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Abstract—In this paper, we investigate the problem of
active joint localization and target tracking of mobile robots
with onboard sensors. Our primary objective is concurrent
target tracking while precisely localizing the robots through
coordinated motion. A key constraint is the distributed setting,
where each robot’s observations are limited to its immediate
vicinity, and communication is restricted to neighboring robots.

To address this, we propose a novel reinforcement learning-
based approach for active motion planning, grounded in a
distributed estimation framework called Joint Localization
and Target Tracking (JLATT). The policy is trained to op-
timize robot coordination and trajectories for enhanced self-
localization, target tracking, and collision avoidance. Empirical
analysis demonstrates our algorithm’s effectiveness compared
to benchmarks, both in collision avoidance and reducing esti-
mation covariance, affirming its robustness for complex robotic
systems.

I. INTRODUCTION

Autonomous multi-robot systems, crucial in applications
like search and rescue, region monitoring, and area surveil-
lance, grapple with challenges in accurate positioning with-
out GPS, motion capture, and prior maps. Joint Localization
and Target Tracking (JLATT) involve simultaneous estima-
tion of robot and target states. Existing methods, whether
centralized or distributed, often assume sensors with static or
random motion, lacking active control [1]-[5]. Algorithms
in control often assume knowledge of both robot and tar-
get states, relying on centralized or multi-hop information
transmission, impractical in real-world scenarios [6]-[11].
To address the Active JLATT (AJLATT) problem, strategies
propose minimizing uncertainty in the target state while con-
sidering limited sensing capabilities. However, reliance on
centralized estimation frameworks and strict communication
topology requirements limit practicality [12], [13]. Even in
distributed approaches, multi-hop information transmission
remains a requirement [14].

Reinforcement learning (RL) has emerged as a promising
approach for motion planning, exhibiting enhanced general-
ization through interactive learning [15]. This has garnered
attention in multi-agent motion planning (MAMP). RL-based
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MAMP considers factors like local observability and envi-
ronmental uncertainty, often extending to partially observ-
able Markov decision processes (POMDPs) or decentralized
POMDPs (Dec-POMDPs). RL-based MAMP research can
be categorized into centralized (C-MAMP) and decentralized
(D-MAMP) approaches. C-MAMP employs a centralized
value network to learn a joint planning policy [15]. D-
MAMP involves independent planning or centralized training
with decentralized execution (CTDE), where robots access
global information during training [16], [17]. Algorithms
like CADRL (Collision Avoidance with Deep RL algorithm)
and GA3C-CADRL have been introduced for D-MAMP, ad-
dressing collision avoidance, social awareness, and stochastic
behavior [18]-[22]. GA3C-CADRL-NSL addresses reward
sparsity by using a goal-distance-based proxy reward [22].
Agent-level representations with predefined state estimation
enable access to higher-level state information, contrasting
with end-to-end sensor-level approaches [22], [23].

Existing algorithms hinge on acquiring precise robot
states, which remains a challenge for decentralized multi-
agent motion planning (D-MAMP) based on estimated states.
This work draws from methodologies in [5] for precise
individual robot state estimation and proposes a Deep Re-
inforcement Learning-based Active Joint Localization and
Target Tracking (DRL-AJLATT) framework to enhance tar-
get tracking and self-localization. The key contributions can
be summarized as:

1) Reframing AJLATT as a partially observable Markov
decision process suitable for reinforcement learning methods,
with reward function design for estimation variance reduc-
tion.

2) A novel DRL algorithm operating on estimated robot
states eliminates the need for precise states, enhancing scal-
ability for real-world deployment.

3) Empirical evaluation in a designed scenario, demon-
strating effectiveness over random and control-based meth-
ods in reducing estimation variance and mitigating colli-
sions.

