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Abstract. In this work, we introduce the sparse LWE assumption,
an assumption that draws inspiration from both Learning with Errors
(Regev JACM 10) and Sparse Learning Parity with Noise (Alekhnovich
FOCS 02). Exactly like LWE, this assumption posits indistinguishability
of (A,sA 4+ e mod p) from (A,u) for a random u where the secret s,
and the error vector e is generated exactly as in LWE. However, the coef-
ficient matrix A in sparse LPN is chosen randomly from Z;*™ so that
each column has Hamming weight exactly &k for some small k. We study
the problem in the regime where k is a constant or polylogarithmic. The
primary motivation for proposing this assumption is efficiency. Compared
to LWE, the samples can be computed and stored with roughly O(n/k)
factor improvement in efficiency. Our results can be summarized as:

— Foundations: We show several properties of sparse LWE samples,
including: 1) The hardness of LWE/LPN with dimension & implies
the hardness of sparse LWE/LPN with sparsity k& and arbitrary
dimension n > k. 2) When the number of samples m = 2(nlogp),
length of the shortest vector of a lattice spanned by rows of a ran-
dom sparse matrix is large, close to that of a random dense matrix
of the same dimension (up to a small constant factor). 3) Trapdoors
with small polynomial norm exist for random sparse matrices with
dimension n x m = O(nlogp). 4) Efficient algorithms for sampling
such matrices together with trapdoors exist when the dimension is
n x m = O(n?).

— Cryptanalysis: We examine the suite of algorithms that have been
used to break LWE and sparse LPN. While naively many of the
attacks that apply to LWE do not exploit sparsity, we consider nat-
ural extensions that make use of sparsity. We propose a model to
capture all these attacks. Using this model we suggest heuristics
on how to identify concrete parameters. Our initial cryptanalysis
suggests that concretely sparse LWE with a modest k£ and slightly
bigger dimension than LWE will satisfy similar level of security as
LWE with similar parameters.
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— Applications: We show that the hardness of sparse LWE implies
very efficient homomorphic encryption schemes for low degree com-
putations. We obtain the first secret key Linearly Homomorphic
Encryption (LHE) schemes with slightly super-constant, or even con-
stant, overhead, which further has applications to private informa-
tion retrieval, private set intersection, etc. We also obtain secret key
homomorphic encryption for arbitrary constant-degree polynomials
with slightly super-constant, or constant, overhead.

We stress that our results are preliminary. However, our results make a
strong case for further investigation of sparse LWE.

1 Introduction

The celebrated work by Regev [63] proposed the Learning With Errors (LWE)
assumption, postulating that noisy linear samples are indistinguishable from
random,

(A,b=sA+emodp) =. (A u)

where the coefficient matrix A « anm and the secret vector s « Z" are

sampled randomly, the entries of the noise vector e <+ Dlxm are sampled from
the discrete Gaussian distribution with width ¢ smaller than p, and the vector
Z;,X"‘ is uniformly random.

The LWE assumption is extremely versatile, and has been the basis of a
plethora of constructions. This spans the development of core cryptographic tools
including key agreement, public key encryption, and signature schemes that are
ready to be deployed [2,3], schemes and protocols with richer functionalities and
nearly practical efficiency e.g., [18,42,43,51], to advanced primitives pushing the
envelop of cryptographic feasibility, such as, Fully Homomorphic Encryption [21,
26,32,36,53], Attribute-Based Encryption [20,39], Succinct Arguments for P [27]
and many others [22,40,41,54,70]. The hardness of the LWE problem has been
extensively studied. It was shown that the hardness of LWE is implied by the
worst-case hardness of certain lattice problems such as GapSVP [25,50,61,63],
which is widely believed to be subexponentially hard for a range of parameters.

Many variants of the LWE problems have been explored, encompassing 1)
the use of structured secrets, such as binary random secrets and entropic secrets,
2) the use of structured noise, e.g., binary random noise, uniform random noise
of bounded magnitude, and rounded version known as Learning With Rounding
(LWR) [17], and 3) the use of structured matrices, such as those implicit in Ring
LWE (RLWE) [52] or middle-point LWE [64]. All these variants have signifi-
cantly extended the landscape of functionalities, efficiency and security levels,
and techniques supported by the LWE family of assumptions.

The Sparse Learning With Errors Problems. This work proposes a new variant
called the k-Sparse LWE (k-sLWE) problem. We conjecture the hardness of the
LWE problem when the coefficient matrices A € Z;*™ are random k-sparse
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matrices (as opposed to random dense matrices), where each column has exactly
k non-zero entries for some k < n and every non-zero entry is sampled uniformly
and randomly from Z,. Sparsity is the new feature — the smaller the sparsity
parameter k is, the more efficient it is to store and compute the samples. Each
sparse LWE sample (a;,sa; + e;) contains only & + 1 elements in Z, and takes
O(k: log p) time to compute, whereas a standard LWE sample contains n + 1
elements and takes O(n log p) time to compute. At the same time, k is crucial
for the hardness of the problem. A variety of settings of k is interesting; k
can be constant, logarithmic, polylogarithmic, or sublinear in the dimension
n. We found that k£ being logarithmic or polylogarithmic is the most suitable
for cryptographic applications, ensuring efficiency and strong security. While the
assumption with constant k£ and appropriately bounded number of samples might
also be useful for deriving interesting theoretical results, constant k£ will not
provide almost exponential security when the number of samples is superlinear
in the dimension n.

Sparse LWE is a natural question to study. The effect of sparsity in the coef-
ficient matrix has long been studied in the context of the Learning Parity with
Noise (LPN) problem, a close cousin of LWE, which uses sparse random noise,
instead of small (but dense) Gaussian noise as in LWE. Sparse LPN further uses
random k-sparse coefficient matrices as described above. Variants of the sparse
LPN assumption in the binary field Fy have been proposed and studied for at
least a couple of decades in average-case complexity and are intimately connected
to constraint satisfaction problems (see works such as [8,9,14,29,31,37,46,59]).
The work of [12] generalized the assumption to large fields F,. These assump-
tions have been used in a number of applications, for example [8,10,13,28,30,44].
Among them, the work of [10] constructed a public-key encryption scheme from
k-sparse LPN for a constant k > 3 and bounded polynomial number of sam-
ples, while the recent work of [30] constructed multi-party Homomorphic Secret
Sharing and multi-party computation protocols with sublinear communication
from k-sparse LPN for any polylogarithmic & and unbounded polynomial num-
ber of samples. The related assumption of local PRGs [37] has also been used in
a number of works including the recent construction of a program obfuscation
scheme [45].

It is somewhat surprising that the sparse variant of LWE has not been inves-
tigated, to the best of our knowledge. That is the purpose of this work. Sparse
LWE is related to constraint satisfaction problems like sparse LPN and Gol-
dreich’s one-way function and PRG, and at the same time draws connection to
lattices. It is curious and interesting to ask:

How hard is the sparse LWE problem?
What properties do sparse LWE samples have?
What can the hardness of sparse LWE enable cryptographically?

We give initial answers to these questions, and ask new questions. Our prelimi-
nary results include:

— Foundations. We show several properties of sparse LWE samples, including:
1) the hardness of LWE with dimension & implies the hardness of sparse LWE
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with sparsity k& and arbitrary dimension n > k. Our reduction is oblivious to
the error model and hence the results also apply to sparse LPN.

2) When the number of samples m = 2(nlogp), the length of the shortest
vector of the lattice spanned by the rows of a random sparse matrix is large,
close to that of a random dense matrix of the same dimensions (up to a small
constant factor).

3) Trapdoors with small polynomial norm exist for random sparse matrices
with dimension n x m = O(nlogp). An interesting consequence of the first
claim from [34] is that when m = O(nlogp), the distribution (A, Ar mod p)
for a vector r € Z;" is statistically close to random in Zj provided r is chosen
from a polynomially wide discrete Gaussian over Z™. This might be useful
for the design of public-key primitives.

4) While we don’t know how to sample random sparse matrices with trap-
doors when m = O(nlogp), we can design an efficient algorithm for sam-
pling such matrices together with trapdoors when the dimension is n x m =
O(n?lognlogp).

— Cryptanalysis. Examining existing attacks on the LWE problem, the struc-
ture of sparse matrices does not naively speed up combinatorial [19], lat-
tice reduction [48,66], or algebraic attacks [15]. Moreover, many attacks that
would typically apply to sparse LPN become harder to apply to sparse LWE
due to the fact that the noise is dense (though small). We also explore
attacks that directly leverage sparsity, and show that they are ineffective
when the sparsity parameter k is polylogarithmic and number of samples m
is (unbounded) polynomial. Overall, our initial cryptanalysis optimistically
suggests that when all other parameters are equal, namely the modulus p,
the noise width o, and polynomial number of samples m, polylogarithmic-
sparse LWE with slightly larger dimension n’ = @(n), is comparable to LWE
with dimension n. We also give some concrete parameters based on our initial
cryptanalysis.

— Applications. The hardness of sparse LWE implies very efficient homomor-
phic encryption schemes for low degree computations. In particular, we obtain
the first secret key Linearly Homomorphic Encryption (LHE) schemes with
slightly super-constant, or even constant, overhead, which further has appli-
cations to private information retrieval, private set intersection, etc. We also
obtain secret key homomorphic encryption for arbitrary constant-degree poly-
nomials with slightly super-constant, or constant, overhead. In comparison,
to the best of our knowledge, previous homomorphic encryption schemes have
(large) polylogarithmic overhead [33]. In particular, our LHE scheme is con-
cretely efficient.

