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Abstract. The study of garbling arithmetic circuits is initiated by
Applebaum, Ishai, and Kushilevitz [FOCS’11], which can be naturally
extended to mixed circuits. The basis of mixed circuits includes Boolean
operations, arithmetic operations over a large ring and bit-decomposition
that converts an arithmetic value to its bit representation. We construct
efficient garbling schemes for mixed circuits.

In the random oracle model, we construct two garbling schemes:

— The first scheme targets mixed circuits modulo some N = 2°. Addi-
tion gates are free. Each multiplication gate costs O(X - b*®) com-
munication. Each bit-decomposition costs O() - b/ logb).

— The second scheme targets mixed circuit modulo some N ~ 2°. Each
addition gate and multiplication gate costs O(X - b - logb/ loglogb).
Every bit-decomposition costs O(\ - b*/logb).

Our schemes improve on the work of Ball, Malkin, and Rosulek [CCS’16]
in the same model.

Additionally relying on the DCR assumption, we construct in the pro-
grammable random oracle model a more efficient garbling scheme target-
ing mixed circuits over Z,, where addition gates are free, and each mul-
tiplication or bit-decomposition gate costs O(Apcr - b) communication.
We improve on the recent work of Ball, Li, Lin, and Liu [Eurocrypt’23]
which also relies on the DCR assumption.

1 Introduction

Garbled circuit (GC) is introduced in the seminal work of Yao [1], allowing a
garbler to efficiently transform any boolean circuit C' : {0,1}"%» — {0, 1}"out
into a garbled circuit C, along with ni, keys Ky, ..., Kn,,- Each key is a function
K; : {0,1} — {0,1}*, mapping the i-th input bit to a short string. The output
of K; is referred to as the label of the i-th input wire. For any (unknown) input
x, the garbled circuit C' together with input labels Ky (1), ..., Ky, (2, ) reveal
C(x) but nothing else about z.

GC was originally motivated by the 2-party secure computation problem.
Since then, GC has found applications to a large variety of problems, and is
recognized as one of the most successful and fundamental tools in cryptography.
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For practical applications, people care about the efficiency of GC, especially
the communication complexity (i.e., bit length of C'). A considerable amount
of works [2-9] have been dedicated to optimize the concrete efficiency of Yao’s
GC construction. In the most recent construction of Rosulek and Roy [9], XOR
and NOT gates involves no communication, every fan-in-2 AND gate requires
1.5\ + 5 bits of communication. Despite making concrete analytic improvement,
they still largely follow Yao’s construction, binding tightly with boolean circuits.
The class of arithmetic operations is a featuring example of computations that
are expensive to express as boolean circuits.

The Arithmetic Setting. The beautiful work of Applebaum, Ishai, and Kushile-
vitz [10] initiated the study of garbling arithmetic circuits.

Arithmetic GC over a ring R is an efficient algorithm that transforms an
arithmetic circuit C': R™» — R™ into a garbled circuit C, along with
nin keys AKy, ..., AK,, . Each key is an affine function AK; : R — REY. For
any (unknown) input z, the garbled circuit C' together with input labels
AKi(z1),...,AKp,, (@n,, ) reveal C(x) but nothing else about x.

The construction of AIK is a natural generalization of Yao’s boolean GC.
For each wire, a key AK : R — R is sampled. The output of AK is called
the label of that wire, whose length is roughly the security parameter. For any
arithmetic gate g, say AKy, AKy are the keys of the two input wires and AK is
the key of the output wire, the garbler generates a table Tab of this gate, such
that for any (unknown) z,y € R, the evaluator can compute AK(g(x,y)) from
AK;(z), AKs(y), Tab, while learning no other information.

As observed by [10], to keep the table size for each gate constant, it suffices
to construct the so-called key-extension' gadget. Such a gadget comsists of a
garbling algorithm and an evaluation algorithm. The garbling algorithm KE.Garb
takes a key AK and a long key AK" as input, samples a key-extension table Tab
such that, AK(z), Tab reveal AK-(z) but nothing else about z, AK".

[10] presents two constructions of key-extension gadgets. One relies on Chi-
nese remainder theorem, enables garbling of mod-p;ps . .. pr (the product of dis-
tinct small primes) computation. The other is based on LWE, supports bounded
integer computation (computation over the integer ring Z when all intermediate
values are guaranteed to be bounded).

Follow-up research has made improvements within this framework. Similar to
FreeXOR, [12] allows free garbling of addition gates. In a different frontier, [11]
presents a highly efficient arithmetic GC for bounded integer computation based
on Paillier encryption. [11] also presents arithmetic GC for Z, based on LWE
or Paillier. However, free addition is not supported in [11]. The communication
complexity of existing arithmetic GC constructions will be discussed in more
detail in Sect. 1.1.

! This module is called “key shrinking” in [10]. The name “key extension” comes from
[11].
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Our research proceeds with this line of study within AIK’s framework of
arithmetic GC. Our starting point is to understand how to garble mod-2° arith-
metic circuits, which is not efficiently supported by previous works. In the search
for mod-2° GC, we realize that it is has a few advantage over GC for mod-p or
bounded integer computation.

Match Popular Architectures. In most modern architectures, the only natively
supported arithmetic operation is over Zs,. Most existing tools (programing
languages, compilers, processors, etc.) are optimized using/targeting the mod-2°
arithmetic operations. This is our initial motivation to construct the mod-2* GC.

Mixing Boolean and Arithmetic Computation. Mixed circuits combine boolean
and arithmetic computations. The basis include boolean gates, arithmetic oper-
ations, together with special gates to convert between boolean and arithmetic
values: arithmetic-to-boolean conversion (bit-decomposition) and boolean-to-
arithmetic conversion (bit-composition). Previous work [11,12] has considered
the garbling of mixed circuits. But in their constructions, the cost of garbling
bit-decomposition is expensive.

It turns out that our mod-2° GC naturally supports efficient garbling of
bit-decomposition and bit-composition. In fact, in our construction, the key-
extension gadget is the combination of bit-decomposition and bit-composition.
For example, to double the arithmetic key/label length, first bit-decompose it
into boolean labels, then use bit-composition twice to obtain a longer label.

Emulate Arithmetic Computation Modulo Any Modulus N. For any constant N,
mod-N computations can be efficiently emulated by mod-2% mixed circuits if
b = [log N7. To prove such a statement, it suffices to show, given 0 < x < N2,
how to compute x mod N using a mod-2%® mixed circuit. One step further, it is
also sufficient to compute integer division |x/N | using a mod-24* mixed circuit.
By the rather standard multiply-and-shift trick

- [2%°/N1/2%] = |2/N],

the quotient can be computed by first multiplying by constant [23/N] then
integer division by 23°. Both operations are efficient in a mod-24 mixed circuit.

1.1 Our Results

Mized GC in the Random Oracle Model. Using only random oracle, the state-
of-the-art garbling scheme for arithmetic circuit is that of [12]. They rely on
Chinese remainder theorem (CRT) to garble an arithmetic circuit modulo N =
p1,...ps = 2°, by equivalently garbling s copies of the circuit, each modulo
a small prime p;. They allow free addition and each multiplication gate costs
O(A\b?/logb) bits of communication. However, bit-decomposition operation of
this scheme is expensive and not explicitly considered in [12].
Our work improves the state-of-the-art in several directions.
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Table 1. Comparison between our GC and previous works

ADD gate MULT gate bit decom- ring assumption
table size  table size position modulus besides RO
£ naive b Ab? free 2b
S Karatsuba b PR free 2t
£ FFT-based b Ablogb * free 2b
[12] free Ab?/logh  expensive t N = pips...ps =~ 2°
Ours (Thm. 1)  free A% /logh  Xb?/loght N =p*=2
Ours (Lem. 6) Ab?/logh  Ab?/logh  A\b?/logh i any N ~ 2°
Ours (Thm. 2) free b2 Xb?/loght N = p’flp§2 Cphs 2t
Ours (Thm. 3) 72085 peosl A /loght N =piips?...pl x 2’
[11] Awed Awed unknown any N ~ 2° LWE
[11] A(Apcr +b) A(Abcr +b)  unknown any N ~ 2b strong DCR §
[11] Aweb Aweb Aweb?  bounded integer LWE
[11] ADcrR + b Aocr +b A Aper + b)2 bounded integer strong DCR §
Ours (Thm. 4) free Abcrb Abcrb 20 DCR
Ours (Cor. 1) Apcrb Apcrb Apcrb any N ~ 2° DCR

Constant and log(\) multiplicative factors are ignored. Aiwe and Apcr denote the LWE
dimension and DCR key length respectively. *Due to large hidden constants, the Karat-
suba’s method outperforms the naive method only when b is at least a few hundreds,
the FFT-base method outperforms Karatsuba’s only when b is at least tens of thou-
sands. TThe cost is not explicitly stated in [12], but is no less the cost of comparison
gate, which is stated to be O(Ab*/logb). 1The cost is measured when decomposing to
base-p bit representation for some prime p (See Eq.1). The cost increases to O(Ab?)
when decomposing to base-2 bit representation. §Under the standard DCR assumption,
“X” should be replaced by “Apcr” in its cost expression.

