness of OPAR[GrGen, rstr], since the first half is simpler and follows from
a similar proof. Let A be an adversary playing the OBLV game for any simple
algebraic relation R in restricted mode. Without loss of generality, we assume
the randomness of A is fixed. We assume that A always finishes both signing
sessions and receives valid proofs (π0, π1) from User2. (Otherwise, obliviousness
are trivially holds, since the output of User0 and Usr1 is either Y ′ and e′ in free
mode for Rdleq or info and e′ in restricted mode, where Y ′ is uniformly random
over G

∗ and e′ is uniformly random over Z
∗
p.)

For i ∈ {0, 1}, denote a bad event Badi as in the signing session i A
sends Z ′ such that (X,Y ′, Z ′) �∈ L(R), i.e., there does not exist x such that
[Z ′;X] = [Y ′;M] · x. We can show that the probability that the bad event
occurs is bounded by the advantage of solving the discrete logarithm prob-
lem. Suppose Badi occurs. Since the session does not abort, we obtain a tran-
script (Y ′, Z ′,T ′, C ′, e′, r′, a′, b′) such that C ′ = a′H + b′G and [Y ′;M] · r′ =
e′a′[Z ′;X]+T ′. By rewinding to the step that the verifier generates e′ and gener-
ating a new response by sampling the randomness α and β again, we can obtains
another transcript (Y ′, Z ′,T ′, C ′, e′′, r′′, a′′, b′′) such that C ′ = a′′H + b′′G and
[Y ′;M] · r′′ = e′′a′′[Z ′;X] + T ′. Since [Z ′;X] = [Y ′;M] · x for any x, it must
hold that e′′a′′ = a′e′ (otherwise, we can find such x := (r′ −r′′)/(e′a′ − e′′a′′)).
Therefore, if e′ �= e′′, we have a′ �= a′′, and thus we can extract the discrete log-
arithm to the base G of H as (b′′ − b′)/(a′ −a′′). By the forking lemma, we have

Pr[Badi] ≤
√

Advdl
GrGen(λ)+ 1

p . Therefore, Pr[Bad0 ∨ Bad1] ≤ 2
√

Advdl
GrGen(λ)+ 2

p

We now show that the protocol is perfectly oblivious given the bad events
do not occur.

Let VA denote the set of all possible views of A that can occur after
finishing both signing sessions. In particular, any such view Δ ∈ VA takes
form Δ = (X,Y 0, Z0,Y 1, Z1, τ0, τ1, π0, π1). (We can ignore info for restricted
mode since it is fixed given A is fixed.) Here, πi = (ai, bi, ri, ei), where

Oblivious Issuance of Proofs 273

ei = H(Y i, Zi, [Y i;M]ri, aiH + biG). Moreover, τ0 and τ1 are the issuing pro-
tocol transcripts for session 0 and 1, respectively, and take form

τi = (Y ′
i, Z

′
i,T

′
i, C

′
i, e

′
i, r

′
i, a

′
i, b

′
i) .

We need to show that the distribution of the actual adversarial view, which
we denote as vA, is the same when b = 0 and b = 1. Because we assume the
randomness of A is fixed, the distribution of vA only depends on the randomness
η = (υ0, ε0, α0, β0,ρ0, υ1, ε1, α1, β1,ρ1) required to respond to User0, User1

and User2 queries, and we write vA(η) to make this fact explicit.
Concretely, fix some Δ ∈ VA. We now show that there exists a unique η

that makes it occur, i.e., vA(η) = Δ, regardless of whether we are in the b = 0
or in the b = 1 case. In particular, we claim that, in both cases b = 0, b = 1,
vA(η) = Δ if and only if for i ∈ {0, 1}, η satisfies

Y ′
ωi

= υiY i

αi = a′
ωi

/ai

βi = α−1
i b′

ωi
− bi

εi = αie
′
ωi

ei

ρi = rωi
− εiri

(7)

where ω0 = b and ω1 = 1−b. It is hard to see that there exists unique (υ0, υ1) and
thus a unique η satisfies Eq. (7). In restricted mode, since A is argument-honest,
such υi must exist and both Y ′

0 and Y ′
1 are not 0, which implies the uniqueness

of υi.
To prove the above claim, in the “only if” direction, from Fig. 5, it is clear

that when vA(η) = Δ, then η satisfies all constraints in Eq. (7).
To prove the “if” direction, assume that η satisfies all constraints in Eq. (7).

We need to show that vA(η) = Δ. This means in particular verifying that in free
mode, User0 indeed outputs Y ′

0 and Y ′
1 , and in both modes, the challenges out-

put by User1 and the proofs output by User2 are indeed (e0, (Y0, Z0), π0) and
(e1, (Y1, Z1), π1). It is clear that the output Y ′

0 , Y0, Z0, Y
′
1 , Y1, Z1 are consistent

with Δ.
For the challenges, note that because we only consider Δ’s that result in Usr2

not producing output (⊥,⊥), we have

ei = H(Y i, Zi, [Y i;M] · ri − eiai[Zi;X], aiH + biG) .

