
How to Garble Mixed Circuits
that Combine Boolean and Arithmetic

Computations

Hanjun Li1(B) and Tianren Liu2

1 University of Washington, Seattle, USA
hanjul@cs.washington.edu

2 Peking University, Beijing, China

trl@pku.edu.cn

Abstract. The study of garbling arithmetic circuits is initiated by
Applebaum, Ishai, and Kushilevitz [FOCS’11], which can be naturally
extended to mixed circuits. The basis of mixed circuits includes Boolean
operations, arithmetic operations over a large ring and bit-decomposition
that converts an arithmetic value to its bit representation. We construct
efficient garbling schemes for mixed circuits.

In the random oracle model, we construct two garbling schemes:
– The first scheme targets mixed circuits modulo some N ≈ 2b. Addi-

tion gates are free. Each multiplication gate costs O(λ · b1.5) com-
munication. Each bit-decomposition costs O(λ · b2/ log b).

– The second scheme targets mixed circuit modulo some N ≈ 2b. Each
addition gate and multiplication gate costs O(λ · b · log b/ log log b).
Every bit-decomposition costs O(λ · b2/ log b).

Our schemes improve on the work of Ball, Malkin, and Rosulek [CCS’16]
in the same model.

Additionally relying on the DCR assumption, we construct in the pro-
grammable random oracle model a more efficient garbling scheme target-
ing mixed circuits over Z2b , where addition gates are free, and each mul-
tiplication or bit-decomposition gate costs O(λDCR · b) communication.
We improve on the recent work of Ball, Li, Lin, and Liu [Eurocrypt’23]
which also relies on the DCR assumption.

1 Introduction

Garbled circuit (GC) is introduced in the seminal work of Yao [1], allowing a
garbler to efficiently transform any boolean circuit C : {0, 1}nin → {0, 1}nout

into a garbled circuit C̃, along with nin keys K1, . . . ,Knin . Each key is a function
Ki : {0, 1} → {0, 1}λ, mapping the i-th input bit to a short string. The output
of Ki is referred to as the label of the i-th input wire. For any (unknown) input
x, the garbled circuit C̃ together with input labels K1(x1), . . . ,Knin(xnin) reveal
C(x) but nothing else about x.

GC was originally motivated by the 2-party secure computation problem.
Since then, GC has found applications to a large variety of problems, and is
recognized as one of the most successful and fundamental tools in cryptography.

Hanjun Li was supported by a NSF grant CNS-2026774 and a Cisco Research Award.

c© International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14656, pp. 331–360, 2024.
https://doi.org/10.1007/978-3-031-58751-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58751-1_12&domain=pdf
http://orcid.org/0009-0007-8697-2327
https://doi.org/10.1007/978-3-031-58751-1_12

332 H. Li and T. Liu

For practical applications, people care about the efficiency of GC, especially
the communication complexity (i.e., bit length of C̃). A considerable amount
of works [2–9] have been dedicated to optimize the concrete efficiency of Yao’s
GC construction. In the most recent construction of Rosulek and Roy [9], XOR
and NOT gates involves no communication, every fan-in-2 AND gate requires
1.5λ+5 bits of communication. Despite making concrete analytic improvement,
they still largely follow Yao’s construction, binding tightly with boolean circuits.
The class of arithmetic operations is a featuring example of computations that
are expensive to express as boolean circuits.

The Arithmetic Setting. The beautiful work of Applebaum, Ishai, and Kushile-
vitz [10] initiated the study of garbling arithmetic circuits.

Arithmetic GC over a ring R is an efficient algorithm that transforms an
arithmetic circuit C : Rnin → Rnout into a garbled circuit C̃, along with
nin keys AK1, . . . ,AKnin . Each key is an affine function AKi : R → R�. For
any (unknown) input x, the garbled circuit C̃ together with input labels
AK1(x1), . . . ,AKnin(xnin) reveal C(x) but nothing else about x.

The construction of AIK is a natural generalization of Yao’s boolean GC.
For each wire, a key AK : R → R� is sampled. The output of AK is called
the label of that wire, whose length is roughly the security parameter. For any
arithmetic gate g, say AK1,AK2 are the keys of the two input wires and AK is
the key of the output wire, the garbler generates a table Tab of this gate, such
that for any (unknown) x, y ∈ R, the evaluator can compute AK(g(x, y)) from
AK1(x),AK2(y),Tab, while learning no other information.

As observed by [10], to keep the table size for each gate constant, it suffices
to construct the so-called key-extension1 gadget. Such a gadget consists of a
garbling algorithm and an evaluation algorithm. The garbling algorithm KE.Garb
takes a key AK and a long key AKL as input, samples a key-extension table Tab
such that, AK(x),Tab reveal AKL(x) but nothing else about x,AKL.

[10] presents two constructions of key-extension gadgets. One relies on Chi-
nese remainder theorem, enables garbling of mod-p1p2 . . . pk (the product of dis-
tinct small primes) computation. The other is based on LWE, supports bounded
integer computation (computation over the integer ring Z when all intermediate
values are guaranteed to be bounded).

Follow-up research has made improvements within this framework. Similar to
FreeXOR, [12] allows free garbling of addition gates. In a different frontier, [11]
presents a highly efficient arithmetic GC for bounded integer computation based
on Paillier encryption. [11] also presents arithmetic GC for Zp based on LWE
or Paillier. However, free addition is not supported in [11]. The communication
complexity of existing arithmetic GC constructions will be discussed in more
detail in Sect. 1.1.

1 This module is called “key shrinking” in [10]. The name “key extension” comes from
[11].

How to Garble Mixed Circuits that Combine 333

Our research proceeds with this line of study within AIK’s framework of
arithmetic GC. Our starting point is to understand how to garble mod-2b arith-
metic circuits, which is not efficiently supported by previous works. In the search
for mod-2b GC, we realize that it is has a few advantage over GC for mod-p or
bounded integer computation.

Match Popular Architectures. In most modern architectures, the only natively
supported arithmetic operation is over Z2b . Most existing tools (programing
languages, compilers, processors, etc.) are optimized using/targeting the mod-2b

arithmetic operations. This is our initial motivation to construct the mod-2b GC.

Mixing Boolean and Arithmetic Computation. Mixed circuits combine boolean
and arithmetic computations. The basis include boolean gates, arithmetic oper-
ations, together with special gates to convert between boolean and arithmetic
values: arithmetic-to-boolean conversion (bit-decomposition) and boolean-to-
arithmetic conversion (bit-composition). Previous work [11,12] has considered
the garbling of mixed circuits. But in their constructions, the cost of garbling
bit-decomposition is expensive.

It turns out that our mod-2b GC naturally supports efficient garbling of
bit-decomposition and bit-composition. In fact, in our construction, the key-
extension gadget is the combination of bit-decomposition and bit-composition.
For example, to double the arithmetic key/label length, first bit-decompose it
into boolean labels, then use bit-composition twice to obtain a longer label.

Emulate Arithmetic Computation Modulo Any Modulus N. For any constant N ,
mod-N computations can be efficiently emulated by mod-24b mixed circuits if
b = �log N�. To prove such a statement, it suffices to show, given 0 ≤ x < N2,
how to compute x mod N using a mod-24b mixed circuit. One step further, it is
also sufficient to compute integer division �x/N� using a mod-24b mixed circuit.
By the rather standard multiply-and-shift trick

�x · �23b/N�/23b� = �x/N�,
the quotient can be computed by first multiplying by constant �23b/N� then
integer division by 23b. Both operations are efficient in a mod-24b mixed circuit.

1.1 Our Results

Mixed GC in the Random Oracle Model. Using only random oracle, the state-
of-the-art garbling scheme for arithmetic circuit is that of [12]. They rely on
Chinese remainder theorem (CRT) to garble an arithmetic circuit modulo N =
p1, . . . ps ≈ 2b, by equivalently garbling s copies of the circuit, each modulo
a small prime pi. They allow free addition and each multiplication gate costs
O(λb2/ log b) bits of communication. However, bit-decomposition operation of
this scheme is expensive and not explicitly considered in [12].

Our work improves the state-of-the-art in several directions.