We emphasize that our cryptanalysis is preliminary, and more thorough study
must be conducted before we can rest our confidence on the hardness of sparse
LWE. Nevertheless, in order to assess the potential benefits of sparse LWE and
provide motivation for further study, we make tentative suggestions for concrete
parameters to facilitate comparison of efficiency.



214 A. Jain et al.

Comparison of Sparse LWE with LWE and RLWE. The main motivation behind
introduction of sparse LWE is efficiency. Storing and computing sparse LWE
samples are roughly O(n/ k) times more efficient compared to plain LWE. Game-
changing efficiency improvements have been afforded by Ring LWE [52] due to
its nice properties (such as SIMD compatibility [68]). However, there are few
settings where rings may not be ideal, for instance, when we want to access
data as integer elements rather than as ring elements. A good example of this is
private-information retrieval applications [43]. We believe that in those settings

sparse LWE might form an appealing alternative to ring LWE.

Open Problems. Our work leaves a great supply of open problems from various
angles. On the complexity side, we ask if there are new attacks on sparse LWE?
Can we show worst-case to average-case reductions or leakage resilience proper-
ties similar to LWE? Similarly, it is completely unclear if sparse LWE with small
secrets is hard. On the concrete attacks and algorithms side, a systematic study
of concrete parameters is warranted. On the applications side, it would be good
to study more applications of sparse LWE beyond what we mentioned.

2 Technical Outline

We now describe our results with more context. The sLWE assumption is param-
eterized by a sparsity parameter k, dimension n, sample complexity m, noise
parameter o and modulus p. It posits that (A,sA + e mod p) is indistinguish-
able from (A,u) where A is a random matrix in Z2*™ such that each column
is k-sparse, s — Z*™ is randomly chosen, e € Z'*™ is generated from discrete
Gaussian with width ¢ and u € Zzl,xm is randomly chosen. Our results can be
divided into three categories: Foundations, Cryptanalysis and Applications.

2.1 Foundations

We start by investigating some basic properties of sparse LWE. A very natural
question to ask is how much is the minimum distance of the lattice £ = L(A)
given by £ = {xA + pZ™ : x € Z'*"} as a function of k, n, m and p. This
should be as large as possible, and certainly much larger than the norm of the
error vector, so that given m sLWE samples the planted secret s is uniquely
determined. In Sect. 4.1, we show that when m = 2(nlogp) as long as k > 1
and p is polynomial in n, the minimum distance is 2(p). In particular, once
the number of samples exceeds 8nlogn, the minimum distance properties of £
behave roughly similarly as in regular LWE samples.

An immediate consequence of this from the Transference theorems of
Banaszczyk [16] (and as argued in corollary 3.1) is that the there exist m linearly
independent vectors of bounded polynomial norm in the lattice £ (A) = {x €
Z™ : Ax = 0} once m = 2(nlogp). Thus, in principle when m = 2(nlogp), A
satisfies nice properties similar to a dense matrix corresponding to LWE distri-
bution. For instance, one immediate consequence from the work of [34] is that A
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can be used to extract from Gaussian sources. In other words, if r is chosen from
a wide enough (polynomial width) discrete Gaussian, the induced distribution
on Ar is statistically close to a random vector in Zj even if A is public.

We ask when can we sample a random sparse matrix A along with such a
trapdoor. While we leave sampling random sparse matrices A along with a short
trapdoor for m = O(nlogp) as a great open question, in Sect. 6, we show that it
is indeed possible to sample such sparse matrices along with lattice trapdoors for
m = O(n?lognlogp). Such linearly independent short vectors in £+(A) can be
used to sample from a discrete Gaussian distribution on vectors in £+ (A) using
lattice sampling methods from prior work such as [34,58|. The current approach
for sampling fully random (dense) matrices along with trapdoors works by first
sampling a matrix A at random and then setting V = AR + G for a random
small norm matrix R and the gadget matrix G. This gives a small norm matrix
X so that [A|V]X = G. Micciancio and Peikert [58] show how to convert X
to a trapdoor for [A|V]. This approach does not work directly for us because
unlike the case with dense matrices, V. = AR 4 G is not sparse anymore. The
main technical highlight of our algorithm is a novel combinatorial approach to
get around this issue and sample random sparse matrices along with trapdoors.

We then ask if we can show asymptotic polynomial time hardness of sparse
LWE. It would be nice to show a result of the form: “if LWE is hard, then sparse
LWE is also hard”. Such results are not known even in the setting of LPN /sparse
LPN which has received a lot of study. While we do not have a fully general result
here, in Sect. 5, we show quite an interesting reduction.

Specifically, sparse LWE with sparsity parameter k, dimension n > k, sample
complexity m, prime modulus p and the noise parameter o is harder than LWE
with dimension k, sample complexity m, modulus p and the noise parameter
o. Our reduction is oblivious to the error model and also applies to the case of
sparse LPN/LPN. Assuming subexponential hardness for LWE, this establishes
polynomial time hardness for sparse LWE provided k is polylogarithmic. We
leave showing such hardness results for constant k to future work.

2.2 Cryptanalysis

We perform some preliminary cryptanalysis of this new assumption and also
suggest some concrete parameters based on that. We stand on the tall shoulders
of a body of great work done in analyzing security of sparse LPN [8-10,13,14,
29,31,37,44,46,59] as well as LWE [1,4,5,7,62].

In sLWE sparsity creates some interesting effects. For example, when m >
k(Z) + 1 we are guaranteed to find at least k+1 samples supported on the same
set of k variables, which might be enough to distinguish a random vector from
one close to the lattice. More generally, one can potentially use an algorithm
that breaks LWE for some small dimension whenever there exists a set of ¢
samples supported on less than ¢ distinct variables, with ¢ being sufficiently small.
However, we believe that once k is large enough, we can release polynomially
many samples without compromising security. Most of our cryptanalysis deals
with the case of k = O(logn) so that we do not have to worry about this effect.



216 A. Jain et al.

We now discuss a few different types of attacks against sparse LWE. Some of
our attacks are inspired by existing algorithms for sparse LPN and LWE attacks,
while others leverage the sparsity of A more directly.

Sparse LPN Style Attacks. We first observe that many of the attacks that apply
to sparse LPN do not apply in this case because our error vectors are dense
as opposed to being sparse. In the main attack that still might apply how it
does for sparse LPN, one aims to find sparse vectors x € Z;" so that Ax = 0.
Such a t-sparse x can break sparse LPN if the error probability is less than %
We show that if we can find a t-sparse vector x like this for very small ¢, it
can lead to attacks against sparse LWE in certain cases. The idea is that one
can multiply sA + e with x to yield ex. Observe that ex only touches upon ¢
coordinates of small norm error vector e. If ¢ is very small and the error bound
B is also very small so that B < p one could potentially use brute force to
iterate over all the relevant choices of error to learn with high probability the
error coordinates corresponding to the ¢ non-zero locations of x. To rule out such
attacks we propose that B > p. In Sect. 7.1, we show that when k& = logn or
above, t is linear in n as long as the sample complexity m = poly(n). Hence if
p < BY, this attack will either not apply or take exponential time. We believe
that this attack is easy to circumvent by choosing parameters carefully as it
applies less obviously to sparse LWE than sparse LPN. For typical settings we
would work with polynomial sized modulus and polynomial norm errors and so
t only needs be moderately big. This can be easily ensured by setting k& to be
bigger than some large enough constant.

Attacks Inspired by LWE. We have a great body of work on LWE algorithms
cousisting of algebraic [15], combinatorial [5,19,49], lattice-reduction / geometric
attacks [48,65,67] and reductions for LWE [25,61,63]. We observe that naively
these algorithms do not exploit the sparsity structure of the coefficients directly
that well. It is however plausible that some algorithms fare marginally better
with sparse matrices — we leave practical investigation of this as an open question
for future work to explore. We observe that the natural way for LWE based
attacks to exploit sparsity would be to identify what we call a dense minor.

Given m samples of sparse LWE of dimension n and sparsity k, one could
try to identify a special set of L variables for L < n so that there are lots of
LWE samples supported only over those L variables. Indeed, then one might be
able to meaningfully use an LWE solver on a smaller dimension L. For instance
if L =n/2 and say there are more than L logp samples supported over those L
variables, this means that one might be able to use an LWE solver that works
over much smaller dimension n/2 giving rise to exponential improvement over
general LWE of dimension n in the case of sparse LWE.

Nevertheless, in Sect. 7.2 we show that when k = logn, if the number of
samples is bounded by some polynomial, with high probability there won’t exist
any set of up to L variables with > L 4 1 samples for some L = ©(n).

We believe that this is a very natural way of leveraging sparsity. Typi-
cal attacks that require a large number of samples generate these samples by
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taking small linear combinations of the given samples. Such combinations would
increase the sparsity rapidly (as the locality pattern would form an expander)
and therefore it is not clear how to leverage sparsity meaningfully using this app-
roach. Despite our serious efforts of exploiting sparsity more cleverly, we could
not come up with a method that does it better than finding a dense minor.
Moreover, our condition is really mild. In our dense-minor model, we look for
minors of size L with just L + 1 samples (one more than the dimension). Most
attacks would need Llogp samples or ¢L samples for some constant ¢ > 1 for
optimal running time. At L 4+ 1 samples the secret may not even be information
theoretically determined.

