Proceedings of Machine Learning Research vol 242:52—67, 2024 6th Annual Conference on Learning for Dynamics and Control

Learning to Stabilize High-dimensional Unknown Systems Using
Lyapunov-guided Exploration

Songyuan Zhang sZHANG21@MIT.EDU and Chuchu Fan CHUCHU @MIT.EDU
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA

Editors: A. Abate, M. Cannon, K. Margellos, A. Papachristodoulou

Abstract

Designing stabilizing controllers is a fundamental challenge in autonomous systems, particularly
for high-dimensional, nonlinear systems that can hardly be accurately modeled with differential
equations. The Lyapunov theory offers a solution for stabilizing control systems, still, current
methods relying on Lyapunov functions require access to complete dynamics or samples of system
executions throughout the entire state space. Consequently, they are impractical for high-dimensional
systems. This paper introduces a novel framework, LYapunov-Guided Exploration (LYGE), for
learning stabilizing controllers tailored to high-dimensional, unknown systems. LYGE employs
Lyapunov theory to iteratively guide the search for samples during exploration while simultaneously
learning the local system dynamics, control policy, and Lyapunov functions. We demonstrate its
scalability on highly complex systems, including a high-fidelity F-16 jet model featuring a 16D state
space and a 4D input space. Experiments indicate that, compared to prior works in reinforcement
learning, imitation learning, and neural certificates, LYGE reduces the distance to the goal by 50%
while requiring only 5% to 32% of the samples. Furthermore, we demonstrate that our algorithm
can be extended to learn controllers guided by other certificate functions for unknown systems. !

Keywords: Lyapunov-guided Exploration, High-dimensional Unknown Systems, Machine Learning

1. Introduction

Designing stabilizing controllers for high-dimensional systems with potentially unknown dynamics is
essential in autonomous systems, where Lyapunov-based control design plays a significant role (Par-
rilo, 2000). In recent years, methods have been proposed to automatically construct Lyapunov
functions and control Lyapunov functions (CLFs) for systems of varying complexity, encompassing
both optimization and learning-based methods (Giesl and Hafstein, 2015; Dawson et al., 2022a).
However, existing methods encounter two major challenges: scalability, i.e., applicability to high-
dimensional systems, and model transparency, i.e., the necessity of knowing the system dynamics.
Traditional optimization-based control design involves finding controllers and Lyapunov func-
tions by solving a sequence of semi-definite programming (SDP) problems (Parrilo, 2000; Majumdar
et al., 2013; Ahmadi and Majumdar, 2016). However, scalability to high-dimensional systems is hin-
dered by the exponential growth of the number of decision variables with system dimension (Lofberg,
2009) and numerical problems (Permenter and Parrilo, 2018), including strict feasibility and numeri-
cal reliability issues. Although recent advancements have produced scalable SDP solvers (Yurtsever
et al., 2021), they depend on assumptions such as the sparsity of the decision matrix. Neural network
(NN)-based representations of Lyapunov functions have gained popularity (Chang et al., 2019; Han

1. Project website: https://mit-realm.github.io/lyge-website/. The appendix can be found on the project website.

© 2024 S. Zhang & C. Fan.

https://mit-realm.github.io/lyge-website/

ZHANG FAN

et al., 2020; Chang and Gao, 2021; Dawson et al., 2022b) and can to some extent alleviate dimen-
sionality limitations when finding a CLF. However, due to their reliance on state-space sampling,
learning techniques still face exponential growth in sample complexity for high-dimensional systems.

Additionally, most optimization-based and learning-based methods require system dynamics to
be known as ordinary differential equations (ODEs), limiting their applicability and practicality for
real-world systems. For instance, the F-16 fighter jet model (Heidlauf et al., 2018) investigated in this
paper is represented as a combination of look-up tables, block diagrams, and C programs. Accurately
describing the complex behavior of the system using an ODE is highly challenging. For systems
with unknown dynamics, previous works have attempted to first use system identification, (e.g., learn
the ODE model with NNs), then find a controller with a CLF (Dai et al., 2021; Zhou et al., 2022).
However, using a single NN to fit the dynamics of the entire state space of a high-dimensional system
requires a vast number of training samples to cover the entire state space, and these surrogate NN
models can exhibit substantial prediction errors in sparsely sampled regions of the state-action space.

Our work is motivated by the fact that for high-dimensional systems, collecting data across the
entire state space is both infeasible and unnecessary, as only a small subset of the state space is
reachable for the agent starting from a set of initial conditions. Therefore, obtaining a model for the
entire state space is excessive (Kamalapurkar et al., 2016). Instead, we learn a model valid only in the
reachable subset of the state space and update the controller according to guidance, e.g., the learned
CLF, to continuously expand the subset towards the goal. Constructing such a subset is non-trivial, so
we assume access to some imperfect and potentially unstable demonstrations as initial guidance for
reachable states. Starting from these demonstrations, our objective is to update the controller, guide
exploration of necessary regions in the state space, and ultimately stabilize the system at the goal.

To achieve this, we propose a novel framework, LYapunov-Guided Exploration (LYGE), to
jointly learn the system dynamics in the reachable subset, a controller, and a CLF to guide the
exploration of the controller in high-dimensional unknown systems. We iteratively learn the dynamics
in the reachable states using past experience, update the CLF and the controller, and perform
exploration to expand the subset toward the goal. Upon convergence, we obtain a stabilizing
controller for the high-dimensional unknown system. The main contributions of the paper are:
1) We propose a novel framework, LYGE, to learn stabilizing controllers for high-dimensional
unknown systems. Guided by a learned CLF, LYGE explores only the useful subset, thus addressing
the scalability and model transparency problems; 2) We show that the proposed algorithm learns
a stabilizing controller; 3) We conduct experiments on benchmarks including Inverted Pendulum,
Cart Pole, Cart II Pole (Brockman et al., 2016), Neural Lander (Shi et al., 2019), and the F-16
model (Heidlauf et al., 2018) with two tasks. Our results show that our learned controller outperforms
other reinforcement learning (RL), imitation learning (IL), and neural-certificate-based algorithms in
terms of stabilizing the systems while reducing the number of samples by 68% to 95%.