334 H. Li and T. Liu

Table 1. Comparison between our GC and previous works

ADD gate
table size

MULT gate
table size

bit decom-
position

ring
modulus

assumption
besides RO

b
o
o
le

a
n naive λb λb2 free 2b

Karatsuba λb λb1.58 * free 2b

FFT-based λb λb log b * free 2b

[12] free λb2/ log b expensive † N = p1p2 . . . ps ≈ 2b

Ours (Thm. 1) free λb2/ log b λb2/ log b ‡ N = pk ≈ 2b

Ours (Lem. 6) λb2/ log b λb2/ log b λb2/ log b ‡ any N ≈ 2b

Ours (Thm. 2) free λb1.5 λb2/ log b ‡ N = pk1
1 pk2

2 . . . pks
s ≈ 2b

Ours (Thm. 3) λb log b
log log b

λb log b
log log b

λb2/ log b ‡ N = pk1
1 pk2

2 . . . pks
s ≈ 2b

[11] λLWEb λLWEb unknown any N ≈ 2b LWE

[11] λ(λDCR + b) λ(λDCR + b) unknown any N ≈ 2b strong DCR §
[11] λLWEb λLWEb λLWEb

2 bounded integer LWE

[11] λDCR + b λDCR + b λ(λDCR + b)2 bounded integer strong DCR §
Ours (Thm. 4) free λDCRb λDCRb 2b DCR

Ours (Cor. 1) λDCRb λDCRb λDCRb any N ≈ 2b DCR

Constant and log(λ) multiplicative factors are ignored. λLWE and λDCR denote the LWE
dimension and DCR key length respectively. *Due to large hidden constants, the Karat-
suba’s method outperforms the naive method only when b is at least a few hundreds,
the FFT-base method outperforms Karatsuba’s only when b is at least tens of thou-
sands. †The cost is not explicitly stated in [12], but is no less the cost of comparison
gate, which is stated to be O(λb3/ log b). ‡The cost is measured when decomposing to
base-p bit representation for some prime p (See Eq. 1). The cost increases to O(λb2)
when decomposing to base-2 bit representation. §Under the standard DCR assumption,
“λ” should be replaced by “λDCR” in its cost expression.

– Our first scheme (Theorem 1) garbles arithmetic gates modulo N = pk ≈ 2b,
for some prime p, with the same asymptotic efficiency as [12]: addition is
free, each multiplication costs O(λb2/ log b) bits of communication. Addi-
tionally, our scheme supports efficient bit-decomposition gates at a cost of
O(λb2/ log b) communication, enabling the garbling of mixed circuits.

– Our second scheme (Theorem 2) applies CRT in a similar way to [12]. When
garbling computations modulo N = pk1

1 pk2
2 . . . pks

s ≈ 2b, our mixed GC sup-
ports free addition and relatively efficient bit-decomposition, and garbles
every multiplication gate using O(λb1.5) communication.

– Our third scheme (Theorem 3) further improves the multiplication gate cost
to O(λb log b/ log log b). However, as a trade-off, addition gates are no longer
free and have the same cost as multiplication gates.

Mixed GC Based on Computational Assumptions. If allowed to use public key
assumptions, the state-of-the-art garbling schemes for arithmetic circuits and
mixed circuits are those of [11]. Under the decisional composite residuosity
(DCR) assumption, they construct a garbling scheme for bounded integers where

How to Garble Mixed Circuits that Combine 335

each multiplication gate only costs O(λDCR + b). In their scheme, the addition
gates cost the same as multiplication, the bit-decomposition gates have a more
expensive cost of O(λ2

DCR · b).
Our work improves the state-of-the-art by supporting free addition gates and

more efficient bit-decomposition gates. However, as a trade-off, multiplication
gates are more expensive, of size O(λDCR · b).

– Our fourth scheme (Theorem 4) garbles mixed circuits modulo 2b and allows
free addition. Each multiplication gate and bit-decomposition gate costs
O(λDCR · b) communication.

2 Preliminaries

For any positive integer N , let [N] := {0, 1, . . . , N − 1}, let ZN denote the
ring of integer modulo N . We assume modulo operation has lower priority than
addition. That is, a + b mod p should be interpreted as (a + b) mod p.

Base-p Digit Representation and Bit Representation. For any x ∈ [2b], the bit
representation of x is the unique boolean vector (x0, . . . , xb−1) ∈ {0, 1}n such
that x =

∑
i 2ixi. For any x ∈ [pk], the base-p digit representation of x, is the

unique vector (x0, . . . , xk−1) ∈ [p]k such that x =
∑

i pixi.
For any x ∈ [pk], let (x0, . . . , xk−1) be its base-p digit decomposition, the base-

p bit representation of x is the unique vector (xi,j)i∈[k],j∈[log p] ∈ {0, 1}k·�log p�

such that xi =
∑

j pi2jxi,j for all i ∈ [k]. As a consequence, x =
∑

i,j pi2jxi,j .
That is, base-p bit representation is the bit representation of the base-p digit
decomposition.

2.1 Computation Models

We consider arithmetic circuits and its generalization mixed circuits, where the
computation can switch between arithmetic and boolean. Each wire carries a
value x in either the boolean field F2 = {0, 1} or an arithmetic ring R. We
mainly consider R = Zpk the ring of integer modulo a prime power, and the
special case R = Z2b . More specifically, we mostly focus on the following class
of circuits.

Mixed Circuit. Let Cmix(R) denote the class of circuits that mixes boolean gates
and arithmetic operations over R. A circuit in this class computes a function
f : {0, 1}nin,bool × Rnin,arith → {0, 1}nout,bool × Rnout,arith using the gates as basis:

– Add,Mult : R × R → R compute addition and multiplication over R.
– Bit-decomposition BD : R → {0, 1}b computes the bit representation of an

arithmetic value.
When R = Z2b , we consider the most natural bit decomposition. That is,
BD(x) = (x0, x1, . . . , xb−1) such that x =

∑
i 2ixi.

336 H. Li and T. Liu

When R = Zpk , the gate first decomposes the number into digits in base p,
then decomposes each digit into bits. That is, b = k · �log p�, and

BD(x) = (xi,j)i∈[k],j∈�log p� s.t. x =
∑

i

pi
∑

j

2jxi,j . (1)

– Bit-composition BC : {0, 1}b → R computes the arithmetic value from its bit
representation.

– g : {0, 1} × {0, 1} → {0, 1} computes the boolean function g.

Arithmetic Circuit. Let Carith(R) denote the class of arithmetic circuits over R.
A circuit in this class computes a function f : Rnin → Rnout using the following
the gates as basis:

– Add,Mult : R × R → R compute addition and multiplication over R.

2.2 Garbled Circuits (GC)

The following definition of garbling mixed circuits has been implicitly considered
in the previous works. We will not separately define arithmetic GC since it can
be viewed as the special case of mixed GC.

Definition 1 (Garbling of Mixed Circuits). A garbling scheme for Cmix(R)
consists of three efficient algorithms.

– KeyGen(1λ, 1nin,bool , 1nin,arith) samples nin,bool boolean wire keys K1, . . . ,Knin,bool
,

nin,arith arithmetic wire keys AK1, . . . ,AKnin,arith
and status st. Each boolean

key Ki is a function from a bit to a bit string. Each arithmetic key AKi is an
affine function from a ring element to a vector.

– Garb(C, st) takes a mixed circuit C ∈ Cmix(R), outputs a garbled circuit C̃.
– Eval(C̃, {li}i∈[nin,bool], {Li}i∈[nin,arith]) takes a garbled circuit C̃, boolean labels li,

and arithmetic labels Li. It outputs the evaluation results {ybool,i}, {yarith,i}.

Correctness. The garbling scheme is correct, if for any circuit C ∈ Cmix(R)
and any input x, as long as C̃ and keys K1, . . . ,Knin,bool ,AK1, . . . ,AKnin,arith are
properly generated,

Eval(C̃, l1, . . . , lnin,bool ,L1, . . . ,Lnin,arith)

always outputs C(x), where li := Ki(xbool,i), Li := AKi(xarith,i) are input labels.

Security. The garbling scheme is secure if there exists an efficient simulator Sim
such that for any circuit C ∈ Cmix(R) and input x, the output of Sim(C,C(x))
is indistinguishable from

(C̃, l1, . . . , lnin,bool ,L1, . . . ,Lnin,arith)

when C̃,K1, . . . ,Knin,bool ,AK1, . . . ,AKnin,arith are properly generated from C, and
li := Ki(xbool,i), Li := AKi(xarith,i).