Concrete Parameters from Dense Minor. We suggest that our dense-minor
attack gives a nice way to capture all natural attacks that exploit sparsity. Then,
relying on influential work on LWE parameter estimation [7], we can suggest a
nice method to estimate concrete parameters. Namely, since concrete parameters
are well understood thanks to highly impactful prior work [62] for LWE, based
on the dense-minor model we can use it as a benchmark for finding parameters
for sparse LWE. For example, for our required number of samples m, and the
required level of security (say 128 bits), one could use the Lattice Estimator [6]
and learn dimension n, error and the modulus parameters.

We compute a new dimension n’ by setting k appropriately (say around log n)
and then computing the expected size of its dense minor. We want to set n’ and
k so that the dense minor is at least of size n given m samples. We provide
a script that computes the dimension n as a function of n’, m and k based
on the dense-minor model. By simply running this script for various values of
n/, we can find an appropriate dimension such that dense minors of size < n
are highly unlikely to exist. In Sect. 7.4, we show concrete examples of this for
improving SimplePIR [43]. We take their number of required samples, error
probabilities and modulus and work out the dimension n’ such that sparse LWE
with dimension n’ and m samples provides the same level of security as their
parameter settings (according to our conjecture) with a sparsity &k that is much
smaller. Indeed, for a reasonable k£ < 50, we get very comparable dimensions
n’ close to n for all settings of sample complexity considered in [43]. Typical
dimensions for 128 bit security in SimplePIR was suggested around n = 1024.
This suggests around a factor of n/k ~ 20 improvement in the efficiency in
certain aspects of the scheme (query generation, setup and update time). Due
to this, we believe that the sparse LWE assumption has great promise and must
be analyzed further.

Asymptotically, we conjecture when k = logn, for polynomial number of
samples m, sparse LWE with dimension n’ = « - n for some constant o > 1
is concretely similarly hard as LWE with dimension n (assuming the sample
complexity, error and modulus remain the same).

Ezxploiting Special Structure. We note that this work does not touch upon struc-
tured assumptions for sparse LWE such as circular sparse LWE or small secret
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LWE. We have observed that some of these variants behave differently for sSLWE
as compared to LWE. We leave investigating such assumptions to future work.

2.3 Applications

The hardness of sparse LWE implies very efficient homomorphic encryption
schemes for low degree computations. In particular, we obtain the first secret
key Linearly Homomorphic Encryption (LHE) schemes with constant O(1) or
superconstant w(1) storage and evaluation overheads, and secret key homomor-
phic encryption for arbitrary constant-degree polynomials with the same level
of overheads. The schemes are extremely simple. For LHE, we simply consider
the vanilla secret key encryption scheme where ciphertexts have form

T

=(a],b; =sa+m;+e-pmodq) ,

for which homomorphically evaluating a linear function specified by the coef-
ficient vector I € Zf; simply amounts to computing ct = CT - I mod ¢q. The
efficiency stems from the fact that as sparse LWE samples, all vectors a;
are k sparse. Therefore, each ciphertext can be stored in a succinct form
using (klogn + (k + 1)logq) bits. If the message space Z, satisfies logp =
2(log g + logn), the rate of encryption is O(k), which can be set to a constant
if the total number of ciphertexts is a bounded polynomial and superconstant
for unbounded number of ciphertexts. To analyze the evaluation overhead, we
observe that the cost of one step addition ct + ct; - [; where ct; is a fresh (k+1)-
sparse ciphertext is linear in k£ in the Random Access Memory model: one just
need to perform (k + 1) random accesses into ct, costing (k 4+ 1) logn time (the
address length is logn), followed by (k+1) additions mod ¢. Comparing with the
cost of performing one multiplication and one addition mod p in the clear, the
overhead is O(k) when p is sufficiently large as described above. We illustrate
that our efficient LHE can lead to performance improvement in the practical Pri-
vate Information Retrieval scheme SimplePIR based on LWE [43], reducing both
the server database update time and the client query time by a multiplicative
factor of n/k.

The same phenomenon extends to evaluating constant degree polynomials.
The key to small overheads is keeping the sparsity of the ciphertexts small. We
show that with some optimization over the Brakerski-Gentry-Vaikuntanathan
scheme [23], for computing a degree 2 monomial, we can bound the sparsity of
the ciphertexts by ko(zD)D2D, which is a constant when k is a constant. Using
the BGV scheme directly would lead to sparsity ko) (log q)2D, which is a large
polylog. We avoid this by using a gadget vector g that contains powers of a large
base, namely p, instead of 2. Another issue is that the BGV modulus reduction
performs rounding on the ciphertexts and requires the secret to be short, in order
to bound the error introduced by rounding. When using sparse LWE, we would
like to rely on large secrets, since small secret sparse LWE is not equivalent
to sSLWE. Instead, we perform flipped modulus reduction — rounding the secret
instead of the ciphertexts.
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We describe our LHE and constant-degree HE schemes based on sparse
LWE, in Sect.8.1 and Sect.8.2 respectively. We also give comparisons with
other lattice-based schemes proposed in the literature. In short, to the best
of our knowledge, no prior HE scheme achieves constant or super-constant over-
head, even for the simplest linear evaluation. Their overheads usually grows at
least linearly with A, with the exception of [33] that achieves fully homomor-
phic encryption with (large) polylogarithmic overheads. They are also limited to
quasipolynomially large modulus, whereas our scheme can handle any message
space Zj, that is not too small logp = 2(logn).

3 Preliminaries

Let N={1,2,...} be the natural numbers, and define [a,b] := {a,a + 1,...,b},
[n] := [1,n]. Our logarithms are in base 2. For a finite set S, we write x < S to
denote uniformly sampling = from S. We denote the security parameter by A; our
parameters depend on A, e.g. n = n(\), and we often drop the explicit depen-
dence. We abbreviate PPT for probabilistic polynomial-time. Our adversaries
are non-uniform PPT ensembles A = {A)}ren. We write negl()) to denote neg-
ligible functions in A. Two ensembles of distributions {Dy }ren and {D} }ren are
computationally indistinguishable if for any non-uniform PPT adversary A there
exists a negligible function negl such that A can distinguish between the two dis-
tributions with probability at most negl(\). For any binary outcome adversary A
we define its distinguishing advantage in distinguishing {D)} ey and {D) }ren
as:

| Pr [A\(1M2) =1~ Pr [A\(1Y,2) = 1|

Dy z+D
We will use matrices and vectors throughout. Both of them will be represented
in boldface letters. Matrices are represented using capital bold letters (such as
A, B) and vectors using lowercase bold letters (such as a, b). To refer to i‘" index
of any vector v, we denote it by v[i]. For matrices, we denote that by Al j].

3.1 Lattice Preliminaries

A lattice L is a discrete subgroup of R™, or equivalently the set

L(by,...,b,) = {inbi : xiGZ}
i=1

of all integer combinations of n linearly independent vectors by,...,b, € R™.
Such b;’s form a basis of L.

The lattice £ is said to be full-rank if n = m. We denote by A;(L) the first
minimum of £, defined as the length of a shortest non-zero vector of L.

Definition 3.1 (Successive Minima). Given a lattice L and an integer 1 <
k < n, define the k-th successive minimum Ag(L) as the smallest possible length
of a set of k linearly independent vectors in L.
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Equivalently, A;(L) is the smallest value r such that a ball of radius r (cen-
tered on the origin) contains k linearly independent lattice points.

For a rank n lattice £ C R"™, the dual lattice, denoted L*, is defined as the set
of all points in span(L£) that have integer inner products with all lattice points,

L ={wespan(L) :Vy € L,(w,y) € Z} .

Similarly, for a lattice basis B = (by,...,b,), we define the dual basis B* =
(by,...,b%) to be the unique set of vectors in span(L) satisfying (b}, b;) = 1 if
i = 7, and 0, otherwise. It is easy to show that £* is itself a rank n lattice and B*
is a basis of £*. Given a lattice B = (by,...,b,), we denote || B||2 = max ||b;]|.

An important property of the dual lattice is the following transference theo-
rem, shown in Theorem 2.1 of [16].

Lemma 3.1 (Transference Theorem). For any n-rank lattice £, 1 < A\1(L) -
An(L*) < n.

Discrete Gaussian and Related Distributions. For any s > 0, define
ps(@) = exp(—l|z]?/s?)

for all x € R™. We write p for p;. For a discrete set S, we extend p to sets by
ps(S) = > 4cgps(x). Given a lattice L, the discrete Gaussian D, is the dis-
tribution over £ such that the probability of a vector y € L is proportional to
ps(y):

o ps(y)
oI5, X =vl= ps(L)

Using standard sub-Gaussian tail-bounds, one can show we can show the
following claim.

Claim. Let m € N, ¢ > 0, then it holds that:

Pr  [|le]| > mo] < exp(—2(m)).

e <—'Dz'm o

We define the truncated discrete Gaussian as a distribution statistically close to
discrete Gaussian where one samples the vectors from discrete Gaussian condi-
tioned on their norm being upper bounded by mo.

Trapdoor Sampling. We will need the following definition of a lattice trap-
door [35,58,69]. For A € Z;*™, we define the rank m lattice

LYA)={2z€Z™ : Az=0 (mod q)}.
A lattice trapdoor for A is a set of short linearly independent vectors in £+(A).

Definition 3.2. A matriz T € Z™*™ is a [3-good lattice trapdoor for a matrix
AeZy™if
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1. AT =0 (mod p).
2. For each column vector t; of T, ||t;:|lo < 5.
3. T has rank m over R.

Theorem 3.1. [35,58,69] There is an efficient algorithm that, on input
1", p,m > 10nlogp, outputs a matriz A distributed statistically close to uni-
formly on Zp*™, and a O(m)-good lattice trapdoor T for A.

