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Fig. 1: In open-vocabulary 3D visual grounding task, CLIP-based models tend to treat text input as “bag of words”, ignoring
semantic structures of compositional text input, e.g., consisting of complex spatial relations among objects. On the top-right
is a demonstration of such behavior when using OpenScene [1], a CLIP-based 3D grounding method, as a visual grounder.
When asked to ground the spatially-informed text query “a chair between the dining table and window”, it incorrectly
highlights the dining table and window, which are not the target but rather referential landmarks (red bounding boxes). We
propose to address this problem by leveraging a large language model (LLM) to 1. Deliberately generate a plan to decompose
complex visual grounding queries into sub-tasks; 2. Orchestrate and interact with tools such as target finder and landmark
finder to collect information; 3. Leverage spatial and commonsense knowledge to reflect on collected feedback from tools.

Abstract— 3D visual grounding is a critical skill for household
robots, enabling them to navigate, manipulate objects, and
answer questions based on their environment. While existing
approaches often rely on extensive labeled data or exhibit
limitations in handling complex language queries, we propose
LLM-Grounder, a novel zero-shot, open-vocabulary, Large
Language Model (LLM)-based 3D visual grounding pipeline.
LLM-Grounder utilizes an LLM to decompose complex natural
language queries into semantic constituents and employs a
visual grounding tool, such as OpenScene or LERF, to identify
objects in a 3D scene. The LLM then evaluates the spatial and
commonsense relations among the proposed objects to make
a final grounding decision. Our method does not require any
labeled training data and can generalize to novel 3D scenes
and arbitrary text queries. We evaluate LLM-Grounder on the
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ScanRefer benchmark and demonstrate state-of-the-art zero-
shot grounding accuracy. Our findings indicate that LLMs
significantly improve the grounding capability, especially for
complex language queries, making LLM-Grounder an effective
approach for 3D vision-language tasks in robotics.

I. INTRODUCTION

Imagine you are put into a 3D scene and asked to find
“a chair between dining table and window” (Fig. 1). It is
easy for humans to figure out the answer. Such a skill is
called 3D visual grounding, and we typically rely on it for
daily tasks that range from finding objects to manipulating
tools. Mastering such an ability is critical to building any
household robots to assist humans, as it serves as a basic
skill needed for complex navigation (knowing where to go),
manipulation (what/where to grasp), and question-answering.

To endow robots with such an ability, researchers have
developed a number of approaches. One direction is to train a
3D-and-text end-to-end neural architecture to propose bound-
ing boxes around objects and jointly model text-bounding-
box matching [2–12]. However, such models typically need
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a large amount of 3D-text pairs for training data, which is
difficult to obtain [13,14]. As a result, such trained methods
often do not obtain good performance on new scenes. More
recently, attempts to address open-vocabulary 3D visual
grounding have been made [1,15–24], often building on
the strength of CLIP [25]. The dependence on CLIP, how-
ever, makes them exhibit “bag-of-words” behaviors where
orderless content is modeled well, but attributions, relations,
and orders are ignored when processing the text and visual
information [26]. For example, as illustrated in Fig. 1, if the
text query “a chair between dining table and window” is
given to OpenScene [1], the model grounds all of the chairs,
window, and dining table in the room, ignoring that the
window and dining table are just landmarks used to provide
spatial relations with the target chair.

At the same time, Large Language Models (LLMs) such
as ChatGPT and GPT-4 [27] have demonstrated impressive
language understanding capabilities, including planning and
tool-using. These abilities enable LLMs to be used as agents
to solve complex tasks by breaking the tasks into smaller
pieces and knowing when, what, and how to use a tool to
complete sub-tasks [28–36]. This is exactly what is needed
for 3D visual grounding with complex natural language
queries: parsing the compositional language into smaller
semantic constituents, interacting with tools and environment
to collect feedback, and reasoning with spatial and common-
sense knowledge to iteratively ground the language to the
target object. Given these observations, we ask the question,

Can we use an LLM-based agent to improve
zero-shot open-vocabulary 3D visual grounding?