— Our first scheme (Theorem 1) garbles arithmetic gates modulo N = p* = 2°
for some prime p, with the same asymptotic efficiency as [12]: addition is
free, each multiplication costs O(Ab?/logb) bits of communication. Addi-
tionally, our scheme supports efficient bit-decomposition gates at a cost of
O(\b?/logb) communication, enabling the garbling of mixed circuits.

— Our second scheme (Theorem 2) applies CRT in a similar way to [12]. When
garbling computations modulo N = p’f1p§2 ...pFs =~ 2% our mixed GC sup-
ports free addition and relatively efficient bit-decomposition, and garbles
every multiplication gate using O(\b!®) communication.

— Our third scheme (Theorem 3) further improves the multiplication gate cost
to O(Ablogb/loglogb). However, as a trade-off, addition gates are no longer
free and have the same cost as multiplication gates.

Mizxed GC Based on Computational Assumptions. If allowed to use public key
assumptions, the state-of-the-art garbling schemes for arithmetic circuits and
mixed circuits are those of [11]. Under the decisional composite residuosity
(DCR) assumption, they construct a garbling scheme for bounded integers where
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each multiplication gate only costs O(Apcr + b). In their scheme, the addition
gates cost the same as multiplication, the bit-decomposition gates have a more
expensive cost of O(M3cg - b).

Our work improves the state-of-the-art by supporting free addition gates and
more efficient bit-decomposition gates. However, as a trade-off, multiplication
gates are more expensive, of size O(Apcr - b).

— Our fourth scheme (Theorem 4) garbles mixed circuits modulo 2° and allows
free addition. Each multiplication gate and bit-decomposition gate costs
O(Xpcr - b) communication.

2 Preliminaries

For any positive integer N, let [N] := {0,1,...,N — 1}, let Zy denote the
ring of integer modulo N. We assume modulo operation has lower priority than
addition. That is, a + b mod p should be interpreted as (a + b) mod p.

Base-p Digit Representation and Bit Representation. For any x € [2°], the bit
representation of x is the unique boolean vector (zg,...,xp—1) € {0,1}" such
that © = ), 2'z;. For any z € [p*], the base-p digit representation of x, is the
unique vector (zo,...,zx—1) € [p*¥ such that z =, p'z;.

For any z € [p*], let (g, ..., xr_1) be its base-p digit decomposition, the base-
p bit representation of x is the unique vector (71 5)iek),jefogp] € 10, 1}{“'“"”W
such that x; = >, p'2/z; ; for all i € [k]. As a consequence, x =}, , p'2; ;.
That is, base-p bit representation is the bit representation of the base-p digit
decomposition.

2.1 Computation Models

We consider arithmetic circuits and its generalization mixed circuits, where the
computation can switch between arithmetic and boolean. Each wire carries a
value z in either the boolean field F; = {0,1} or an arithmetic ring R. We
mainly consider R = Z,r the ring of integer modulo a prime power, and the
special case R = Zqs. More specifically, we mostly focus on the following class
of circuits.

Mized Circuit. Let Cpix(R) denote the class of circuits that mixes boolean gates
and arithmetic operations over R. A circuit in this class computes a function
f . {0, 1}mn,bool X R Min,arith {0, 1}nout,bool X RMeutarith ysing the gates as basis:

— Add, Mult : R x R — R compute addition and multiplication over R.

— Bit-decomposition BD : R — {0,1}" computes the bit representation of an
arithmetic value.
When R = Zqy, we consider the most natural bit decomposition. That is,
BD(z) = (o, 1, ..., xp—1) such that z = >, 2%z;.
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When R = Z,, the gate first decomposes the number into digits in base p,
then decomposes each digit into bits. That is, b = k - [log p], and

BD(2) = (i )icljeflogp] St- 2= p' Y 20m;;. (1)

? J

— Bit-composition BC : {0,1}* — R computes the arithmetic value from its bit
representation.
- ¢:{0,1} x {0,1} — {0,1} computes the boolean function g.

Arithmetic Circuit. Let Chien(R) denote the class of arithmetic circuits over R.
A circuit in this class computes a function f: R™» — R™ut using the following
the gates as basis:

— Add, Mult : R x R — R compute addition and multiplication over R.

2.2 Garbled Circuits (GC)

The following definition of garbling mixed circuits has been implicitly considered
in the previous works. We will not separately define arithmetic GC since it can
be viewed as the special case of mixed GC.

Definition 1 (Garbling of Mixed Circuits). A garbling scheme for Cpix(R)
consists of three efficient algorithms.

— KeyGen(1*, 17 toot 1minariti) samples Min, poor boolean wire keys Ky, ..., Ky, 10
Nin,arith arithmetic wire keys AKy, ..., AK,, ... and status st. Each boolean
key K; is a function from a bit to a bit string. Each arithmetic key AK; is an
affine function from a ring element to a vector. _

- Garb(C, st) takes a mized circuit C € Cmix(R), outputs a garbled circuit C.

-~ Eval(C, {LiYi€inum ool 1L Yicnoann]) takes a garbled circuit C, boolean labels 1;,

and arithmetic labels L;. It outputs the evaluation results {Ybool,i}, {Yarith,i}-

Correctness. The garbling scheme is correct, if for any circuit C' € Cnix(R)
and any input z, as long as C' and keys Ky, ...,K AKy, ..., AK
properly generated,

are

Nin,bool ? MNin,arith

Eval(C,1y,...,1

5 4Min,bool ?

Li,...,L )

» HNin,arith

always outputs C(z), where 1; := K;(Zbool,s), Li := AK;(Zaritn,;) are input labels.

Security. The garbling scheme is secure if there exists an efficient simulator Sim
such that for any circuit C' € Cmix(R) and input z, the output of Sim(C, C(z))
is indistinguishable from

(C,1y,...,1

) *Min,bool ?

Li,...,L )

7 *Min,arith

when C, Ky, ... ,K AKq,...,AK

5 "\ Nin bool ?

;== Ki(@bool,i), Li := AK;(Zarith,i)-

are properly generated from C', and

Min,arith
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Gate Gadgets. The construction is mostly modular. For each gate in the basis,
there is a garbling gadget for all the tasks related to this gate. Consider a general
gate g : RY — RY* where R1,Ro € {Zs, R}. The garbling gadget for g consists
of three efficient algorithms g.Garb, g.Eval, g.Sim. The garbling algorithm g.Garb
takes input wire keys Ky, ..., K, (which are boolean keys if R; = Fy, arithmetic
keys if Ry = R) and output wire keys K{,..., K/ | generates a table Tab, such
that:

— Correctness. For any x1,...,2, € Ry and (y1,...,Ym) = g(X1,...,Tn),
the evaluation algorithm g.Eval(Ky(z1),...,Ku(x,), Tab) will always output

— Handwavy Security. For any x1,...,z, € Ri, the distribution of Tab is
indistinguishable from g¢.Sim(Ky(z1),...,Kp(2n),Ki(y1),..., K/, (¥m)) when
Ki(z1),...,Ku(x,) are also given to the distinguisher.

As the name suggested, this security definition is imprecise. The issue is
mainly caused by the global key. It can be formalized by a global simulator. The
global simulator first samples a label for each wire, then samples the garbling
table of each gate using the simulation algorithm of the corresponding gadget.
In short, the simulation is modular, but the actual security definition is global.
For simplicity, we will work in the random oracle model.?

There is also a modular approach [10,11] that allows the precise security
definition of each gate garbling gadget, but it is incompatible with the existence
of the global key. The modular approach requires the simulation algorithm of
the gate gadget to sample labels on the input wires. This causes another issue
that a label can not be reused by multiple gates. Thus extra work is required
when a gate has fan-out greater than 1.

3 Technical Overview

This section briefly discusses ATK’s framework of arithmetic GC (Sect. 3.1) and
a technically less interesting extension (Sect. 3.2) discussing the sufficiency of
bit-decomposition and bit-composition. The takeaway is: Mixed circuits can
be efficiently garbled, as long as there are efficient garbling gadgets for bit-
decomposition and bit-composition.

In Sect. 3.3, we presents a naive construction of the two garbling gadgets.
The resulting GC does not have superior efficiency, but it is simple enough and
will be optimized in later sections.

3.1 Background: Key-Extension Implies Arithmetic GC

We recap the framework of AIK [10] for arithmetic GC over some ring R, with
the modification that there is a global key A for all arithmetic wires. As observed

2 In the boolean GC setting, [13] shows how random oracle can be replaced with
symmetric encryption resisting a combined related-key and key-dependent message
attack. Their technique are likely to work in the arithmetic GC setting as well.
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by FreeXOR [4] and “FreeADD” [12], the garbling of addition gates will cost no
communication if a global key is sampled.