Since

Ti = ε−1
i

(
υ−1

i 0
0 In

)(
T ′

ωi
− MY ′

ωi
ρi

)

= ε−1
i

(
υ−1

i 0
0 In

)
(
[Y ′

ωi
;M] · r′

ωi
− e′

ωi
a′

ωi
[Z ′

ωi
;X] − [Y ′

ωi
;M]ρi

)

= [Y i;M] · ε−1
i (ri − ρi) − ε−1

i e′
ωi

a′
ωi

[Zi;X] ,

= [Y i;M] · ri − eiai[Zi;X] ,

274 M. Orrù et al.

Ci = α−1
i C ′

ωi
− βiG

= α−1
i (a′

ωi
H + b′

ωi
G) − βiG

= α−1
i a′

ωi
H + (α−1

i b′
ωi

− βi)G
= aiH + biG ,

the challenge output by User1 are indeed e′
i. Then, by Eq. (7), it is clear that

the output proof are indeed πi.
�

5 Oblivious Verifiable Unpredictable Functions

We rely on oblivious zero-knowledge proofs to build an Oblivious Verifiable
Unpredictable Function (OVUF) from pairing-free groups of prime order. As
in a verifiable unpredictable function (VUF), a weakening of a VRF [33], we
consider a setting where an issuer holds a secret key sk, the user knows a public
key pk, and they engage in an interactive protocol to jointly evaluate a func-
tion Z = F(sk,m) of an input m chosen by the user. The user learns Z, along
with a proof π that attests that Z = F(sk,m), which is verified with help of the
public key. Crucially, however, we require this evaluation to be oblivious–the
issuer does not learn anything about m, Z, and π during the execution. We note
that this notion is stronger than that of a (verifiable) OPRF, in that the latter
only provides verifiability to the user, as the issuer provides a linkable proof of
evaluation which cannot be made public.

Before we turn to the formal treatment of OVUFs, and our construction,
we observe that an OVUF directly yields a blind signature scheme producing
signatures σ = (F(sk,m), π) for a message m–therefore, the first part of the
signature is unique in that it only depends on m and sk. This is a natural
weakening of the notion of unique signatures [26], which suffices in many of their
applications. To the best of our knowledge, no unique signatures, or partially
unique ones, are known in the pairing-free setting, let alone blind ones. This
is contrast to the pairings setting, where BLS signatures [7] and their blind
version [6] are unique. We expand on this further below.

5.1 Syntax and Security

An OVUF protocol consists of a tuple of p.p.t. algorithms oVuf = (Setup,
KeyGen, Iss,Usr,F,Ver), with the following functionalities:

– crs ← oVuf.Setup(1λ), the setup algorithm, generates the public param. crs
– (sk,pk) ← oVuf.KeyGen(crs), the key generation algorithm, generates a secret

key sk and a public verification key pk
– The interactive algorithms oVuf.Iss (the issuing algorithm) and oVuf.Usr (the

user algorithm) take as input (sk,pk), and (pk,m), respectively, along with
crs. The interaction and the outputs of the issuer and user are denoted as:

(
(Z, π),⊥) ← 〈oVuf.Usr(crs,pk,m), oVuf.Iss(crs, sk,pk)〉

Oblivious Issuance of Proofs 275

Fig. 6. The issuance protocol for the OVUF protocol oVuf from Sect. 5.2.

where m ∈ {0, 1}∗ is a string. Moreover, we require that Z = F(crs, sk,m) is
the unique output of the associated key function F.

– true/false ← oVuf.Ver(crs,pk,m,Z, π) outputs a bit to indicate whether π
is a valid proof that Z = F(crs, sk,m).

We require a number of security properties for an OVUF, which we state
here only informally. (A proper formalization follows along the lines of Sect. 3.)

– Soundness. Any p.p.t. adversary playing the role of a malicious user, given
crs and pk, should not be able to interact with an honest issuer (in an a-
priori unbounded polynomial number of concurrent executions) and gener-
ate a triple (m∗, Z∗, π∗) such that oVuf.Ver(crs,pk,m∗, Z∗, π∗) is true, but
F(crs, sk∗,m∗) �= Z∗.

– One-more unforgeability. The security game initially runs oVuf.Setup(1λ) to
generate crs and (sk,pk) ← oVuf.KeyGen(crs). The p.p.t. adversary, given crs
and pk, can then interact concurrently over � sessions with oVuf.Iss(crs, sk).
It wins if it outputs � + 1 distinct triples {(mj , Zj , πj)}j∈[�+1] such that
oVuf.Ver(crs,pk,mj , Zj , πj) = true for all j ∈ [� + 1].

– One-more unpredictability. The security game initially runs oVuf.Setup(1λ)
to generate crs and (sk,pk) ← oVuf.KeyGen(crs). The adversary, given crs
and pk, interacts with oVuf.Iss(crs, sk) in � concurrent sessions. It wins if it
outputs � + 1 distinct pairs {(mi, Zi)}i∈[�+1] such that F(crs, sk,mi) = Zi for
all i ∈ [� + 1].