2. Related Work

Control Lyapunov Functions. Our work builds on the widely used Lyapunov theory for designing
stabilizing controllers. Classical CLF-based controllers primarily rely on hand-crafted CLFs (Choi
et al., 2020; Castaneda et al., 2021) or Sum-of-Squares (SoS)-based SDPs (Parrilo, 2000; Majumdar
et al., 2013; Ahmadi and Majumdar, 2016; Long et al., 2023). However, these approaches require
known dynamics and struggle to generalize to high-dimensional systems due to the exponential
growth of decision variables and numerical issues (Lofberg, 2009; Permenter and Parrilo, 2018). To

LYAPUNOV-GUIDED EXPLORATION

alleviate these limitations, recent work uses NN to learn Lyapunov functions (Richards et al., 2018;
Abate et al., 2020, 2021; Gaby et al., 2021) and stabilizing controllers (Chang et al., 2019; Mehrjou
et al., 2021; Dawson et al., 2022b; Farsi et al., 2022; Zhang et al., 2023; Wang et al., 2023; Min et al.,
2023). Most of these works sample states in the entire state space and apply supervised learning to
enforce the CLF conditions. They either assume knowledge of the dynamics or attempt to fit the
entire state space’s dynamics (Dai et al., 2021; Zhou et al., 2022), making it difficult to generalize to
high-dimensional real-world scenarios where the number of required samples grows exponentially
with the dimensions. In contrast, our algorithm can handle unknown dynamics and does not suffer
from the curse of dimensionality caused by randomly sampling states in the entire state space.

Reinforcement Learning (RL) and Optimal Control. RL and optimal control have demonstrated
strong capabilities on problems without knowledge of the dynamics, particularly in hybrid sys-
tems (Schulman et al., 2015, 2017; Rosolia and Borrelli, 2019; So and Fan, 2023). However, they
struggle to provide results of the closed-loop system’s stability. Additionally, hand-crafted reward
functions and sample inefficiency impede the generalization of RL algorithms to complex environ-
ments. Recent works in the learning for control domain aim to solve this problem by incorporating
certificate functions into the RL process (Berkenkamp et al., 2017; Chow et al., 2018; Cheng et al.,
2019; Han et al., 2020; Chang and Gao, 2021; Zhao et al., 2021; Qin et al., 2021). Nevertheless,
they suffer from limitations such as handcrafted certificates (Berkenkamp et al., 2017) and balancing
CLF-related losses with RL losses (Han et al., 2020; Chang and Gao, 2021). Unlike these approaches,
our algorithm learns the CLF from scratch without prior knowledge of the dynamics or CLF candi-
dates and provides a structured way to design loss functions rather than relying on reward functions.
Furthermore, we can demonstrate the stability of the closed-loop system using the learned CLF.

Imitation Learning (IL). IL is another common tool for such problems. However, classical IL
algorithms like behavioral cloning (BC) (Pomerleau, 1991; Bain and Sammut, 1995; Schaal, 1999;
Ross et al., 2011), inverse reinforcement learning (IRL) (Abbeel and Ng, 2004; Ramachandran
and Amir, 2007; Ziebart et al., 2008), and adversarial learning (Ho and Ermon, 2016; Finn et al.,
2016; Fu et al., 2018) primarily focus on recovering the exact policy of the demonstrations, which
may result in poor performance when given imperfect demonstrations. A recent line of work on
learning from suboptimal demonstrations offers a possible route to learn a policy that outperforms
the demonstrations. However, they either require various types of manual supervision, such as
rankings (Brown et al., 2019; Zhang et al., 2021), weights of demonstrations (Wu et al., 2019; Cao
and Sadigh, 2021), or have additional requirements on the environments (Brown et al., 2020; Chen
et al., 2021), demonstrations (Tangkaratt et al., 2020, 2021), or the training process (Novoseller et al.,
2020). Moreover, none of them can provide results about the stability of the learned policy. Another
line of work learns certificates from demonstrations (Ravanbakhsh and Sankaranarayanan, 2019;
Robey et al., 2020; Chou et al., 2020; Boffi et al., 2021), but they need additional assumptions such
as known dynamics, perfect demonstrations, or the ability to query the demonstrator. In contrast,
we leverage the CLF as natural guidance for the exploration process and do not require additional
supervision or assumptions about the demonstrations or the environment to learn a stabilizing policy.

3. Problem Setting and Preliminaries
We consider a discrete-time unknown dynamical system

z(t+1) = h(x(t),u(t)), (1)

ZHANG FAN

where z(t) € X C R"= represents the state at time step ¢, u(t) € U C R™ denotes the control input
at time step ¢, and h : X x U — X is the unknown dynamics. We assume the state space X’ to be
compact and A is Lipschitz continuous in both (x, u) with constant L;, > 0 following Berkenkamp
et al. (2017). Our objective is to find a control policy u(-) = w(x(-)), where 7 : X — U, such that
from initial states z(0) € X)), under the policy 7, the closed-loop system asymptotically stabilizes at
a goal T40a € X In other words, V(t) starting from 2(0) € Xy and satisfying Equation (1) with
u(t) = w(x(t)), we have lim [l#(t) — wgoul| = 0.

We assume that we are given a set of Npo demonstration transitions D° = {(z;(t), u;(t), ;(t +
1)) i]\;’:io generated by a demonstrator policy 7, starting from states x;(0) € Ajp. In contrast to
the assumption of stabilizing demonstrators in classical IL works (Ho and Ermon, 2016), our
demonstrations may not be generated by a stabilizing controller.