In more detail, an arithmetic key is sampled for each wire as follows (where
A denotes the security parameter):

— A global key A € R’ is sampled for all arithmetic wires, where £ is the label
length. If R = Zg, we will set £ = \. If R = Z,x, we will set £ = [A/logp].
For each arithmetic wire, the key is an affine function AK : R — R‘*!. The
output AK(z) consists of ¢-dimension label and a color number. That is, AK
can be represented by AK = (A € R’,a € R) such that

AK(z) = (Az+ A,z +a) (inR).
a is called the mask number of this wire. Set a = 0 for every output wire.

The circuit is garbled gate-by-gate. The garbling gadget for arithmetic gate
g consists of a garbling algorithm ¢.Garb, an evaluation algorithm g¢.Eval and
a simulation algorithm ¢.Sim. The garbling algorithm g.Garb takes the keys of
input wires AKy, AKs and a key of output wire AK, outputs a table Tab such
that:

— Correctness. For any x,y € R, g.Eval(AK;(x), AKy(y), Tab) = AK(g(z,y)).

— Handwavy Security. For any x,y € R, the distribution of Tab is indistinguish-
able from ¢.Sim(AKy(x), AKz2(y), AK(g(z,y))) when AK;(x), AKa(y) are also
given to the distinguisher but the global arithmetic key A is hidden.

If g is addition, note that

AKi(z) + AKy(y) — AK(z + y)
=(Az+ A,z +01)+(Ay+As,y+as) — (Alz+y)+ A,z +y+a)
=(A1+As—Ajar +ax—a) (in Zga)

can be determined by the input/output labels. Setting it as the table will not
violate security and is sufficient for correctness. A smarter solution, as suggested
by [12], is to set the table Tab to be empty, and to change how the output wire
key AK is generated. Instead of sampling AK at random, set A = A; + A, and
a = a; + ag, thus AK;(z) + AKz(y) mod 2¢ = AK(z + y).

If ¢ is multiplication, first use randomized encoding [14,15] to sample two
affine functions (long keys) AK:, AKS such that AK}(z), AKS(y) reveals AK(xzy)
but nothing else about z,y, AK. This is formalized as a so-called affinization
gadget in [10] (called “arithmetic operation gadgets” in [11]).

The affinization gadget for multiplication can be formalized by a garbling
algorithm Aff, .Garb, an evaluation algorithm Aff.Eval and a simulation
algorithm Aff,.Sim.

— Given an affine function, the garbling algorithm Aff,.Garb(AK) sam-
ples two affine functions AKY, AKS such that the output dimension of
AK'Z-‘ is at most twice the output dimension of AK. (The multiplicative
factors of AK%,AK; are not necessarily the global A. We represent a
“long key” as AK" = (A, B) such that AK"(z) = Az + B.)
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— Correctness. For any x, y in the ring, given “long labels”, the evaluation
algorithm Aff,.Eval(AK} (), AK5(y)) always outputs AK(zy).

— Security. For any AK, x,y, the distribution of (AKII(I), AK'Q‘(y)) is per-
fectly indistinguishable from Aff, .Sim(AK(zy)). The randomness of
the former comes from the randomness tape of Aff, .Garb.

The construction of GC is complete by the key-eztension gadget, which allows
the evaluator to compute AK:(z), AK5(y) from AK; (), AKy(y).

The key-extension gadget can be formalized by three efficient algorithms
KE.Garb, KE.Eval, KE.Sim.
— Given a key AK and an affine function AK", the garbling algorithm
KE.Garb(AK, AK") samples a table Tab.
— Correctness. For any z in the ring, KE.Eval(AK(z), Tab) = AK"(z).
— Handwavy Security. For any x, the distribution of Tab is indistinguish-
able from KE.Sim(AK(xz), AK"(x)) when AK(z) are also given to the
distinguisher but A is hidden.

The garbling gadget for multiplication gates can be constructed as follows.

— Garbling algorithm Mult.Garb(AK1, AK2, AK):
Aff,.Garb(AK) — (AK:, AKY).
KE.Garb(AK;, AK}) — Tab; for i € {1,2}.
Output Tab = (Taby, Tabs).

— Evaluation algorithm Mult.Eval(L;, Ly, Tab):
KE.Eval(L;, Tab;) — L} for i € {1,2}.

Aff .Eval(Lt, L) — L.
Output L.

— Simulation algorithm Mult.Sim(L;, Lo, L):
Aff,.Sim(L) — L}, LS.

KE.Sim(L;, L}) — Tab; for i € {1,2}.
Output Tab = (Taby, Tabs).

This arithmetic GC framework [10,12] reduces the problem to constructing
a key-extension gadget. As long as there is a secure key-extension gadget that
doubles the key length (i.e., the output of AK" can be twice as long as AK), the
framework will yield an arithmetic GC of the same complexity.

Lemma 1 (informal). If there is a secure key-extension gadget that doubles the
key length whose table size is cxg, there is an arithmetic GC for the same ring
such that each addition gate costs no communication, and each multiplication
gate costs 2 - ckg communication.

3.2 Bit-Decomposition and Bit-Composition Imply Mixed GC

We extend the AIK framework to support mixed circuit, which consists of arith-
metic operation gates as described before, boolean gates such as AND, XOR,
and NOT, and two conversion gates, bit-decomposition and bit-compositions.
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A wire in the circuit is either an arithmetic wires as described before, or a
boolean wire. The keys for arithmetic wires stay unchanged. The keys for boolean
wires are sampled as follows:

— A global key A € {0,1}* is sampled for all boolean wires.
For each boolean wire, the key is an affine function K : {0,1} — {0, 1}*+1,
The output K(z) consists of a A-bit label and a color bit. That is, K can be
represented by K = (b € {0,1}*, a € {0,1}) such that

K(z) = (Az @ b,z ® ).
a is called the mask bit of this wire. Set a = 0 for every output wire.

The arithmetic operation gates are garbled as before, and we skip the rather
standard boolean gate garbling gadgets. We describe gadgets for garbling bit-
decomposition and bit-composition gates in more detail below.

The bit-decomposition gadget consists of BD.Garb, BD.Eval, BD.Sim. The
garbling algorithm BD.Garb takes an arithmetic key AK and b boolean keys
Ko, ..., Kp_1 as inputs, outputs a table Tab, such that

— Correctness. For any ¢ € R, BD.Eval(AK(z), Tab) = (Ko(zo),...,Kp—1
(251)).

— Handwavy Security. For any x € R, the distribution of AK(z), Tab is indis-
tinguishable from AK(z),BD.Sim(AK(z), Ko(zo),. .., Kp—1(zp—1)) when the
global arithmetic key A is hidden.

The bit-composition gadget consists of BC.Garb, BC.Eval, BC.Sim. The gar-
bling algorithm BC.Garb takes b boolean keys Ky, ...,Ky_1 and an arithmetic
affine function AK" as inputs, outputs a table Tab, such that

— Correctness. For any x € R, BC.Eval(Ko(zo), . . ., Kp_1(xp_1), Tab) = AK-(z).

— Handwavy Security. For any z € R, the distribution of Tab is indistinguishable
from BC.Sim(Kq(zg), ..., Kp—1(xp_1), AKL(a:)) when Ko(zg), ..., Kp—1(2p_1)
is also given to the adversary but the global key A is hidden.

We stress that AKY can be an arbitrary affine function: its multiplicative factor
does not have to be the global key; and its output dimension can be larger.
Although for simplicity, we assume the output dimension of AK" equals the
dimension of a label. In case we need longer AKL, we can always divide it into a
few pieces and use the bit-composition gadget multiple times.

It is obvious that bit-decomposition gadget and bit-composition gadget imply
key-extension gadget, and thus imply mixed GC. Previous work did not construct
the key-extension gadget through this approach because bit-decomposition is
expensive in their constructions.

Lemma 2 (informal). If there are a secure bit-decomposition gadget whose
table size is cgp and a secure bit-composition gadget whose table size is cpc,
then there is a mized GC for the same ring such that each addition gate costs no
communication, and each multiplication/bit-decomposition/bit-composition gate
costs O(epp + cac) communication.
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3.3 The Naive Construction

This section presents garbling gadgets for bit-decomposition and bit-composition
when the ring is Zqs. For each z € Zgs, let x; denote the i-th lowest bit of z, so
that z =, 2'z;. Let x4 denote Y a<ich 2%z, so that the bit representation
of x4 is a substring of the bit representation of x.

BC. The bit-composition gadget is straight-forward. Given boolean input
labels Ko(zg), - - ., Kp—1(xp—1), the evaluator need to compute the output label
AK-(z) = Az + B (recall that in bit-composition gadget, the output key can be
any affine function). The garbling algorithm BC.Garb samples additive sharing
By, ...,By_1 such that Zl B, = B, then generates table that allows the evalu-
ator to compute A2ix; + B; from Ki(z;). The most direct solution is to let the
table contain ciphertexts

Enc(K;(3), A2'3 + B;) for all 3 € {0,1}.