In this work, we propose LLM-Grounder, a novel open-
vocabulary, zero-shot, LLM-agent-based 3D visual ground-
ing pipeline. Our intuition is that an LLM can allevi-
ate the “bag-of-words” weakness of a CLIP-based visual
grounder by taking the difficult language decomposition,
spatial and commonsense reasoning tasks upon the LLM
itself while capitalizing on the strength of a visual grounder
to ground simple noun phrases. Described in Section III,
LLM-Grounder uses an LLM at its core to orchestrate
the grounding process. The LLM first parses compositional
natural language queries into semantic concepts such as
object category, object attributes (color, shape, and mate-
rial), landmarks, and spatial relations. These sub-queries are
passed into a visual grounder tool backed by OpenScene [1]
or LERF [37], which are CLIP-based [25] open-vocabulary
3D visual grounding methods, to ground each concept in the
scene. The visual grounder proposes a few bounding boxes
around the most relevant candidate areas in the scene for
a concept. For each of these candidates, the visual grounder
tools calculate and provide spatial information such as object
volumes and distances to landmarks back to the LLM agent
to enable the agent to holistically evaluate the situation,
in terms of spatial relation and commonsense and select a
candidate that best matches all criteria in the original query.
This process is repeated until the LLM agent decides it
has reached a conclusion. Notably, our approach extends

prior neural-symbolic approaches [38] by giving environment
feedback to the agent and making the agent’s reasoning
process closed-loop.

It is important to note that our approach does not need
any training on labeled data. It is open-vocabulary and can
zero-shot generalize to novel 3D scenes and arbitrary text
queries, a desirable property given the semantic diversity
of 3D scenes and the limited availability of 3D-text la-
beled data. In our experiments (Section IV), we evaluate
LLM-Grounder on the ScanRefer benchmark [13]. This
benchmark primarily evaluates 3D vision-language ground-
ing capability that requires understanding of compositional
visual referential expressions. Our approach improves the
grounding capability of zero-shot open-vocabulary methods
such as OpenScene and LERF, and demonstrates state-of-
the-art zero-shot grounding accuracy on ScanRefer with no
labeled data used. Our ablation study shows LLM increases
grounding capability more as the language query becomes
more complex. These findings underscore the potential of
LLM-Grounder as an effective approach for 3D vision-
language tasks, making it particularly well-suited for robotics
applications where understanding complex environments and
responding to dynamic queries are essential.

In summary, the contribution of this paper is as follows:
• We find that using LLM as an agent can improve

grounding capability for zero-shot, open-vocabulary
methods on the 3D visual grounding task.

• We achieve SOTA on ScanRefer in a zero-shot setting,
using no labeled data.

• We find LLM is more effective when the grounding
query text is more complex.

II. RELATED WORK

3D Visual Grounding with Natural Language. Grounding
a natural language query in an unstructured 3D scene is
essential for various robotic tasks. Pioneering benchmarks
such as ScanRefer [13] and ReferIt3D [14] have advanced
this field. As proposed in these benchmarks, the referential
tasks in 3D and text necessitate a deep understanding of both
the compositional semantics of language and the structures,
geometries, and semantics of 3D scenes. Numerous methods
that are jointly trained on 3D and language have been
proposed [2–11] to advance performance. However, these
methods are limited to closed-vocabulary settings due to
the specific object classes presented in the original ScanNet
[39], upon which these benchmarks are built. Motivated
by advances in 2D open-vocabulary segmentation [40–43],
researchers have explored 3D open-vocabulary grounding
[1,15–22,37,44]. However, these methods mostly rely on
CLIP [25] as the underlying vision-language bridge. This
works well when the grounding text query is a simple noun
phrase (e.g., “a red apple”); however, research has shown
CLIP exhibits “bag-of-words” behavior and lacks composi-
tional understanding such as relation, attribution, and order
of either text or visual [26], a crucial aspect of the challenges
presented in ScanRefer and ReferIt3D. Recognizing this
aspect, Semantic Abstraction [23] and 3D-CLR [24] use
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Fig. 2: Overview of LLM-Grounder. Given a query to ground an object, our approach, backed by an LLM agent, reasons on
the user’s request and generates a plan to ground the object by using tools. The agent interacts with tools such as target find
and landmark finder to gather information such as object bounding box, object volume, and distances to landmarks from the
tools. This information is then returned to the agent to conduct further spatial and commonsense reasoning to rank, filter,
and select the best matching candidate.

spatial-informed text-and-3D data to train a dedicated neural
network to parse and ground the compositional semantics
of the text query before grounding. In contrast, our method
explores the possibilities of using an LLM agent to accom-
plish the same without training (zero-shot). NS3D [38] uses
LLM-based code generation to generate programs to address
this problem, which is more similar to our approach, but it
also uses ground-truth object segmentation and category to
simplify visual grounding and thus lacks open-vocabulary
and zero-shot capabilities.