– Obliviousness. We can define obliviousness with respect to a cheating issuer
in a way very similar to that of what done in Sect. 3, which guarantees that
any triple (m,Z, π) output by an honest user cannot be linked back to which
issuance session that generates it. We omit the formal definition here.

One-more unpredictability is a natural relaxation (to the oblivious setting) of
unpredictability for VUFs. It captures the fact that only � evaluations of F(sk, ·)
are learnt through � interactions with the issuer. It is not implied by one-more
unforgeability, as it may be easier to break it if we are not asked to also generate
a proof. The converse is not true either since we may be able to break one-more
unforgeability by presenting � + 1 proofs for a single pair (m,Z).

276 M. Orrù et al.

5.2 An OVUF Protocol and Its Security

An OVUF protocol oVuf[GrGen] (Fig. 6) is easily obtained from OPAR =
OPAR[GrGen, free] for the DLEQ relation Rdleq. We give it for completeness:

Rdleq :=
{

(x,X, Y, Z) : ∀ x ∈ Zp and Y ∈ G,

[
Z
X

]
=

[
Y
G

]
· x

}
.

The relation-specific setup is empty, i.e.: Rdleq.Setup(Γ) = ⊥.

– The Setup algorithm, on input 1λ, runs (G, p,G) ←$ GrGen(1λ), and samples
a second generator H ←$G. It also implicitly defines two hash functions H1 :
{0, 1}∗ → G and H : {0, 1}∗ → Z

∗
p. Finally, it returns crs := (G, p,G,H). (Λ

is empty.) We stress here that the particular choice of the hash functions is
not spelled out further, as we will assume them to be random oracles in our
security analysis.

– The KeyGen algorithm, on input crs = (G, p,G,H), picks sk ← Zp and sets
pk := sk · G. It returns (sk,pk).

– We define F(crs, sk, x) = sk · H1(x).
– The Iss and Usr algorithms are derived from those of OPAR =

OPAR[GrGen, free]. (Note in particular that (sk,pk) are a sample from
Core(Rdleq).) In particular,

Usr(crs,pk,m) = OPAR.Usr(crs,pk,H1(m)) ,

Iss(crs, sk) = OPAR.Iss(crs, sk,pk = sk · G) .
(8)

The original user algorithm OPAR.Usr would return a tuple (Y,Z, π :=
(a, b, e, r)), but Y = H1(m) is redundant here, and therefore only (Z, π :=
(a, b, e, r)) is returned by Usr(crs,pk,m). Clearly, in an honest execution,
Z = F(crs, sk,m).

– The verification algorithm, given m,Z, and π = (a, b, e, r), first computes
Y := H1(m), and then verifies that π is a valid proof for (sk,pk, Y, Z) ∈ Rdleq.
This is done by computing

C := aH + bG ,

as well as T := r[Y ;G] − ea[Z;pk]. Then, we check that H(Y,Z,T , C) = e.

Security. It is not hard to see that the obliviousness of oVuf is implied the obliv-
iousness of OPAR. We show other security guarantees in the following lemmas.

Lemma 5.1. oVuf achieves soundness if H is a random oracle.

Proof. (Proof Sketch). By the soundness of OPAR, it follows by standard tech-
niques that an unbounded adversary, on input crs and pk = sk · G, querying H
a polynomial number of times, cannot output (m,Z, π = (a, b, e, r)) such that
π is valid and (sk,pk,H1(m), Z) /∈ Rdleq. (For this argument, the hash function
H1 can be fixed, and does not need to be a random oracle.) Clearly for such
a prover access to the issuer does not help, as the unbounded prover knows sk
without loss of generality, and can simulate the issuer on its own.

Oblivious Issuance of Proofs 277

Lemma 5.2. oVuf is one-more unforgeable under the (q + 1)-SDL assumption
in the algebraic group model and in the random oracle model.

Proof. (Proof sketch.). Here, we assume that both H and H1 are random oracles.
The high-level idea is simple: A winning adversary A against one-more unforge-
ability of oVuf, on input crs,pk, would output {(m∗

j , Z
∗
j , π∗

j)}j∈[�+1] such that
oVuf.Ver(crs,m∗

j , Z
∗
j , π∗

j) = true for all j ∈ [� + 1]. This yields an adversary B
against OMUF security of OPAR[GrGen, free], which, on input X = xG and crs,
runs A on input crs and X, simulates the issuer of oVuf with its oracles. Finally,
it outputs {(H1(m∗

j), Z
∗
j , π∗

j)}j∈[�+1]. Clearly, B wins if A wins, or if a collision
for H1 was found.

To use Theorem 4.3, however, we need to make sure that B is an algebraic
adversary of the right format. The problem is that A can supply algebraic rep-
resentations of elements that also depend on the outputs of H1–as B has no
access to a second oracle H1, such representations cannot be output by B. This
is easy to overcome, however, by letting B simulate H1 to A so that the discrete
logarithm hm of the result H1(m) = hmG of each query m is known to B. This
then allows B to convert all representations supplied by A in terms of the group
elements input to B only.

Lemma 5.3. oVuf is one-more unpredictable under the one-more gap-DH
assumption in the random oracle model.

We provide the proof in the full version.