The order of the two ciphertexts are permuted according to the mask bit in K;,
so that the evaluator can pick the right ciphertext using the color bit.

BD. The bit decomposition gadget is inspired by the following two observations.
— Let L = AK(z) = Az 4+ A denote the given arithmetic label. Then
L mod2=Axz+ A mod2=Azy+ A mod 2.

If the table contains Enc(AfS + A mod 2,Kg(3)) for G € {0,1}, the evaluator
can properly decrypt the boolean label Ko(zg) of xg with L mod 2.

— To continue, the evaluator should be able to compute a mod-2°~—1 arithmetic
label for all but the least significant bit of x

LY = Az + AW mod 2071,
Then the evaluator can iteratively compute all the boolean labels. Note that,
L —2L% mod 2° = Azg + A — 2A™M mod 2°. (2)
If the table also contains ciphertexts
Enc(AB + A mod 2, A+ A —2AW mod 2°) for § € {0,1},
the evaluator can decrypt the ciphertext to get (2) and compute LM,

These observations lead us to the bit-decomposition gadget in Fig. 1. For sim-
plicity, the encryption is implemented by a secure function H which is modeled
as a random oracle

Enc(key, m) = H(key,aux) @ m, Dec(key,c) = H(key, aux) @ c,

where aux contains auxiliary information such as the id of current gate. The H
queries under some auxiliary information is bounded: For each aux, the construc-
tion only queries H(key, aux) for up to two distinct key.
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Garbling algorithm BD.Garb takes an arithmetic key AK = (A, «) and b boolean
keys Ko, ..., Kp—1 as inputs.

— Let A® = A. For each 1 < i < b, samples A_(i) i (Zgp—i)™.
— Let o'® = . For each 1 < i < b, samples a(¥) « Lgp—i .
— For each 0 < i < b, for each 3 € {0,1}, compute

Cipial® mod2 — HAB+ AW mod 2, (id,q)) &
(Ki(B), A+ AD —2A0+D mod 2077,
B+ a® — 2o+ mod 2°7%)  ifi<b—1
Ki(5), ifi=b—1
— Output table Tab = (C; )icp),8¢10,1}
Evaluation algorithm BD.Eval takes input label (L, Z) and a table Tab as inputs.

— Let L =L, 29 =z. - ,
— For i =0,1,2,...,b— 1:Compute (1;, D@, d®) « H(L® mod 2, (id,7)) @&
C;.2() moa 2- 1If 4 < b—1, compute
L0 = (LY — D mod 2°7%) /2, 20D = (29 — d® mod 2°7%)/2.
— Output boolean labels 1o,11,...,1,—1.

Simulation algorithm BD.Sim takes arithmetic label (L, Z) and boolean labels
lo,11,...,1,—1 as inputs.

— Let (L©,2) = (L, 7). A
— Sample random L) < (Zyp—i)*, 7 ¢~ Zyy—; for each 1 < i < b.
— The active ciphertexts in the table Tab are set as

Ci,a’c(i) mod 2 — H(L(Z) mod 27 (|d7 Z))®

(1;, L — 2LO+TY mod 2°7%, 29 — 220D mod 2°7)  ifi<b—1
1; ifi=b—1

The rest are inactive ciphertexts, and are simulated as random strings.

Lemma 3. There are statistically secure bit-decomposition gadget (Fig. 1) and
composition gadget (a specialization of Fig. 2) for ring Zos, whose table size
is O(b?\). They yield statistically secure mized GC for Zqyw in the random oracle
model, where each addition gate costs no communication, and each multiplica-

bit-

Fig. 1. The Naive Bit-Decomposition Gadget

tion/bit-decomposition /bit-composition gate costs O(b?>\) communication.

The proof of Lemma 3 is deferred to the full version®.

3 https://eprint.iacr.org/2023/1584.
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4 Mixed GC for .

This section presents a mix GC for Z,.. Recall how the arithmetic key, label,
color number are defined for each arithmetic wire (where X is the security param-
eter):

— A global key A € Zf; « is sampled for all arithmetic wires, where £ = [A/log p]
is the label length.
For each arithmetic wire, the key is an affine function AK : Z,» — Zf;,fl. The
output AK(z) consists of ¢-dimension label and a color number. That is, AK
can be represented by AK = (A € Zik,a € Zyx) such that

AK(z) = (Az + A,z +a) mod p.

« is called the mask number of this wire. Set a = 0 for every output wire.

As discussed in Sect. 3.2, it suffices to construct efficient garbling gadgets for
bit-decomposition and bit-composition over ring Z,x. The construction of the
two gadgets for Z,r generalizes the constructions for Zy in Sect. 3.3.

For each z € Z,x, let x; denote the i-th lowest digit of z, so that z = le’xl
Let x4 denote Za<i<bpi_“xi, so that the base-p digit representation of x.
is a substring of the base-p digit representation of z. Let z; ; denote the j-th
lowest bit of x;, so that z; =) 2z ;.

For each [ € Zy, let 3; denote the i-th lowest bit of 3, so that 8 =}, 2¢8;. Let
Ba:p denote Za<i<b 2i=23; so that the bit representation of 34 is a substring
of the bit representation of (.

BC. The bit-composition gadget is straight-forward. Given boolean input labels
Ki j(z; ;) for i € [k],j € [logp], the evaluator needs to compute the output label
AKY(z) = Az + B (recall that in the bit-composition gadget, the output key
can be any affine function). The garbling algorithm BC.Garb samples additive
sharing B; ; such that Zi,j B;; = B, then generates a table that allows the
evaluator to compute Ap'2/z; ; + B, ; from K; ;(x; ;). The most direct solution
is to let the table contain ciphertexts

Enc(Ki;(B), Ap'273 + B, ;) for all 8 € {0,1}.

The order of the two ciphertexts are permuted according to the mask bit in K; ;,
so that the evaluator can pick the right ciphertext according to the color bit.

The construction is formalized in Fig.2. The table consists of O(klogp)
ciphertexts, each ciphertext is kA-bit long, thus the table size is O(A\k? logp)
bit.

BD. The bit-decomposition gadget starts with the same observations as the one
in Sect. 3.3. Let L = AK(z) = Ax+ A mod p* denote the given arithmetic label.
Define

L) = Az + A® mod pFi.
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Garbling algorithm BC.Garb takes boolean keys K; ; for i € [k],j € [logp], and
an arithmetic key AK" = (A, B) as inputs. Let a; ; denote the mask bit of K; ;.

— Sample random B ; for i € [k], j € [log p], satisfying , ; B; ; mod pF =B.
— For each i € [k],j € [logp], for each 8 € {0,1}, compute

Cij e ; moa 2 < H(Ki;(B), (id,4,5)) ® (Ap'2’ 8 + Bi,; mod p")
— Output table Tab = (Ci,j,ﬂ)ie[k],je[logp],ﬁE{O,l}

Evaluation algorithm BC.Eval takes input labels (1; ;, Z;,;) for i € [k],j € [logp]
and a table Tab as inputs.

— For i € [k],j € [logp], compute Ly ; < H(L; ;, (id,4,7)) ® Ci j,z, ;-
— Output arithmetic label L = ", ; Li,; mod pr.

Simulation algorithm BC.Sim takes input labels (1; ;, Z;, ;) for i € [k],j € [logp]
and arithmetic label L as inputs.

— Sample random L; ; for i € [k],j € [logp], satisfying >, . L; ; mod p* =L.
— The active ciphertexts in the table Tab are set as

Cijzi; = H(iy, (id,4,5)) ® Li;

The rest are inactive ciphertexts, and are simulated by random strings.

Fig. 2. The Naive Bit-Composition Gadget

where A(® := A and A® are randomly sampled. Thus, L(®) = L. Note that,
L® mod p = Az + A mod p = Az; + A® mod p.

If the table contains ciphertext

Enc(Az; + A® mod p, (boolean labels of z;, Az; + A® — pA G+ mod pF—?))

the evaluator can, given L(¥), computes all the boolean labels of x; and the next
label LG+, This observation can be formalized as a secure bit-decomposition
gadget, who has poor efficiency. The table consists of pk ciphertexts, each cipher-
text is (Alogp + Ak)-bit long, the total length is no less than Apk?. Under con-
straint p* =~ 2°, the table size is minimized when p = O(1), which is asymptoti-
cally equivalent to the naive construction in Sect. 3.3.