We also observe that due to the transference theorems for any matrix A €
Zy*™ alower bound on A;(£) implies an upper bound on A (L1).

Corollary 3.1. (of Transference Theorem 3.1) Given any A € Zp*™, if
A (L) > B, then A\ (L) <m - 5. Here L= L(A) and Lt =L (A).

Proof. Recall that the transference theorem states:

1< ML) - Am(LF) < m,

where £* is the dual of £. Observe that £+ = pL* and so \,,,(L*) = %M. The
claim follows from using the right inequality using the lower bound on A;(£) > .

4 Sparse Learning with Error

We now formally define our sparse LWE assumption. Our assumption is exactly
identical to LWE with a crucial difference that each coefficient vector is exactly
k-sparse for some k that for the most part should be thought of as a small
function of the dimension n (ideally a constant or polylogarithmic in n).

Definition 4.1 (Coefficient Distribution Deefr n.i,p). For a parameter n €
N, and a k = k(n), a modulus p, we define the distribution Deoeff n k,p that first
samples a uniformly random set or a “locality pattern” S C [n] so that S has
exactly size k (we abuse notation to denote this by saying S — (})). Then, the
distribution samples a random wvector as follows. Sample a € ZI' so that each
coordinate ali] is set to 0 if ¢ ¢ S. Otherwise a[i] is chosen at random from Z,.

Definition 4.2 (Locality Set). For a modulus p, and any vector v € Z; we
denote by the locality set of v (denoted as LocSet(v)) as a set of indices S C [n]
so that v[i] is non-zero for every i € S.

Definition 4.3 (Sparse LWE Distinguishing Problem). For an integer
dimension n, sparsity parameter k, a sample complexity m, modulus p, and noise
parameter o = o(n) we define the sSLWE,, k. m p.o problem as a distinguishing
problem. In the first distribution, we generate m sparse LWE samples as follows:

— Sample m coefficient vectors ay, ..., a,, where each a; < Deoeff,n k.p-
— Sample a secret vector s «— Ly

~ Sample m noise values from {e; <~ Dz, s }icm)-

— The first distribution consists of {(a;,b; = (s,a;) +e; mod p)}
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The second distribution is exactly the same except {b; };c(m) are randomly sampled
from Zy,.

We also define the LWE distinguishing problem to be identical to a sparse
LWE distinguishing problem as above except that the vectors a; are chosen
randomly from Zj as opposed to being sampled as sparse vectors.

Definition 4.4 (Sparse LWE Assumption). Let k = k(n) € [0,n], p =
p(n):N—=N,o0=0(n):N—->N, m=m(n): N— N be efficiently computable
functions (computable in time polynomial in n).

We say that the sparse LWE assumption with respect to sparsity k(n), modu-
lus p(n), noise parameter o = o(n) and sample complexity m(n) holds, denoted
as the SLWE,, k.m p.o assumption, if for every non-uniform p.p.t adversary A,
the distinguishing advantage in winning the sLWE,, i m p.o distinguishing prob-
lem (Definition 4.3) is bounded by some negligible function negl(n).

We say that the sparse LWE assumption with respect to sparsity k(n), mod-
ulus p(n), noise parameter o = o(n) and unbounded polynomial number of sam-
ples holds, denoted as the SLWE,, 1. » » assumption, if the above condition holds
for every non-uniform p.p.t adversary A, and every polynomial m(n).

We say that the subexponential SLWE, kmpo (respectively sSLWE,  p o)
assumption holds if there exists a constant € € (0,1), such that, every non-
uniform probabilistic poly(2™")-time adversary A (and respectively every polyno-
mial m(n)), the distinguishing advantage in winning the sSLWE,,  m po distin-
guishing problem, is bounded by 1/poly(2"").

Remark 4.1. For notational brevity, we will also denote sparse LWE samples as
(A,sA + e mod p) where the coefficient vectors {a;} form the columns of the
matrix A € Zj*™. s is interpreted to live in Zéxm and the error vector e is in
ZIXm.

4.1 Minimum Distance of the Sparse LWE Lattice

We now analyze bounds on A;(£) for the lattice:
L(A)={xA+pZ™ :x € L, "}.

We compute these bounds as a function of dimension n, sparsity parameter
k = k(n), sample complexity m = m(n) and the modulus p = p(n). These
bounds will be useful for identifying when short lattice trapdoors for A might
exist. We will also use this calculation for understanding the running time of
various lattice-reduction based attacks on sparse LWE.

We start by recalling the minimum distance in the case when matrix A is
randomly chosen from Zy (in other words, it corresponds to plain LWE). In this
case, it can be shown that as n grows, the minimum distance A;(£) is roughly
around pt~™/™ for m > n (up to polynomial factors, which we ignore). When
m = 2(nlogp), this is roughly p.
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For sparse LWE, since the matrix has a lot of zeros, one would expect the
minimum distance to be smaller. However, we show that for interesting param-
eter regimes (i.e. with k& > logn, and p being polynomial in the size n, and for
polynomial m) the minimum distance with high probability for the case of sparse
LWE is also around p. We give a lower-bound on the minimum distance.

Our main result is the following:

Theorem 4.1. Let A be a n X m sparse matrix each of whose columns are
sampled i.1.d. from Deoeft n k,p- With probability 1—o(1), the length of the shortest
nonzero vector in L(A) is O(p) assuming m > 8nlogn and p = poly(n).

Please refer to the full version of this paper for a proof.

5 Reduction from LWE to Sparse LWE

We now show that given an oracle that breaks sparse LWE of dimension n and
sparsity k with m samples, we can break LWE of dimension k with m samples
as long as the modulus p is a prime.

We get as input A;b = sA + e, and we will effectively convert it to a
tuple of the form A’, b’ = s’A’ + e with the same error (if our input b is
sampled randomly instead of from the LWE distribution, our reduction will keep
it randomly distributed). The distribution for (A’,b’) will be identical to that
of average-case sparse LWE. The nice thing about our reduction is that it does
not manipulate the error e and therefore also applies to the setting of learning
parity with noise.

We now describe the conversion procedure. Our rough idea is that given a
kxm dense matrix A we transform each column into a sample in a related matrix
(that we shortly show how to build) A’ where A’ is a n X m sparse matrix with
k nonzero entries per column. So far we keep the b vector unchanged; it can be
written as b = zA’ + e. At this point, the secret z is not uniformly random.
But we can randomize it by adding vA’ to b for a randomly chosen v. The new
secret v + z is random and independent of A’.

We now describe the transformation from A to A’. We want to ensure that
the equation CA’ = A holds for some k& x n matrix C. This would allow us
to write b = sA + e = (sC)A’ + e. Now if we set A’ randomly and try to
find C, this might be hard. Therefore, we do the reverse. We first fix C and
then sample only the locality pattern Si,...,S,, at random from (Z) Then,
we choose the non-zero coordinates given by S; so that CA’[i] is equal to Al[i].
This can be done since we can view the above matrix equation as a system of
linear equations over Z, with k variables corresponding to the nonzero entries
of A'[i] and k equations corresponding to the k& rows of A[i]. We will choose C
to be a k x n Vandermonde matrix which has the property that any k columns
are linearly independent. This allows us to guarantee the system of equations
described above correspond to an invertible matrix, and is hence solvable.

We have to show that the above process yields a random A’. Observe that
each column A’[i] can be described by its locality pattern, and the sequence of
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nonzero entries in the indices corresponding to the locality pattern. A; is random

means the nonzero entries of A’ must be random. We chose the locality pattern

independently at random to begin with. Therefore, the whole column A’[7] is

distributed uniformly in Deoeff n, k,p and is independent of the other columns.
Formally, we show the following theorem:

Theorem 5.1. Assume there exists a PPT algorithm which solves average-case
SLWE,, i m. p,o instances in time T with success probability v, where the modulus
p is a prime and the number of samples m < p. Then we can solve average-case
LWEy m.p,o instances in time T + O(n®*mlogp) with success probability ~.

Please refer to the full version of this paper for a proof.

Remark 5.1. Our reduction does not preserve dimension. If we choose k to be
small (constant or logarithmic in n), we end up with an algorithm for solving
very low dimensional LWE which is anyway easy. On the other hand, if & is very
large (say ©(n)), we conclude that sSLWE is very hard if the columns are not too
sparse (only a constant fraction of each column vector is required to be zero).
The intermediate range, where k is polylogarithmic or polynomial in n, yields
more interesting conclusions.

6 Trapdoor Sampling for Sparse LWE

We are going to present an algorithm for sampling pairs of matrices A, T where
A is a n x m sparse matrix and T is a trapdoor for A. The distribution of each
column of A should be statistically close to independent samples from Deoeff,n, k,p-

Our approach stands on the shoulders of amazing prior work of [57]. Recall
that they showed how to sample a matrix V € Zp*™ for m = O(nlogp) that is
statistically close to random along with a full-rank square matrix Ty of norm
O(m) in the nullspace of V (T can be converted to a basis generically as shown
by lemma 7.1 of [56] to a basis for £+(V)). The idea is that first we sample a
matrix A « ngm' for m’ > 2nlogp at random. Then we sample a random
binary matrix R — {0, 1} *"[°g?] and consider V = [A|AR + G| where G is
the gadget matrix defined as I, ® g where g = [124 ... 2[logrI—1],

Notice that there is a small-norm square matrix D which satisfies VD =
[X|G]. In particular, we can pick

I-R
D :=
o1
This is enough to obtain a short trapdoor; consider the matrix

0 I :
E:= |:TG —Gl(X)] where Tgq is a trapdoor for G (1)
It is easy to check that the product DE is short (since both D and E have
low norm), has full rank (since both D and E are nonsingular), and lies in the
nullspace of V.
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Note that this approach fails completely for sparse matrices. Even if we sam-
ple A to be sparse, AR will not be sparse anymore. Our idea is to start exactly
as in the step above to construct V. However, this matrix is not sparse at all.
We come up with a procedure to “sparsify” V to obtain a wider k-sparse matrix
C. We take each column of V and replace it by a n x nlogn sparse matrix whose
columns add up to the column we are replacing.