5.3 Applications

Partially Unique Blind Signatures. We can think of the above OVUF protocol
as a blind signature scheme, with signatures of form σ = (sk ·H(m), π), where π
is a proof that ensures correctness of the first portion of the signature, which is
verified with the public key pk = sk · G. We note that the signatures issued are
exactly Goh-Jarecki signatures [25]. One-more unforgeability directly implies
one-more unforgeability of the blind signature. Further, soundness guarantees
that for any valid signature we indeed have Z = sk · H1(m), i.e., the Z part is
a deterministic function of m and sk. Such signatures (as in unique signatures)
can save verification costs by avoiding verifying multiple signatures for the same
message over and over. Once σ = (sk · H1(m), π) is verified, every following
signature on m will also contain the same sk · H1(m) portion.

From a theoretical perspective, the resulting scheme offers an alternative to
existing blind signature schemes (e.g. [1,23,29,43]) in pairing-free groups. While
we rely on four messages, as opposed to three in these schemes, this difference
is immaterial as three-message schemes also require two round trips.

Hybrid publicly/privately verifiable tokens. Our construction also gives new
approaches to anonymous tokens, as e.g. in PrivacyPass [11,17]. The origi-
nal protocol [17] relies on privately verifiable tokens functionally equivalent to
(r, sk ·H1(r)) for a random r. (The 2HashDH OPRF [30] was used instead, but it

278 M. Orrù et al.

is easy to see that pseudorandomness is not needed.) However, many situations
call for publicly verifiable tokens, and in practice, PrivacyPass usually relies on
a blind signature on r instead.

Our solution offers a hybrid approach, where the token (r, sk ·H1(r)) is issued
with an unlinkable publicly verifiable proof π. If the token verifier knows the
secret key, it can use it to very quickly verify (r, skH1(r)). Unpredictability still
guarantees that these (privately-verifiable) tokens are secure. However, third
parties that only know the public key can also, less efficiently, verify the token
with the help of π.

Efficiency. Concretely, the proof size is 4|Zp| elements; the issuance const
accounts for 7 group operations while verification for 4 group operations.

6 Public Verification for Algebraic MACs

Keyed-verification anonymous credentials (KVACs) [13] are typically con-
structed with an algebraic MAC, (this is a direct analog of anonymous credentials
constructed from blind signatures). In this approach, the issuer creates a MAC
σ on a list of attributes m, sends σ to the user. Since the user is not able to
verify σ (unlike the blind signature case), the issuer also provides an issuance
proof π that proves σ is well-formed with respect to a commitment to the MAC
key and m. This is important for unlinkability of the credential, since otherwise
σ may be invalid in a way that is unique to the issuance session.

Here we apply our transform to blind π, effectively making it a blind signa-
ture on m. This is interesting for three reasons. First, since π can be verified by
anyone, we can upgrade a KVAC to have some of the public verifiability present
in traditional anonymous credential systems, while still retaining the very effi-
cient KVAC protocols for cases when public verifiability is not required. Second,
there are many KVAC constructions (based on different algebraic MACs) we can
potentially upgrade in this way, with different features, tradeoffs and assump-
tions. Third, this construction provides some of the functionality of anonymous
credentials with concurrent security.

Technical Overview. We use a specific, efficient MAC, called MACGGM in [13],
to describe our approach but we believe that a similar reasoning applies also to
MACDDH (another MAC from [13]). We describe the case of a single attribute.
The setup algorithm generates the public parameters (Γ = (G, p,G),W) where
W is a generator of G whose discrete logarithm w.r.t. G is not known. The
secret key is x := [x−1;x0;x1] and the public parameters are (X0,X1) = (x0G+
x−1W,x1W). To compute a MAC on message m, sample Y ′ at random in G, then
output σ = (Y ′, Z ′) = (Y ′, (x0 + x1m)Y ′). To verify (σ,m), use Y ′ and (x0, x1)
to recompute Z ′′ and accept if Z ′′ = Z ′. The proof π is proof of knowledge of
(x−1, x0, x1) such that

Z ′ = (x0 + x1m)Y ′ ∧ X1 = x1W ∧ X1 = x0G + x−1W

Oblivious Issuance of Proofs 279

which can be realised with a generalized Schnorr proof, amenable to our trans-
form. We also note that a MAC (Y ′, Z ′) can be re-randomized to a MAC
(Y,Z) = (υY ′, υZ ′) where υ is a random value.

6.1 Syntax

Syntax for Algebraic MACs. A generic algebraic MAC with public issuance,
denoted MAC, has the following algorithms. Denote with MAC.Setup(crs) be the
setup algorithm that, given as input the security parameter in unary form 1λ,
outputs some common reference string crs. MAC.KeyGen(crs) generates a key pair
(sk,pk) where sk is the secret key, and pk are the public parameters (used only
when proving statements about an authentication tag). MAC.MAC(crs, sk,m)
outputs an authentication tag μ, on input message m (which we allow to be a
vector of messages, also called attributes). MAC.sVer(crs, sk,m, μ) verifies that
μ is a valid authentication tag for m.