Lyapunov theory is widely used to prove the stability of control systems, and CLFs offer further
guidance for controller synthesis by defining a set of stabilizing control inputs at a given point in the
state space. Following Griine et al. (2017), we provide the definition of CLF for discrete system (1).

Definition 1 Consider the system (1) and a goal point o1, and let G C X be a subset of the state
space such that xga € G. A function V' : G — R is called a CLF on G if there exists functions
a, & € Koo? and a constant X € (0, 1) such that the following hold:

allz — xgoalH) <V(z) <a(llz - mgoalH) (2a)
inf V ((r,) < AV (2) (2b)

The set of input K(z) = {u e U | V (h(z,u)) < AV (z)} is called stablizing control inputs. It
is a standard result that if G is forward invariant® and the goal point Tgoal € G C X, then starting
from initial set Xy C G, any control input © € K will make the closed-loop system asymptotically
stable at Ty, (Griine et al., 2017). The details are provided at Appendix A.

4. LYGE Algorithm

Notation: Let 7 be the current iteration step in our algorithm. A dataset D7 is a set of Npr
transitions collected by the current iteration step. Recall that D is the set of given demonstrations. Let
D C X be the projection of D7 on the first state component of D7 defined as D, = {x | («,,-) €
D7 }. A trusted tunnel HT is defined as the set of states at most v > 0 distance away from the dataset
DI, ie,H" ={x|3x; € DL, ||z — =] <~}

We first outline our algorithm LYapunov-Guided Exploration (LYGE), which learns to stabilize
high-dimensional unknown systems, then provide a step-by-step explanation (see Appendix B for
detailed theoretical analysis). Given a dataset of imperfect demonstrations D° (which may not
contain Zg,1), we firstly employ IL to learn an initial controller 7iyi; (Which may be an unstable
controller). Then, during each iteration 7, we learn a CLF V" and the corresponding controller 7},
using samples from D7, and use the learned controller ﬂ(; to generate closed-loop trajectories as
additional data added to DT to obtain D711, At each iteration, the learned CLF Vy ensures that the

2. A function ¢ : [0, +00) — [0, +00) is said to be class-K if « is continuous, strictly increasing with «(0) = 0, and
lim a(s) = +oo.

s—+o00

3. A set G is forward invariant if (0) € G = xz(¢) € G forall ¢ > 0.

LYAPUNOV-GUIDED EXPLORATION

newly collected trajectories get closer to Zga1, as €ach Vi is designed to reach the global minimum
at Tgoa1. In this way, the trusted tunnel H” grows and includes states closer and closer to x g4, With
more iterations. Upon convergence, LYGE returns a stabilizing controller 7* that can be trusted
within the converged trusted tunnel *, where H* contains all trajectories starting from Xj.
Learning from Demonstrations: At iteration 0, our approach starts with learning an initial policy
from imperfect and potentially unstable demonstrations D°. We use existing IL methods (e.g.,
BC (Bain and Sammut, 1995)) to learn the initial policy mipit(+). Since the IL algorithms directly
recover the behavior of the demonstrations, the initial policy could lead to unstable behaviors.
Learnlng Local Dynamics: At iteration 7, we learn a discrete NN approximation of the dynamics
h¢(x u) : X XU — X parameterized by 1) using the transition dataset D”. We train hT by minimiz-
ing the mean square error loss from transitions sampled from the dataset D™ using Adam (Kingma
and Ba, 2014). Let w > 0 be the maximum error of the learned dynamics on the training data:
[hy(zi(t), wi(t)) — @it + 1)|| < wforall (2;(t), ui(t), zi(t + 1)) € D7,

Learning CLF and Controller: After learning the local dynamics, we jointly learn the CLF and
the control policy. Let the learned CLF in 7-th iteration be V; (z) = 27 S Sz + pn () T pan (),
where S € R"™=*"= s a matrix of parameters, pyy : R™ — R"= denotes an NN, and 6 encompasses
all parameters including S and the ones in pyn. Clearly, V,/ () is positive by construction. The first
term in V/ models a quadratic function, which is commonly used to construct Lyapunov functions
for linear systems. Here we use it to introduce a quadratic prior to the learned CLF. The second
term models the CLF’s non-quadratic residue. We also parameterize the controller with an NN, i.e.,
w; : X — U with parameters ¢. The learned controller aims to direct system trajectories toward the

goal, guided by the learned CLF. Additionally, since the learned dynamics ﬁ; may be invalid outside
the trusted tunnel X7, 7} should not drive the system too far from 7" within the simulation horizon.
This can be achieved by penalizing the distance of the control inputs in consecutive iterations. Overall,
Vy and 7} can be synthesized by solving the following optimization problem:

min Eoenr |7 (x) — ' ()| (32)
s.t. Vi (2goa1) = 0, Vi () >0, VoelX\zga (3b)
Vi (ﬁ;(g;, w;(g;))) <AV (z), VzeHT (3c)

where A € (0, 1). We approximate the solution of problem (3) by self-supervised learning with loss
LT = LT p + Ner1 £y, where LT and L7, | correspond to the constraints and the objective of
Problem (3), respectively, 7.1 > 0 is a hyper-parameter that balances the weights of two losses, and

T T 1 T Tlpos T (7T T T +
bor =V (g + = > W=V @]+ B S e vy (b (@, mp(@)) - AVF ()]
N N
TEX \Zgoal z€D]
“)
f= 3 M@ - =5 @I Q)
JfED"'

where [-|* = max(-, 0), 7pos > 0 is a hyper-parameter that balances each term in the loss, and € > 0
is a hyper-parameter that ensures that the learned CLF V] satisfies condition (2b) even if the learned
dynamics IA@ has errors (Studied in Section 5.4). In practice, it is hard to enforce V{(xgoal) to be
exactly 0 using gradient-based methods. Therefore, in loss (4) and (5), we instead train the NNs to
make V{ (2g0a1) < v, and V) (x) > v, forall z € X'\ &g0a1, Where v is a small positive number.