How to Garble Mixed Circuits that Combine 337

Gate Gadgets. The construction is mostly modular. For each gate in the basis,
there is a garbling gadget for all the tasks related to this gate. Consider a general
gate g : Rn

1 → Rm
2 where R1,R2 ∈ {Z2,R}. The garbling gadget for g consists

of three efficient algorithms g.Garb, g.Eval, g.Sim. The garbling algorithm g.Garb
takes input wire keys K1, . . . ,Kn (which are boolean keys if R1 = F2, arithmetic
keys if R1 = R) and output wire keys K′

1, . . . ,K
′
m, generates a table Tab, such

that:

– Correctness. For any x1, . . . , xn ∈ R1 and (y1, . . . , ym) = g(x1, . . . , xn),
the evaluation algorithm g.Eval(K1(x1), . . . ,Kn(xn),Tab) will always output
(K′

1(y1), . . . ,K
′
m(ym)).

– Handwavy Security. For any x1, . . . , xn ∈ R1, the distribution of Tab is
indistinguishable from g.Sim(K1(x1), . . . ,Kn(xn),K′

1(y1), . . . ,K
′
m(ym)) when

K1(x1), . . . ,Kn(xn) are also given to the distinguisher.

As the name suggested, this security definition is imprecise. The issue is
mainly caused by the global key. It can be formalized by a global simulator. The
global simulator first samples a label for each wire, then samples the garbling
table of each gate using the simulation algorithm of the corresponding gadget.
In short, the simulation is modular, but the actual security definition is global.
For simplicity, we will work in the random oracle model.2

There is also a modular approach [10,11] that allows the precise security
definition of each gate garbling gadget, but it is incompatible with the existence
of the global key. The modular approach requires the simulation algorithm of
the gate gadget to sample labels on the input wires. This causes another issue
that a label can not be reused by multiple gates. Thus extra work is required
when a gate has fan-out greater than 1.

3 Technical Overview

This section briefly discusses AIK’s framework of arithmetic GC (Sect. 3.1) and
a technically less interesting extension (Sect. 3.2) discussing the sufficiency of
bit-decomposition and bit-composition. The takeaway is: Mixed circuits can
be efficiently garbled, as long as there are efficient garbling gadgets for bit-
decomposition and bit-composition.

In Sect. 3.3, we presents a naive construction of the two garbling gadgets.
The resulting GC does not have superior efficiency, but it is simple enough and
will be optimized in later sections.

3.1 Background: Key-Extension Implies Arithmetic GC

We recap the framework of AIK [10] for arithmetic GC over some ring R, with
the modification that there is a global key Δ for all arithmetic wires. As observed
2 In the boolean GC setting, [13] shows how random oracle can be replaced with

symmetric encryption resisting a combined related-key and key-dependent message
attack. Their technique are likely to work in the arithmetic GC setting as well.

338 H. Li and T. Liu

by FreeXOR [4] and “FreeADD” [12], the garbling of addition gates will cost no
communication if a global key is sampled.

In more detail, an arithmetic key is sampled for each wire as follows (where
λ denotes the security parameter):

– A global key Δ ∈ R� is sampled for all arithmetic wires, where � is the label
length. If R = Z2b , we will set � = λ. If R = Zpk , we will set � = �λ/ log p�.
For each arithmetic wire, the key is an affine function AK : R → R�+1. The
output AK(x) consists of �-dimension label and a color number. That is, AK
can be represented by AK = (A ∈ R�, α ∈ R) such that

AK(x) = (Δx + A, x + α) (in R).

α is called the mask number of this wire. Set α = 0 for every output wire.

The circuit is garbled gate-by-gate. The garbling gadget for arithmetic gate
g consists of a garbling algorithm g.Garb, an evaluation algorithm g.Eval and
a simulation algorithm g.Sim. The garbling algorithm g.Garb takes the keys of
input wires AK1,AK2 and a key of output wire AK, outputs a table Tab such
that:

– Correctness. For any x, y ∈ R, g.Eval(AK1(x),AK2(y),Tab) = AK(g(x, y)).
– Handwavy Security. For any x, y ∈ R, the distribution of Tab is indistinguish-

able from g.Sim(AK1(x),AK2(y),AK(g(x, y))) when AK1(x),AK2(y) are also
given to the distinguisher but the global arithmetic key Δ is hidden.

If g is addition, note that

AK1(x) + AK2(y) − AK(x + y)
= (Δx + A1, x + α1) + (Δy + A2, y + α2) − (Δ(x + y) + A, x + y + α)

= (A1 + A2 − A, α1 + α2 − α) (in Z2d)

can be determined by the input/output labels. Setting it as the table will not
violate security and is sufficient for correctness. A smarter solution, as suggested
by [12], is to set the table Tab to be empty, and to change how the output wire
key AK is generated. Instead of sampling AK at random, set A = A1 + A2 and
α = α1 + α2, thus AK1(x) + AK2(y) mod 2d = AK(x + y).

If g is multiplication, first use randomized encoding [14,15] to sample two
affine functions (long keys) AKL

1,AKL
2 such that AKL

1(x),AKL
2(y) reveals AK(xy)

but nothing else about x, y,AK. This is formalized as a so-called affinization
gadget in [10] (called “arithmetic operation gadgets” in [11]).

The affinization gadget for multiplication can be formalized by a garbling
algorithm Aff×.Garb, an evaluation algorithm Aff×.Eval and a simulation
algorithm Aff×.Sim.

– Given an affine function, the garbling algorithm Aff×.Garb(AK) sam-
ples two affine functions AKL

1,AKL
2 such that the output dimension of

AKL
i is at most twice the output dimension of AK. (The multiplicative

factors of AKL
1,AKL

2 are not necessarily the global Δ. We represent a
“long key” as AKL = (A,B) such that AKL(x) = Ax + B.)

How to Garble Mixed Circuits that Combine 339

– Correctness. For any x, y in the ring, given “long labels”, the evaluation
algorithm Aff×.Eval(AKL

1(x),AKL
2(y)) always outputs AK(xy).

– Security. For any AK, x, y, the distribution of (AKL
1(x),AKL

2(y)) is per-
fectly indistinguishable from Aff×.Sim(AK(xy)). The randomness of
the former comes from the randomness tape of Aff×.Garb.

The construction of GC is complete by the key-extension gadget, which allows
the evaluator to compute AKL

1(x),AKL
2(y) from AK1(x),AK2(y).

The key-extension gadget can be formalized by three efficient algorithms
KE.Garb, KE.Eval, KE.Sim.

– Given a key AK and an affine function AKL, the garbling algorithm
KE.Garb(AK,AKL) samples a table Tab.

– Correctness. For any x in the ring, KE.Eval(AK(x),Tab) = AKL(x).
– Handwavy Security. For any x, the distribution of Tab is indistinguish-

able from KE.Sim(AK(x),AKL(x)) when AK(x) are also given to the
distinguisher but Δ is hidden.

The garbling gadget for multiplication gates can be constructed as follows.

– Garbling algorithm Mult.Garb(AK1,AK2,AK):
Aff×.Garb(AK) → (AKL

1,AKL
2).

KE.Garb(AKi,AKL
i) → Tabi for i ∈ {1, 2}.

Output Tab = (Tab1,Tab2).
– Evaluation algorithm Mult.Eval(L1,L2,Tab):

KE.Eval(Li,Tabi) → LL
i for i ∈ {1, 2}.

Aff×.Eval(LL
1,L

L
2) → L.

Output L.
– Simulation algorithm Mult.Sim(L1,L2,L):

Aff×.Sim(L) → LL
1,L

L
2.

KE.Sim(Li,LL
i) → Tabi for i ∈ {1, 2}.

Output Tab = (Tab1,Tab2).

This arithmetic GC framework [10,12] reduces the problem to constructing
a key-extension gadget. As long as there is a secure key-extension gadget that
doubles the key length (i.e., the output of AKL can be twice as long as AK), the
framework will yield an arithmetic GC of the same complexity.

Lemma 1 (informal). If there is a secure key-extension gadget that doubles the
key length whose table size is cKE, there is an arithmetic GC for the same ring
such that each addition gate costs no communication, and each multiplication
gate costs 2 · cKE communication.