Syntax for Publicly Verifiable Algebraic MACs. The setup algorithm is run by
a trusted party and outputs crs, describing a group description Γ for a group
G of order p and three non-trivial generators G, H (the commitment key for
Ped), and W (the crs of MAC). The signer uses KeyGen(crs) to create a keypair
(sk,pk). Signature generation (or issuance) is a three-message protocol between
the User and Issuer. In its basic instantiation, both parties share pk, and the
signer also knows sk. The user shares the message vector m (denoted info in
the generic protocol) with the issuer.4 The output is a first message im1, sent
from issuer to user, and we write (im1, st) ← MAC.Sign1(crs, sk,pk,m) (where
st is state required by the Issuer for the rest of the protocol) to denote the
first message produced by the issuer. In the second step the user has input im1,
sends a message um to the issuer via the user algorithm MAC.Usr1, which in
turn creates a response, denoted im2 ← MAC.Sign2(st, e′). Then the User locally
computes the proof π, from (im1, im2) and their state. The signature is verified
with MAC.Ver(crs,pk,m, π). (We stress that oCMZ.sVer denotes secret-key ver-
ification, while oCMZ.Ver denotes public-key verification.) In our constructions
we have the property that from π it is always possible to parse out an algebraic
MAC μ on the same message. This is necessary to allow the dual-use feature of
the credential (both as a KVAC and a blind signature).

We informally define security of publicly verifiable algebraic MACs with the
following two properties:

– Unlinkability. The challenger sets up the public parameters crs and internally
runs the p.p.t. adversary A(crs) and returns a public-key pk, with a message
vector m. The challenger samples b ←$ {0, 1}, and lets the adversary interact
with two user sessions Usr(pk,m), with the same m, potentially interleaving
messages across different rounds. Finally, if neither instance failed, A gets

4 This is also a simplification; in the full version we describe how m may be (partially)
hidden during issuance.

280 M. Orrù et al.

Fig. 7. Oblivious issuance protocol for CMZ credentials.

the resulting proofs in a random order π(b), π(1−b) and outputs a guess b′ ∈
{0, 1}. If b = b′, the adversary wins the game. The adversary has also at
disposal a verification oracle Ver that internally runs MAC.sVer for secret-
key verification.

– Unforgeability for n attributes. Here, the adversary A engages in polynomially
many (in λ) adaptive interactive protocols with the issuer (implemented by
the challenger). The challenger and A proceed for � issuance sessions, for
arbitrary messages chosen by the adversary. At the end of its execution, A
outputs a set of proofs and corresponding attributes {(πj ,mj)}j , and wins
the game if:
(a) (one-more forgery) A outputs at least � + 1 proofs that are all valid and

different, or
(b) (attribute forgery) one of proofs output by A is valid and has an associated

attribute vector m that was not queried during issuance.

Both security properties are inspired from the notion of blind signatures with
attributes in [3, Definition 6 and Definition 7]. When extended to handle pri-
vate attributes (cf. Remark 6.5), the differences are in: (1) the syntax for the
algorithms, which is slightly different than [3]; (2) in unlinkability, where we
do not require the key pair to be honestly generated; (3) in the unlinkability
property, we clarify that unlinkability can hold only for attributes whose public
information is the same.

6.2 Oblivious Issuance Proof

We now define the new issuance proof for CMZ credentials, denoted oCMZ. As
the original protocol, it provides a proof π attesting the validity of the given
credential, but now π is created with our oblivious ZK proof framework. The
procedure oCMZ.Setup(1λ) invokes the setup for the relation RMAC.Setup(Γ)
which samples and returns the generator W ∈ G such that its DL w.r.t. G
and H is not known. In other words, crs = (Γ,H,W) ← oCMZ.Setup(1λ). The
key generation algorithm oCMZ.KeyGen(crs) outputs a new key pair (sk,pk),
where the secret key is sk := x := [x−1;x0;x1; . . . ;xn] chosen at random and
the public key is pk := X ∈ G

n+1 is constructed as X0 := x0G + x−1W ,
Xi = xiW for 1 < i ≤ n. A MAC on a (public) vector m is generated via

Oblivious Issuance of Proofs 281

the procedure oCMZ.Sign that internally runs the generic restricted protocol
OPAR[GrGen] (illustrated in Fig. 5) by setting info := m ∈ Z

n
p to be the message

vector to be signed m and the relation to be proven as

RCMZ := {(x,X,Y = (0, Y,m · Y), Z) ∈ Z
n+2
p × G

n+1 × G
n+2 × G :

[Y ;M] · x = [Z;X0; . . . Xn] ∧
X0 = x0G + x−1W ∧

Xi = xiW for i ∈ [1, n]}
where the morphism is

[
Y
M

]
:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 Y m1Y m2Y · · · mnY
W G 0 0 · · · 0
0 0 W 0 · · · 0
0 0 0 W · · · 0

[−.5em]0 0 0 0
. . . 0

0 0 0 0 · · · W

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9)

The setup algorithm RCMZ.Setup(Γ) samples W uniformly from G
∗ and returns

Λ = (Γ,W). The argument sampling procedure RCMZ.SampleArg(crs,m) returns
a tuple Y := (0, Y,m · Y) = (0, Y,m1Y,m2Y, . . . , mnY) for some Y randomly
sampled from G

∗. However, we assume oCMZ.Sign does not send the whole vector
Y , and instead simply sends Y as the other elements can be reconstructed from
the message vector m.