We construct a matrix C of the form [Cy]...|Cyp] as follows (L is the width
of V).

— Each column of C; has a random locality pattern chosen from (Z)
— The columns of C; sum up to the i*" column v; of V.
— Subject to the first two constraints C; is random.

Such a C can be easily found provided the width of each C; is large enough
(nlogn suffices). At this point, C is from the right distribution. Its locality
pattern is randomly chosen, and because the distribution of V is statistically
close to random, so is the distribution of C.

This C is indeed our matrix. We will now show how to construct the trapdoor.
We try to find a small-norm full rank square matrix D such that CD has the
form [X|G]. Notice that if we can find this D, we are already done (similar to
[57]). We again use the same E from Eq. (1). The trapdoor we are looking for is
the product DE, since it satisfies the following 3 properties:

- CDE=0
— DE has small norm.
— The columns of DE are linearly independent.

Let us now describe how we can find D. Recall that we started with a matrix
V such that

By construction, we also have C;[11 --- 1]7 = V; for each column v; of V.
Therefore, for any matrix U, we can write VU = C(U® [11 --- 1]T) So now
our last equation gives us

1
_ 1
C- [IR]@) . nlogn | =G
1
So now we have found a matrix F which satisfies CF = G, which was the
difficult part. To extend it so that we can obtain CD = [X|G], we just choose
an arbitrary full rank matrix not in the column span of F to concatenate to the

left of F until the resulting matrix becomes square. We can do this by picking
columns from the identity matrix until there is a linear dependence.
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Formally, we show the following analog of theorem 3.1 for sparse LWE:

Theorem 6.1. There is a PPT algorithm that on input 1", p,m >
3n2logplogn, k > 1 outputs a matriz A distributed statistically close to
and a O(m)-good lattice trapdoor T for A with success probability

m
coeff,n,k,p’

1—o0(1).
Please refer to the full version of this paper for a proof.

Remark 6.1. Our algorithm requires a much higher number of samples as com-
pared to the regular LWE trapdoor sampling process, O(n?logn) instead of
O(n).

7 Cryptanalysis

7.1 Sparse Vectors in the Kernel

One potential approach to attack sparse LWE could be (in the same vein as
sparse Learning Parity with Noise) finding sparse vectors x € Z7"*! (not neces-
sarily small) so that Ax = 0. If this is true, given a ¢ sparse x and a sLWE tuple
(A,b =sA + e mod p), one can observe that:

b-x=e-x.

If the error coordinates for e lie in [—B, B] for some B and t is sufficiently
small so that (2B+1)% < p, then this will give an attack that runs in time roughly
BO®) _ The idea is that since x is ¢ sparse, the product e - x touches upon only
t coordinates of e. There are 2B + 1 possible choices for each coordinate. One
could brute-force and check if there is a setting that yields the inner product
b - x. One can show that for a typical x only one choice of e will agree with p
when (2B + 1) is sufficiently smaller than p. To rule out such attacks we ask
for what sparsity ¢ does there exist solutions to Ax = 0. One can show a naive
bound by lifting off analysis for the sparse LPN assumption. Such analysis has
been done for sparse LPN over Z, that can be helpful here.

The above attack can be significant if there exist very sparse vectors in the
kernel. For instance, if ¢t is a constant and B is polynomial, this attack could
be implemented in polynomial time. Notice that when the number of samples
m > k(:) + 1, by pigeonhole principle there must exist k + 1 coefficient vectors
supported on the same set of k input variables. Since there are at least k + 1
vectors supported on the same set of k variables they must be linearly dependent.
This allows us to find a t-sparse vector in the nullspace of A for ¢t < k + 1.

Inspired by the literature on random k-XOR in the field of average case
complexity, we analyze a certain graph expansion condition corresponding to
the locality set of the column vectors of A. If this condition is met, we would
be guaranteed with high probability that ¢ is not too small. As we will describe
later, this condition turns out to be conservative.



A Systematic Study of Sparse LWE 227

Locality Graph Expansion. Our main theorem is the following:

Theorem 7.1. Let A be a SLWE,, . p.o matriz. With probability 1—o(1), there
does not exist any vector x in the kernel of A which has L or fewer nonzero
entries in either of the following cases:

~ k>3 is a constant, m = n% for some § < 1, and L = O(n*~?).
- k = poly(logn), m = poly(n), and L = O(n)

We observe that if Ax = 0 for a t-sparse x, the following holds. Let us denote
by Si,...,Sm C [n] the locality sets (see Definition 4.2) corresponding to the
column vectors of A € Zj*™.

Observe that if there exist a t sparse x so that Ax = 0 this necessarily means
that the following expansion property is satisfied:

U s <%. (2)

1:x[i]#0

This is because each column of A is exactly k sparse. A t sparse combination
that yields the all 0 must cancel any variable that appears in the combination.
Thus, each variable must appear at least twice. We also state that this condition
is a bit conservative. It is plausible that each variables appear multiple times yet
the column vectors are linearly independent. This might be more prominent for
large p’s. We discuss this issue shortly.

We now compute an upper-bound on the probability of the above condition
(Eq. 2 being violated) as a function of n, k, m (note that the condition is inde-
pendent of p). From this we can get the desired tradeoffs for n, k, m. This is a
routine calculation.

Lemma 7.1. Forn,m,k andt > k if the sets S1,...,Sy, are chosen at random
from (Z) then the probability that the condition in Eq. 2 is violated is bounded by

fSPARSE(k7n7m)t where fSPARSE(kvna m) = el3k/2. (k/Q)k/z : %//22_1

Please refer to the full version of this paper for a proof.

Our intention should be to set k and m as a function of n so that fsparse is small
for a large t.

One can examine that for a constant k, ¢ is some polynomial provided m =
O(n*/?(1=9)) for some constant ¢ > 0. When m = §2(n*/?), one can find a
constant number of subsets that violate Eq. 2.

We now do some (asymptotic) case analysis for a constant k and setting
m = nF/2(=9) Ty set fsparse to be o(1), we consider another function gsparse
that is only bigger than fsparsp but more amenable to analysis.

m- (3 k-t)k/?
gSPARSE(kvn) m) = % (3)



228 A. Jain et al.

To ensure ggparse is small, we set:

m?*ed k-t <n

Thus, this holds for:

n
t< o W

Proof (Proof of theorem 7.1). The theorem statement follows directly from Eq.
(4) by plugging in the appropriate values of n, m, k and setting L to the highest
value of ¢ that satisfies the inequality.

For concrete parameter estimation one can compute exact values of Eq. (4)

and find out how this attack performs in practice. We anticipate if B! > p, then,
the attack does not apply.
Large p Effect It is clear that for the analysis for this attack we were overly
conservative. Not every collection of ¢ sets with less than % neighbours is likely
to give a sparse vector in the kernel. Moreover, if p increases the chances of this
happening should be really small. Nevertheless as described before while the
calculation predicts security against polynomial time adversaries with m < ns
when k is a constant, system over any p can be broken when m > (k + 1)(}).
Thus, the prediction in terms of sample complexity is potentially only off by a
square-root factor. We leave the analysis that utilizes the largeness of p for future
work as a great open question. We show how to loosely incorporate this above
so that it is better for concrete parameter estimation. Finding precise bounds is
a great open question.

Claim. If m < n*=3, the following inequality holds with probability 1 — negl(n)
for all t < L where L = poly(n) and k is a constant.

U Si| >2-t where x is t-sparse (5)
4:x[4]#£0

Please refer to the full version of this paper for a proof.

If the locality pattern of A satisfies the above combinatorial property, we can
show that there does not exist a L-sparse x in the kernel of A with high proba-
bility. Since L above is polynomial in n, this rules out the sparse vector in kernel
attack. Recall that sparse LPN over Fy is broken for m = n*/2 samples due to
this attack (see [9,46] etc.). However, our result holds as long as the sample com-
plexity m is less than n*~3, which is a substantial improvement over theorem
7.1. This is one of the ways increasing the modulus from 2 to some p = w(m)
increases security.
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We can now prove the following result:

Theorem 7.2. Let A be a sSLWE matriz where the sample complexity m, dimen-
sion n and sparsity parameter k = O(1) satisfy the relation m < n*=3. If the
modulus p is w(m), then there does not exist any vector x in the kernel of A
which has L or fewer nonzero entries for some L = poly(n) with probability
1—o0(1).

Please refer to the full version of this paper for a proof.

7.2 Dense Minor Lower-Bound Model

We now introduce a lower-bound model to provide an estimate of lattice attacks
that exploit the sparsity structure of the equations. We call our attack the Dense-
Minor attack. This captures a variety of different attacks as we will describe later
and enables us to reason about security.

