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The JOIN operation in the given query combines
the VOTES table with the AREA_CODE_STATE
table based on condition that the state in VOTES
matches the state in AREA_CODE_STATE. This
allows us to retrieve the area code ...

What is the area code in which the most voters voted?

 IntelliExplain (ours)

Explain how these tables are combined.

9 More Turns

I think you are correct.

Vanilla Chat LLM (GPT-3.5-turbo)

(Explanation)

Return an area code, not the state. (Feedback)

(Explanation)

I think you are correct.

(Initial Code)

What does JOIN operation in the given query
do? (Clarfication Question)

(Response)

(Task-specific Context)

(Database Schema)

VOTES:
vote_id phone_number state created

(Question)

System explains
code using

understanable
NL explanation

&
User identifies

errors 
(state --> area

code) 
and

communicates
with NL

feedback

Easy-to-use and
enhanced code
generation for

non-
professionals

System exposes
source code to
users directly

&
User has to
understand

technical terms
and iteratively

request
explanations,

execution
results, etc.

Hard-to-
understand and

fix errors in
code generation

for non-
professionals

Here is what I understand based on your question:
In what state did the highest number of voters cast
their votes?
If you think that my understanding is correct, please
mark this question as "complete" by clicking "I think
you are correct."

SELECT state, COUNT(*) as num_votes
FROM VOTES JOIN AREA_CODE_STATE ON
VOTES.state = AREA_CODE_STATE.state
GROUP BY state ORDER BY num_votes
DESC LIMIT 1

Here is what I understand based on your question:
In which area code did the highest number of voters
vote?
If you think that my understanding is correct, please
mark this question as "complete" by ...

User seeks
help for code

generation

I've finalized the SQL query based on your inputs!
Here is it:
SELECT area_code FROM AREA_CODE_STATE WHERE state
= (SELECT state FROM VOTES GROUP BY state ORDER BY
COUNT(*) LIMIT 1)

Fig. 1. IntelliExplain enables non-professional programmers to write code in natural language (NL) without requiring direct

interaction with code. A user starts with a question in NL, accompanied by relevant context (top). IntelliExplain then generates source

code and confirms its understanding of the question by presenting an NL explanation (in □) to the user. When this understanding is

incorrect, the user can provide corrective feedback in NL and instruct the system.

Chat LLMs such as GPT-3.5-turbo and GPT-4 have shown promise in assisting humans in coding, particularly by enabling them to
conversationally provide feedback. However, current approaches assume users have expert debugging skills, limiting accessibility
for non-professional programmers. In this paper, we first explore Chat LLMs’ limitations in assisting non-professional programmers
with coding. Through a formative study, we identify two key elements affecting their experience: the way a Chat LLM explains its
generated code and the structure of human-LLM interaction. We then propose IntelliExplain, a new conversational code generation
framework with enhanced code explanations and a structured interaction paradigm, which enforces both better code understanding
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and a more effective feedback loop. In two programming tasks (SQL and Python), IntelliExplain yields significantly higher success
rates and reduces task time compared to the vanilla Chat LLM. We also identify several opportunities that remain in effectively offering
a chat-based programming experience for non-professional programmers.

CCS Concepts: • Human-centered computing → Empirical studies in HCI; Natural language interfaces; User interface
programming.
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1 Introduction

The field of AI-powered code generation haswitnessed a significant paradigm shift with the emergence of Large Language
Models (LLMs) such as Codex [10], Code Llama [33], StarCoder [24], and CodeT5 [44]. Unlike prior approaches that
often involved labor-intensive data collection and annotation efforts, current LLMs can learn directly from few-shot
task demonstrations fed in their prompt context (called “few-shot, in-context learning”) [26]. Given a task description
provided in natural language (NL), or sometimes an incomplete code snippet, these LLMs generate or complete the
code by autoregressively generating a sequence of code tokens. The advent of Chat-based Large Language Models
(Chat LLMs) like GPT-3.5&4 [1, 29], Claude [3], and Gemini [2] further support code generation by offering real-time,
interactive assistance. These models are designed for conversational use and allow users to actively engage in LLM’s
decision-making process and provide real-time feedback (called “conversational code generation”). This conversation
feature of Chat LLMs greatly enhances the code quality and better ensures that the code fits user goals. As a result,
Chat LLMs have become the standard for real-time coding assistance.