II. PRELIMINARIES
A. Problem Formulation

In the presented scenario, a collective of denoted robots
indexed as ¢ € 1,2,..., M is engaged in the pursuit and
monitoring of a singular designated target. At discrete time
instance k, the condition of robot 7 (respectively, the tar;et)
is denoted as x¥ (respectively, x%). x¥ = [ ¥ y¥ o |" €
R? x [0,2), where the 2—tuple [z¥ y¥]T represents the
spatial coordinates within the global reference frame, and
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®¥ characterizes the angle measured in a clockwise direction
from z—axis’s positive orientation of the global reference
frame to the direction in which the robot is oriented.

In this context, the robots’ precise states are unknown. Fol-
lowing [5], the prior and posterior estimates of robot i’s state
are denoted as x¥ and X%, respectively. The corresponding
prior and posterior estimation errors are ék = xF — xk and
el = x’C — %F, with covariances p¥ and pF. Slmllarly, xT
and %% denote robot 4’s prior and posterror estimates of the
target state, with covariances pTi and pTi.

The objective is to derive a control policy mg(a¥|oF),
parameterized by 6, that maps each robot’s observations
of at time k to its control inputs a¥. Due to the limited
communication range compared to the overall formation
scale, the control is performed in a distributed manner.

B. Graphs

Communication graph G¥ and sensing graph G* are the
two distinct directed graphs that are defined to represent the
multi-robot system’s communication and sensing structures.

The communication graph is defined as G¥ = (V,&F),
where V = {1,2,..., M} represents the set of robots and
EF = {(j,i)lx} € U(xF,dc)}, where (j,i) € £F if robot
i can receive information from robot j, and d. indicates
the radius of communication. Obviously, (i,7) € £¥ always
holds. Furthermore, the communicating neighbor set of robot
i is defined as N¥; = {j # i[(j,i) € £F}. Similarly, the
inclusive communicating neighbor set of robot ¢ is defined
as It = {jl(j, 1) € EF}.

The sensing area of robot ¢ is defined as a sector with the
sensing radius dgs as the radius, centered on the orientation
of the robot, and having a central angle of 26;. Based on
the setting of sensing area, the sensing graph is defined as
G* = (V,&F), where
- xb)-df

> cos b},

]

(Xj
5= x|

gl =
ij

{(G, D)} € Uxf, ds)&
where (j,7) means robot j can be detected by i, and d¥ =
[cos (bf, sin gbf, 0]” represents the orientation of robot i. The
set of sensing neighbors of robot ¢ is defined as ./\/'S]fi ={j#
il(j.0) € EF}-

Assuming d. > d, it can be asserted that all sensing
neighbors of robot ¢ also simultaneously serve as communi-

cation neighbors of robot .
C. Motion and Measurement Models
The motion model is considered a nonlinear dynamic

model with additive noise, which can be presented as

k+1

(1)
2

where a¥ ~ 7(a¥|o¥) represents the control input to robot i
at time k, u represents the control input to the target, and
wh ~ N(0,QF) and wh ~ N(0, Q%) are, respectively, the
additive white Gaussian noises for robot ¢ and the target.

= fi(x},a) + w},

k1 _ ok ok k
xp = g(x,ur) + wr,
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At the time instant k, when the condition j € N sk@ is
satisfied, robot ¢ becomes capable of acquiring a robot-to-
robot measurement Z]f?,i]» Alternatively, in the circumstance
where robot j assumes the role of the target, robot ¢ is en-
abled to obtain a measurement denoted as z’f{iT, representing
the robot-to-target interaction.The measurement models are
defined as

k
Z;; :hz‘j( )+VW
ZITC’» = hTi (X?a XT) + VTﬂv

where v, ~ N(0,R};) and vj, ~ N(0,Rf},) are the

measurement noises assumed to be white Gaussran The

measurement noises are assumed to be mutually uncorrelated
across robots and uncorrelated with the process noises.

3)

D. Joint Localization and Target Tracking

The paradigm of fully distributed JLATT [5] that is
employed entails the concurrent and integrated estimation
of both individual robot and target states. This method
exclusively leverages intrinsic robot-derived data as well as
information garnered from neighboring robots within a one-
hop communication range. Of great significance is its capac-
ity to uphold the consistency of the estimation throughout
this process.