The rough idea is that all attacks that break LWE over dimension n requires
at least n+1 samples or else secrets are not information theoretically defined. The
problem, with the low-locality structure of our assumption is that each sample is
constant sparse (say k). Thus, it is plausible that exploiting the low locality, one
can find L 4 1 samples supported over L coordinates for some small L, and then
use an algorithm that breaks LWE with dimension L and L + 1 samples. For
example, if the number of samples is at least k(:) + 1, the pigeonhole principle
guarantees the existence of some &+ 1 columns which are supported on the same
set of k variables. If k is a constant, we can solve the resulting k-dimensional
LWE problem in constant time; this points to an attack against sparse LWE
with constant sparsity and polynomially many samples.

We show how to set parameters to avoid this. In particular, setting the num-
ber of samples a reasonable polynomial such as m = n? or n? for target appli-
cations, we will aim to find k£ such that L turns out to be at least linear in n
e.g. 0.9n for the above attack strategy. This roughly states that any meaningful
attack exploiting the sparsity must involve {2(n) variables. Thus, one can appeal
to concrete cryptanalysis to make a reasonable conjecture on the security of
sparse LWE.

Conjecture 7.1. SLWE,, k. m.p,o is at least as hard as LWEL, ¢(p),p,» for L = O(n),
k = 2(logn), and f is some small polynomial.

We will use the above heuristic for parameter estimation purposes. We show
some examples in Sect. 7.4.

Definition 7.1 (Dense-Minor of order 7). For any matriz A € Zp*™, we
say that it has a dense minor of size L € [0,n], if there exists a subset T C [n]
of size L such that there are r - L column vectors supported entirely over indices
giwen by T. Moreover, L is the minimum such number.

We will typically be interested in r as 1 + 1/L or some constant (like 2), or
even r = logp.
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Problem with a Small Dense Minor. We observe that if for A € Z;*™ there is a
dense minor of size L and order r, then, this means that we have r - L columns
all supported at some L indices. This means that if one is given a sparse LWE
sample A,sA + e mod p one can pick out these r - L equations of the form
{a;, (a;,s) + e; mod p};cs for some set S C [m] of size at least r - L. Here we
assume a;s are column vectors of A. This new system is an LWE type system
with r - L samples of dimension L. This can potentially be broken with access
to an LWE oracle that solves LWE on dimension L, sample complexity r- L and
the same modulus p.

Theorem 7.3. Let n be the dimension, k = logn be the sparsity parameter
and m = nP be the sample complexity for some constant 3 > 1. Let p be the
modulus. We have that, with probability 1—o(1/n) over choice of A — Dioett n kp
(sampling each column independently from the distribution Deoeff n kp Specified
in definition 4.1), A the minimum L for which A has a dense minor of order

1+1/L is L = 2(n).

Remark 7.1. We remark that most attacks care about Llogp samples or cL
samples for some ¢ > 1. In the above theorem, we rule out minors with just
L + 1 samples. This only makes our model stronger.

Please refer to the full version of this paper for a proof.
The expression above is quite loose as we make several approximations regarding
Binomial coeflicients. If one computes the expression

Foonsemon = te%ju (%) o (TZ) , (t T1)

it is possible to find tradeoffs exactly using a computer program. We use it to
estimate the exact size of the dense minor. For more discussion on this, see
Sect. 7.4.

Now we describe how our dense-minor model captures attacks such as Arora-
Ge, BKW and Lattice Reductions.

Capturing Arora-Ge Style Attacks. Recall that for the Arora-Ge attack [15] on
LWE, we assume that the infinity norm of the error vector is at most B for some
B < p/2. Each LWE sample (a,b) gives rise to the following equation on the
entries of the secret vector:

ﬁ (iaisi—b—j> =0

j=—B \i=1

The degree of each equation is 2B + 1. Since there are n variables, the total
number of terms is ("+2B +1). We treat each unique term as a separate variable,
and we can solve the resulting linear system directly as long as the number of
equations, m, exceeds the total number of terms. If we have fewer equations, we
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first multiply each equation by every possible term of degree < d. This increases
the number of equations to m("gd) and the total number of terms to (”+2B;L+1+d),
and we can solve this system as soon as the former exceeds the latter.

Let us now consider what happens if we try to apply the same strategy to
sparse LWE. The only difference is the additional constraint that each of the
original equations are supported on k variables instead of n. Since our dense
minor attack already provides an algorithm for solving SLWE when we are given

more than k(Z) samples, we will assume that m < k(Z) < (:ﬂ) below.

— If 2B + 1 < k, there is virtually no difference between LWE and sparse LWE
for this approach. This is because in either case, the original equations do not
have terms containing more than 2B + 1 distinct variables. We will therefore
focus on the case where k is smaller than 2B + 1.

— The total number of terms is bounded above by the number of all degree
2B + 1 monomials supported on at most k out of n variables. This equals

n+1\/2B+1+k n+1
<k:+1>( k ) ” (k+1) -m
Clearly, the number of terms is greater than the number of equations, and
trying to linearize the system naively does not work.

— We can consider increasing the number of equations by following the exact
recipe used by Arora-Ge. For some d, multiply each equation by every possible
monomial of degree at most d. The problem is that this breaks the locality
pattern that distinguishes sSLWE from LWE in the Arora-Ge approach, since
each equation can be now supported on many more variables.

— We can instead multiply each equation by all the monomials of degree at
most d which are supported on the same k variables as the equation. This
preserves the locality, but does not suffice since the number of terms continue
to exceed the number of equations

n+1\/2B+d+1+k d+k
<k+1>( k ) >m< k )

Another natural way to utilize the sparsity is to try to find a large number
of samples supported on the same set of t variables for some ¢t < n, and then run
the Arora-Ge algorithm on those samples with an effective dimension of ¢. The
dense minor lower bound rules out this approach for any ¢ = o(n). Therefore,

the effective dimension in this approach will be linear in n, and we would still
require many more samples than what we have available.

Capturing BKW Style Attacks. The BKW family of attacks ( [5,19,49]) look
for a short vector x such that the product Ax is either 0 or very sparse. They
first partition the columns of A into blocks of size B. New samples are then
created by finding collisions in these blocks and reducing those blocks to zero by
subtraction. Iteratively applying this process for each block, we can find vectors
of magnitude 2"/ in the nullspace of A.
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To execute this attack naively, we need access to a very large number of
samples. For LWE, we can generate new samples by taking random linear combi-
nations with small norm. However, new samples generated by combining columns
of A destroy sparsity really fast. Therefore, the search step of BKW attack does
not advantage sparse LWE in any way over standard LWE.

We can try to take advantage of the fact that the columns of sparse LWE
are mostly filled with zeros, and hence it will be easier to find collisions in
blocks. While this is indeed true for the first few blocks, observe that we subtract
columns from each other at every iteration of BKW. Each subtraction operation
would increase the number of nonzero entries in the remaining blocks exponen-
tially, and hence the required sample complexity for the attack will at least be
the same as that of regular LWE with a constant factor smaller dimension.

So a natural way to leverage sparsity is therefore to work with a dense minor
of order logp of size L. Our theorem suggests that L = 2(n), and we would
again require more samples than we have available.

Capturing Lattice-Style Attacks. Typically, lattice attacks are applied by apply-
ing lattice reduction to solve either:

— Finding a short x so that Ax = 0. We already discussed why this approach
doesn’t have an advantage for sSLWE over LWE in the BKW section.

— Solving BDD with respect to lattice £ = {xA} and target point b = sA +e.
The hardness of this depends on the ratio v of A;(£) and ||e||.

In Sect.4.1, we argued that the size of the shortest nonzero vector in L
is similar to what it would have been if A was chosen randomly. In fact, the
minimum distance is smaller than a random lattice. We therefore, expect v to
only be smaller. So if anything, so called primal attacks against LWE work worse
than expected when they are given sparse LWE instances.

On apparent inspection of lattice reduction algorithms, naive application
of those don’t seem to exploit sparsity at all. That said, most of our column
vectors are mutually perpendicular since the dot product of two column vectors
is nonzero only if their locality patterns intersect (these columns are however
large in norm roughly vkp, and so they do not necessarily represent a good
basis). So, although unlikely, it is plausible that lattice reduction based methods
turn out to do better. We leave the study of this phenomenon to future work.

The most natural way to exploit the small sparsity of the system is to find a
dense minor and apply lattice algorithms to an instance with a smaller dimen-
sion. As long as the noise ratio is inverse polynomial in the dimension n, the
best lattice based attacks take 20" time (see the fantastic thesis of Rachel
Player [62] or Albrecht et.al. [6,7] for an excellent survey on concrete running
times). Thus if we are able to find dense minor of size (say) n/2 of order log p,
that is an exponential improvement in the running time over a dense matrix. Our
dense-minor model captures such improvements. In fact, we rule out attacks that
makes use of only L 4+ 1 samples in L variables. Typical lattice attacks require
at least cL (where ¢ > 1 is some constant) or even L logp samples.
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7.3 Open Questions
We leave some exciting open problems for future work:

1. Are there other ways of leveraging sparsity besides the dense-minor method?

2. Analyze the performance of current lattice reduction algorithms with sparse
LWE matrices.

3. Build new lattice reduction algorithms that naturally exploit sparsity

Ezxploiting Special Structure. One aspect that we did not touch at all in this work
is whether structured assumptions for sparse LWE are secure and/or useful for
cryptographic constructions. Some variants include circular sparse LWE and
small secret LWE. While we did not observe vulnerabilities in circular sparse
LWE, we note that one has to be careful working with small secret sparse LWE.
Unlike LWE where these two variants are equivalent [11,38,55], it is not the case
here.