3.2 Bit-Decomposition and Bit-Composition Imply Mixed GC

We extend the AIK framework to support mixed circuit, which consists of arith-
metic operation gates as described before, boolean gates such as AND, XOR,
and NOT, and two conversion gates, bit-decomposition and bit-compositions.

340 H. Li and T. Liu

A wire in the circuit is either an arithmetic wires as described before, or a
boolean wire. The keys for arithmetic wires stay unchanged. The keys for boolean
wires are sampled as follows:

– A global key Δ ∈ {0, 1}λ is sampled for all boolean wires.
For each boolean wire, the key is an affine function K : {0, 1} → {0, 1}λ+1.
The output K(x) consists of a λ-bit label and a color bit. That is, K can be
represented by K = (b ∈ {0, 1}λ, α ∈ {0, 1}) such that

K(x) = (Δx ⊕ b, x ⊕ α).

α is called the mask bit of this wire. Set α = 0 for every output wire.

The arithmetic operation gates are garbled as before, and we skip the rather
standard boolean gate garbling gadgets. We describe gadgets for garbling bit-
decomposition and bit-composition gates in more detail below.

The bit-decomposition gadget consists of BD.Garb,BD.Eval,BD.Sim. The
garbling algorithm BD.Garb takes an arithmetic key AK and b boolean keys
K0, . . . ,Kb−1 as inputs, outputs a table Tab, such that

– Correctness. For any x ∈ R, BD.Eval(AK(x),Tab) = (K0(x0), . . . ,Kb−1

(xb−1)).
– Handwavy Security. For any x ∈ R, the distribution of AK(x),Tab is indis-

tinguishable from AK(x),BD.Sim(AK(x),K0(x0), . . . ,Kb−1(xb−1)) when the
global arithmetic key Δ is hidden.

The bit-composition gadget consists of BC.Garb,BC.Eval,BC.Sim. The gar-
bling algorithm BC.Garb takes b boolean keys K0, . . . ,Kb−1 and an arithmetic
affine function AKL as inputs, outputs a table Tab, such that

– Correctness. For any x ∈ R, BC.Eval(K0(x0), . . . ,Kb−1(xb−1),Tab) = AKL(x).
– Handwavy Security. For any x ∈ R, the distribution of Tab is indistinguishable

from BC.Sim(K0(x0), . . . ,Kb−1(xb−1),AKL(x)) when K0(x0), . . . ,Kb−1(xb−1)
is also given to the adversary but the global key Δ is hidden.

We stress that AKL can be an arbitrary affine function: its multiplicative factor
does not have to be the global key; and its output dimension can be larger.
Although for simplicity, we assume the output dimension of AKL equals the
dimension of a label. In case we need longer AKL, we can always divide it into a
few pieces and use the bit-composition gadget multiple times.

It is obvious that bit-decomposition gadget and bit-composition gadget imply
key-extension gadget, and thus imply mixed GC. Previous work did not construct
the key-extension gadget through this approach because bit-decomposition is
expensive in their constructions.

Lemma 2 (informal). If there are a secure bit-decomposition gadget whose
table size is cBD and a secure bit-composition gadget whose table size is cBC,
then there is a mixed GC for the same ring such that each addition gate costs no
communication, and each multiplication/bit-decomposition/bit-composition gate
costs O(cBD + cBC) communication.

How to Garble Mixed Circuits that Combine 341

3.3 The Naive Construction

This section presents garbling gadgets for bit-decomposition and bit-composition
when the ring is Z2b . For each x ∈ Z2b , let xi denote the i-th lowest bit of x, so
that x =

∑
i 2ixi. Let xa:b denote

∑
a≤i<b 2i−axi, so that the bit representation

of xa:b is a substring of the bit representation of x.

BC. The bit-composition gadget is straight-forward. Given boolean input
labels K0(x0), . . . ,Kb−1(xb−1), the evaluator need to compute the output label
AKL(x) = Ax +B (recall that in bit-composition gadget, the output key can be
any affine function). The garbling algorithm BC.Garb samples additive sharing
B0, . . . ,Bb−1 such that

∑
i Bi = B, then generates table that allows the evalu-

ator to compute A2ixi + Bi from Ki(xi). The most direct solution is to let the
table contain ciphertexts

Enc(Ki(β),A2iβ + Bi) for all β ∈ {0, 1}.

The order of the two ciphertexts are permuted according to the mask bit in Ki,
so that the evaluator can pick the right ciphertext using the color bit.

BD. The bit decomposition gadget is inspired by the following two observations.

– Let L = AK(x) = Δx + A denote the given arithmetic label. Then

L mod 2 = Δx + A mod 2 = Δx0 + A mod 2.

If the table contains Enc(Δβ + A mod 2,K0(β)) for β ∈ {0, 1}, the evaluator
can properly decrypt the boolean label K0(x0) of x0 with L mod 2.

– To continue, the evaluator should be able to compute a mod-2b−1 arithmetic
label for all but the least significant bit of x

L(1) = Δx1:b + A(1) mod 2b−1.

Then the evaluator can iteratively compute all the boolean labels. Note that,

L − 2L(1) mod 2b = Δx0 + A − 2A(1) mod 2b. (2)

If the table also contains ciphertexts

Enc(Δβ + A mod 2, Δβ + A − 2A(1) mod 2b) for β ∈ {0, 1},

the evaluator can decrypt the ciphertext to get (2) and compute L(1).

These observations lead us to the bit-decomposition gadget in Fig. 1. For sim-
plicity, the encryption is implemented by a secure function H which is modeled
as a random oracle

Enc(key,m) = H(key, aux) ⊕ m, Dec(key, c) = H(key, aux) ⊕ c,

where aux contains auxiliary information such as the id of current gate. The H
queries under some auxiliary information is bounded: For each aux, the construc-
tion only queries H(key, aux) for up to two distinct key.

342 H. Li and T. Liu

Fig. 1. The Naive Bit-Decomposition Gadget

Lemma 3. There are statistically secure bit-decomposition gadget (Fig. 1) and
bit-composition gadget (a specialization of Fig. 2) for ring Z2b , whose table size
is O(b2λ). They yield statistically secure mixed GC for Z2b in the random oracle
model, where each addition gate costs no communication, and each multiplica-
tion/bit-decomposition/bit-composition gate costs O(b2λ) communication.

The proof of Lemma 3 is deferred to the full version3.

3 https://eprint.iacr.org/2023/1584.

https://eprint.iacr.org/2023/1584

How to Garble Mixed Circuits that Combine 343

4 Mixed GC for Zpk

This section presents a mix GC for Zpk . Recall how the arithmetic key, label,
color number are defined for each arithmetic wire (where λ is the security param-
eter):

– A global key Δ ∈ Z
�
pk is sampled for all arithmetic wires, where � = �λ/ log p�

is the label length.
For each arithmetic wire, the key is an affine function AK : Zpk → Z

�+1
pk . The

output AK(x) consists of �-dimension label and a color number. That is, AK
can be represented by AK = (A ∈ Z

�
pk , α ∈ Zpk) such that

AK(x) = (Δx + A, x + α) mod pk.

α is called the mask number of this wire. Set α = 0 for every output wire.

As discussed in Sect. 3.2, it suffices to construct efficient garbling gadgets for
bit-decomposition and bit-composition over ring Zpk . The construction of the
two gadgets for Zpk generalizes the constructions for Z2b in Sect. 3.3.

For each x ∈ Zpk , let xi denote the i-th lowest digit of x, so that x =
∑

i pixi.
Let xa:b denote

∑
a≤i<b pi−axi, so that the base-p digit representation of xa:b

is a substring of the base-p digit representation of x. Let xi,j denote the j-th
lowest bit of xi, so that xi =

∑
j 2jxi,j .

For each β ∈ Zp, let βi denote the i-th lowest bit of β, so that β =
∑

i 2iβi. Let
βa:b denote

∑
a≤i<b 2i−aβi, so that the bit representation of βa:b is a substring

of the bit representation of β.

BC. The bit-composition gadget is straight-forward. Given boolean input labels
Ki,j(xi,j) for i ∈ [k], j ∈ [log p], the evaluator needs to compute the output label
AKL(x) = Ax + B (recall that in the bit-composition gadget, the output key
can be any affine function). The garbling algorithm BC.Garb samples additive
sharing Bi,j such that

∑
i,j Bi,j = B, then generates a table that allows the

evaluator to compute Api2jxi,j + Bi,j from Ki,j(xi,j). The most direct solution
is to let the table contain ciphertexts

Enc(Ki,j(β),Api2jβ + Bi,j) for all β ∈ {0, 1}.