1) Propagation: The prior estimate of robot ¢’s state and
its corresponding covariance are propagated as

— f( k 1 k 1)’
= oF1ph ((}f—l)T i for @)
= pro(B} X1 QETY),
where ~ @®F! - g—,f(j(fcf_l -1y, g1 _
%(ﬁf_l,af_l), and Qf_l — Gf_le_l(Gf_l)T

2) State Update: For the purpose of updating the state
estimation for robot ¢, the initial step involves the derivation
of correction pairs denoted as (s}, y%) and (s%., y%) This
derivation is predicated upon the utilization of robot 7’s inter-
robot measurements, represented as z¥, where | € /\/’fl,
as well as its measurements concerning the robot-target
relationship, encapsulated by z%. The computation of these
correction pairs is articulated as follows:

Sk

zl = (Hjj)"(Ry) ™" HJ, (5a)

yi = (H)T(RY) ™ (2 + HX)), (5b)
where HY = 2‘; =%, R = Rh +
Hlpl (H )T ,Hil = ?)2; ()’(f,)’cf), and Zfl =
zh — hy (xF, xF).

Subsequently, the correction pairs are subjected to the
Covariance Intersection (CI) algorithm [24], in order to
calculate a consistent estimate denoted as X; along with its
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corresponding covariance representation, referred to as p,.

= (Y nhsh+nksh), (62)
leN?k,
ok vk
% =DBr( Y YR, +1RYE), (6b)
leN?t,
where nf € [0,1], and nf. adheres to n}. = 0 if robot i

cannot detect the target, and Varles within [0, 1] otherwise.
The condition ), NE, 771[ + 77T = 1 holds true. These
coefficients, 7;; and 77T , are strateglcally determined to
minimize the trace of covariance matrix pl.

Utilizing the estimation pair (p¥,%%) alongside the prior
estimation pair (p¥,x¥) delineated earlier, the CI algorithm
is employed to integrate the two sets of estimates, yielding
the ensuing posterior estimation pair denoted as (p¥,%¥),
which is characterized by the following expression:

-1
pf = ( zkl(sz) ! + zZ(pz) 1) ) (73)
xh = bt (ChBH %+ chEh TRE) (b
where ¢/ and ¢f € [0, 1], subject to & + (% = 1, can be

strategically designed for minimizing the trace of p¥.

For pithy, let’s focus on the propagation and state update
processes for robots. A similar approach can be employed to
obtain corresponding values for the target in a nearly parallel
fashion. These values include xk 1, pT 5(’}1_, f)’%i, as well
as the pairs (s¥ ,y%. ) and (sT 7yT) For details, refer to
[25].

III. DEEP REINFORCEMENT LEARNING-BASED ACTIVE
JOINT LOCALIZATION AND TARGET TRACKING

A. General Framework

In the scenario considered, a single robot i generates
its individual control input a¥ ~ my(a¥|o¥) based on its
own estimation and direct communication with its one-hop
neighbors j € N ;. This setup conforms to the structure
of a Multi-Agent POMDP [16]. Furthermore, under the
assumption of homogeneity among all robots, allowing for
centralized training of algorithms across different robots,
the algorithm falls into the category of centralized training
and distributed execution. A synopsis of the DRL-AJLATT
algorithm framework is presented in Table I and with details
shown later.

B. Deep Reinforcement Learning Setup

This subsection will elucidate the intricacies associated
with the observation space, the action space, the construction
of the reward function, and the underlying justification for
their specific design choices.

1) Observation Space: The observation of robot ¢ at time
k k ok

)

instance k is defined as o7 = (0 ,0; ).
L N

of = (Sf, Efvbgi)

ok aky (ok ok k
= {[(7,07), X7, p1,)], Ujens 25, Pyi}

TABLE I: DRL-based AJLATT by robot ¢

Initialization:
1 Initialize X?,p7, X7, , P7,, and set a; ' = 0.