For instance, if each secret coordinate is boolean, a single sample of k-sparse
LWE would leak a lot of information about the secret vector. There are 2*
possible choices of secret coordinates occurring in each equation. If k is constant
or logarithmic, this could effectively lead to a search algorithm for sparse LWE.
We note that however, some applications might need a small secret and it might
be plausible that once (||s||o )" is large enough, this variant becomes hard. We
leave understanding small secret LWE as a great open problem.

7.4 Concrete Parameter Estimation

In this section, we focus on concrete security. Based on the cryptanalysis so far,
we identify two major avenues of attack against sSLWE specifically:

— Find a t-sparse vector in the kernel. To rule out this attack, we merely need
to set p < Bt

— Find a dense minor of order at least 14 1/L. We write a script that estimates
the size of the dense minor as a function of the dimension n, sparsity k& and
sample complexity m. To see the code, please refer to the full version of this

paper.

To get a desired level of security using sLWE, we first look at the parameters
for regular LWE to obtain the necessary dimension n’ for m samples, modulus p
and noise 0. We then compute a small £ and a dimension n for which the size of
dense minor in a sSLWE,, k., - matrix exceeds n’. We set concrete parameters
based on the following assumption:

Conjecture 7.2. Let the expected size of the dense minor in sLWE,, 1, m p,» matrix
be L > n/. Then the SLWE,, k,m.p,o Problem is at least as hard as LWE,/ , p.o

We show a few recommended parameter settings in the table below. We use
LWE dimension n’ = 2% and database size N between 226 and 242 as per [43].
Note that the number of samples m = +/IN. For all of these settings we suggest
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Table 1. The recommended dimension for sLWE whose security guarantees are equiv-
alent to LWE with dimension 1024

Number of samples m 913 | 17 | g21
Sparsity parameter k

20 1218 | 1425 | 1656
30 1143 11265 | 1395
40 1110 | 1195|1285
50 1090 | 1158 | 1234

setting the modulus to either 26, 232 or 264 since there is generally hardware
support for arithmetic modulo these values. We also set the noise parameter
o = 6.4. Neither o nor p depends on any of n,m or k (Table1).

We need not worry about the sparse vector in kernel attack since the size
of the dense minor in each of the above settings is 1023, which is much larger
than the logarithm of the modulus. Furthermore, it is evident from the above
table that for typical parameters used in practice, we only need to increase the
dimension by a small constant factor < 1.5 in most cases to achieve equivalent
security guarantees.

8 Applications of Sparse LWE

Our main applications lie in (secret-key) encryption schemes that support homo-
morphism (please refer to the full version of this paper for formal definition).

8.1 Linearly Homomorphic Encryption

We recall the Brakerski-Vaikuntanahthan secret key homomorphic encryption
scheme from LWE [24,26]. We then focus on analyzing the efficiency improve-
ment when the scheme is instantiated with sparse LWE and used for computing
linear functions, in comparison with instantiation using LWE or Ring LWE.

4[ The Basic Secret Key Homomorphic Encryption Schemeji

Let p = p(\) be a modulus and the message space be Z,.

pp < sklhe.Setup(1*,17): Based on the security parameter ), choose a
modulus ¢, where ged(p,q) = 1, a dimension n, a B-bounded distri-
bution of noise elements x. Output pp := (g, n, x).

(sk,evk) — sklhe.KeyGen(): Sample a secret key s’ — Z,*™ and set s =
(s’,—1). Output sk = s.

ct « sklhe.Enc(sk,m): Parse the message m as an element of Z,. Sample a
random k-sparse coefficient vector a € Zj, and a noise e « x. Output
ct' :==(a",b=s"a+m+e-pmod q).

m « sklhe.Dec(s, ct): Parse ct = (a,b) € Z,. Output m := (b — s"'a) mod
4,
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ct < sklhe.Add(cty, cto,!): This algorithm takes two ciphertexts and scalar
! € Z,, and homomorphically computes m; + [ - mo mod p. Output ct :=
cty + [ - cto mod q.
Using the above operation, one can evaluate any linear function L spec-
ified by a coefficient vector I € Zf;, on fresh ciphertexts cty,--- ,cty, with
noises bounded by B, and obtain and output ciphertext ct with noise
bounded by B = ¢-p- B. Decryption correctness is guaranteed if p- B < g,
that is, ¢ > £ - p*B.

Sparse Representation and Storage. In the above scheme, while the sk is a dense
vector in Zéxn, the ciphertext ct is only (k + 1)-sparse. We can store ct using
the following succinct representation. For every integer vector a in Zg, define

indicator set: Io = {ij | ij € [n]s.t. a;; # 0},
sparsity of a: ko = |1
succinct representation: a := SparseRep(a) = {(ij,a;,) | ij € Sa}

The size of the sparse representation is only kg (logn + log @), as opposed to
nlog Q. As a result, encryption scheme has a good rate as shown below. In
particular, when log p = 2(log n+log q), the rate is O(k), which could be as small
as a super-constant, or even constant if the number of ciphertexts encrypted
under s is a bounded polynomial.

1 1
rate :@ = Olk(log n + log ¢)) = O(k) iflogp = 2(logn + logq)
L log p

Table 2. Efficiency comparison of different linearly homomorphic schemes.

Scheme & Assumptions ‘ # of ciphertexts ‘ rate ‘ encryption overhead ‘ evaluation overhead

Elgamal & DDH * unbounded | O(X) o) O(\)
Elgamal & DCR [60] 2 unbounded O(1) o) o)
BV [26] & LWE ? unbounded | O(n) O(nloglogq) O(n)
BV & RLWE * unbounded | O(n) O(nloglog q) O(n)

[33] & RLWE unbounded O(1) o(1) polylog(n) *
BV & O(1)-sparse LWE (Ours) ? | bounded poly | O(1) O(loglog q) o(1)
BV & w(1)-sparse LWE (Ours) * unbounded w(l) w(loglog q) w(l)

sr+m

! Use a group G with |G| = 2%™) and generator g. For m € {0,1}, ct = ¢", g
Linear function I € ch‘ is evaluated over Z;¢| and output must be small in order to
decrypt.

2 Use group Zy2 for an RSA integer N = 270 with hard group generator g. For
m € Ze, ct = g",g°" (1 + N)™. Linear function I € Z% is evaluated over Zy.

3 For all the BV schemes, we consider the case logp = 2(logn + log q).

4 The scheme [33] has large polylogarithmic overhead.
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Efficiency Analysis. We now analyze the efficiency overhead, in particular, we
measure the encryption overhead as ratio between the encryption time and the
number of bits encrypted, and the evaluation overhead as the ratio between the
evaluation time and the time for evaluating the linear function in the clear.

The sparsity of the ciphertext can be leveraged for efficiency in the RAM
model, where one can access an element in a vector or matrix at index i €
[n] in logarithmic time O(logn) (note the index already has length O(logn)).
In contrast, in the circuit model this takes linear time. Consider encryption,
where the dense secret key s is multiplied with a k-sparse coefficient vector a,
in the RAM model, this can be implemented in time O(k(logn+log qloglogq)),
involving fetching all the elements s; for j € I,, and performing a k-wise inner
product between s;, and aj,. The evaluation of linear function I € Zf, can be
done using ¢ invocation of sklhe.Add(ct, ct;, l;), where ct; is the ciphertext of the
it" input element. Since ct; is (k + 1)-sparse, this can be implemented in time
O(k(logn + log qloglog q)).

Tene  O(k(logn + log gloglog q))

encryption overhead = = = O(kloglogq)
Im| logp
Tkva Ck(1 1 log1

evaluation overhead =22 = Otk(log n + log g loglog ¢)) = 0(k)
T O(¢logploglogp)

The right hand side equality holds when logp = 2(logn + log q). By setting k
to be super-constant or even constant, we get nearly constant overheads.

Comparison with other Secret-Key LHE. To the best of our knowledge, the
BV scheme instantiated with sparse LWE is the only scheme achieving nearly
constant overheads in all aspects, storage, encryption time, and evaluation time.
A comparison with previous schemes is provided in Table 2.

The most competitive scheme is by [33| instantiated by RLWE, which pre-
sented a polylogarithmic overhead FHE scheme. To achieve this low overhead,
they use the BV/BGV encryption scheme to encrypt a vector of messages Z; in
the same ciphertext, resulting in a “packed” ciphertexts. These packed cipher-
texts natively support SIMD computation i.e., coordinate-wise addition and mul-
tiplication. To support general, non SIMD, computation, [33] introduced novel
methods for permuting elements encrypted in the same ciphertexts, and combin-
ing elements in different ciphertexts into the same ciphertexts. Combined with
the use of permutation networks, they can implement arbitrary permutation
over elements encrypted in multiple ciphertexts with polylogarithmic amortized
overhead. Since general circuit computation can be implemented using SIMD
operation and permutation, they achieve homomorphic evaluation with poly-
logarithmic amortized overhead. The only drawback is that the polylogarithmic
overhead is very high and unlikely going to be practical.

Applications to Private Information Retrieval. A nice application that
could help test concrete efficiency gains afforded by sparse LWE could be private-
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information retrieval schemes. In particular, consider the practical scheme Sim-
plePIR [43] that builds on top of [47] and instantiates the linearly-homomorphic
encryption scheme using LHE from LWE. The idea in that scheme is that
the data D e {0,1}" is processed into a square shape yielding a matrix

D € {0,1}YN*VN For i € [y/N], we let D; as the i’ column of A.