However, how to leverage Chat LLMs’ interactive features in assisting non-professional programmers to write code
remains a challenge. Non-professional programmers encompass both novice and end-user programmers. Novice
programmers are individuals who are new to programming and have limited experience or knowledge in writing code.
In contrast, end-user programmers are individuals who may not have formal training in coding but use programming
interfaces to automate tasks, develop scripts, or modify existing software applications for personal or professional use.
Prior works have explored how programmers interact with LLM-based code assistants from a usability perspective
in a non-conversational setting. For example, Vaithilingam et al. [41] and Barke et al. [5] systematically examined
the usability of Github Copilot [17] in assisting experienced programmers. They found that the Copilot is effective at
providing a starting point but requires further professional debugging to ensure correctness. Kazemitabaar et al. [19]
investigated how GitHub Copilot assisted novice programmers in an introductory programming class and found that it
significantly increased coding performance during the learning phase without decreasing performance on later manual
code modification tasks.

In a conversational code generation scenario, a user typically interacts with a Chat LLM by posing programming
questions and optionally providing input-output samples to specify requirements. When errors are identified or when
the generated code fails to meet the specified requirements, users follow up with either clarifications or corrective
feedback pinpointing the errors and prompting the model to refine the code solution. Ross et al. [32] showed that
conversational assistants could provide valuable assistance to software engineers by enabling them to ask follow-up
Manuscript submitted to ACM
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IntelliExplain: Enhancing Conversational Code Generation for Non-Professional Programmers 3

questions that depend upon their conversational and code contexts. Khojah et al. [21] highlighted the usage of ChatGPT
in generating high-level guidance. However, these explorations have focused on only professional programmers, yet
how a Chat LLM-based code assistant can help non-professional programmers is underexplored.

Despite the simplicity of the conversational paradigm in code generation, the difficulty in understanding the generated
code and accurately pinpointing and articulating errors within the code makes it challenging for users, especially
non-professional programmers, to provide meaningful corrective feedback. To address the problem, prior research
has conducted extensive exploration of the formats of user feedback for code error correction [9, 14, 42, 43, 47], but
there was only limited focus on developing solutions specifically for non-professional programmers with Chat LLMs.
One recent work conducted by Prather et al. [30] revealed that novice programmers often struggle to understand
LLM-generated code and likely accept incorrect code suggestions, which also highlights the need for forming a better
understanding of how non-professional programmers interact with (Chat) LLMs and proposing a better conversational
code generation framework for them.

In this work, we first provide a systematic study toward understanding how non-professional programmers interact
with the vanilla Chat LLM in a conversational code generation scenario. Specifically, we performed a user study with a
group of participants with no or only limited expertise in programming, tasking them with 10 programming tasks in
SQL and another 10 in Python and observing their interaction patterns with a vanilla Chat LLM. We measured their
rate of successfully completing the coding tasks and analyzed how their interaction patterns had various impacts on the
success rate. Our analysis identified two critical elements — code explanations and structure of human-LLM interaction

— as essential for allowing the user to understand the model-generated code and provide effective feedback for error
correction. Nonetheless, our study showed that a vanilla Chat LLM, due to the lack of a carefully designed explanation
generation method and the similar lack of a well-structured human-LLM interaction procedure, is not able to assist
non-professional programmers with sufficient efficacy. In fact, participants reported frustration from interacting with
the vanilla Chat LLM.