It is clear that RCMZ is a simple algebraic relation (cf. Definition 4.2), since
one generates M and Y with their DLs to base G and fixed (Λ,m), any Y 1,Y 2 ∈
Arg(RCMZ) is such that ∃r ∈ Zp such that rY1 = Y2. Also, the kernel Diffie-
Hellman problem is hard for RCMZ, since finding non-zero r ∈ Z

n+2
p such that

Mr = 0 implies solving the DL of W to base G.
At the end of the issuance protocol, the user has a MAC μ := (Y,Z) and

an unlinkable proof π := (a, b, e, r) on m. The public verification algorithm
oCMZ.Ver takes as input X, the message m, together with the MAC (Y,Z)
and the proof π. It derives Y = (0, Y,m · Y) and internally invokes our generic
verifier in restricted mode (Fig. 4). The following lemma follows from correctness
and obliviousness (cf. Theorem 4.10) of the generic protocol OPAR[GrGen].

Lemma 6.1. oCMZ is correct and unlinkable.

Unforgeability. We prove security of our construction in two parts: we first study
(pure) one-more unforgeability, corresponding to the winning event (a), and then
attribute unforgeability, corresponding to the winning event (b) on Page 27. The
case (a) follows from the main theorem (cf. Theorem 4.3), while the case (b) is
more involved and requires a reduction to the standard unforgeability of algebraic
MACs.

Lemma 6.2. If MACGGM is uf-cmva secure [13, Definition 1] and DL is hard for
GrGen, then oCMZ satisfies attribute-based unforgeability in the random oracle
model and the algebraic group model.

282 M. Orrù et al.

The proof is available in the full version.

Lemma 6.3. If DL is hard for GrGen, then for any p.p.t. adversary A,

Advkmdh
GrGen,RCMZ,A(λ) = Advdl

GrGen,A(λ) .

Corollary 6.4. If MACGGM is uf-cmva secure [13, Definition 1] and DL is hard
for GrGen, then oCMZ is unforgeable for n ∈ poly(λ) attributes.

Signature Size. The signature size is 2|G| + (3 + n)|Zp| bits, which is linear in
the number of attributes (as is usually the case for attribute-based credentials).
To put this in perspective, we can compare to other credentials constructed in
prime order groups, in particular AC Light and U-Prove. The comparison is
not direct since neither supports the keyed-verification feature of our scheme,
and the public verification in our scheme does not (directly) support the rich
presentation proofs of the other two. Finally, the security properties of all three
schemes vary.

We compare the size of presenting a credential by counting the number of
elements, assuming for simplicity that |G| ≈ |Zp| (as in elliptic curve groups).
In AC Light, the signature size is eight elements, to show that a ninth is a fresh
commitment to the n attributes. Therefore, the cost of credential presentation
when all attributes are revealed is 9 + n elements. For U-Prove the cost is 6 + n
elements. Both are slightly more than the 5+n elements required by our scheme.

Remark 6.5. In [13], an alternative issuance protocol (“blind issuance”) is
described that allows the user to keep some attributes private during issuance.
In the full version we describe how to extend oCMZ issuance support private
attributes.

7 A Provably Secure Variant of U-Prove

U-Prove is a set of cryptographic protocols initially designed by Stefan Brands
that allows users to minimally disclose information about what attributes are
encoded in a token. Each token is unlinkable, preventing tracking of users. We
focus on the issuance of a U-Prove token, which is illustrated in [36, Figure 8].
We provide a mitigation for the attack from Benhamouda et al. [5] for the case
where U-Prove tokens are generated using identical common inputs and the
computation is shared among parallel protocol executions. The resulting protocol
is almost identical to the previous one, except for the additional elements in the
proof transcript arising from the Tessaro-Zhu transform. The tokens themselves
are left unchanged.

7.1 Syntax and Definition

An abstraction of the U-Prove issuance protocol consists of a tuple of p.p.t. algo-
rithms UProve = (Setup,KeyGen, Iss,Usr,Ver), with the following functionalities:

Oblivious Issuance of Proofs 283

– crs ← UProve.Setup(1λ), the setup algorithm, generates the public param. crs
– (sk,pk) ← UProve.KeyGen(crs), the key generation algorithm, generates a

secret key sk and a public verification key pk
– The interactive algorithms UProve.Iss (the issuing algorithm) and UProve.Usr

(the user algorithm) take as input (sk,pk), and (pk,m), respectively, along
with crs. The interaction and the outputs of the issuer and user are denoted
as:

(
cred,⊥) ← 〈UProve.Usr(crs,pk,m),UProve.Iss(crs, sk,pk,m)〉

where m ∈ (M)n denotes a list of n attributes each from a set M and cred
denotes the resulting token.