ZHANG FAN

0.4 [\ 108 0.4 27.0 0.4 240 0.4 270

/| ///, \ 9.6 210 ‘ 240

8.4 < 2.5 ; I 210

{ 02 (\ 02 f 180 02

: I ° \ 7.2 AN 180 \ ' ‘ 1x ' 180
I i 60 .o 00 e N ‘@ 0.0 ! i T 150

o . : 135 - N 120 " o0 N
4.8 \ loo & 120
0.2 ‘ 3.6 -02 9.0 02, / [02, (J 90

l 4.5

30
0

~0.4

0.0 -04 -02 00 02 04

0.0

04 -02 Oé() 02 04 04 -02 Oé[) 02 04 -04 02 090 02 04

(a) Iteration 0 (b) Tteration 2 (c) Iteration 6 (d) Tteration 12

Figure 1: Trajectories generated by LYGE in different iterations in inverted pendulum environment.
The counters show the learned CLF. The orange trajectories are generated by the learned
controller in the current iteration. The light orange dots are the demonstrations generated
in previous iterations, which also indicate the trusted tunnel H. The black dot is the goal.

Exploration: After learning hT, Vg, and mj in the 7-th iteration, we use the current controller 7
starting from 2o € H" to collect Np more transitions AD™ = {(x;(t), 7j(x;(t)), z:(t + 1))}5\2 and
augment the dataset D"+ = D™ U AD". During the exploration, the controller drives the system to
states with lower CLF values. Consequently, by collecting more trajectories with the learned policy
w5, we expand the trusted tunnel " to states with lower CLF values. As the global minimum of the
CLF is at wg.,1, the system trajectories used to construct the trusted tunnel keep getting closer to the
goal in each iteration. The detailed algorithm and the convergence result are provided in Appendix B.

We illustrate the LYGE process in an inverted pendulum environment in Figure 1. In Figure 1(a),
since the demonstrations are imperfect, our initial controller m;,i; cannot reach the goal. Figure 1(b)
and Figure 1(c) demonstrate that after several iterations, the trusted tunnel H” (the region around
the light orange dots D)) is expanded towards the goal, and the closed-loop system progressively
approaches the goal. Upon convergence (Figure 1(d)), our controller stabilizes the system at the goal.

5. Experiments

We conduct experiments in six environments including Inverted Pendulum, Cart Pole, Cart II Pole,
Neural Lander (Shi et al., 2019), and the F-16 jet (Heidlauf et al., 2018) with two tasks: ground
collision avoidance (GCA) and tracking. To simulate the imperfect demonstrations, We collect
imperfect and potentially unstable demonstrations for each environment using nominal controllers
such as LQR (Kwakernaak and Sivan, 1969) for Inverted Pendulum, PID (Bennett, 1996) for Neural
Lander and the F-16, and RL controllers for Cart Pole and Cart II Pole. In the first four environments,
we collect 20 trajectories as demonstrations, and in the two F-16 environments, we collect 40
trajectories. We aim to answer the following questions in the experiments: 1) How does LYGE
compare with other algorithms for the case of stabilizing the system at goal? 2) What is the sampling
efficiency of LYGE as compared to other baseline methods? 3) Can LYGE be used for systems with
high dimensions? We provide additional implementation details and more results in Appendix C.

5.1. Baselines

We compare LYGE with the most relevant works in our problem setting including RL algorithm
PPO (Schulman et al., 2017), standard IL algorithm AIRL (Fu et al., 2018), and algorithms of IL from

LYAPUNOV-GUIDED EXPLORATION

suboptimal demonstrations D-REX (Brown et al., 2020) and SSRR (Chen et al., 2021). For PPO, we
hand-craft reward functions following standard practices in reward function design (Brockman et al.,
2016) for stabilization problems. For AIRL, D-REX, and SSRR, we let them learn directly from the
demonstrations. For a fair comparison, we initialize all the algorithms with the BC policy. Compared
with these baselines, our algorithm has one additional assumption that we know the desired goal
point. However, we believe that the comparison is still fair because we do not need the reward
function or optimal demonstrations. While LYGE needs more information than D-REX and SSRR,
the performance increment from LYGE is large enough that it is worth the additional information.

We also design two other baselines, namely, CLF-sparse and CLF-dense, to show the efficacy of
the Lyapunov-guided exploration compared with learning the dynamics model from random samples
(Dai et al., 2021; Zhou et al., 2022). These methods require the stronger assumption of being able to
sample from arbitrary states in the state space, which is unrealistic when performing experiments
outside of simulations. For both algorithms, we follow the same training process as LYGE, but
instead of collecting samples of transitions by applying Lyapunov-guided exploration, we directly
sample states and actions from the entire state-action space to obtain the training set of the dynamics.
We note that CLF-sparse uses the same number of samples as LYGE, while CLF-dense uses the same
number of samples as the RL and IL algorithms, which is much more than LYGE (see Table 1).

5.2. Environments

Inverted Pendulum: Inverted Pendulum (Inv Pendulum) is a standard benchmark for testing control
algorithms. To simulate imperfect demonstrations, the demonstration data is collected by an LQR
controller with noise that leads to oscillation of the pendulum around a point away from the goal.

Cart Pole and Cart II Pole: Both environments are standard RL benchmarks introduced in Open
AI Gym (Brockman et al., 2016)*. We collect demonstrations using an RL policy that has not fully
converged, which makes the cart pole oscillate at a location away from the goal.

Neural Lander: Neural lander (Shi et al., 2019) is a widely used benchmark for systems with
unknown disturbances. The state space has 6 dimensions including the 3-dimensional position and
the 3-dimensional velocity, with 3-dimensional linear acceleration as the control input. The goal is to
stabilize the neural lander at a user-defined point near the ground. The dynamics are modeled by a
neural network trained to approximate the aerodynamics ground effect, which is highly nonlinear
and unknown. We use a PID controller to collect demonstrations, which makes the neural lander
oscillate and cannot reach the goal point because of the strong ground effect.