To address these issues, we introduce IntelliExplain, a new conversational framework equipped with enhanced
explanations and a structured human-LLM interaction paradigm to assist non-professional programmers in compre-
hending and debugging code. IntelliExplain follows a well-structured interaction procedure with humans. It first
provides an NL explanation of its generated source code to the user, then prompts the user to identify issues and
give NL feedback based on the explanation, and finally refines the code solution according to the user feedback. This
approach allows non-professional programmers to write code using natural language, without requiring professional
programming knowledge or direct interaction with the source code (Figure 1). The key insight of IntelliExplain lies
in its use of an enhanced NL explanation of code, which presents a more accessible version of the source code while
offering users with a clear understanding of code logic. Its structured interaction procedure helps users to provide more
effective feedback and eventually yields a higher success rate in the coding tasks.

To investigate the effectiveness of IntelliExplain, we conducted a second user study, reusing the setting from our
study with the vanilla Chat LLM. Our results indicate that participants using IntelliExplain achieved 11.53% and
25.31% higher success rates while requiring less time to write correct code compared to those using the vanilla Chat LLM
on both tasks respectively. Even participants with no prior programming experience were able to write and debug code
solely by relying on our enhanced NL explanations and following the structured interaction paradigm we designed. The
results confirmed the importance of the two elements we discovered and demonstrated the effectiveness and efficiency
of IntelliExplain. Finally, we see that even with the advancement we have made with IntelliExplain, further room
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remains for future improvement. We identified additional challenges within conversational code generation that hinder
non-professional programmers and highlighted potential future research directions in this area. To summarize:

• We systematically studied how non-professional programmers interact with the vanilla Chat LLM in conver-
sational code generation and identified key elements (i.e., code explanations and the human-LLM interaction
structure) that affected its efficacy.

• We introduced IntelliExplain, a conversational framework based on a novel structured human-LLM interaction
paradigm that incorporates our enhanced NL explanations for conversational code generation.

• Our user study shows that IntelliExplain helps non-professional programmers, including those with no prior
experience, to write and debug code more effectively and efficiently.

• We included a thorough analysis of two user studies and discussed the potential and challenges for future re-
searchers to continue the effort of enhancing Chat LLM-based conversational code generation for non-professional
programmers.

2 Related Work

2.1 Interactive and Conversational Code Generation

Interactive code generation, where users interactively work with a tool or a system for code generation, has been a
long-standing problem. One example is allowing users to interactively provide or annotate input-output examples in
the scenario of programming by example (PBE). For example, Zhang et al. [52] introduced mechanisms to augment user-
provided examples. Users could either directly annotate desired and undesired parts of generated regular expressions or
identify counterexamples synthesized by the model for further code refinement. Drosos et al. [13] developed Wrex, a
Jupyter Notebook extension using a programming-by-example environment for interactive data transformations. It
allows users to provide transformation examples via an interactive grid, where Wrex then generates and inserts readable
code into the notebook for immediate application and visualization, streamlining the data preprocessing. However, even
proficient programmers cannot provide representative examples that cover as many practical situations as possible.
Consequently, while the provided or augmented examples may match the expected output, the output code may still
produce undesired behavior in unseen cases.