– true/false ← UProve.Ver(crs,pk,m, cred) outputs a bit to indicate whether
cred is a valid token for attributes m.

We consider only one-more unforgeability for UProve here, since it is the only
security guarantee affected by the ROS attack. Informally, one-more unforgeabil-
ity is defined by the following security game. The security game initially runs
UProve.Setup(1λ) to generate crs and (sk,pk) ← UProve.KeyGen(crs). The p.p.t.
adversary, given crs and pk, can then interact concurrently over � sessions with
UProve.Iss(crs, sk). It wins if it outputs � + 1 distinct pairs {(mj , credj)}j∈[�+1]

such that UProve.Ver(crs,pk,mj , credj) = true for all j ∈ [� + 1].

7.2 Our Construction

Our construction UProve is obtained from OPAR[GrGen, rstr] for the following
DLEQ relation:

Rup :=
{

(x,X, Y, Z) : x ∈ Zp, Y ∈ G, x
[
Y
G

]
=

[
Z
X

]}
,

The relation specific setup Rup.Setup(Γ) returns generators G with G :=
(G0, G1, . . . , Gn) ∈ G

l whose discrete logarithm is not known. The setup algo-
rithm for the overall protocol outputs (Γ,H,G) ← UProve.Setup(Γ). We regard
m ∈ Z

n
p as info, and the Rup.SampleArg is deterministic algorithm that takes

(crs,m ∈ G
n) as input and outputs Y ′ =

∑
miGi + G0. Then, the protocol

UProve is constructed as follows.

– The setup algorithm UProve.Setup is the same as the setup algorithm of
OPAR[GrGen, rstr] for Rup.

– The key generation algorithm UProve.KeyGen, given crs, samples sk ←$Zp

and sets pk ← sk · G.
– The issuance algorithms UProve.Iss and UProve.Usr are the same as those of

OPAR[GrGen, rstr] except the user also outputs the random coins υ generated
by the user protocol together with the tuple (Y,Z, π = (a, b, e, r)). We also
present the algorithms in Fig. 8.

– The verification algorithm, given pk, m and cred = (υ, Y, Z, π), first checks
Y = υ(

∑
miGi + G0) and then outputs OPAR[GrGen, rstr].Ver(pk, Y, Z, π).

284 M. Orrù et al.

The pair (υ, Y) is the token private and public key, which should be unique
to each token, and required to present the token. The stated purpose of the
token private key is to prevent replay of the token. One-more unforgeability
of UProve follows immediately from one-more unforgeability of the underlying
OPAR protocol.

Fig. 8. Our variant of the U-Prove issuance protocol.

Acknowledgments. Tessaro and Zhu are partially supported by NSF grants CNS-
2026774, CNS-2154174, a JP Morgan Faculty Award, a CISCO Faculty Award, and a
gift from Microsoft.

References

1. Abe, M.: A secure three-move blind signature scheme for polynomially many signa-
tures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 9

2. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 17

3. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1087–1098. ACM Press (Nov
2013).https://doi.org/10.1145/2508859.2516687

4. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 7

5. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77870-5 2

6. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3

Oblivious Issuance of Proofs 285

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1 30

8. Boneh, D., Shoup, V.: A graduate course in applied cryptography (2020). https://
toc.cryptobook.us/book.pdf

9. Brands, S.: Rethinking public key infrastructures and digital certificates: building
in privacy. MIT Press (2000)

10. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Tech. Report/ETH Zurich, Depart. Comput. Sci. 260 (1997)

11. Celi, S., Davidson, A., Valdez, S., Wood, C.A.: Privacy Pass Issuance Protocols.
RFC 9578. RFC Editor (2024). https://doi.org/10.17487/RFC9578. https://www.
rfc-editor.org/info/rfc9578

12. Chairattana-Apirom, R., Hanzlik, L., Loss, J., Lysyanskaya, A., Wagner, B.: PI-
cut-choo and friends: compact blind signatures via parallel instance cut-and-choose
and more. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part III. LNCS, vol.
13509, pp. 3–31. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-
15982-4 1

13. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification
anonymous credentials. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp.
1205–1216. ACM Press (Nov 2014).https://doi.org/10.1145/2660267.2660328

14. Chase, M., Perrin, T., Zaverucha, G.: The Signal private group system and anony-
mous credentials supporting efficient verifiable encryption. In: Ligatti, J., Ou, X.,
Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1445–1459. ACM Press (Nov
2020).https://doi.org/10.1145/3372297.3417887

15. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Plenum Press, New York,
USA (1982)

16. Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols.
Ph.D. thesis, CWI Amsterdam, The Netherlands (1997)

17. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy pass:
bypassing internet challenges anonymously. PoPETs 2018(3), 164–180 (2018).
https://doi.org/10.1515/popets-2018-0026

18. De Santis, A., Yung, M.: Cryptographic applications of the non-interactive
metaproof and many-prover systems. In: Menezes, A.J., Vanstone, S.A. (eds.)
CRYPTO 1990. LNCS, vol. 537, pp. 366–377. Springer, Heidelberg (1991). https://
doi.org/10.1007/3-540-38424-3 27