LLM Agents Recent advancements in large language models
(LLM) [27,45–49] have demonstrated surprising emerging
abilities. Here, we list a few abilities that enable LLM to be
used as an agent.

a) Planning: Planning involves breaking complex goals
into sub-goals and self-reflecting based on issued actions
and environmental feedback. Chain-of-thought [28] shows
that LLM demonstrated better planning capabilities when
instructed to “think step-by-step” by decomposing complex
tasks into smaller tasks. Tree-of-thoughts [29] extends this
approach by exploring multiple thoughts per step, turning
the chain into a tree. [50–53] demonstrate that LLM, when
instructed to self-reflect on its output and environmental
feedback, can produce better output.

b) Tool-Using: The ability to use tools is a unique
feature of human intelligence. Recognizing that current
LLMs are not good at all tasks (math and factual question-
answering problems, for example), researchers have explored
possibilities of letting LLMs orchestrate tool-using to fulfill
a task. At its core, the tool-using problem is to decide which
tool to use and when to use them. Socratic Models [30] uses
natural language as a medium to engage an LLM agent in a
guided discussion with other multimodal language models,

such as vision-language models and audio-language models,
to complete a task collectively. MRKL [54] and TAML [55]
equip an LLM with a calculator and demonstrate its increased
ability to solve math problems. Building on these findings,
software libraries like LangChain [56] has been developed to
streamline LLM tool-using for developers. ToolFormer [31],
HuggingGPT [57] and API-Bank [58] push tool-using further
by opening up more APIs and machine learning models as
tools for LLM to use.

In robotics, SayCan [32], InnerMonologue [33], Code as
Policies [34] and LM-Nav [35] use the planning and tool-
using capability of LLM to let it serve as a high-level
controller of real robots for long-horizon, complex tasks.
The success obtained in these tasks motivates us to use LLM
as an agent to help solve the compositional language-vision
understanding challenges presented in 3D visual grounding.

III. METHOD

Recently, success stories from Auto-GPT [59], GPT-
Engineer [60], and ToolFormer [31] show early signs of
success in using LLM as an agent. An agent is different
from a traditional model in machine learning in that it has
agency: it is an entity that is driven by a goal, reasons about
its goal, comes up with plans, examines and uses tools, and
interacts with and collects feedback from the environment.
In the 3D Visual Grounding setting, an agent can be a
promising solution to the “bag-of-words” behavior exhibited
by existing models. In LLM-Grounder, we use GPT-4 as
the agent and prompt it to complete three tasks: 1. Break
down the complex text query into sub-tasks that can be better
handled by downstream tools like a CLIP-based 3D visual
grounder, such as OpenScene and LERF; 2. Orchestrate and
use such tools to solve the sub-tasks it proposes; and 3.
Reason on feedback from the environment by incorporating



Training Size Open-Vocab Method Visual Grounder + LLM Agent Acc@0.25 ↑ Acc@0.5 ↑

36k labeled
3D-text data

closed-vocab
ScanRefer[13] – – 34.4 20.1

3DVG-Trans[2] – – 41.5 28.2

zero-shot open-vocab
LERF[37] LERF ✗ 4.4 0.3

Ours LERF ✓ GPT-4 6.9 (+2.5) 1.6 (+1.3)

zero-shot open-vocab
OpenScene[1] OpenScene ✗ 13.0 5.1

Ours OpenScene ✓ GPT-3.5 14.3 (+1.3) 4.7 (-0.4)

Ours OpenScene ✓ GPT-4 17.1 (+4.1) 5.3 (+0.2)