The order of the two ciphertexts are permuted according to the mask bit in Ki,j ,
so that the evaluator can pick the right ciphertext according to the color bit.

The construction is formalized in Fig. 2. The table consists of O(k log p)
ciphertexts, each ciphertext is kλ-bit long, thus the table size is O(λk2 log p)
bit.

BD. The bit-decomposition gadget starts with the same observations as the one
in Sect. 3.3. Let L = AK(x) = Δx+A mod pk denote the given arithmetic label.
Define

L(i) = Δxi:k + A(i) mod pk−i.

344 H. Li and T. Liu

Fig. 2. The Naive Bit-Composition Gadget

where A(0) := A and A(i) are randomly sampled. Thus, L(0) = L. Note that,

L(i) mod p = Δxi:k + A(i) mod p = Δxi + A(i) mod p.

If the table contains ciphertext

Enc(Δxi + A(i) mod p, (boolean labels of xi,Δxi + A(i) − pA(i+1) mod pk−i))

the evaluator can, given L(i), computes all the boolean labels of xi and the next
label L(i+1). This observation can be formalized as a secure bit-decomposition
gadget, who has poor efficiency. The table consists of pk ciphertexts, each cipher-
text is (λ log p + λk)-bit long, the total length is no less than λpk2. Under con-
straint pk ≈ 2b, the table size is minimized when p = O(1), which is asymptoti-
cally equivalent to the naive construction in Sect. 3.3.

The bottleneck is the encryption of Δxi +A(i) − pA(i+1) mod pk−i. To opti-
mize the efficiency, we replace the long ciphertexts by shorter ciphertexts

Enc(Δxi + A(i) mod p, boolean labels of xi)

that only encrypts the boolean labels. Since the evaluator can computes the
boolean labels of xi, it uses a mini bit-composition gadget (Fig. 3) to compute
Δxi + A(i) − pA(i+1) mod pk−i.

How to Garble Mixed Circuits that Combine 345

The optimized construction is formalized in Fig. 4. After optimization, the
table consists of O(kp) ciphertexts, each of which is O(λ log p) bit long, and k
mini-tables for the mini bit-composition, each of which is O(λk log p) bit long.
The total table size is O(λk(k + p) log p).

Fig. 3. The Mini Bit-Composition Gadget

Theorem 1. There are statistically secure bit-composition gadget (Fig. 2) for
ring Zpk whose table size is O(λk2 log p) and bit-decomposition gadget (Fig. 4) for
ring Zpk , whose table size is O(λk(k + p) log p). They yield a statistically secure
mixed GC for Zpk in the random oracle model, such that each addition gate costs
no communication, and each multiplication/bit-decomposition/bit-composition
gate costs O(λk(k + p) log p) communication.

The bit-composition gadget (Fig. 2) and the mini bit-composition gadget (Fig. 3)
are special cases of the linear bit-composition gadget (Fig. 5), whose correctness
and security will be analyzed in Sect. 4.1. The proof of the bit-decomposition
gadget is similar to that of Lemma 3 in Sect. 3.3.

Under the constraint that pk ≈ 2b, the asymptotic cost per gate is minimized
when p ≈ b/ logc b for any constant c ≥ 1. The minimal cost is O(λb2/ log b).

346 H. Li and T. Liu

Fig. 4. The Bit-Decomposition Gadget in Ring Zpk

Further Optimization. The bit-decomposition gadget in Fig. 4 can be further
optimized. Currently, for each i ∈ [k] the table contains ciphertexts

Ci,β+α(i) mod p ← H(Δβ + A(i) mod p, (id, i)) ⊕ (Ki,j(βj) for j ∈ [log p])

How to Garble Mixed Circuits that Combine 347

for each j ∈ [log p], β ∈ [p]. Notice that, every potential boolean label, such as
Ki,j(0), is encrypted in O(p) ciphertexts. This is rather wasteful.

For better efficiency, Ci,β+α(i) mod p only encrypts a key K0,β

Ci,β+α(i) mod p ← H(Δβ + A(i) mod p, (id, i)) ⊕ K0,β .

The key K0,β is sampled by the garbler, and can decrypt the ciphertext

Enc(K0,β , (Ki,0(β0),K1,β1:log p
)),

which reveals the next boolean label and the next key K1,β1:log p
. That is, the

garbler samples keys Kj,βj:log p
for every j ∈ [log p], β ∈ [p], and the table addi-

tionally includes ciphertexts

Enc(Kj,βj:log p
, (Ki,j(βj),Kj+1,βj+1:log p

))

for every j ∈ [log p], β ∈ [p]. The ciphertexts should be properly shuffled, and
some color bits/digits should be introduced to help the evaluation.

After optimization, the table consists of O(kp) ciphertexts, each of which is
O(λ) bit long, and k mini-tables for the mini bit-composition, each of which
is O(λk log p) bit long. The total table size is O(λk(k log p + p)). It produces a
statistically secure mixed GC in the random oracle model that has a marginal
efficiency improvement compared to Theorem 1. But we will not explicitly state
the further optimized gadget construction. The improvement is not significant
enough to change the results in Table 1.

4.1 Extension: Linear BC and General BD

Our mixed GC for Zpk (Theorem 1) allows conversion between an arithmetic
label and boolean labels of its base-p bit representation using bit-decomposition
and bit-composition gadgets.

The base-p bit representation is quite useful, for example, it allows compari-
son between arithmetic numbers. But in many cases, we may need or may want
to use the base-p′ bit representation for a different base p′. The most naive solu-
tion is to use an expensive boolean circuit for base conversion. In this section,
we presents an alternative solution.

BC. Let x be an arithmetic value. Given boolean labels of the base-p′ bit rep-
resentation of x, how to compute the Zpk -arithmetic label of x? We ask a more
general question:

Given boolean labels of (z0, . . . , zm−1), how to compute the Zpk -arithmetic
label of

∑
i cizm, where c0, . . . , cm−1 are fixed constants?

Essentially, we are asking how to garble gate f : {0, 1}m → Zpk , which is defined
as f(z0, . . . , zm−1) =

∑
i cizm mod pk.

The construction is rather straightforward. Let K0, . . . ,Km−1 be the input
wire keys, let AKL(x) = Ax + B mod pk be the output wire key. Let

348 H. Li and T. Liu

Fig. 5. The Linear Bit-Composition Gadget over Ring Zpk

B0, . . . ,Bm−1 be an additive sharing of B that are sampled by the garbler.
Given Ki(zi), the evaluator can compute Li = Acizi + Bi mod pk because the
table contains

Enc(Ki(β),Aciβ + Bi)

for all i ∈ [m], β ∈ {0, 1}. The evaluator outputs

L :=
∑

i

Li mod pk =
∑

i

(Acizi + Bi) mod pk

= Af(z0, . . . , zm−1) + B mod pk.

(3)

This is formalized in Fig. 5.

Lemma 4. For any f(z0, . . . , zm−1) =
∑

i cizm mod pk, there is a secure gar-
bling gadget for general linear bit-composition function f (Fig. 5), called linear
bit-composition gadget, in the random oracle model. The table size is O(λmk),
assume the output label dimension is λ/ log p.

Proof. For any input z0, . . . , zm−1, the evaluator computes Li ← H(li, (id, i)) ⊕
Ci,zi⊕αi

, then Li = Aciβ + Bi mod pk. The correctness of the output is guaran-
teed by (3).

How to Garble Mixed Circuits that Combine 349

To prove security, is suffices to notice that B0, . . . ,Bm−1 is an additive
sharing implies L0, . . . ,Lm−1 is an additive sharing. In other words, we know
L0, . . . ,Lm−2 is i.i.d. uniform in the real world because they are one-time padded
by i.i.d. uniform B0, . . . ,Bm−2. And Lm−1 is determined by L0, . . . ,Lm−2 and
L from L :=

∑
i Li mod pk.
�

BD. Given the Zpk -arithmetic label of x, if we want to compute the boolean
labels of the base-p′ bit representation of x:

– First compute the boolean labels of the base-p bit representation of x, using
bit-decomposition gadget.

– Compute the Zp′k′ -arithmetic label of x, using linear bit-composition gadget.
– Compute the boolean labels of the base-p′ bit representation of x, using bit-

decomposition gadget.