At time k£ — 1

Information Exchange for AJLATT:

2.1 Send o} " to robot j, i € N¥; 1.
2.2 Receive oJL1 from robot j € ./\/'lei_l.
AJLATT Motion Planning:

3 Generate a" ! ~ my(aF~toF ).
4 With ak 1, xf ! and pk ! propagate robot i’s estimate
of its own state xl , P with known u%., x? ! and p kl L

obtain xT and pT

At time k

Update:

5.1 Obtain the robot-robot measurements z%, I € /\/:i, and
robot-target measurement Z%‘ (if the target is detected by
robot 7) and generate the correction pairs (st y5¥),

(55, ¥5). (5, 5F,).

52 Send (55 Y ) (f)é« X ) to robot j, i € NF;.

5.3 Receive (ST ,yT ), (pT 7xT ) from robot j, j € NC i

5.4 Calculate the posterior robot estimate pair (pl ¢ ) and
the posterior target estimate pair (pTi , x’i)

Applicable When Training

Policy Update:

6.1 Operate steps 2-5 until truncated, get trajectories of robots.

6.2  Partition the trajectory of each robot into discrete segments
with fixed length T. Save the segments into replay buffer.

6.3 if there are enough samples: go to step 6.5.
else go to step 6.4.

6.4 Reset all robots to their initials, and go back to step 6.1.

6.5 Update policy mg(a¥~*|oF~1) by PPO algorithm [26].
Move on to the next episode until the end.

where sf = [(XF,pF), (XT,ﬁ .)] denotes the state of
robot ¢, Ef represents robot ¢’s ‘measurement concerning
its sensing neighbors, and b, = (2% y%) indicates the
vector originating from robot 7 to the nearest boundary of the
map within its sensing area. of, = ;¢ NE, sk conveys the
information that is reachable through the one- hop neighbors
of robot 7

To handle varying dimensionality of robot observations
of based on the number of sensed and communicable
robots, constraints limit sensing to maximum ks robots
and communication to maximum k. robots. If exceeded,
random selection resolves redundancys; if lower, zero-padding
maintains consistent dimensionality.

2) Action Space: The robots are directly controlled by
adjusting their linear and angular velocities. The strategy
involves a continuous action space formulation that encom-
passes both linear and angular velocities, which is

k

af = (Uz‘ 7‘*‘-]1]‘6) S ['Untina U'rnaw} X [wmin; Wmaw] = Rcontr()h

where [Upmin, Umaz] and [Winin, Wmaz] denote the interval of
linear and angular velocity respectively.

The policy 7y is represented with a Gaussian distribution
£F ~ 7o(fF|oF) = N(ia,0?), where p, € R? denotes a
function originating from the robot’s observation at time
step k, characterized by a feed-forward neural network.
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Meanwhile, the variance, denoted as o2 € R, constitutes

a singular learned parameter that remains uncorrelated with
the system’s state. When considering the vector f¥ across the
defined control interval, the application of a clipping proce-
dure becomes operative, wherein a¥ = clip(f R control )
thereby ensuring its adherence to the bounds stipulated by
R control- For the sake of parsimony, the policy is represented
as mp(ak|ol).

3) Reward Design: The reward function consists of four
major components: r’“ = rTZ + Tc i T rk B + Tc ;» Where
rk. = —a(tr(Pr,) — trS) bestows rewards for improving
robots’ target estimation precision, with the lower limit for
the trace of the covariance matrix set as tr(.S).