The bottleneck is the encryption of Az; + A® —pA+D) mod p*~*. To opti-
mize the efficiency, we replace the long ciphertexts by shorter ciphertexts

Enc(Az; + A® mod p, boolean labels of ;)

that only encrypts the boolean labels. Since the evaluator can computes the
boolean labels of z;, it uses a mini bit-composition gadget (Fig.3) to compute
Az; + A — pAG+D) mod phi,
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The optimized construction is formalized in Fig.4. After optimization, the
table consists of O(kp) ciphertexts, each of which is O(Alogp) bit long, and k
mini-tables for the mini bit-composition, each of which is O(Aklogp) bit long.
The total table size is O(Mk(k + p) logp).

Garbling algorithm miniBCj.Garb takes boolean keys K; for j € [logp], and an
arithmetic key AK" = (A, B) as inputs. Let a; denote the mask bit of K.

— Sample random B; for j € [logp], satisfying Zj B, mod p* = B.
— For each j € [logp], for each 8 € {0,1}, compute

Cj.s+a, mod 2 < H(K;(8), (id, ) & (A27B + B, mod p*)
— Output table Tab = (Cj,ﬁ)je[logp],ﬂe{o,l}

Evaluation algorithm miniBCy.Eval takes input labels (1;,Z;) for j € [log p] and
a table Tab as inputs.

— For j € [logp], compute L; < H(l;, (id, j)) & Cjz;.
— Output arithmetic label L =}, L; mod ",

Simulation algorithm miniBCy.Sim takes input labels (1;,Z;) for j € [logp] and
arithmetic label L as inputs.

— Sample random L; for j € [logp], satisfying > L; mod p" =L.
— The active ciphertexts in the table Tab are set as

Cjz; = H(ly, (id, 5)) ® L,

The rest are simulated by random strings.

Fig. 3. The Mini Bit-Composition Gadget

Theorem 1. There are statistically secure bit-composition gadget (Fig.2) for
ring Z,. whose table size is O(Ak* log p) and bit-decomposition gadget (Fig. 4) for
ring Zyk, whose table size is O(Ak(k + p)logp). They yield a statistically secure
mized GC for Zy in the random oracle model, such that each addition gate costs
no communication, and each multiplication/bit-decomposition/bit-composition
gate costs O(Ak(k + p)logp) communication.

The bit-composition gadget (Fig. 2) and the mini bit-composition gadget (Fig. 3)
are special cases of the linear bit-composition gadget (Fig.5), whose correctness
and security will be analyzed in Sect. 4.1. The proof of the bit-decomposition
gadget is similar to that of Lemma 3 in Sect. 3.3.

Under the constraint that p* ~ 2°, the asymptotic cost per gate is minimized
when p ~ b/ log® b for any constant ¢ > 1. The minimal cost is O(\b?/logb).
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Garbling algorithm BD.Garb takes an arithmetic key AK = (A, ) and k- [log p]
boolean keys K; ; for ¢ € [p], 7 € [logp] as inputs.

— Let A = A, For each 1 < i < k, samples A (Zpkﬂ-)’\.
— Let a® = . Foreach 1 <i < k, samples a® « L~ -
— For each i € [k],j € [logp], for each B € [p], compute

Ci,ﬂ+a(i) mod p A H(AB + A(l) mod p, (Id,Z)) D (K%J(ﬁj) for ] € [logp])
— For each 0 < i < k — 1, define affine function DK®
DK™ (8) = (A8 + AW — pAl*Y, B4 ol — pa™V) mod p* 7,

compute table tb; <— miniBCi_;.Garb(K; ; for j € [logp], DK“)).
— Output table Tab consisting of (C; g)icik),gelp) and (thi)icip—1)

Evaluation algorithm BD.Eval takes input label (L, Z) and a table Tab as inputs.
— Let L =L, z¥ = 7.
— For:=0,1,2,... )k —1: ,
Compute (1; ; for j € [logp]) + HL® mod p, (id, 7)) ® Ci.2() mod p-
If i < k — 1, compute (D(i),d(i>) < miniBCy_;.Eval(l;,; for j € [logp], th;)
LY = (LY =D mod p* ) /p, 2V = (@Y —d¥ mod p* ) /p.
— Output boolean labels 1; ; for i € [p],j € [logp].

Simulation algorithm BD.Sim takes arithmetic label (L, Z) and boolean labels
1;,; for i € [p],j € [logp] as inputs.

— Let (L©,z2) = (L, z). _
— Sample random L) « (Zyr—i), A Zpi—i for each 1 <i < k.
— The active ciphertexts in the table Tab are set as

Ci.2 moa p = HILY mod p, (id, 1)) & (1 ; for j € [log p])

The rest are inactive ciphertexts, and are simulated by random strings.
— For each 0 <17 < k — 1, compute

(D“),d(i)) P (L(i) _ pL(H—l), 2 _ pj(i-*'l)) mod pk—i

and simulate tb; by tb; + miniBCs_;.Sim(l; ; for j € [logp], (D@, d™)).

Fig. 4. The Bit-Decomposition Gadget in Ring Z,x

Further Optimization. The bit-decomposition gadget in Fig.4 can be further
optimized. Currently, for each i € [k] the table contains ciphertexts

Ci Bt modp — H(AB+AD mod p, (id,4)) & (K, ;(8;) for j € [logp])
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for each j € [logp], 8 € [p]. Notice that, every potential boolean label, such as
K ;(0), is encrypted in O(p) ciphertexts. This is rather wasteful.
For better efficiency, C; 5. 4() mod p Only encrypts a key Ko g

Ci,ﬂ-&-a(i) mod p — H(Aﬁ + A(Z) mod D, (Ida Z)) S2) KO,ﬁ~
The key Ky g is sampled by the garbler, and can decrypt the ciphertext

EnC(KO,ﬂ’ (Ki,O(ﬂO)’ K1751:logp)))

which reveals the next boolean label and the next key Kig,,,,,- That is, the
garbler samples keys Kj 3, .., for every j € [logp], 3 € [p], and the table addi-
tionally includes ciphertexts

Enc(K 851000 (Kij (B5), Kjt1,6 41108 0))

for every j € [logp], 8 € [p]. The ciphertexts should be properly shuffled, and
some color bits/digits should be introduced to help the evaluation.

After optimization, the table consists of O(kp) ciphertexts, each of which is
O(A) bit long, and &k mini-tables for the mini bit-composition, each of which
is O(Aklogp) bit long. The total table size is O(Ak(klogp + p)). It produces a
statistically secure mixed GC in the random oracle model that has a marginal
efficiency improvement compared to Theorem 1. But we will not explicitly state
the further optimized gadget construction. The improvement is not significant
enough to change the results in Table 1.

4.1 Extension: Linear BC and General BD

Our mixed GC for Z,x (Theorem 1) allows conversion between an arithmetic
label and boolean labels of its base-p bit representation using bit-decomposition
and bit-composition gadgets.

The base-p bit representation is quite useful, for example, it allows compari-
son between arithmetic numbers. But in many cases, we may need or may want
to use the base-p’ bit representation for a different base p’. The most naive solu-
tion is to use an expensive boolean circuit for base conversion. In this section,
we presents an alternative solution.

BC. Let x be an arithmetic value. Given boolean labels of the base-p’ bit rep-
resentation of z, how to compute the Z,x-arithmetic label of 27 We ask a more
general question:

Given boolean labels of (2o, ..., zm—1), how to compute the Z-arithmetic
label of » . ¢;zm, where cq, ..., cm—1 are fixed constants?

Essentially, we are asking how to garble gate f : {0,1}"™ — Z,, which is defined
as f(20,...,2m—1) = »_; CiZm mod p*.

The construction is rather straightforward. Let Ky, ...,K,,_1 be the input
wire keys, let AK'(z) = Az + Bmodp* be the output wire key. Let
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The gadget is parameterized by coefficients co, ..., cm-1 € Zpk.

Garbling algorithm linBC.Garb takes boolean keys Ko, ..., Ky -1, and an arith-
metic key AK" = (A, B) as inputs. Let c; denote the mask bit of K.

— Sample random B; for i € [m], satisfying >, B; mod p* = B.
— For each i € [m], for each 8 € {0,1}, compute

Ci,pta; mod 2 = H(Ki(8), (id, 1)) ® (Aciff + B mod p")
— Output table Tab = (C; 8)icim],8e{0,1}-

Evaluation algorithm linBC.Eval takes input labels (1;,%;) for ¢ € [m] and a
table Tab as inputs.

— For i € [m], compute L; < H(l;, (id,)) ® C; 3,.
— Output arithmetic label L = >, L; mod p*.

Simulation algorithm linBC.Sim takes input labels (1;, Z;) for ¢ € [m] and arith-
metic label L as inputs.

— Sample random L; for ¢ € [m], satisfying >, L; mod p* =L.
— The active ciphertexts in the table Tab are set as

Ciz, = H(l,, (id,?)) ® L;

The rest are inactive ciphertexts, and are simulated by random strings.