In particular, the cost of conversion from base-p bit representation to base-2
representation is O(λb2) where 2b ≈ pk. This is much cheaper than using the
boolean circuit for base conversion.

4.2 Extension: Emulating Computations for ZN

Our mixed GC for Zpk can emulate arithmetic mod-N operations if pk > N2

and there is an efficient garbling gadget for the modulo gate modN : Zpk → Zpk ,
which is defined as modN (x) = x mod N . The emulation is rather straightfor-
ward:

– Every number in ZN is emulated by the same number in Zpk

– Every mod-N arithmetic operation (ADD or MULT) is emulated the by the
same operation over Zpk , followed by modN .

Remark: The cost of emulating addition gates can be dramatically optimized.
Instead of appending modN after every addition gate, append modN only if
the accumulated magnitude is close to pk/2 or when the fan-out includes a
multiplication gate.

Garbling the modulo gate modN is mostly equivalent to garbling the integer
division gate divN : Zpk → Zpk , which is defined as divN (x) = �x/N�, since
modN (x) = x − N · divN (x).

Unfortunately, the garbling gadget for divN is hard to construct.4 We will
define a similar gate div∗

N whose garbling gadget is efficient and also suffices
for emulating mod-N computations. The definition of div∗

N (x) is inspired by a
well-known optimization that reduce division by constant to multiplication and
shifting.

4 An efficient garbling gadget of divN can be constructed based on the garbling gadget
of div∗

N .

350 H. Li and T. Liu

Lemma 5 (Generalization of [16]). For any positive integers N, p, kI, kE,m
satisfying pkI+kE ≤ mN < pkI+kE + pkE ,

⌊ x

N

⌋
=

⌊ mx

pkI+kE

⌋
for all 0 ≤ x < pkI .

Proof. pkI+kE ≤ mN < pkI+kE + pkE implies, by multiplying x
pkI+kEN

,

x

N
≤ mx

pkI+kE
<

x

N
+

x

NpkI
<

x + 1
N

.

�
Now we are ready to define the gate div∗

N : Zp2k+1 → Zp2k+1 . Let kE :=

�logp(N)� be the minimum integer satisfying pkE ≥ N . Let m = �pkI+kE

N �, thus
pkI+kE ≤ mN < pkI+kE + N ≤ pkI+kE + pkE . By Lemma 5,

⌊ x

N

⌋
=

⌊ mx

pk+kE

⌋

for any 0 ≤ x < pk. Therefore we define div∗
N : Zp2k+1 → Zp2k+1 as

div∗
N (x) =

⌊mx mod p2k+1

pk+kE

⌋
.

It satisfies div∗
N (x) = �x/N� for all x < pk. Since div∗

N is the composition of
multiplication in Zp2k+1 and digit shifting, it can be efficiently garbled by our
mixed GC for Zp2k+1 .

Define gate mod∗
N : Zp2k+1 → Zp2k+1 as mod∗

N (x) = x − N · div∗
N (x). Then

mod∗
N can be efficiently garbled by our mixed GC for Zp2k+1 , and mod∗

N (x) =
x mod N for all x < pk.

Lemma 6. For any N ≤ 2b, there is a statistically secure mixed GC for
ZN in the random oracle model, such that each addition/multiplication/bit-
decomposition/bit-composition gate costs O(λb2/ log b) communication. The bit-
decomposition is over a prime base p = Θ(b/ log b).

Proof. Mod-N computations can be emulated in a Zp2k+1-mixed circuits. Comb-
ing with Theorem 1, the cost per gate is O(λk(k+p) log p). The cost is minimized
by letting p = Θ(b/ log b).
�
Remarks. Although Lemma 6 does not claim free addition, we observe from its
construction that addition is free up to a certain extent.

In this mixed GC for ZN , the bit decomposition gate outputs base-p bit rep-
resentations. In case a (base-2) bit representation is needed, it can be computed
from the base-p bit representation by a cost of O(λb2), using the trick stated in
Sect. 4.1.

How to Garble Mixed Circuits that Combine 351

5 Mixed GC Based on Chinese Remainder Theorem

Chinese remainder theorem (CRT) is used in [12] to solve the following natural
task: Given b, find an efficient arithmetic GC over ring ZN for some N ≈ 2b.

Since there is no more specific constraints on N , [12] sets N = p1p2 . . . ps

being the product of the first s primes. Then s = Θ(b/ log b) and ps = Θ(b).
Consider an arithmetic circuit over Zpi

, denoted by “C mod pi”, that is identical
to C except the ring is replaced by Zpi

. Then

C(x) mod pi = (C mod pi)(x mod pi).

Therefore, by CRT, the task of evaluating C(x) is reduced to evaluating mod-pi

arithmetic circuit (C mod pi)(x mod pi) for all 1 ≤ i ≤ s. In [12], the reduction
is combined with mixed GC for every ring Zpi

, resulting in an arithmetic GC
for ZN where each multiplication gate costs about O(λb2/ log b) bits.

In this section, we will strengthen the result in two dimensions.

Based on Mod-pk Mixed GC. [12] sets N = p1p2 . . . ps because their basic GC
only supports computation modulo a prime number. In Sect. 4, we have already
construct relatively efficient mixed GC for prime power rings. Therefore, we will
set

N = pk1
1 pk2

2 . . . pks
s ≈ 2b

and reduce the problem of garbling mod-N computation to garbling mod-pki
i

computations for each 1 ≤ i ≤ s.

Efficient BD. In the CRT framework, if the actual value of a ZN -wise is x, it
is not hard to get the boolean labels of the bit representation of x mod pki

i (via
Theorem 1), for each 1 ≤ i ≤ s. To compute the bit representation of x, the
naive idea is garble the CRT algorithm.

For more efficient bit-decomposition, we make the following observation.
There are constants c1, . . . , cs ∈ ZN such that, for any x ∈ ZN

x =
∑

i

cix
(i) mod N,

where x(i) := x mod pki
i denotes the mod-pki

i component of x. (x(1), . . . , x(s))
is usually called the CRT representation of x. The fact that x is a linear
function (modulo N) on its CRT representation suggests a more efficient bit-
decomposition construction in the “CRT framework”.

Our new bit-decomposition construction is essentially a mixed circuit over
the ring Zp2k+1 , where p, k satisfy pk > N2 >

∑
i cix

(i). The input of the mixed
circuits consists of the bit representation of x(i) for all 1 ≤ i ≤ s. All the
input wires can be merged into

∑
i cix

(i) through the generalized linear BC gate
(Fig. 5). Then next step is mod∗

N , whose output
∑

i cix
(i) mod N always equals

x. The last gate is the standard bit-decomposition of Cmix(Zpk), producing the
base-p bit representation of x.

352 H. Li and T. Liu

The linear BC costs λmk bits, where m =
∑

i ki log pi = O(b). The modulo
gate mod∗

N and bit-decomposition gate cost O(λb(k + p)). The overall cost is
O(λb(k+p)), which can be minimized as O(λb2/ log b) by setting p = Θ(b/ log b).

If (base-2) bit representation of x is required, the overall cost of BD is O(λb2).
By combining the “CRT framework” with Theorem 1 and Lemma 6 respec-

tively, we have two more efficient mixed GC for ZN .

Theorem 2. For any b, there exist N > 2b and a statistically secure mixed
GC for ZN in the random oracle model, such that each addition gate costs no
communication, and each multiplication gate costs O(λb1.5) communication, and
each bit-decomposition/bit-composition gate costs O(λb2/ log b) communication.

Proof. Set N = pk1
1 pk2

2 . . . pks
s ≈ 2b. The task of garbling mod-N mixed circuits

is reduced to garbling mod-pki
i mixed circuits for all 1 ≤ i ≤ s. Each mod-pki

i

mixed circuit will be garbled the mixed GC in Theorem 1.
Thus each mod-N addition gate will cost nothing.
Each mod-N multiplication gate costs

∑

i

O(λki(ki + pi) log pi).

We want to minimize the cost, under the constraint that pk1
1 pk2

2 . . . pks
s ≈ 2b.

For any i, if ki increases by 1, then log N will increase by log pi, the total
cost will increase by O(λ(ki + pi) log pi). The “marginal cost increase per bit of
N by changing ki” is

∂cost(k1, . . . , ks)
∂ki

/
∂ log N(k1, . . . , ks)

∂ki
= O(λ(ki + pi)).