Research on conversational code generation has been an active topic even before the recent popularization of Chat
LLMs [8, 14, 22, 25, 27, 38, 39, 48, 50]. A conversational code generation system typically consists of three components:
a code generator, a mechanism to identify and request user feedback on the predicted code, and an error correction
model to refine the code based on user feedback. Studies conducted by Gur et al. [18] and Yao et al. [49] approached this
by explaining components in a generated SQL code, and if any component was wrong, users were prompted to select
the correct components from a shortlist as feedback. Another approach, proposed by Li et al. [25], identified uncertain
tokens in the user’s NL commands and sought user choices for paraphrases to enhance clarity. However, the multi-
choice feedback type adopted by these prior approaches, while showing promise in the text-to-SQL task they focused
on, exhibited limitations in terms of user-friendliness, efficiency, and generalizability to more complex programming
languages. In particular, users could only passively respond to system-presented choices, posing challenges in facilitating
a more dynamic and user-centric interaction. To address this issue, free-form NL feedback has been introduced [14, 22].
Elgohary et al. [14] demonstrated the effectiveness in correcting code errors via NL feedback and annotated the SPLASH
dataset to benchmark automatic error correction. Their subsequent work NL-Edit [15] further fine-tuned a model
to convert the NL feedback into actionable code edits for error correction. However, their work was conducted to
Manuscript submitted to ACM
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correct errors made by Seq2Struct [36], a much weaker code generator than the current (Chat) LLMs. Therefore, the
effectiveness of their error correction model may not generalize to errors made by the more advanced LLMs, and the
success rate reported in their work is not comparable with the results in our study. In addition, given their need for
annotating edit data to train the error correction model, their model was task- and programming language-specific,
whereas in our work, we aim for a conversational system that can generalize across tasks and programming languages.

As LLMs improve their conversation ability, several studies have explored Chat LLMs for code generation. Champa
et al. [7] conducted a quantitative analysis of 2,865 developer-ChatGPT conversations from the DevGPT [45] dataset,
examining how developers use ChatGPT across 12 software task categories. The study found that the ChatGPT is
most effective for tasks like software development management, optimization, and new feature implementation, but
less efficient in areas such as environment setup, documentation, and code quality management. Chopra et al. [12]
systematically examined conversational assistants for data scientists and identified challenges such as contextual data
retrieval, adapting generated code to local environments, and refining prompts. While other works have explored
ChatGPT’s usability for code completion [31, 37] and debugging [16, 40], few focus on its conversational role in
assisting non-professional programmers from both aspects. The use of (Chat) LLMs for code generation in introductory
programming classes has also gained popularity among both students and educators [6, 19, 20, 30, 35]. Unlike these
studies, which focus on the educational setting and studying the impact of (Chat) LLMs on programming learning,
our work is centered on whether and how these models can assist non-professional programmers for better task
completion. However, we envision that the insights we discovered, such as the necessity of enhancing the explanations
of model-generated code and having more structured human-LLM interaction, can generalize to the educational setting.

2.2 Code Comprehension

While LLM-based coding tools allow programmers with limited coding skills or domain knowledge to write code more
easily, they also introduce challenges, as these programmers may struggle to understand and debug the generated code
[5, 41]. These challenges have motivated the need for effective code comprehension support. In this space, Nam et al.
[28] developed a Visual Studio Code plugin, which enhances code comprehension by triggering AI explanations on
selected code or providing detailed explanations as a response to user queries. Yan et al. [46] introduced Ivie, a tool
providing instant, in-situ AI explanations for generated code. Ivie integrated LLMs to display concise explanations
next to code, from variables to entire blocks. A lab study showed that Ivie improved code understanding and was a
useful, low-distraction addition to programming assistants. Leinonen et al. [23] found that while LLM-generated and
student-generated code explanations are similar in length, LLMs’ explanations are perceived as more accurate and
easier to understand. Sarsa et al. [34] examined the abilities of LLMs in generating programming exercises and code
explanations, finding that most of the generated content is both novel and coherent. However, none of these studies
comprehensively examined how code explanations impact the interaction experience of non-professional programmers
using Chat LLMs for code generation. Our work thus complements existing research.