TABLE I: Experiment results on ScanRefer. LLM (GPT-4) agent significantly increases 3D grounding capabilities for zero-
shot open-vocabulary 3D grounders such as LERF and OpenScene. We measure grounding capability by Accuracy@0.25
and @0.5, which are accuracies of bounding box predictions whose Intersection-over-Union (IoU) w.r.t. ground-truth box
exceeds 0.25 and 0.5, respectively. Numbers in parentheses represent performance gain or loss after adding LLM agent.
Results also show that a less powerful LLM, such as GPT-3.5, is not able to achieve strong grounding capability gain. Lastly,
although not directly comparable with our method which is zero-shot open-vocabulary, performances are listed for methods
that are trained on ScanRefer and closed-vocabulary for completeness.

LERF OpenScene

Low Visual Difficulty w/o LLM 10.8 27.6
w/ LLM 15.1 (+4.3) 33.6 (+6.0)

High Visual Difficulty w/o LLM 2.5 8.6
w/ LLM 4.4 (+1.9) 12.1 (+3.5)

TABLE II: Ablation study on visual complexity. LLM agent
is more effective for 3D grounding in low visual difficulty
settings. Numbers shown are Acc@.25.

spatial understanding and common sense to make grounding
decisions.
Planning. The first advantage of LLMs is their ability to
plan. Research has shown that chain-of-thought reasoning
[28], i.e., explicitly prompting LLM to break complex goals
down into smaller sub-tasks (“think step-by-step”) can help
arithmetic, commonsense, and symbolic reasoning tasks.
Inspired by these findings, we design our agent likewise as
illustrated in Figure 2. Specifically, we first ask the agent to
describe its observation, which gives the agent a chance to
summarize the current situation. The context can encompass
the human text query and the returned information from tools
(described below). The agent then starts a section called
reasoning, which serves as a mental scratchpad for the agent
to perform high-level planning. Then, in the plan section, the
agent must list more specific steps to fulfill the high-level
plan, including any tool-using, comparison, or calculation.
The agent can reflect on the generated plan in the self-critique
section and make any final corrections [53].
Tool-Using. The second advantage of LLMs stems from their
ability to use tools. We instruct the LLM agent to use tools
to solve the “bag-of-words” behavior (Sec. II). As shown in
Fig. 2, we inform LLM of the expected input and output
format, i.e., the APIs, of two tools we designed for visual
grounding and feedback, and ask the LLM agent to interact
with them following the given format. The tools include a
Target Finder and a Landmark Finder.
Target Finder and Landmark Finder. The target finder and

landmark finder take in a text query input, find bounding
boxes of clusters of possible locations for the query, and
return a list of candidate bounding boxes in the form of
centroids and sizes (Cx,Cy,Cz,∆X ,∆Y,∆Z). Target is the
main object that a user refers to in a query (“chair” in “a
chair between dining table and window”); landmark is the
object used to spatially refer to the target (“dining table”
and “window”). The target finder additionally computes the
volume for each candidate and the landmark finder addi-
tionally computes the Euclidean distance from each target
candidate’s centroid to the landmark’s centroid. The volume,
distance, and bounding boxes together provide feedback
for the LLM agent to conduct spatial and commonsense
reasoning. For example, a candidate “chair” with a volume
as small as 0.01m3 is probably a false positive and should
be filtered out; a candidate whose distance to the landmark
does not comply with the spatial relation mentioned by the
query should be rejected. The target finder and landmark
finder are implemented by open-vocabulary CLIP-based 3D
visual grounders LERF [37] and OpenScene [1]. These tools
alone exhibit “bag-of-words” behaviors (Sec. I) when given
complex text queries; however, when given simpler text
queries such as a simple noun phrase (“a chair”), such
tools can usually work well. The LLM agent capitalizes on
this capability of noun-phrase grounding of such 3D visual
grounders while compensating for their weaknesses in lan-
guage understanding and spatial reasoning by decomposing
the complex grounding queries, grounding one object at a
time, and reasoning about their spatial relation afterward. To
use the target finder, we instruct the LLM agent to parse out
noun phrases (e.g., “wooden chair”) from the original natural
language query; to use the landmark finder, we instruct the
LLM agent to parse out any landmark objects mentioned
in the original query and their spatial relation to the target
object.