F-16: The F-16 model (Heidlauf et al., 2018; Djeumou et al., 2021) is a high-fidelity fixed-wing
fighter model, with 16D state space and 4D control inputs. The dynamics are complex and cannot be
described as ODEs. Instead, the authors of the F-16 model provide many lookup tables to describe
the dynamics. We solve the two tasks discussed in the original papers: ground collision avoidance
(GCA) and waypoint tracking. In GCA, the F-16 starts at an initial condition with the head pointing
at the ground. The goal is to pull up the aircraft as soon as possible, avoid colliding with the ground,
and fly at a height between 800 ft and 1200 ft. In the tracking task, the goal of the aircraft is to reach
a user-defined waypoint. The original model provides PID controllers. However, the original PID
controller cannot pull up the aircraft early enough or cannot track the waypoint precisely.

4. Original names are InvertedPendulum and InvertedDoublePendulum in Mujoco environments

ZHANG FAN

3 E il 3 3

°n e on o0 on

8 205 8 8 8

o : (5] o [o 5000

g g 5" g g

2 2 2 ‘ 2 2

0%~ 500 00— 50 % 500 %750 %230
Time step Time step Time step Time step Time step Time step
(a) (b) (©) (d) (e))
m==== LYGE === CLF-sparse CLF-dense ==== PPQ === AIRL D-REX === SSRR

Figure 2: The distance to the goal w.r.t. time step of LYGE and the baselines: (a) Inv Pendulum; (b)
Cart Pole; (c) Cart II Pole; (d) Neural Lander; (e) F-16 GCA; (f) F-16 Tracking. The solid
lines show the mean distance while the shaded regions show the standard deviation. Note
that the curve corresponding to CLF-sparse almost overlaps with the curve corresponding
to CLF-dense and so, the curve for CLF-sparse might not be visible in some of the plots.

5.3. Results and Discussions

We train each algorithm in each environment 5 times with different random seeds and test the
converged controllers 20 times each. In Figure 2 we show the distance to the goal w.r.t. the
simulation time steps. Note that we consider the goal height in the F-16 GCA environment and the
goal position in the F-16 Tracking environment. We can observe that LYGE achieves comparable or
better results in terms of stabilizing the systems in all environments, especially in high-dimensional
complex systems like Neural Lander and F-16. In Neural Lander, none of the baselines can reach
the goal as they prioritize flying at a higher altitude to avoid collisions. In F-16 environments, the
baselines either pull up the aircraft too late or have large tracking errors. LYGE however, can finish
these tasks perfectly.

Specifically, compared with PPO, LYGE achieves comparable results in simpler environments
like Cart Pole and Cart II Pole, and behaves much better in complex environments like Neural Lander
and F-16. This is due to the fact that PPO is a policy gradient method that approximates the solution
of the Bellman equation, but getting an accurate approximation is hard for high-dimensional systems.
In PPO the reward function can only describe “where the goal is”, but our learned CLF can explicitly
tell the system “how to reach the goal”. Compared with AIRL, which learns the same policy as the
demonstrations and cannot make improvements, LYGE learns a policy that is much better than the
demonstrations. Compared with ranking-guided algorithms D-REX and SSRR, LYGE behaves better
because ranking guidances provide less information than our CLF guidance, and are not designed to
explicitly encode the objective of reaching the goal. Compared with CLF-sparse and CLF-dense,
LYGE outperforms them because Lyapunov-guided exploration provides a more effective way to
sample in the state space to learn the dynamics rather than random sampling. Although CLF-dense
uses many more samples than CLF-sparse and LYGE its performance does not significantly improve.
This shows that naively increasing the number of samples without guidance does little to improve the
accuracy of the learned dynamics in high-dimensional spaces.

In Table 1, we show the number of samples used in the training. It is shown that LYGE needs 68%
to 95% fewer samples than other algorithms. This indicates that our Lyapunov-guided exploration
explores only the necessary regions in the state space and thus improving the sample efficiency.

LYAPUNOV-GUIDED EXPLORATION

Table 1: Number of samples (k) used for training in different environments.
Algorithm ‘ Inv Pendulum CartPole CartIl Pole Neural Lander F-16 GCA F-16 Tracking

LYGE 160 160 480 240 480 560
Baselines 2000 500 5000 5000 2000 10000
” 120000 1000 1000 1000
= £ 100000 750 800 750
£ E = T 2
S £ 80000 g 500 5 600 E S00
ko 2 & 2 2
= 400
% é 60000 2501 250
& 40000 200 0
0
1400 1600 1800 1400 1600 1800 -2 0 2 -2 0 2 2 4
Reward of Demonstrations Reward of Demonstratior log(¢) log(A) log(Netn)
(@) (b) (c) (d) (e)
— LYGE — PPO — AIRL D-REX — SSRR

Figure 3: Ablation studies. (a) The converged reward w.r.t. demonstration rewards. (b) The number
of samples used before LYGE converges w.r.t. demonstration rewards. (c) The converged
reward w.r.t. €. (d) The converged reward w.r.t. . (e) The converged reward w.r.t. 7ct,].

5.4. Ablation Studies

We first show the influence of the optimality of the demonstrations. We use the Inverted Pendulum
environment and collect demonstrations with different levels of optimality by varying the distance
between the actual goal state and the target state of the demonstrator controller. For each optimality
level, we train each algorithm 3 times with different random seeds and test each converged controller
20 times. We omit the experiments on CLF-sparse and CLF-dense since their performances are
not related to the demonstrations. The results are shown in Figure 3(a). We observe that LYGE
outperforms other algorithms with demonstrations at different levels of optimality. In addition, we
do not observe a significant performance drop of LYGE as the demonstrations become worse. This is
because the quality of the demonstrations only influences the convergence speed of LYGE, instead of
the controller. PPO’s behavior is also consistent since the reward function remains unchanged, but it
consistently performs worse than LYGE. IL algorithms, however, have a significant performance
drop as the demonstrations get worse because they all depend on the quality of the demonstrations.