Fig. 5. The Linear Bit-Composition Gadget over Ring Z«

By,...,B,,_1 be an additive sharing of B that are sampled by the garbler.
Given K;(2;), the evaluator can compute L; = Ac;z; + B; mod p* because the
table contains

Enc(KZ (ﬂ), ACZ/B + Bl)

for all ¢ € [m], 8 € {0,1}. The evaluator outputs

L:= ZLi mod p* = Z(Acizi + B;) mod p*
= Af(20,...,%m_1) + B mod p*.

This is formalized in Fig. 5.

Lemma 4. For any f(zo,...,2m—1) = Y_; Cizm mod p*, there is a secure gar-
bling gadget for general linear bit-composition function f (Fig.5), called linear
bit-composition gadget, in the random oracle model. The table size is O(Amk),
assume the output label dimension is A/ logp.

Proof. For any input zo, ..., 2zmnm_1, the evaluator computes L; « H(l;, (id, 7)) &
Ci,z;pa,, then L; = Ac; 5+ B; mod p*. The correctness of the output is guaran-
teed by (3).
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To prove security, is suffices to notice that Byg,...,B,,_1 is an additive
sharing implies L, ...,L,,—1 is an additive sharing. In other words, we know
Lo, ..., L;,_2 isi.i.d. uniform in the real world because they are one-time padded
by i.i.d. uniform By,...,B;,_2. And L,,_; is determined by Lg,...,L,,_2 and
L from L := ", L; mod p*. O

BD. Given the Z,k-arithmetic label of z, if we want to compute the boolean
labels of the base-p’ bit representation of x:

— First compute the boolean labels of the base-p bit representation of x, using
bit-decomposition gadget.

— Compute the Zp,k/—arithmetic label of x, using linear bit-composition gadget.

— Compute the boolean labels of the base-p’ bit representation of x, using bit-
decomposition gadget.

In particular, the cost of conversion from base-p bit representation to base-2
representation is O(A\b?) where 2° ~ p*. This is much cheaper than using the
boolean circuit for base conversion.

4.2 Extension: Emulating Computations for Zy

Our mixed GC for Z,r can emulate arithmetic mod-/N operations if pF > N?
and there is an efficient garbling gadget for the modulo gate mody : Z,x — Zys,
which is defined as mody(x) = 2 mod N. The emulation is rather straightfor-
ward:

— Every number in Zy is emulated by the same number in Z,x
— Every mod-N arithmetic operation (ADD or MULT) is emulated the by the
same operation over Z,, followed by mody.

Remark: The cost of emulating addition gates can be dramatically optimized.
Instead of appending mody after every addition gate, append mody only if
the accumulated magnitude is close to p¥/2 or when the fan-out includes a
multiplication gate.

Garbling the modulo gate mody is mostly equivalent to garbling the integer
division gate divy : Zyx — Z,., which is defined as divy(z) = |x/N|, since
mody () = x — N - divy ().

Unfortunately, the garbling gadget for divy is hard to construct.* We will
define a similar gate divy whose garbling gadget is efficient and also suffices
for emulating mod-N computations. The definition of divy (z) is inspired by a
well-known optimization that reduce division by constant to multiplication and
shifting.

ks

4 An efficient garbling gadget of divy can be constructed based on the garbling gadget
of divy.
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Lemma 5 (Generalization of [16]). For any positive integers N,p, ki, kg,m
satisfying pFTre < mN < phthe 4 pke,

L%J B L%J for all0 < z < ph.

Proof. pMtke < mN < phtke  pke implies, by multiplying

__x
pkl+kEN )

x< mx T T z+1
N — phitke <N+Npk' SN

O
Now we are ready to define the gate divyy : Lpprir — Lpeerr. Let kg =
[log,(N)] be the minimum integer satisfying p** > N. Let m = (pk;kﬁ, thus

phithe <mN < phtke £ N < phithe  pke. By Lemma 5,
x| | mx
%] = |

for any 0 < = < p*. Therefore we define divy : Zyzer1 — Zyorsr as

o ma mod p?F+1
divy(z) = {—karkE J

It satisfies divy(z) = |x#/N| for all 2 < pF. Since div}y is the composition of
multiplication in Zp2x+1 and digit shifting, it can be efficiently garbled by our
mixed GC for Z2x+1.

Define gate mody, : Zy2it1 — Zpze+r as mody(z) =  — N - divy(z). Then
mod}, can be efficiently garbled by our mixed GC for Z,z2.+1, and mody (z) =
x mod N for all z < p*.

Lemma 6. For any N < 2°, there is a statistically secure mized GC for
Zn in the random oracle model, such that each addition/multiplication/bit-
decomposition /bit-composition gate costs O(A\b?/logb) communication. The bit-
decomposition is over a prime base p = O(b/logb).

Proof. Mod-N computations can be emulated in a Z2x+1-mixed circuits. Comb-
ing with Theorem 1, the cost per gate is O(Ak(k+p) log p). The cost is minimized
by letting p = ©(b/ logb). O

Remarks. Although Lemma 6 does not claim free addition, we observe from its
construction that addition is free up to a certain extent.

In this mixed GC for Zy, the bit decomposition gate outputs base-p bit rep-
resentations. In case a (base-2) bit representation is needed, it can be computed
from the base-p bit representation by a cost of O(Ab?), using the trick stated in
Sect. 4.1.
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5 Mixed GC Based on Chinese Remainder Theorem

Chinese remainder theorem (CRT) is used in [12] to solve the following natural
task: Given b, find an efficient arithmetic GC over ring Zy for some N ~ 2°.

Since there is no more specific constraints on N, [12] sets N = pips...ps
being the product of the first s primes. Then s = ©(b/logb) and ps = O(b).
Consider an arithmetic circuit over Z,,, denoted by “C mod p;”, that is identical
to C' except the ring is replaced by Z,,. Then

C(z) mod p; = (C mod p;)(x mod p;).

Therefore, by CRT, the task of evaluating C(x) is reduced to evaluating mod-p;
arithmetic circuit (C' mod p;)(z mod p;) for all 1 <i < s. In [12], the reduction
is combined with mixed GC for every ring Z,,, resulting in an arithmetic GC
for Z where each multiplication gate costs about O(Ab?/logb) bits.

In this section, we will strengthen the result in two dimensions.

Based on Mod-p* Mizved GC. [12] sets N = pips...p, because their basic GC
only supports computation modulo a prime number. In Sect. 4, we have already
construct relatively efficient mixed GC for prime power rings. Therefore, we will
set

N=pi'ps...p =~ 2"

and reduce the problem of garbling mod-N computation to garbling mod—pfi
computations for each 1 < i < s.

Efficient BD. In the CRT framework, if the actual value of a Zy-wise is z, it
is not hard to get the boolean labels of the bit representation of x mod pf’ (via
Theorem 1), for each 1 < i < s. To compute the bit representation of z, the
naive idea is garble the CRT algorithm.

For more efficient bit-decomposition, we make the following observation.
There are constants c1,...,cs € Zy such that, for any x € Zy

T = Zcix(i) mod N,
i

where 2" := z mod pf’ denotes the mod—pfi component of x. (:v(l)7 . ,x(s))
is usually called the CRT representation of x. The fact that x is a linear
function (modulo N) on its CRT representation suggests a more efficient bit-
decomposition construction in the “CRT framework”.

Our new bit-decomposition construction is essentially a mixed circuit over
the ring Z2k+1, where p, k satisfy pF > N2 > Do c;z(). The input of the mixed
circuits consists of the bit representation of 2@ for all 1 < i < s. All the
input wires can be merged into ), c;x() through the generalized linear BC gate
(Fig.5). Then next step is mod}, whose output Y, ¢;#() mod N always equals
x. The last gate is the standard bit-decomposition of Crix(Zyx ), producing the
base-p bit representation of z.
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The linear BC costs Amk bits, where m = )" k;log p; = O(b). The modulo
gate mody and bit-decomposition gate cost O(Ab(k + p)). The overall cost is
O(Ab(k+p)), which can be minimized as O(Ab?/ log b) by setting p = ©(b/ logb).

If (base-2) bit representation of z is required, the overall cost of BD is O(\b?).

By combining the “CRT framework” with Theorem 1 and Lemma 6 respec-
tively, we have two more efficient mixed GC for Zy .

Theorem 2. For any b, there exist N > 2° and a statistically secure mized
GC for Zy in the random oracle model, such that each addition gate costs no
communication, and each multiplication gate costs O(Ab?) communication, and
each bit-decomposition/bit-composition gate costs O(Ab?/logb) communication.

Proof. Set N = pfiphz . pks ~ 20, The task of garbling mod-N mixed circuits
is reduced to garbling mod—pf" mixed circuits for all 1 < ¢ < s. Each mod—pfi
mixed circuit will be garbled the mixed GC in Theorem 1.

Thus each mod-N addition gate will cost nothing.

Each mod-N multiplication gate costs

Z O(Nki(k; + pi)log p;).