3 User Study Design

To understand the behaviors and challenges encountered by non-professional programmers in using Chat LLMs for
programming, we conducted a formative study. All of the human subject studies involved in our work have received
approval from the university’s institutional review board (IRB). Participants worked on two coding tasks: Text-to-SQL
and Python code generation. Both required translating natural language questions into executable code: SQL queries for
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Text-to-SQL

Difficuty

Level

Sample Question & Edits for SQL (incorrect to correct) Edits

Count

SyntaxComplexity of

Generated Code

Easy “What is the grade of each high schooler?”
SELECT ID, grade FROM Highschooler

1-2 actions -

Medium “Count the number of countries for which Spanish is the
predominantly spoken language.”
SELECT COUNT(*), MAX(Percentage) FROM countrylanguage
WHERE IsOfficial=’T’ LANGUAGE="Spanish" GROUP BY Coun-
tryCode

3-5 actions -

Hard “What is the area code in which the most voters voted?”
SELECT state area_code FROM votes as T1 JOIN area_code_state
AS T2 ON T1.state = T2.state GROUP BY state area_code ...

>5 actions -

Python Code Generation

Easy “Write a function to round the given number to the nearest
multiple of a specific number.”

1-2 lines Basic math expressions,
single for-loops, simple
if-then conditions

Medium “Write a python function to check whether the given number
can be represented by product of two squares or not.”

3-5 lines Nested for-loops, basic
recursion

Hard “Write a python function to find the last digit when factorial
of a divides factorial of b.”

Completely
Rewrite

Potentially with more
complex recursions,
deeper for loops, ad-
vanced data structures

Table 1. Sample test questions for each difficulty level. The edits of text-to-SQL were calculated based on the number of actions

needed to correct the errors. The edits of Python were manually counted based on the required revisions on the predicted code.

Text-to-SQL and Python code for the Python task. Concentrating on understanding how non-professional programmers
interact with a Chat LLM for debugging, we selected tasks for which the LLM writes incorrect code.

3.1 Setup

We employed GPT-3.5-turbo (version 0613) as our backend Chat LLM. For text-to-SQL, we utilized Spider [51], a
large-scale, complex, and cross-domain dataset, and for the Python code generation, we used MBPP [4], which contains
entry-level programming questions. We selected 10 questions from each dataset where GPT-3.5 exhibited errors in its
initial few-shot code generation. To maximize the potential insights we could collect from the user study, we carefully
categorized questions in each dataset into three difficulty levels — easy, medium, and hard, and randomly selected
questions from each category to form the 10 test questions used in the study. Examples of questions at different difficulty
levels are shown in Table 1.

More specifically, for text-to-SQL, we initially followed the same criteria as Yu et al. [51] and defined the question
difficulty based on the number of components in the ground-truth SQL query, so that queries containing more SQL
keywords (GROUP BY, ORDER BY, nested subqueries, etc) are considered to be harder. Under this criteria, we selected 4
easy, 3 medium, and 3 hard questions from Spider. However, our subsequent analysis revealed that a more complex
ground-truth query does not necessarily imply a more challenging user interaction. For example, even for a very complex
query, when the Chat LLM’s initial prediction is almost correct, the required user interaction for code correction is
minimal. Therefore, we redefined the difficulty level of SQL tasks based on the number of edits required to modify the
Manuscript submitted to ACM
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initial prediction of the Chat LLM to the ground-truth query. The same idea was also adopted by Elgohary et al. [15].
Under this new criteria, we defined difficulties as easy (within 2 edits), medium (3-5 edits), and hard (more than 5 edits),
resulting in a new categorization of 4 easy, 2 medium, and 3 hard questions for the SQL tasks.

For Python code generation, we defined the difficulty level by the syntax complexity of predicted code and the edits
of error correction. Specifically, an easy question typically involves fewer lines of generated code and contains only
basic logic, such as a single for loop, simple if-then conditions, and basic math expressions. Errors in easy questions are
also simple to correct with minimal modifications (within 2 lines). A medium question includes slightly more complex
logic, such as simple recursion or nested for loops, but the errors can be fixed within 5 lines without the need to rewrite
the entire code. A hard question, at a minimum, shares similar logic complexity to a medium question but may involve
more complex recursion, deeper nested loops, or advanced data structures. Errors in hard questions often require
rewriting the entire code logic to ensure correctness.