The quality of the demonstrations can also influence the convergence speed of LYGE. In the Inv
Pendulum environment, we define the algorithm converges when the reward is larger than 1980. We
plot the number of samples used for convergence w.r.t. the reward of demonstrations in Figure 3(b).
It is shown that the better the given demonstrations, the fewer samples LY GE needs for convergence.

We also do ablations to investigate the influence of the hyperparameter e. We test LYGE in the
Cart Pole environment and change € from 0.01 to 100. The results are shown in Figure 3(c), which
demonstrates that LYGE works well when ¢ is large enough to satisfy the condition introduced in
Theorem 7 in Appendix B, and small enough that it does not make the training very hard.

The A in Equation (4) is another hyperparameter that controls the convergence rate of the learned
policy. We test LYGE in the Cart Pole environment and change A from 0.01 to 100. The results are
shown in Figure 3(d), demonstrating that LYGE works well with A in some range. If) is too small,

ZHANG FAN

the convergence rate is too small and the system cannot be stabilized within the simulation time steps.
If) is too large, loss (4) becomes too hard to converge, so the controller cannot stabilize the system.
During training, 7., controls the expansion of the trusted tunnel. We do ablations for 7,1 in the
Cart Pole environment and change 7,1 from 10 to 10°. The results are shown in Figure 3(e), which
suggests that LYGE can work well when the value of 7,] is within a certain range. If 7., is too
small, the system leaves the trusted tunnel too early instead of smoothly expanding the trusted tunnel.
If 7ty is too large, exploration is strongly discouraged and the trusted tunnel expands too slowly.

6. Extensions

Our framework is general since it can be directly
applied to learn controllers guided by other cer-

=2
<
tificates in environments with unknown dynam- go
ics. For example, Control Contraction Metrics o . — LYGE
(CCMs) are differential analogs of Lyapunov g PPO
. . o z —— AIRL
functions (proving stability in the tangent state A DREX
space). A metric is called CCM if it satisfies a list % 500
Time step — SSRR

of conditions, and a valid CCM can guarantee the
convergence of tracking controllers. The similar- (@) ()
ity between CCM and CLF suggests that track-
ing controllers can also be learned with a similar
framework. We change the learning CLF part
to learning CCM algorithms (Sun et al., 2021;
Chou et al., 2021), and use the same framework
to learn the local dynamics, a tracking controller, and a CCM to guide the exploration of the tracking
controller. We test this modification in a Dubins car path tracking environment. As shown in Figure 4,
our algorithm outperforms the baselines. We explain the details in Appendix E.

Figure 4: The tracking error w.r.t. time step in
Dubins car path tracking environment.

7. Conclusion

We propose a general learning framework, LYGE, for learning stabilizing controllers in high-
dimensional environments with unknown dynamics. LYGE iteratively fits the local dynamics to form
a trusted tunnel, and learns a control policy with a CLF to guide the exploration and expand the
trusted tunnel toward the goal. Upon convergence, the controller stabilizes the closed-loop system at
the goal point. We provide experimental results to demonstrate that LY GE performs comparably or
better than the baseline RL, IL, and neural certificate methods. We also demonstrate that the same
framework can be applied to learn other certificates in environments with unknown dynamics.

Our framework has a few limitations: we require a set of demonstrations for initialization in
high-dimensional systems, although they can be potentially imperfect. Without them, LYGE may
take a long time to expand the trusted tunnel to the goal. In addition, we need Lipschitz assumptions
for the dynamics to derive the theoretical results. If the dynamics do not satisfy the Lipschitz
assumptions, the learned CLF might be invalid even inside the trusted tunnel. Moreover, although we
observe the convergence of the loss terms in training on all our case studies, it is hard to guarantee that
the loss always converges on any system. Finally, if we desire a fully validated Lyapunov function,
we need to employ formal verification tools, and we provide a detailed discussion in Appendix D.

10

LYAPUNOV-GUIDED EXPLORATION

Acknowledgments

This work was partly supported by the National Science Foundation (NSF) CAREER Award #CCF-
2238030 and the MIT-DSTA program. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and don’t necessarily reflect the views of the
Sponsors.

References

Alessandro Abate, Daniele Ahmed, Mirco Giacobbe, and Andrea Peruffo. Formal synthesis of
lyapunov neural networks. IEEE Control Systems Letters, 5(3):773-778, 2020.

Alessandro Abate, Daniele Ahmed, Alec Edwards, Mirco Giacobbe, and Andrea Peruffo. Fossil: a
software tool for the formal synthesis of lyapunov functions and barrier certificates using neural
networks. In Proceedings of the 24th International Conference on Hybrid Systems: Computation
and Control, pages 1-11, 2021.

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.

Amir Ali Ahmadi and Anirudha Majumdar. Some applications of polynomial optimization in
operations research and real-time decision making. Optimization Letters, 10(4):709-729, 2016.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pages 103-129, 1995.

Stuart Bennett. A brief history of automatic control. IEEE Control Systems Magazine, 16(3):17-25,
1996.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. Advances in neural information processing
systems, 30, 2017.

Ruxandra Bobiti and Mircea Lazar. Automated-sampling-based stability verification and doa es-
timation for nonlinear systems. IEEE Transactions on Automatic Control, 63(11):3659-3674,
2018.

Nicholas Boffi, Stephen Tu, Nikolai Matni, Jean-Jacques Slotine, and Vikas Sindhwani. Learning
stability certificates from data. In Conference on Robot Learning, pages 1341-1350. PMLR, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pages 783-792. PMLR, 2019.

Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning via
automatically-ranked demonstrations. In Conference on robot learning, pages 330-359. PMLR,
2020.

11

ZHANG FAN

Zhangjie Cao and Dorsa Sadigh. Learning from imperfect demonstrations from agents with varying
dynamics. IEEE Robotics and Automation Letters, 6(3):5231-5238, 2021.

Fernando Castaneda, Jason J Choi, Bike Zhang, Claire J Tomlin, and Koushil Sreenath. Gaussian
process-based min-norm stabilizing controller for control-affine systems with uncertain input
effects and dynamics. In 2021 American Control Conference (ACC), pages 3683-3690. IEEE,
2021.

Ya-Chien Chang and Sicun Gao. Stabilizing neural control using self-learned almost lyapunov critics.
In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 1803-1809.
IEEE, 2021.

Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. Advances in neural
information processing systems, 32, 2019.

Letian Chen, Rohan Paleja, and Matthew Gombolay. Learning from suboptimal demonstration via
self-supervised reward regression. In Conference on Robot Learning, pages 1262—1277. PMLR,
2021.

Richard Cheng, Gébor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 3387-3395, 2019.

Jason Choi, Fernando Castafieda, Claire J Tomlin, and Koushil Sreenath. Reinforcement learning
for safety-critical control under model uncertainty, using control lyapunov functions and control
barrier functions. In Robotics: Science and Systems (RSS), 2020.

Glen Chou, Necmiye Ozay, and Dmitry Berenson. Uncertainty-aware constraint learning for adaptive
safe motion planning from demonstrations. In Conference on Robot Learning, 2020.

Glen Chou, Necmiye Ozay, and Dmitry Berenson. Model error propagation via learned contraction
metrics for safe feedback motion planning of unknown systems. arXiv preprint arXiv:2104.08695,
2021.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. Advances in neural information processing systems,

31, 2018.

Hongkai Dai, Benoit Landry, Lujie Yang, Marco Pavone, and Russ Tedrake. Lyapunov-stable
neural-network control. arXiv preprint arXiv:2109.14152, 2021.

Charles Dawson, Sicun Gao, and Chuchu Fan. Safe control with learned certificates: A survey of
neural lyapunov, barrier, and contraction methods. arXiv preprint arXiv:2202.11762, 2022a.

Charles Dawson, Zengyi Qin, Sicun Gao, and Chuchu Fan. Safe nonlinear control using robust
neural lyapunov-barrier functions. In Conference on Robot Learning, pages 1724-1735. PMLR,
2022b.

Franck Djeumou, Aditya Zutshi, and Ufuk Topcu. On-the-fly, data-driven reachability analysis and
control of unknown systems: an f-16 aircraft case study. In Proceedings of the 24th International
Conference on Hybrid Systems: Computation and Control, pages 1-2, 2021.

12

LYAPUNOV-GUIDED EXPLORATION

Milad Farsi, Yinan Li, Ye Yuan, and Jun Liu. A piecewise learning framework for control of unknown

nonlinear systems with stability guarantees. In Learning for Dynamics and Control Conference,
pages 830-843. PMLR, 2022.

Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection between generative
adversarial networks, inverse reinforcement learning, and energy-based models. arXiv preprint
arXiv:1611.03852, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse reinforce-
ment learning. In International Conference on Learning Representations, 2018.

Nathan Gaby, Fumin Zhang, and Xiaojing Ye. Lyapunov-net: A deep neural network architecture for
lyapunov function approximation. arXiv preprint arXiv:2109.13359, 2021.

Sicun Gao, Jeremy Avigad, and Edmund M Clarke. J-complete decision procedures for satisfiability
over the reals. In International Joint Conference on Automated Reasoning, pages 286-300.
Springer, 2012.

Peter Giesl and Sigurdur Hafstein. Review on computational methods for lyapunov functions.
Discrete & Continuous Dynamical Systems-B, 20(8):2291, 2015.

Lars Griine, Jiirgen Pannek, Lars Griine, and Jiirgen Pannek. Nonlinear model predictive control.
Springer, 2017.

Minghao Han, Lixian Zhang, Jun Wang, and Wei Pan. Actor-critic reinforcement learning for control
with stability guarantee. IEEE Robotics and Automation Letters, 5(4):6217-6224, 2020.

Peter Heidlauf, Alexander Collins, Michael Bolender, and Stanley Bak. Verification challenges
in f-16 ground collision avoidance and other automated maneuvers. In ARCH@ ADHS, pages
208-217,2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Rushikesh Kamalapurkar, Joel A Rosenfeld, and Warren E Dixon. Efficient model-based reinforce-
ment learning for approximate online optimal control. Automatica, 74:247-258, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Huibert Kwakernaak and Raphael Sivan. Linear optimal control systems, volume 1072. Wiley-
interscience New York, 1969.

Shenyu Liu, Daniel Liberzon, and Vadim Zharnitsky. Almost lyapunov functions for nonlinear
systems. Automatica, 113:108758, 2020.

Johan Lofberg. Pre-and post-processing sum-of-squares programs in practice. IEEE transactions on
automatic control, 54(5):1007-1011, 2009.

13

ZHANG FAN

Kehan Long, Yinzhuang Yi, Jorge Cortés, and Nikolay Atanasov. Distributionally robust lyapunov
function search under uncertainty. In Learning for Dynamics and Control Conference, pages
864-877. PMLR, 2023.

Anirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. Control design along trajectories
with sums of squares programming. In 2013 IEEE International Conference on Robotics and
Automation, pages 4054-4061. IEEE, 2013.

Ian R Manchester and Jean-Jacques E Slotine. Control contraction metrics: Convex and intrinsic
criteria for nonlinear feedback design. IEEE Transactions on Automatic Control, 62(6):3046-3053,
2017.