We want to minimize the cost, under the constraint that p1 p2 o.phe & 20,

For any i, if k; increases by 1, then log N will increase by log p;, the total
cost will increase by O(A(k; + p;)logp;). The “marginal cost increase per bit of
N by changing k;” is

Ocost(ky, ..., ks) [/ Olog N(ky,..., ks)

= O(A(k; + pi))-

To minimize the cost, this ratio should be roughly the same for all i.
Following this intuitive argument, we choose a constant ¢ and 1et pit+k;i=c
for all 4. The value of ¢ is determined by the constraint N = p1 p2 ..phe =20

b <log pr = Zki log p; = Z(C —p;)log p; ~ Z(C —p) =0(c?).

i<s i<s i<s p=2

Thus we set ¢ = O(Vb).
The cost per multiplication gate is

Z)\k (ki +pi) log p; = Z/\ c—p; Clogplrwz}\ c—p)e = O(AP) = O(A').

The total cost of having one BD gate in the mod—pfi part for all 1 <i < sis
also O(Ab*%). But these parallel BD gates only compute (the bit representation
of) the CRT representation. To compute the bit representation, an additional
cost of O(Ab?) (or O(Ab?/ log b), if the representation can use any base) is needed.
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For BC, say the boolean representation of the number has at most O(b) bits.
Applying linear BC (Fig.5) for all 1 <14 < s will cost O(}_, Abk;) bits.

D bk =MbY (c—pi) < Abes = O(Ab?/ logb)

O

Theorem 3. For any b, there exist N > 2° and a statistically secure mived
GC for Zy in the random oracle model, such that each addition/multiplication
gate costs O(Ablogb/loglogb) communication, each bit-decomposition costs
O(\b?/logb) communication, each bit-composition gate costs O(\b?/loglogb)
communication.

Proof. Set N = p]flpg2 ...pPs ~ 20 The task of garbling mod-N mixed circuits
is reduced to garbling mod—pfi mixed circuits for all 1 < ¢ < s. Each mod—pfi
mixed circuit will be garbled with the mixed GC in Lemma 6.

Each mod-N addition/multiplication gate costs

Z O(\d?/log d;), where 2% > pi.

We want to minimize the cost, under the constraint that p’fl p§2 .phs ~2b
We choose a constant d such that d = dy = dy = --- = dg, and let k; =
|d:/log p;]. So all primes are smaller than 2¢ and s = ©(2%/d). The value of d

is determined by the constraint N = p’flpg2 o.phe & 20,

. 1
b< longfl = Zki logp; < 52(1 = O(sd) = O(29).
i<s i<s i<s

Thus we set d =logb+ O(1). Then s = O(b/ logb).
The cost of each mod-N addition/multiplication gate is

2 2
2 0(ing) =) = igmas)

The cost of BD, by the same analysis as in the proof of Theorem 2, is O(\b?)
if the outcome is base-2 bit representation, O(Ab?/logb) if the representation
can use any base.

The cost of BC is trickier to trace. For each 4, the mod—pfi computations are
emulated, according to the construction of Lemma 6, by a mod-p* mixed circuit.
Such that & = O(d/logd) = O(logb/loglogb). For each i, using linear BC to
compute the arithmetic value costs Abk. The total cost is sAbk = A\b?/loglogb.
But linear BC computes a linear function modulo p¥, rather than the desired
modulus pff This issue is resolve by slightly enlarge p* to some poly(pf",b) =
b@(M) so that linear BC computes the linear function over Z. This modification
over enlarge k by a constant factor, thus will not asymptotically increase the
cost of any operations. O
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6 Mixed GC Based on DCR

In this section, we show how to improve the efficiency of our mixed GC con-
struction by relying on computational assumption. The new construction is most
similar to the naive mixed construction (Lemma 3 in Sect. 3.3) over ring Zss.

The construction is built upon the (public-key) encryption schemes described
in [17,18] based on the decisional composite residuosity (DCR) assumption [17,
19]. We consider two private-key variants described below. (We provide a brief
overview of the DCR assumption and more details of the private-key variants in
the full version.)

The first variant Paillier consists of four algorithms. (1) Paillier.Setup(1*, 1¢)
samples public parameters pp, which defines a key space Z, a ciphertext space
Zyjcs1, and a message space Zpc. (2) Paillier.Gen(pp) outputs a secret key
sk € [[M/4]]. (3) Paillier.Enc(sk,m) outputs a ciphertext ¢ € Z;,c.. (4)
Paillier.Dec(sk, ¢) recovers the message m € Zy;c.

The second variant DamJur is similar to the first, except in two aspects. First,
the key space is Zj}, instead of Z. Second, the setup algorithm DamJur.Setup
outputs a trapdoor tp in addition to the public parameters pp. The trapdoor
is only used by a special inversion algorithm DamJur.Inv(tp, ¢), which takes any
ciphertext ¢ € Z3,.., and outputs a unique secret key sk = g € Z};, and a
message m € Zysc such that DamJur.Dec(sk = g, ¢) = m.

Both constructions have some kind of homomorphism. For any message
mq, mo and keys sky, ska, g1, gs.

Paillier.Enc(sky, m; ) - Paillier.Enc(ska, ms) mod M¢+?
= Paillier.Enc(sk; + sky over Z, m; + my mod M¢)

DamJur.Enc(g1, m1) - DamJur.Enc(gz, m2) mod MSH1
= DamJur.Enc(g; - g2 mod M, my + my mod MC)

6.1 Bit-Composition Based on Paillier Encryption

As observed in Sect. 4.1, the more general bit-composition function
(2o, .- Tm—1) — >, ¢;x; mod 2° is not harder to garble. Thus we will directly
construct this more general bit-composition.

Let Ko, . .., Km_1 be the boolean keys. Let AK" = (A e Zgb, Bc Zgb) be the
arithmetic key. In the analysis of the complexity, we will assume m = O(b) and
¢ =0(\). For any xq, ..., Tm-1 € {0,1}, given Ko(z0), ..., Kin—1(Zm—1) and the
table, the evaluator of the bit-composition gadget should output the arithmetic
label L = AK"(z) = 2A + B mod 2" where x = >, ciw; mod 2V,

The construction is based on the following intuition (informally): Allow the
evaluator to decrypts « + r and (x + T)SkA + sk?. Let the table contain

ct? = Enc(sk?, A), ct? = Enc(—rsk?, —rA + B)
using some homomorphic encryption. Then the evaluator can compute

(cth)2+7ct? = Enc((z + r)skA +skP.zA + B)
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The gadget is parameterized by coefficients co, ..., cm-1 € Zgb.

Garbling algorithm BC.Garb takes boolean keys Ko,...,K,,—1, and an arith-
metic key AK" = (A, B) as inputs. Let c; denote the mask bit of K.

— (global step) Generate M, (,g,p'q" using vPai.Setup, while setting ¢ such
that M¢ > 2¢(2¥FA+D Add (M, ¢, g) to the beginning of the garbled circuit.
— Sample keys sk®,ski, ... sk | < [p'q/]. Let sk := 3. sk5.
Sample masks 7o,...,Tm—1 [2’\], R « [2}’+2’\]Z. Let 7 = Y, ciry. Com-
pute

ct® = vPai.Enc(sk?, A), ct? = vPai.Enc(sk?, (2°"™ —rA) + B+ 2°R).
— For each i € [m], for each 8 € {0, 1}, compute

Cipta; mod 2 — H(Ki(B), (id,1)) ® (i + 74, ci(zi + 7:)sk™ + sk” mod p'q’)
— Output table Tab = ((Ci,5)ic[m],pef0,1}, ct™, ct?).

Evaluation algorithm BC.Eval takes input labels (1;, ;) for ¢ € [m] and a table
Tab as inputs.

— For i € [m], compute (&;,sk;) < H(l;, (id, 7)) ® C; 5.
— Compute sk = >, sk, & = >, cidi.
— Output label L = L mod 2°, where L = vPai.Dec(sk, (ct*)®ct?).

Simulation algorithm BC.Sim takes input labels (1;,Z;) for ¢ € [m] and arith-
metic label L as inputs.

(global step) Sample (M, ¢, g) using the vPai.Setup.

Sample random o, . .., Zp-1 < [2*]. Let & = Y, ¢;d;.

Sample random sko, . .., sky—1 < [M/4]. Let sk = >, sk;.

— Sample masks R « [2°7*], let L = L + 2°R..

Simulate ct? by randomly sample ct® + QR,,c+1. Simulate ct? as

ct? = vPai.Enc(sk, L) /(ct®)*  (over Z},cs1).

The active ciphertexts in the table Tab are set as
Ci,a’ci = H(li, (id,i)) (&) (i, Ski)

The rest are inactive ciphertexts, and are simulated by random strings.

The modifications with respect to Fig. 5 are highlighted.

Fig. 6. The Bit-Composition Gadget based on Paillier

which can be decrypted into xA + B.