3.2 Participants

We recruited undergraduate students from various majors through recruitment flyers and email advertisements.
Each applicant completed a demographic survey with items on their programming background and experience level.
We selected participants for inclusion who were beginners in programming, including first-year computer science
students who had only completed an introductory programming course with minimal practical experience as well as
individuals from non-computer science majors, who had no prior programming experience but were familiar with basic
mathematical logic and could benefit from programming in their work. From 50 applicants, we recruited 22 participants
who met our requirements, of which 20 completed the studies (10 for our formative study to be presented in Section 4
about vanilla GPT-3.5-turbo, and 10 for the study with our proposed framework, which will be introduced in Section 5).
18 reported no experience with databases or SQL queries, while the remaining 2 had taken university database classes
but lacked practical experience. One participant had no prior experience with Python, while the other 19 had completed
an introductory Python course.

3.3 User Interface

Understanding the question and its context—such as the database in text-to-SQL or test cases in Python code genera-
tion—is crucial for coding tasks. However, the default web-based interface of GPT-3.5-turbo (i.e., the ChatGPT web
interface) does not support the inclusion of additional contextual information. To address the issue, we developed our
own User Interface (UI) using Gradio (Figure 2).1 For both tasks, the UI includes a panel displaying the contextual
information of the task (A) — for text-to-SQL, the information includes the database schema and three sample records
for each table in the database; for Python code generation, the information consists of test cases and their expected
outputs. The UI also contains a chatbot window showing the conversation history between the user and the Chat
LLM, along with a text box for user input (C); and three buttons are included (D): a “Complete” button for participants
to indicate that they believe the current prediction is correct and wish to end the interaction session, and two “Skip”
buttons, one used when participants struggle to understand the question, and another used when participants feel that
the Chat LLM cannot generate the correct answer after multiple attempts. In our second study, the UI additionally
contains a panel displaying the execution results of the machine-generated code (B).

1https://www.gradio.app.
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B

C

A B

C

A

DD

Fig. 2. The user interface used in our user studies. For both tasks, the UI consists of 4 components: (A) Contextual information

needed to answer the question (e.g., sample database records for Text-to-SQL and test cases and expected outputs for Python Code

Generation); (B) (Only for IntelliExplain) Execution results, which are returned values by executing the predicted code against the

database or test cases; (C) Chatbot interface, showing the conversation history between participants and the Chat LLM, including a

text box for user input and a “Submit” button; and (D) Control panel, including two “Skip” buttons.

3.4 Study Procedure

The user study comprised three phases: a warm-up session, a formal study, and a post-task interview. Recognizing that
all participants entered the study with limited experience in the specified tasks and were unfamiliar with our UI, we
initiated the study with a warm-up session. An experimenter provided an overview of the two tasks and introduced
participants to the various functionalities embedded within our UI. Participants then actively engaged with the UI,
tackling two warm-up questions for each task to foster familiarity and proficiency. Throughout this warm-up session,
participants were encouraged to pose any questions related to the tasks or coding process, fostering a collaborative and
informative environment. A fail-safe was included, so if participants found the training questions challenging or faced
issues with the UI, they were guided to end their participation. Upon successful completion of the warm-up session,
qualified participants then proceeded to the formal study, where they were tasked with independently solving all test
questions. During the formal study, the experimenter played a passive role, intervening solely to address clarifying
questions or resolve any technical issues encountered by the participants. This intentional shift allowed for an authentic
assessment of the user study. To encourage efficient completion of the user study and to keep participants focused, we
set a 5-minute time limit for each question. Participants were instructed to skip any question they could not solve within
this time frame. After the study tasks, we conducted a semi-structured interview to explore participants’ experiences
and gather detailed feedback on conversational code generation. The interview questions covered various aspects, from
overall experiences to specific components that assisted them in solving coding tasks or challenges they encountered
during the formal study.