Please see our project website and GitHub repository for
details of prompts and APIs used in LLM-Grounder.



IV. EXPERIMENTS

In experiments, we first would like to evaluate how well
the LLM-based agent improves zero-shot open-vocabulary
3D visual grounding, compared with CLIP-based 3D vi-
sual grounding methods. Then we evaluate our method in
the closed-vocabulary setting and compare it with closed-
vocabulary and trained approaches. Finally, we show some
qualitative examples on in-the-wild scenes, to show the
generalization of our approach.

A. Dataset

ScanRefer. ScanRefer [13] is a benchmark on 3D object
localization in indoor 3D scenes using natural language.
It consists of 51,583 human-written descriptions of 11,046
objects of 18 semantic categories from 800 ScanNet [39]
3D scenes, where the train/val/test split contains 36,665,
9,508 and 5,410 descriptions, respectively. We use the first 14
scenes from the validation split for the experiments presented
in Table I, which consists of 998 text-and-3D-object pairs.
We also report two standard metrics of ScanRefer: Accu-
racy@0.25 and Accuracy@0.5. 0.25 and 0.5 are different
thresholds for IoU of 3D bounding boxes.

B. Baseline Methods

ScanRefer. ScanRefer [13] uses an end-to-end 3D-text neural
architecture to localize objects given a natural language
input. Specifically, it processes the 3D point cloud into Point-
Net++ [61] features, then clusters the points and proposes
bounding boxes of objects. The language features are then
fused together with the clusters and boxes to decide which
boxes are the ones referred to by the language. The pipeline
uses supervision from the text and b-box pairs and the
ground-truth b-boxes and semantic class for all objects in
the scene. We include this baseline as a show of the current
trained pipeline’s performance, serving as a ceiling compared
to our zero-shot setting where no supervision is used.
3DVG-Transformer. 3DVG-Transformer [2] builds on Scan-
Refer’s end-to-end neural architecture and proposes a
new neural module to aggregate close-by clusters before
proposing bounding boxes. Similar to ScanRefer, 3DVG-
Transformer also uses supervision of ground-truth object b-
boxes, semantic class, and human-annotated descriptions.
OpenScene and LERF. OpenScene [1] and LERF [37]
are zero-shot open-vocabulary 3D scene understanding ap-
proaches. OpenScene distills 2D CLIP features into a 3D
point cloud and allows grounding with a text query by
calculating the cosine similarity between the CLIP text em-
bedding of the query and every point in the 3D point cloud.
LERF achieves the same by encoding CLIP embeddings
into a neural radiance field, These methods, when used
alone, exhibit “bag-of-words” behavior as illustrated in 1,
a problem we aim to address with LLM agent deliberative
reasoning. To produce bounding boxes using OpenScene and
LERF for the 3D visual grounding benchmark ScanRefer, we
apply DBSCAN clustering [62] on points with high cosine
similarity and draw bounding boxes around them.

C. Results

We first show qualitative results of LLM-Grounder in Fig.
3. More results and demonstrations can be found on the
project website1, including in-the-wild scenes.

Compared with baselines, we find the LLM agent can im-
prove zero-shot, open vocabulary grounding. As shown in Ta-
ble I, the addition of an LLM agent can significantly increase
the grounding performance of both LERF and OpenScene by
achieving 5.0% and 17.1% on Accuracy@0.25, respectively.
We attribute the lower increase in performance for LERF to
the weaker overall grounding capability of LERF. The lower
increase suggests that when the tool provides too noisy of a
feedback to an LLM agent, it is hard for the LLM agent to
reason with the noisy input and improve performance. We
also note the low increase in performance on Accuracy@0.5,
which requires the predicted b-box to have more than 50%
overlaps with the ground-truth box. We attribute this to the
lack of instance segmentation capability of the underlying
grounder. We observe that the grounders often predict too
large or too small of a bounding for the correctly grounded
object. Such prediction is not correctable by an LLM thus
causing the difficulty of precise visual grounding and the low
performance increase. Additionally, we find that when using
GPT-3.5 as the agent for OpenScene, the performance drops
compared to without GPT. We attribute this to the weaker
tool-using and spatial and commonsense reasoning capability
of GPT-3.5. All GPT experiments were done in Aug. 2023.