Kok
g =%

e J )
I

cos(
k

_ _IVE'GN’C.
TCTi = J c,i .

sin(

w[|%F —x

2dco <

0, otherwise

rewards the robot for avoiding collision, where d., is the
allowed lower bound between robots and ¢, is a positive
constant for preventing the denominator from being too

—€ <tr P, — tr S) rewards the robot for better

estimating the state of itself. Tcoz n (if : ||bg;|| < deo)
confers rewards upon the robot as a recognition of its
proactive avoidance of collisions with the boundaries of the
map.

small. TE

C. Attention-based Embedding

To elucidate the relative significance attributed to individ-
ual neighbors, the attention mechanism [27], is introduced
as a pivotal construct. Inspired by the attention framework
expounded in [28], a tailored modification is formulated
to effectively accommodate the speciﬁc scenario delineated
therein. Th1s can be articulated as e = te(ofy), ek, =

= Z] L€, 0k = Y (eh ek ), where e; signifies the em-
bedding Vectors attributed to individual neighbors, e,, em-
bodies the mean value computed across the entirety of the
neighborhood, and 1, along with v,, denote fully-connected
neural networks. Through the employment of the softmax
operation applied to «; for the calculation of attention
scores, ensuring their cumulative sum equates to unity, the
resulting outcome manifests as the neighborhood embedding:
ek = Ef;ISoftmax(a;?)i/)h(e?), where 1, represents an
additional hidden layer. Preceding the computation of the
distribution mean pu,, an additional fully-connected neural
network ¢y is introduced to encapsulate the embedding of the
state pertaining to robot i itself: e¥ = ¢4 (0¥, ). Subsequently,
the distribution mean p, can be derived by combining the
information from these two embeddings: uf = ¢q(ek, €f),
where ¢, is also a fully-connected neural network.

D. Training Algorithm

The Proximal Policy Optimization (PPO) algorithm is
employed for the purpose of identifying the optimal policy.
In the following contents of this section, the time indices and
robot identity are omitted for simplicity where possible.

, 1xE = %5 < 2deo
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Generally, there are two variants of PPO, PPO-clip and
PPO-penalty. Comparing PPO-clip and PPO-penalty, the
advantage of PPO-clip lies in its simpler and more stable ap-
proach to policy optimization. PPO-clip directly limits policy
changes through clipping, leading to controlled updates and
enhanced convergence. PPO-penalty introduces complexity
with penalty terms and coefficients, potentially leading to less
stable training dynamics. Therefore, PPO-clip is preferred for
its effectiveness and ease of implementation [26], that is the
reason why PPO-clip is employed for training in this paper.

IV. SIMULATION

We substantiate the enhanced performance of our Deep
Reinforcement Learning (DRL)-based approach in collision
avoidance and target tracking through a comparative analysis
with two baseline methods: one relying on random motion
and the other on control-based strategies [25].

A. Simulation Setup

Consider the scenarios where M = 6 robots and a target
move on a 2-dimension surface. The unicycle model is
adopted for robots and the target in our simulation. The
motion models (1) and (2) can be expressed as

af =2l ol Steos(¢f ) + wh T,
yE =y i otsin(of ) +wy ®)

= ¢ Wit wl !

where i € {1,...,M} U{T}, &t = 0.5 s is the sampling
interval, and w; = [w{ffl, wfh 1T represents process noises
for the linear and angular velocities.

For robot ¢, the input ak ! is generated by policy
mp(a¥|oF) trained by our DRL-based AJLATT algorithm.
The limitations that we set for v; and w; are v; € [0,1]
m/s, and w; € [—%, 7] rad/s. The target’s input u}. = [v},

%17 is set in advance. The standard deviations for w} !

wr and
wk~1 for each robot i, i € {1,..., M}, are, respectively,

(V73

kll_Olm/sandok 1_05°,andak L' = 0.2 m/s,
O'f)Tl = 0.5° for the target. Each robot has a 5m’s radius
of communication range, and a 4m’s radius of field of view
with 6, =

The relative distance-bearing measurement model is
adopted for each robot in our simulation. If robot ¢ detects
robot j at time step k, then the relative measurement is given

by

k

\/(x.

l J —yf)?
atan2((y} — y7), (zf — xf)) — 0F

The standard deviation of the distance noise is set to 0.01
m, and the standard deviation of the bearing noise is set to
2°. The same measurement model is used for the robot-to-
target measurement z7, that we will use in the scenarios to
be introduced later.