Arash Mehrjou, Mohammad Ghavamzadeh, and Bernhard Scholkopf. Neural lyapunov redesign.
Proceedings of Machine Learning Research vol, 144:1-24, 2021.

Youngjae Min, Spencer M Richards, and Navid Azizan. Data-driven control with inherent lyapunov
stability. In 2023 62nd IEEE Conference on Decision and Control (CDC), pages 6032-6037.
IEEE, 2023.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick. Dueling posterior sam-
pling for preference-based reinforcement learning. In Conference on Uncertainty in Artificial
Intelligence, pages 1029-1038. PMLR, 2020.

Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness
and optimization. California Institute of Technology, 2000.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Frank Permenter and Pablo Parrilo. Partial facial reduction: simplified, equivalent sdps via approxi-
mations of the psd cone. Mathematical Programming, 171(1):1-54, 2018.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
computation, 3(1):88-97, 1991.

Zengyi Qin, Yuxiao Chen, and Chuchu Fan. Density constrained reinforcement learning. In
International Conference on Machine Learning, pages 8682—-8692. PMLR, 2021.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1-8,2021. URL http://jmlr.org/papers/v22/
20-1364 .html.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In Proceedings of
the 20th international joint conference on Artifical intelligence, pages 2586-2591, 2007.

14

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

LYAPUNOV-GUIDED EXPLORATION

Hadi Ravanbakhsh and Sriram Sankaranarayanan. Learning control lyapunov functions from coun-
terexamples and demonstrations. Autonomous Robots, 43(2):275-307, 2019.

Spencer M Richards, Felix Berkenkamp, and Andreas Krause. The lyapunov neural network:
Adaptive stability certification for safe learning of dynamical systems. In Conference on Robot
Learning, pages 466—476. PMLR, 2018.

Alexander Robey, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V Dimarogonas, Stephen
Tu, and Nikolai Matni. Learning control barrier functions from expert demonstrations. In 2020
59th IEEE Conference on Decision and Control (CDC), pages 3717-3724. IEEE, 2020.

Ugo Rosolia and Francesco Borrelli. Learning how to autonomously race a car: a predictive control
approach. IEEE Transactions on Control Systems Technology, 28(6):2713-2719, 2019.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627-635. JIMLR Workshop and Conference Proceedings,
2011.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3(6):
233-242, 1999.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889-1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree
Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural lander: Stable drone landing control using
learned dynamics. In 2019 International Conference on Robotics and Automation (ICRA), pages
9784-9790. IEEE, 2019.

Oswin So and Chuchu Fan. Solving stabilize-avoid optimal control via epigraph form and deep
reinforcement learning. In Proceedings of Robotics: Science and Systems, 2023.

Dawei Sun, Susmit Jha, and Chuchu Fan. Learning certified control using contraction metric. In
Conference on Robot Learning, pages 1519-1539. PMLR, 2021.

Voot Tangkaratt, Bo Han, Mohammad Emtiyaz Khan, and Masashi Sugiyama. Variational imitation
learning with diverse-quality demonstrations. In International Conference on Machine Learning,
pages 9407-9417. PMLR, 2020.

Voot Tangkaratt, Nontawat Charoenphakdee, and Masashi Sugiyama. Robust imitation learning from
noisy demonstrations. In AISTATS, 2021.

Lizhi Wang, Songyuan Zhang, Yifan Zhou, Chuchu Fan, Peng Zhang, and Yacov A. Shamash.
Physics-informed, safety and stability certified neural control for uncertain networked microgrids.
IEEE Transactions on Smart Grid, pages 1-1, 2023. doi: 10.1109/TSG.2023.3309534.

15

ZHANG FAN

Steven Wang, Sam Toyer, Adam Gleave, and Scott Emmons. The imitation library
for imitation learning and inverse reinforcement learning. https://github.com/
HumanCompatibleAI/imitation, 2020.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama. Imi-
tation learning from imperfect demonstration. In International Conference on Machine Learning,
pages 6818-6827. PMLR, 2019.

Alp Yurtsever, Joel A Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher. Scalable
semidefinite programming. SIAM Journal on Mathematics of Data Science, 3(1):171-200, 2021.

Songyuan Zhang, Zhangjie Cao, Dorsa Sadigh, and Yanan Sui. Confidence-aware imitation learning
from demonstrations with varying optimality. Advances in Neural Information Processing Systems,
34, 2021.

Songyuan Zhang, Yumeng Xiu, Guannan Qu, and Chuchu Fan. Compositional neural certificates for
networked dynamical systems. In Learning for Dynamics and Control Conference, pages 272-285.
PMLR, 2023.

Weiye Zhao, Tairan He, and Changliu Liu. Model-free safe control for zero-violation reinforcement
learning. In 5th Annual Conference on Robot Learning, 2021.

Ruikun Zhou, Thanin Quartz, Hans De Sterck, and Jun Liu. Neural lyapunov control of unknown
nonlinear systems with stability guarantees. arXiv preprint arXiv:2206.01913, 2022.

Brian D Ziebart, Andrew Maas, J] Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In Proceedings of the 23rd national conference on Artificial intelligence-
Volume 3, pages 1433-1438, 2008.

16

https://github.com/HumanCompatibleAI/imitation
https://github.com/HumanCompatibleAI/imitation

	Introduction
	Related Work
	Problem Setting and Preliminaries
	LYGE Algorithm
	Experiments
	Baselines
	Environments
	Results and Discussions
	Ablation Studies

	Extensions
	Conclusion
	Control Lyapunov Functions
	Analysis of LYGE
	Experiments
	Experimental Details
	Implementation details
	Choice of Hyper-parameters
	Environments

	More Results

	Discussions
	Verification of the Learned CLFs
	Possible Future Directions

	Details about the Extensions
	Learning Control Contraction Matrices with Unknown Dynamics
	Experimental Details of CCM
	Implementation Details
	Environment
	More Results