To formalize the intuition: i) We will add large random noise R, and let the
evaluator get zA + B + 2°R instead. ii) We need to construct an encryption
scheme that has the required homomorphism.
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As the section name suggested, the encryption scheme is (almost) Paillier.
Except that we want the scheme to encrypt a vector rather than a number. We
consider the following natural encoding encode : Z! — Z, parameterized by ¢
and B,

encode(vg, ..., vp—1) = Z B,
i€[{]

together with an efficient decoder decode : [BY] — [B]’, satisfying

— For any A, B € Z*, encode(A + B) = encode(A) + encode(B).
— For any A € [B]%, encode(A) € [Bf] and decode(encode(A)) = A.

Set the parameter of the encoder by B = 222 +1 Define the following
encryption scheme vPai,

— vPai.Setup(1?*) is Paillier.Setup(1*, 1¢), by choosing smallest ¢ s.t. M¢ > B
— vPai.Gen is Paillier.Gen.

— vPai.Enc(sk, V) = Paillier.Enc(sk, encode(V)).

— vPai.Dec(sk, ¢) = decode(Paillier.Dec(sk, c)).

Using vPai, our intuition can be formalized as a bit-composition gadget.

Lemma 7. For any linear bit-composition function f(zo,...,2m-1) =
> cizm mod 20 satisfying >, c; < 2° (otherwise the construction should be
slightly modified), there is a secure garbling gadget for f (Fig.6), under DCR
assumption in the random oracle model. The table size is O(mApcr +£(b+ N)),
which is O(Apcrb + A?) when £ = O(X\) and m = O(b).

The proof of Lemma 7 is deferred to the full version.

6.2 Bit-Decomposition Based on Damgard-Jurik Encryption

In the bit-decomposition gadget, the evaluator is given an arithmetic label L =
AK(z) = A + A mod 2°, and its color number Z = x + a mod 2 together
with a table generated by the garbler from AK, Ky, ..., Ky_1, and should output
Ko(ajo), ey Kb_l(xb).

Recall our intuition behind the naive BD (Fig.1): In each inductive step, the
evaluator gets LO =2,,A + A® and computes

L® mod 2 = T, A+ A mod 2.
Using L mod 2 as the key, the evaluator decrypts a ciphertext
H(z;A + AW mod 2) & (K(z;), 2:A + S)

in the table, gets K(z;) and ;A 4+ S. The latter allows the evaluator to compute
L+ and proceed to the next step.
The bottleneck is the ciphertext size. Let us replace the ciphertext by

H(z; A + AD mod 2) & (K(z;), @ + 7, (z; + r)sk + sk”).
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And let the table additionally contains two ciphertexts

ct? = Enc(sk?, A), ct® = Enc(sk®, —rA + S + 2°R),

3

using a homomorphic encryption scheme. Then the evaluator can instead com-
pute ;A + S + 2'R from

Dec((x; + r)sk? + sk, (ct?)®i*" /ct¥).

Such modification does not improves the complexity yet, because ct, ct® become
the new dominating part. Notice that, all tables may share a global ct? as it
only depends on the global key.

For the last bottleneck ct®, we require its distribution to be “dense”, in the
sense that, the distribution of ct” is statistically close to the uniform distribution
over a samplable domain. This requires i) a “dense” encryption scheme, and ii)
the distribution of the message —rA + S + 2°R is statistically close to uniform
over the message space.

If our requirement is satisfied, the garbler can instead sample a random seed,
and let ct® = H(seed). The ciphertext ct® in the table can be replaced by seed.
For correctness, the garbler need to reversely compute the key and message
behind the ciphertext ct®.

As discussed in [18], all of our requirements are satisfied by Damgard-Jurik
encryption [17].

— Density: For random g « Z%, and random m « [M°¢], the distribution of
ciphertext DamJur.Enc(g, m) is uniform in Z3 ..
— Invertibility: There is an efficient algorithm Inv, which takes a ciphertext ct €

73 jc+1 and the trapdoor tp, computes g, m such that DamJur.Enc(g, m) = ct.

Damgard-Jurik encrypts a number rather a vector. Similar to Sect. 6.1, we
need a encoder-decoder pair between vectors and numbers. The encoder has to

be dense in the sense that almost all encodings in the codomain are valid. Again,
consider the natural encoding encode : Z*! — 7Z, parameterized by B,

encode(vy, . ..,vy) = Z By,
P€[AF1]

together with an efficient decoder decode : [B*] — [B]*.

— For security, set B > 2012,
— For density, ensure M¢ > B M1 > MS(1 —277).

Define the following encryption scheme vDJ,

— vDJ.Setup(1*) is DamJur.Setup(1*,1¢), by choosing smallest ¢ s.t. MS >
(226+A+1)A 1 Also let B be the largest multiple of 2° satisfying M¢ > B 1.
Then all the three requirements on B can be satisfied.

— vDJ.Gen is DamJur.Gen.

— vDJ.Enc(sk, V) = DamJur.Enc(sk, encode(V)).
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Garbling algorithm BD.Garb takes an arithmetic key AK = (A, «) and b boolean
keys Ko, ..., Kp—1 as inputs.

— (global step) Generate M, ¢, p'q" using vDJ.Setup, while setting ¢, B prop-
erly. Sample key g < Z}; and compute ct® = vDJ.Enc(g2, (A, 1)).
Add M, ¢, ct? to the beginning of the garbled circuit.

— Let A® = A, o =q.

— For each 0 < i < b, sample 7; + [2], seed® « {0,1}*.
Compute ct'? = H(seed®, (id, %)) € Z,,c41. Find ¢, 8@, s satisfying

(g, (2" — (A1) + (8, s) = vDJInv(tp, ctV) .

Resample seed if (S s ¢ [B — 2°F2**1 to prevent overflow. Set

o _

@ _ g ) _
e — | mod 27"

AGHD
s 2

| mod 2°7"* ot = |
— For each 0 <4 < b, for each 3 € {0,1}, compute
Cipta® moa 2 ¢ H(AB+ A mod 2, (id,1)) & (Ki(8), 5 +ri, (97)"g")
— Output table Tab = ((Ci,g)icp), 80,1} (seed(i))ie[b,l])
Evaluation algorithm BD.Eval takes input label (L, Z) and a table Tab as inputs.

— Let L =L, 29 = z.

— Fori=0,1,2,...,b—1: _
Compute (1,2, h") + HL® mod 2, (id, 1)) ® C; ;) mea 2- i < b— 1,
compute ct'? = H(seed?,id, i), (D™, d®) « vDJ.Dec(h?, (ct?)%ict()

LO 20y = (LD, 29) — (DD, d) mod 2°77) /2],
— Output boolean labels g, 11, ..., 1p—1.

Simulation algorithm BD.Sim takes arithmetic label (L, Z) and boolean labels
lo,1i,...,1,—1 as inputs.

— (global step) Generate M, (,p’q" using vDJ.Setup, while setting ¢, B prop-
erly. Simulate ct? as a random ciphertext.

— Let (L@, z29) = (L, 2).

— Sample random &; + [2%], seed” «— {0,1}*, D® « [B]*, d¥ « [B] for
each i € [b — 1]. Program H so that

vDJ.Enc(h™, (D, d)) = (ct®)* H(seed” ,id, i) (in Zyc1)

The active ciphertexts in the table Tab are set as
Cis) moa s = HILY mod 2, (id, 1)) @ (L, &, h")

The rest are inactive ciphertexts, and are simulated by random strings.

The modifications with respect to Fig. 1 are highlighted.

Fig. 7. The Bit-Decomposition Gadget based on Damgard-Jurik
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— vDJ.Dec(sk, ¢) = decode(vDJ.Dec(sk, c)).
— vDJ.Inv(tp, ¢) = (g, decode(v)) for (g,v) = DamJur.Inv(tp, c).

Now we are ready to present the bit-decomposition gadget in Fig. 7.

Lemma 8. There is a secure bit-decomposition gadget (Fig.7) over ring Zqs,
under DCR assumption in the programmable random oracle model. The table
size is O(bApcr)-

The proof of Lemma 8 is deferred to the full version.

Combining the bit-composition gadget in Lemma 7 and the bit-
decomposition gadget in Lemma 8 produces a mix GC scheme, as stated by
the following theorem.

Theorem 4. There is a secure mized GC for Zqv under DCR assumption in
the programmable random oracle model, such that each addition gate costs no
communication, each multiplication/bit-decomposition gate costs O(Apcrb) com-
munication, and each bit-composition gate costs O(Apcrb + A\2) communication.

Our mixed GC for Zy, implies a mixed GC for any Zy for any N = 2°, using
the emulation technique discussed in Sect. 4.2.

Corollary 1. For any N < 2°, there is a secure mized GC for Zy under
DCR assumption in the programmable random oracle model, such that each
addition/multiplication/bit-decomposition gate costs O(Apcrb) communication,
and each bit-composition gate costs O(Apcrb + /\2) communication.
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