The true states of robots and target being unavailable,
each estimates its initial state X? from a normal distribution
with mean as the true initial state x? and covariance pY.
The reinforcement network uses actor and critic networks

k )2+(y
k
J

k
z;;

ij

+v
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with 2 fully connected hidden layers (512 and 256 neuron
units), batch size 32, replay buffer size 109, and 300 training
episodes.

Three different motion strategies' are compared:

1) Random Motion (RM): use the same settings as in [25].

2) Control-based AJLATT Algorithm (C-AJLATT) [25].

3) DRL-based AJLATT (DRL-AJLATT): the algorithm
proposed in this work.

1000

1500

Fig. 1: (a) shows training convergence around 150 episodes.
(b) shows robot formation trajectory using DRL-AJLATT,
with red as target path. (c) shows trajectory with C-AJLATT.
(d) shows trajectory with RM algorithm.

TABLE II: Performance comparison for different methods. In all three
aspects, DRL-AJLATT demonstrates superior performance.

Metrics Method Empty Environment

RM -979.85

Reward C-AJLATT 563.08
DRL-AJLATT 691.51
Robot RM 4.512
Covariance C-AJLATT 2.557
DRL-AJLATT 1.953
Target RM 6.055
Covariance C-AJLATT 2.626
DRL-AJLATT 2.381

B. Simulation Metrics

In order to compare the performance of our algorithm with
other motion strategies,” we choose the following metrics to
evaluate the performance.

I'As the optimization-based algorithm in [25] uses exhaustive grid search,
which is extremely time consuming and less realistic, the algorithm is not
adapted for comparison here.

2As [29] has a different focus, which does not consider self localization
and collision avoidance, there is no basis for comparison with it.
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Control Based
Std
RL Based
Std
RM
Std
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—250 A

=500 -

=750

—1000 4

Fig. 2: Upon conducting ten runs of the trained DRL-
AJLATT, along with C-AJLATT and RM algorithms, each
executed with six distinct random seeds.

£

«

) Control

3 RL '

2 ’ RM
(a)

~

o

“w

IS

Control

v

RL
(b)

Fig. 3: Subfigure (a) illustrates robot covariance, and sub-
figure (b) depicts target covariance. Both figures highlight
DRL-AJLATT’s notable superiority in reducing estimation
variance compared to other methods.

e Reward: We assess robot performance using the term
’Reward,” which indicates their success in achieving the
desired goal. To facilitate comparison, we compute the
rewards for C-AJLATT and RM algorithms in a manner
consistent with how we evaluate DRL-AJLATT

e Trace of Covariance: The sum of the eigenvalues of the
covariance matrix measures the uncertainty in estimates
of robot and target states. The covariance of each robot’s
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self-estimate and target estimate is for comparison.

C. Results

In Figure 1, a comparison between subfigures (b) and
(c) reveals that, despite both groups of robots being guided
by DRL-AJLATT and C-AJLATT successfully capturing the
target, the C-AJLATT algorithm displays less efficient move-
ment. Conversely, the robots guided by the DRL-AJLATT
algorithm exhibit more effective tracking of the target. C-
AJLATT-guided robots exhibit unnecessary movements, such
as spinning. DRL-AJLATT-guided robots are more efficient,
moving directly towards the target. Subfigure (d) illustrates
that RM is the least effective in this context.Table II demon-
strates DRL-AJLATT’s consistent superiority in all aspects.
Figure 3 confirms DRL-AJLATT’s better performance in
reducing estimation covariance compared to C-AJLATT and
RM. In summary, DRL-AJLATT significantly outperforms
RM and C-AJLATT algorithms in the AJLATT task of this

paper.
V. CONCLUSION

We introduce a DRL-based algorithm for the AJLATT
problem using a team of robots. Simulations validate the
efficacy of our DRL-based approach for AJLATT tasks.
Our algorithm relies on estimated robot states, enhancing
scalability for real-world applications. However, limitations
include training in a fixed environment, a lack of theoretical
grounding, and underutilization of the estimation model.
Future work aims to evaluate generalizations through real-
world experiments and explore relevant theories.
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