D. Ablation Study

We then evaluate what the LLM-agent primarily improves
on. We test two different settings: (1) does the LLM-agent
help more with a more difficult visual context? (2) does the
LLM-agent help more for more difficult text queries?
Difficulty of visual context. We categorize the results by
vision difficulties in Table II and find that LLM agent is
more effective for low vision difficulty queries, evidenced
by the higher grounding performance increase. Specifically,
we separate the grounding queries into Low Visual Difficulty
and High Visual Difficulty categories. A query has low visual
difficulty if the object mentioned in the text query is the
sole object of that class in a scene (0 distractor); a query
has high visual difficulty if there are more than 1 distractor
object of the same class in a scene. Out of the 998 queries
we evaluated, 232 queries had low visual difficulty, and
766 queries had high visual difficulty. Results in Table II
show that LLM brings more performance increase for the
low visual difficulty queries. This behavior can be explained
by the different challenges presented in low- and high-
visual-difficulty settings. In low visual difficulty settings,
the main challenge an open-vocabulary 3D grounder faces
is the “bag-of-words” behavior. For example, if the text
query is “the sink in the kitchen” and if there is only one
sink in the scene, a bag-of-words grounder would highlight
the whole kitchen, leading to low grounding precision. An
LLM agent is particularly good at solving this problem by

1https://chat-with-nerf.github.io/
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Fig. 3: Qualitative example. LLM agent uses spatial reasoning to successfully disambiguate the correct object instance.
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parsing out the target object “sink” and only issuing this
single noun to the grounder, thus circumventing the bag-of-
words behavior. For high visual difficulty settings, however,
there is one additional challenge: instance disambiguation.
Because there are multiple instances of the same class in
the scene, the visual grounder would return many candidates
to the LLM agent. The LLM agent could use its spatial
and commonsense reasoning capability to filter out some
instances with volume and distance to landmark information,
but more complex instance disambiguation usually requires
more nuanced visual cues, a privilege an LLM agent does
not have because it is blind.
Difficulty of text queries. As queries become more complex,
the LLM-agent will help performance, but only up to a

certain point. We can measure query complexity by counting
the number of nouns in the sentence: the more nouns in
a description, the more difficult it will be to ground any
specific object. We see from Fig. 5 that, both with and
without the help of an LLM agent, performance decreases
as sentence complexity increases. However, from analyzing
the performance difference between using an LLM agent and
not using one, we see that there is a quadratic dependence
on query complexity (Fig. 4). This suggests that the LLM
provides an advantage for grounding when presented with
higher-complexity queries, but after reaching some thresh-
old, the performance advantage diminishes. When query
complexity is low, models without an LLM can ground
objects effectively, so LLMs provide minimal advantage. As
complexity increases, baseline models perform worse and
LLMs provide a more significant advantage. However, with
increased complexity of referential expression, LLM’s spatial
reasoning capability may not surpass the performance of no-
LLM baselines. We may require stronger LLMs to produce
advantages in these higher complexity ranges.

V. CONCLUSION AND LIMITATIONS

We introduced LLM-Grounder, a novel approach for 3D
visual grounding that leverages Large Language Models as
the central agent for orchestrating the grounding process.
Empirical evaluations demonstrate that LLM-Grounder ex-
cels particularly in handling complex text queries, offering
a robust, zero-shot, open-vocabulary solution for 3D visual
grounding tasks without the need for domain-specific train-
ing. It is noteworthy that LLM-Grounder represents an initial
attempt at the integration of LLMs with 3D understand-
ing, presenting considerable opportunities for performance
enhancements in future developments. However, there are
some limitations to consider. Cost: Utilizing GPT-based
models as the core reasoning agent can be computationally
expensive, which may limit its deployment in resource-
constrained environments. Latency: The reasoning process,
due to the inherent latency of GPT models, can be slow.
This latency could be a significant bottleneck for real-time
robotic applications where rapid decision-making is crucial.
Despite these limitations, LLM-Grounder sets a new baseline
for future work that integrates LLMs with robotics systems.
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