To minimize the cost, this ratio should be roughly the same for all i.
Following this intuitive argument, we choose a constant c and let pi + ki = c

for all i. The value of c is determined by the constraint N = pk1
1 pk2

2 . . . pks
s ≈ 2b.

b ≤ log
∏

i≤s

pki
i =

∑

i≤s

ki log pi =
∑

i≤s

(c − pi) log pi ≈
c∑

p=2

(c − p) = Θ(c2).

Thus we set c = Θ(
√

b).
The cost per multiplication gate is

∑

i

λki(ki +pi) log pi =
∑

i

λ(c−pi)c log pi ≈
c∑

p=2

λ(c−p)c = O(λc3) = O(λb1.5).

The total cost of having one BD gate in the mod-pki
i part for all 1 ≤ i ≤ s is

also O(λb1.5). But these parallel BD gates only compute (the bit representation
of) the CRT representation. To compute the bit representation, an additional
cost of O(λb2) (or O(λb2/ log b), if the representation can use any base) is needed.

How to Garble Mixed Circuits that Combine 353

For BC, say the boolean representation of the number has at most O(b) bits.
Applying linear BC (Fig. 5) for all 1 ≤ i ≤ s will cost O(

∑
i λbki) bits.

∑

i

λbki = λb
∑

i

(c − pi) ≤ λbcs = O(λb2/ log b)

�
Theorem 3. For any b, there exist N > 2b and a statistically secure mixed
GC for ZN in the random oracle model, such that each addition/multiplication
gate costs O(λb log b/ log log b) communication, each bit-decomposition costs
O(λb2/ log b) communication, each bit-composition gate costs O(λb2/ log log b)
communication.

Proof. Set N = pk1
1 pk2

2 . . . pks
s ≈ 2b. The task of garbling mod-N mixed circuits

is reduced to garbling mod-pki
i mixed circuits for all 1 ≤ i ≤ s. Each mod-pki

i

mixed circuit will be garbled with the mixed GC in Lemma 6.
Each mod-N addition/multiplication gate costs

∑

i

O(λd2
i / log di), where 2di > pki

i .

We want to minimize the cost, under the constraint that pk1
1 pk2

2 . . . pks
s ≈ 2b.

We choose a constant d such that d = d1 = d2 = · · · = ds, and let ki =
�di/ log pi�. So all primes are smaller than 2d and s = Θ(2d/d). The value of d
is determined by the constraint N = pk1

1 pk2
2 . . . pks

s ≈ 2b.

b ≤ log
∏

i≤s

pki
i =

∑

i≤s

ki log pi ≤ 1
2

∑

i≤s

d = Θ(sd) = Θ(2d).

Thus we set d = log b + O(1). Then s = O(b/ log b).
The cost of each mod-N addition/multiplication gate is

∑

i

O
(λd2

i

log di

)
= O

(sλd2

log d

)
= O

(bλ log b

log log b

)
.

The cost of BD, by the same analysis as in the proof of Theorem 2, is O(λb2)
if the outcome is base-2 bit representation, O(λb2/ log b) if the representation
can use any base.

The cost of BC is trickier to trace. For each i, the mod-pki
i computations are

emulated, according to the construction of Lemma 6, by a mod-pk mixed circuit.
Such that k = O(d/ log d) = O(log b/ log log b). For each i, using linear BC to
compute the arithmetic value costs λbk. The total cost is sλbk = λb2/ log log b.
But linear BC computes a linear function modulo pk, rather than the desired
modulus pki

i . This issue is resolve by slightly enlarge pk to some poly(pki
i , b) =

bΘ(1) so that linear BC computes the linear function over Z. This modification
over enlarge k by a constant factor, thus will not asymptotically increase the
cost of any operations.
�

354 H. Li and T. Liu

6 Mixed GC Based on DCR

In this section, we show how to improve the efficiency of our mixed GC con-
struction by relying on computational assumption. The new construction is most
similar to the naive mixed construction (Lemma 3 in Sect. 3.3) over ring Z2b .

The construction is built upon the (public-key) encryption schemes described
in [17,18] based on the decisional composite residuosity (DCR) assumption [17,
19]. We consider two private-key variants described below. (We provide a brief
overview of the DCR assumption and more details of the private-key variants in
the full version.)

The first variant Paillier consists of four algorithms. (1) Paillier.Setup(1λ, 1ζ)
samples public parameters pp, which defines a key space Z, a ciphertext space
Z

∗
Mζ+1 , and a message space ZMζ . (2) Paillier.Gen(pp) outputs a secret key

sk ∈ [�M/4�]. (3) Paillier.Enc(sk,m) outputs a ciphertext c ∈ Z
∗
Mζ+1 . (4)

Paillier.Dec(sk, c) recovers the message m ∈ ZMζ .
The second variant DamJur is similar to the first, except in two aspects. First,

the key space is Z
∗
M instead of Z. Second, the setup algorithm DamJur.Setup

outputs a trapdoor tp in addition to the public parameters pp. The trapdoor
is only used by a special inversion algorithm DamJur.Inv(tp, c), which takes any
ciphertext c ∈ Z

∗
Mζ+1 and outputs a unique secret key sk = g ∈ Z

∗
M , and a

message m ∈ ZMζ such that DamJur.Dec(sk = g, c) = m.
Both constructions have some kind of homomorphism. For any message

m1,m2 and keys sk1, sk2, g1, g2.

Paillier.Enc(sk1,m1) · Paillier.Enc(sk2,m2) mod M ζ+1

= Paillier.Enc(sk1 + sk2 over Z, m1 + m2 mod M ζ)

DamJur.Enc(g1,m1) · DamJur.Enc(g2,m2) mod M ζ+1

= DamJur.Enc(g1 · g2 mod M, m1 + m2 mod M ζ)

6.1 Bit-Composition Based on Paillier Encryption

As observed in Sect. 4.1, the more general bit-composition function
(x0, . . . , xm−1) → ∑

i cixi mod 2b is not harder to garble. Thus we will directly
construct this more general bit-composition.

Let K0, . . . ,Km−1 be the boolean keys. Let AKL = (A ∈ Z
�
2b ,B ∈ Z

�
2b) be the

arithmetic key. In the analysis of the complexity, we will assume m = O(b) and
� = O(λ). For any x0, . . . , xm−1 ∈ {0, 1}, given K0(x0), . . . ,Km−1(xm−1) and the
table, the evaluator of the bit-composition gadget should output the arithmetic
label L = AKL(x) = xA + B mod 2b where x =

∑
i cixi mod 2b.

The construction is based on the following intuition (informally): Allow the
evaluator to decrypts x + r and (x + r)skA + skB . Let the table contain

ctA = Enc(skA,A), ctB = Enc(−rskB,−rA + B)

using some homomorphic encryption. Then the evaluator can compute

(ctA)x+rctB = Enc((x + r)skA + skB , xA + B)

How to Garble Mixed Circuits that Combine 355

Fig. 6. The Bit-Composition Gadget based on Paillier

which can be decrypted into xA + B.
To formalize the intuition: i) We will add large random noise R, and let the

evaluator get xA + B + 2bR instead. ii) We need to construct an encryption
scheme that has the required homomorphism.

356 H. Li and T. Liu

As the section name suggested, the encryption scheme is (almost) Paillier.
Except that we want the scheme to encrypt a vector rather than a number. We
consider the following natural encoding encode : Z� → Z, parameterized by �
and B,

encode(v0, . . . , v�−1) =
∑

i∈[�]

Bivi,

together with an efficient decoder decode : [B�] → [B]�, satisfying

– For any A,B ∈ Z
�, encode(A + B) = encode(A) + encode(B).

– For any A ∈ [B]�, encode(A) ∈ [B�] and decode(encode(A)) = A.

Set the parameter of the encoder by B = 22b+2λ+1. Define the following
encryption scheme vPai,

– vPai.Setup(1λ) is Paillier.Setup(1λ, 1ζ), by choosing smallest ζ s.t. M ζ ≥ B�.
– vPai.Gen is Paillier.Gen.
– vPai.Enc(sk,V) = Paillier.Enc(sk, encode(V)).
– vPai.Dec(sk, c) = decode(Paillier.Dec(sk, c)).

Using vPai, our intuition can be formalized as a bit-composition gadget.