The client samples a matrix A € ZZXW at random from the LWE distribu-
tion. To fetch the date index (3, j) the client computes a query b = sA+2-e+v;
where v; € {0, 1}1X‘/ﬁ is an indicator vector with 1 at the i*" coordinate. The
server computes (bDy,...,bD ;) and (ADy,...,AD /) and sends these to
the client. Note that bD; ~ sAD;+DJi, j] upto small and even error. The client
can therefore derive DJi, j] using the secret s. The scheme can be proven to be
secure due to the security of LWE. Note that the total communication from
client to the server is O(n\/ﬁ ) where n is the dimension of LWE as the client
needs to send A along with b. The query compute time is also O(n\/]v ) which
is also the time to compute b. We note that the client communication can be
improved to O(v/N) if AD can be precomputed. We will assume this in the fol-
lowing discussion. For server, given the preprocessing, the computation consists
of evaluating bD which takes O(N) times but the communication is O(vN).
The downside to this scheme is that if a data entry needs to be changed, it takes
O(n) time to change the preprocessing AD.

If one used sparse LWE instead, it will reduce the client query generation
time to O(kv/N) as computing LWE samples will now be faster. This might be
useful if the client is low-complexity. Further, the update time reduces to O(kz)
as opposed to O(n) This might be useful in dynamic settings where the update
needs to be faster. To summarize, we have the following comparison.

LWE | k-sparse LWE

Total Communication ~ O(v/N) ‘ D(V'N)
Update Time O(m) | Ok
Client Query Time O(n - v/N) ‘ O(k - V/'N)

We leave concretely implementing the PIR scheme for a future update.

8.2 Constant Degree Homomorphic Encryption

We now describe how to perform homomorphic multiplication. In order to
achieve the best efficiency for evaluating constant-degree polynomials, we will
make two modifications to the Brakerski-Gentry-Vaikuntanathan [24] homomor-
phic multiplication. First, instead of using the gadget matrix consisting of pow-
ers of 2, we will use the gadget matrix consisting of powers a larger base, in
particular, p the modulus of the message space. Second, instead of performing
modulus reduction on the ciphertexts, we will perform the modulus reduction
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on the secret instead. The second modification is necessary since we want to
rely on large secret sparse LWE instead of small secret sparse LWE. In contrast,
standard modulus reduction (performed on ciphertexts) relies on having small
secrets in order to ensure that errors introduced by rounding is bounded. While
using small secrets is without loss of generality for LWE, it is not so for sparse
LWE.

Let ggp = (1,p,p%,---,pl°8 @) be the gadget matrix in Zg with base
p. Correspondingly, define operation Decomp(x, p) that decomposes the integer
vector  in base p. We will also make use of the subroutine Scale defined in [24,
26].

Definition 8.1. For integer vector x € Zq and integers ¢ > p > r, we define
x' — Scale(x, q,p,r) to be the Z,-vector closest to (p/q) - « that satisfies ' =
x mod 7.

They proved the following key lemma about the scale operation, showing that
if the inner product between two vectors ipu,v over Z, is not too large, then
inner product with the scaled vector ipu’ = Scale(g, p, ), v over Z, is congruent
to ipu,v mod r, and is roughly ¢/p times smaller than ipu, v with an rounding
error bounded by r||v||1/2.

Lemma 8.1. Let g > p > r be positive integers satisfying ¢ = p =1 mod r. Let
;ZL ledZ;‘ and u' « Scale(u,q,p,r) € Zy. Then, for any v € Zy, the following
olds

i, [w,v)ly <q/2=(q/p) (r/2)-|v]1,

/ _ / q: 1
Then,  [(u',v)]p, = [(u,v)]gr and [(u',v)], < };Ku 0)]g + 5T [v[l1

In the BGV scheme, the inner product between the secret key and a ciphertext
(s, ct) over Z, is the approximate message m+p- E. The modulus reduction step
scales the ciphertext to a smaller modulus ¢’ with respect to p. By the above
lemma, they have that (s, Scalect, q,¢’,p) mod ¢ = m + p - e, where the noise is
bounded by [e| < Z|E|+ p-[|s||1, which is small if s is short.

In our setting, we use large secret s and instead scale the secret. To start
with, observe that (s®g, ,, Decomp(ct, p)) mod ¢ = m+p-E. Therefore, we have
(Scale(s®gq.p, ¢, p), Decomp(ct, p)) mod ¢’ = m+p-e, where the noise is bounded
by |e] < Z|E| + p- |[Decomp(ct,p)l|1. In the actual scheme described below, we
apply this scaling w.r.t. the tensor product of two ciphertexts ct = ct; ®cts, and
the secret key is s ® s. The operation is summarized in the following corollary.

Corollary 8.1. Let ¢ > ¢’ > p be positive integers satisfying ¢ = ¢ = 1 mod p.

For every s € Zéx(nﬂ), and cty,cty € Z((;H'l).
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If, m+p E=[s®s)- (ct1®ctz)]q =[(s®s®gqp)- (Decomp(cts ® ct2,p))lq
< ¢/2—(q/d) - (p/2)- (n® -p-logq/logp) ,
Let t = Scale(s ® s ® gq,p, 4, D)
m/ 4+ p-e=[t- (Decomp(ct; ® cta,p))]y

Then, m=m/, and |m +p-el< §|m+p~E| +(p/2) - (n® - p-log g/ logp)

‘[ Constant Degree Homomorphic Encryption Scheme}—

pp « skhe.Setup(1*,1P): Based on the security parameter A and maximal

depth D, choose a tower of decreasing modulus ¢ = ¢(P) > ¢(P~=D >

¢ P72 > ... > ¢ > p where ged(p,q?)) = 1, ¢» = 1 mod p, and

qd /q?** > A. Also choose a dimension n, a B- bounded distribution of

noise elements x. Output pp := (q,n,x,p), where g is the vector of
modulus.

sk, evk < skhe.KeyGen(): For every d € [D], sample a random k-sparse coef-

ficient matrix B(® over Zga), a noise vector el® — 1™ and a secret

key s/ — Zm. Let s\ = (s’(d), —1). Compute the level d evaluation
key as follows:

tld+D) . gldt+l) g gld+1) o ggta+1) , mod q(d+1) Z;Efi:nl()dﬂ)
t—((1+l) — Scale(t, q<d+l>,q((”,p) c Z;égn(awrl)
(d) (d+1)
@ B (n+1)xm
evk'™ = <s(d)B(d) + £+ 4 p. e mod q(d)> € qu

Above dimension m(9 = A(nlog ¢t /logp) = O(nlog¢P) /logp).
Output (sk = {59}, evk = {evk?}).

ct(P) « skhe.Enc(sk,m): Parse the message m as an element of Z,. Sample
a random k-sparse coefficient vector a € qu), and a noise e «— Y.
Output ct™" = (@™, b= a+m+e pmod ¢P).

m « skhe.Dec(sk, ct(®, d): Parse ct(¥) = (a,b) € Ly Output m := (b —
s@a) mod ¢4, p.

ctld+h) skhe.MuIt(ctgdH)7 ctédﬂ)): This algorithms takes two ciphertexts
at level d 41 in ZZ{L‘L) and outputs a ciphertext of dimension (n + 1)2.
Output ct(@tD) = ct(d+1) ® ct(dH) mod ¢(4+1),

ct@ — skhe. Reduce(evk ct(@1)): This algorithms takes the evaluation key

and a ciphertext at level d + 1 of dimension (n + 1)? and returns a
ciphertext at level d of dimension n + 1.

ct@® = evk® . Decomp(ct'®*Y, p) mod ¢(@
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Evaluating Constant-Degree Polynomials and Noise Bounds. Using the above
operations, we can homomorphically evaluate a constant-degree polynomial,
expressed as a sum of degree 2° monomials, by homomorphic evaluation of
all monomial followed by homomorphic additions. To homomorphically com-
pute a degree 2P+1=4 monomial HjG[QDH,d] my; (initially d = D, and at the
last step d = 1), suppose we have already obtained ciphertext ct; encrypting
Hje[QD*d] m;, and cty encrypting Hje[QDfdJrl,QD*l*d] m;;, both at level d. We
can obtain a ciphertext ct encrypting Hje[2D+1—d] m;, at level d — 1 by first
invoking skhe.Mult on cty,cty obtaining an intermediate ciphertext of dimen-
sion (n + 1)2, followed by skhe.Reduce to reduce the dimension to n while also
reducing the modulus to ¢(P=% i.e.,

ct = evk® Y . Decomp(ct; @ ctz) mod ¢4 Y .

For a formal proof of correctness as well as runtime analysis, please refer to
the full version of this paper.

A comparison of the efficiency of our scheme with previous schemes is pro-
vided in Table 3.

Table 3. Efficiency comparison of different homomorphic schemes supporting constant-
degree polynomials.

Scheme & Assumptions ‘ # of ciphertexts ‘ rate ‘ encryption overhead ‘ evaluation overhead
BV [26] & TWE * ‘ unbounded ‘ O(n) ‘ O(nloglogq) ‘ 2(n®)
BV & RLWE ! ‘ unbounded ‘ O(n) ‘ O(nloglog q) ‘ 2(nlogn)
[33] & RLWE ‘ unbounded ‘ o(1) ‘ o(1) ‘ polylog(n) *
BV & O(1)-sparse LWE (Ours) ! ‘ bounded poly ‘ o) ‘ O(loglog ¢P?) ‘ o(1)
BV & w(1)-sparse LWE (Ours) * ‘ unbounded ‘ w(1) ‘ w(loglog ¢P?) ‘ w(1)

! For all the BV schemes, we consider the case logp = 2(logn + logq).
2 The scheme [33] has large polylogarithmic overhead.
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