19. Denis, F., Jacobs, F., Wood, C.A.: RSA Blind Signatures. RFC 9474. RFC Edi-
tor (2023). https://doi.org/10.17487/RFC9474. https://www.rfc-editor.org/info/
rfc9474

20. Dold, F.: The GNU Taler system : practical and provably secure electronic pay-
ments. Theses, Université de Rennes (Feb 2019). https://theses.hal.science/tel-
02138082

21. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

22. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

23. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed
ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y.

https://doi.org/10.1007/3-540-45682-1_30
https://toc.cryptobook.us/book.pdf
https://toc.cryptobook.us/book.pdf
https://doi.org/10.17487/RFC9578
https://www.rfc-editor.org/info/rfc9578
https://www.rfc-editor.org/info/rfc9578
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1145/2660267.2660328
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1515/popets-2018-0026
https://doi.org/10.1007/3-540-38424-3_27
https://doi.org/10.1007/3-540-38424-3_27
https://doi.org/10.17487/RFC9474
https://www.rfc-editor.org/info/rfc9474
https://www.rfc-editor.org/info/rfc9474
https://theses.hal.science/tel-02138082
https://theses.hal.science/tel-02138082
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-96881-0_2

286 M. Orrù et al.

(eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 3

24. Fuchsbauer, G., Wolf, M.: Concurrently secure blind Schnorr signatures. In:
Advances in Cryptology - EUROCRYPT 2024: 43rd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Zurich, Switzer-
land, May 26-30, 2024, Proceedings, Part II, pp. 124-160. Springer-Verlag, Berlin
(2024).https://doi.org/10.1007/978-3-031-58723-8 5

25. Goh, E.-J., Jarecki, S.: A signature scheme as secure as the Diffie-Hellman problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 25

26. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-
knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 228–245. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
48071-4 16

27. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

28. Hanzlik, L., Loss, J., Wagner, B.: Rai-choo! evolving blind signatures to the next
level. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol.
14008, pp. 753–783. Springer, Heidelberg (2023).https://doi.org/10.1007/978-3-
031-30589-4 26

29. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from iden-
tification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 345–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 12

30. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and t-pake in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 13

31. Kastner, J., Loss, J., Xu, J.: On pairing-free blind signature schemes in the alge-
braic group model. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022,
Part II. LNCS, vol. 13178, pp. 468–497. Springer, Heidelberg (2022).https://doi.
org/10.1007/978-3-030-97131-1 16

32. Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature schemes.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 468–
492. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 16

33. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS,
pp. 120–130. IEEE Computer Society Press (Oct 1999). https://doi.org/10.1109/
SFFCS.1999.814584

34. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 729–
758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 27

35. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

36. Paquin, C., Zaverucha, G.: U-prove cryptographic specification v1. 1, revi-
sion 5. Technical Report, Microsoft Corporation (2011). https://github.com/
microsoft/uprove-node-reference/raw/main/doc/U-Prove%20Cryptographic
%20Specification%20V1.1%20Revision%205.pdf

https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-031-58723-8_5
https://doi.org/10.1007/3-540-39200-9_25
https://doi.org/10.1007/3-540-48071-4_16
https://doi.org/10.1007/3-540-48071-4_16
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-031-30589-4_26
https://doi.org/10.1007/978-3-031-30589-4_26
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/3-540-48071-4_3
https://github.com/microsoft/uprove-node-reference/raw/main/doc/U-Prove%20Cryptographic%20Specification%20V1.1%20Revision%205.pdf
https://github.com/microsoft/uprove-node-reference/raw/main/doc/U-Prove%20Cryptographic%20Specification%20V1.1%20Revision%205.pdf
https://github.com/microsoft/uprove-node-reference/raw/main/doc/U-Prove%20Cryptographic%20Specification%20V1.1%20Revision%205.pdf

Oblivious Issuance of Proofs 287

37. Pointcheval, D.: Strengthened security for blind signatures. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 391–405. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0054141

38. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.1007/s001450010003

39. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

40. Schnorr, C.P.: Efficient identification and signatures for smart cards. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
688–689. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 68

41. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991).https://doi.org/10.1007/BF00196725

42. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45600-7 1

43. Tessaro, S., Zhu, C.: Short pairing-free blind signatures with exponential security.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS,
vol. 13276, pp. 782–811. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-07085-3 27

44. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

https://doi.org/10.1007/BFb0054141
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-46885-4_68
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

	Oblivious Issuance of Proofs
	1 Introduction
	2 Preliminaries
	3 Oblivious Issuance of Proofs
	4 Oblivious Issuance of Proofs for Algebraic Relations
	4.1 Algebraic Relations
	4.2 Oblivious Issuance Protocol of Proofs
	4.3 Security

	5 Oblivious Verifiable Unpredictable Functions
	5.1 Syntax and Security
	5.2 An OVUF Protocol and Its Security
	5.3 Applications

	6 Public Verification for Algebraic MACs
	6.1 Syntax
	6.2 Oblivious Issuance Proof

	7 A Provably Secure Variant of U-Prove
	7.1 Syntax and Definition
	7.2 Our Construction

	References