Lemma 7. For any linear bit-composition function f(z0, . . . , zm−1) =∑
i cizm mod 2b satisfying

∑
i ci ≤ 2b (otherwise the construction should be

slightly modified), there is a secure garbling gadget for f (Fig. 6), under DCR
assumption in the random oracle model. The table size is O(mλDCR + �(b + λ)),
which is O(λDCRb + λ2) when � = O(λ) and m = O(b).

The proof of Lemma 7 is deferred to the full version.

6.2 Bit-Decomposition Based on Damg̊ard-Jurik Encryption

In the bit-decomposition gadget, the evaluator is given an arithmetic label L =
AK(x) = xΔ + A mod 2b, and its color number x̄ = x + α mod 2b together
with a table generated by the garbler from AK,K0, . . . ,Kb−1, and should output
K0(x0), . . . ,Kb−1(xb).

Recall our intuition behind the naive BD (Fig. 1): In each inductive step, the
evaluator gets L(i) = xi:bΔ + A(i) and computes

L(i) mod 2 = xiΔ + A(i) mod 2.

Using L(i) mod 2 as the key, the evaluator decrypts a ciphertext

H(xiΔ + A(i) mod 2) ⊕ (K(xi), xiΔ + S)

in the table, gets K(xi) and xiΔ+S. The latter allows the evaluator to compute
L(i+1) and proceed to the next step.

The bottleneck is the ciphertext size. Let us replace the ciphertext by

H(xiΔ + A(i) mod 2) ⊕ (K(xi), xi + r, (xi + r)skΔ + skS).

How to Garble Mixed Circuits that Combine 357

And let the table additionally contains two ciphertexts

ctΔ = Enc(skΔ,Δ), ctS = Enc(skS ,−rΔ + S + 2bR),

using a homomorphic encryption scheme. Then the evaluator can instead com-
pute xiΔ + S + 2bR from

Dec((xi + r)skΔ + skS , (ctΔ)xi+r/ctS).

Such modification does not improves the complexity yet, because ctΔ, ctS become
the new dominating part. Notice that, all tables may share a global ctΔ as it
only depends on the global key.

For the last bottleneck ctS , we require its distribution to be “dense”, in the
sense that, the distribution of ctS is statistically close to the uniform distribution
over a samplable domain. This requires i) a “dense” encryption scheme, and ii)
the distribution of the message −rΔ + S + 2bR is statistically close to uniform
over the message space.

If our requirement is satisfied, the garbler can instead sample a random seed,
and let ctS = H(seed). The ciphertext ctS in the table can be replaced by seed.
For correctness, the garbler need to reversely compute the key and message
behind the ciphertext ctS .

As discussed in [18], all of our requirements are satisfied by Damg̊ard-Jurik
encryption [17].

– Density: For random g ← Z
∗
M and random m ← [M ζ], the distribution of

ciphertext DamJur.Enc(g,m) is uniform in Z
∗
Mζ+1 .

– Invertibility: There is an efficient algorithm Inv, which takes a ciphertext ct ∈
Z

∗
Mζ+1 and the trapdoor tp, computes g,m such that DamJur.Enc(g,m) = ct.

Damg̊ard-Jurik encrypts a number rather a vector. Similar to Sect. 6.1, we
need a encoder-decoder pair between vectors and numbers. The encoder has to
be dense in the sense that almost all encodings in the codomain are valid. Again,
consider the natural encoding encode : Zλ+1 → Z, parameterized by B,

encode(v0, . . . , vλ) =
∑

i∈[λ+1]

Bivi,

together with an efficient decoder decode : [Bλ] → [B]λ.

– For security, set B ≥ 2b+2λ.
– For density, ensure M ζ ≥ Bλ+1 ≥ M ζ(1 − 2−λ).

Define the following encryption scheme vDJ,

– vDJ.Setup(1λ) is DamJur.Setup(1λ, 1ζ), by choosing smallest ζ s.t. M ζ ≥
(22b+λ+1)λ+1. Also let B be the largest multiple of 2b satisfying M ζ ≥ Bλ+1.
Then all the three requirements on B can be satisfied.

– vDJ.Gen is DamJur.Gen.
– vDJ.Enc(sk,V) = DamJur.Enc(sk, encode(V)).

358 H. Li and T. Liu

Fig. 7. The Bit-Decomposition Gadget based on Damg̊ard-Jurik

How to Garble Mixed Circuits that Combine 359

– vDJ.Dec(sk, c) = decode(vDJ.Dec(sk, c)).
– vDJ.Inv(tp, c) = (g, decode(v)) for (g, v) = DamJur.Inv(tp, c).

Now we are ready to present the bit-decomposition gadget in Fig. 7.

Lemma 8. There is a secure bit-decomposition gadget (Fig. 7) over ring Z2b ,
under DCR assumption in the programmable random oracle model. The table
size is O(bλDCR).

The proof of Lemma 8 is deferred to the full version.
Combining the bit-composition gadget in Lemma 7 and the bit-

decomposition gadget in Lemma 8 produces a mix GC scheme, as stated by
the following theorem.

Theorem 4. There is a secure mixed GC for Z2b under DCR assumption in
the programmable random oracle model, such that each addition gate costs no
communication, each multiplication/bit-decomposition gate costs O(λDCRb) com-
munication, and each bit-composition gate costs O(λDCRb + λ2) communication.

Our mixed GC for Z2b implies a mixed GC for any ZN for any N ≈ 2b, using
the emulation technique discussed in Sect. 4.2.

Corollary 1. For any N ≤ 2b, there is a secure mixed GC for ZN under
DCR assumption in the programmable random oracle model, such that each
addition/multiplication/bit-decomposition gate costs O(λDCRb) communication,
and each bit-composition gate costs O(λDCRb + λ2) communication.

References

1. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

3. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Feldman, S.I., Wellman, M.P. (eds.) Proceedings of the First ACM
Conference on Electronic Commerce (EC-1999), Denver, CO, USA, 3–5 November
1999, pp. 129–139. ACM (1999)

4. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

5. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 15

6. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR gates
that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 440–457. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 25

https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-662-44381-1_25

360 H. Li and T. Liu

7. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under standard
assumptions. J. Cryptol. 31(3), 798–844 (2018)

8. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 8

9. Rosulek, M., Roy, L.: Three halves make a whole? Beating the half-gates lower
bound for garbled circuits. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12825, pp. 94–124. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84242-0 5

10. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
Ostrovsky, R. (ed.) 52nd FOCS, pp. 120–129. IEEE Computer Society Press, Octo-
ber 2011

11. Ball, M., Li, H., Lin, H., Liu, T.: New ways to garble arithmetic circuits. In: Hazay,
C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14005, pp. 3–34. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-30617-4 1

12. Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for Boolean and arithmetic
circuits. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016, pp. 565–577. ACM Press, October 2016

13. Applebaum, B.: Garbling XOR gates “for free” in the standard model. J. Cryptol.
29(3), 552–576 (2016)

14. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st FOCS, pp. 294–304.
IEEE Computer Society Press, November 2000

15. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th FOCS,
pp. 166–175. IEEE Computer Society Press, October 2004

16. Granlund, T., Montgomery, P.L.: Division by invariant integers using multiplica-
tion. In: Sarkar, V., Ryder, B.G., Soffa, M.L. (eds.) Proceedings of the ACM SIG-
PLAN 1994 Conference on Programming Language Design and Implementation
(PLDI), Orlando, Florida, USA, 20–24 June 1994, pp. 61–72. ACM (1994)

17. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

18. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomor-
phic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 4

19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-031-30617-4_1
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/3-540-48910-X_16

	How to Garble Mixed Circuits that Combine Boolean and Arithmetic Computations
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Computation Models
	2.2 Garbled Circuits (GC)

	3 Technical Overview
	3.1 Background: Key-Extension Implies Arithmetic GC
	3.2 Bit-Decomposition and Bit-Composition Imply Mixed GC
	3.3 The Naive Construction

	4 Mixed GC for Zpk
	4.1 Extension: Linear BC and General BD
	4.2 Extension: Emulating Computations for ZN

	5 Mixed GC Based on Chinese Remainder Theorem
	6 Mixed GC Based on DCR
	6.1 Bit-Composition Based on Paillier Encryption
	6.2 Bit-Decomposition Based on Damgård-Jurik Encryption

	References