3.5 Evaluation

For evaluating the performance of a Chat LLM in assisting non-professional programmers, we report Success Rate
(SR), defined as the percentage of success codes that, when executed, produce results matching the expected outputs.
For text-to-SQL, SR is implemented with the official Execution Accuracy metric of Spider [51], which compares the
Manuscript submitted to ACM
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Success Rate (%)

Easy Medium Hard Overall

Text-to-SQL 25.83 0.00 0.00 10.33 (𝑆𝐷 = 0.16)
Python Code Gen 28.89 46.30 3.33 26.44 (𝑆𝐷 = 0.34)

Ave. Time Spent/Question (s)

Text-to-SQL 174.95 87.75 150.16 147.59 (𝑆𝐷 = 57.53)
Python Code Gen 167.25 181.00 200.13 181.24 (𝑆𝐷 = 46.91)

Table 2. Overall performance when participants interact with the vanilla Chat LLM (GPT-3.5-turbo). We reported the micro-average

success rate (in percentage) and time spent (in seconds) among questions. SD refers to standard deviation.

execution results between the LLM-generated code and the ground-truth code against the database. For Python code
generation, we execute the generated code to see whether the code can pass all test cases. In addition, we also report
the average time spent per question (denoted as “Avg. Time/Question”), which measures how efficiently a Chat LLM
can assist participants in coding. For each metric, we calculate the micro-average among different questions and report
the overall standard deviation.

4 How Effectively Do Chat LLMs Assist Non-Professional Programmers in Coding?

4.1 Task Performance

Table 2 presents the overall task performance results. We excluded from our analysis tasks in which the participants
indicated difficulty in understanding the initial question and hence skipped it (i.e., “Cannot understand the question”).
In text-to-SQL, participants skipped a total of 10 tasks across 8 distinct questions, out of 100 overall (10 participants by
10 test questions). In the Python code generation tasks, participants together skipped 8 tasks across 6 distinct questions.

Overall, we found that, even with the assistance of a chat LLM in writing the code, successfully writing SQL was
very challenging for non-professional programmers. Even for the questions we categorized as easy, there was a low SR
of 25.83%. None of the participants successfully completed any of the medium or hard questions: performance dropped
to 0.0%.

Among the three difficulty levels of test questions, easy questions led to the longest interaction time, as these
questions were most understandable by the participants, and as a result, participants had more engagement with the
vanilla Chat LLM on them. These meaningful interactions yielded a non-zero SR as we described above. In contrast,
participants had more difficulty in understanding the generated code from medium and hard questions, resulting in
less time compared to their spent on the easy questions. We also noticed the time drop with medium questions. Our
conjecture is that, while the participants were not able to engage deeply with the vanilla Chat LLM for both levels of
questions, the rich information of hard questions gave them more room for interaction, hence the longer interaction
time. However, no matter if they spent shorter or longer time on these questions, their SRs were both zeros.

The relatively higher SRs in Python tasks suggest that non-professional programmers may find Python’s syntax
and readability more accessible and that they are able to communicate more effectively with the Chat LLM. The time
spent per question increases with task difficulty, showing that participants invested more time as the complexity of the
tasks increased. An interesting observation here is that the SR of medium questions was even higher than that of easy
questions. By looking into participants’ conversations, we discovered that some participants requested a simulation of
execution results for the generated code. As we will discuss in Section 4.2, one limitation of the simulation process
is that the Chat LLM may generate “fake” results to align with expected results but the faked result is not the actual
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output by running the code. The simpler logic of easy questions often leads to the simulation process only containing
the faked result without sufficient intermediate logic. Participants based on the faked result could not provide accurate
feedback for error correction. In contrast, medium questions involve more intermediate steps in the simulation process,
and even if the final simulation result was faked, participants could spot errors by carefully examining these steps.
Another issue was incorrect mental reasoning. Some participants attempted to provide feedback based on their own
mental simulations or solutions for easy questions. In some cases, they miscalculated mathematical expressions or had
incorrect logical reasoning, resulting in inaccurate feedback. However, this type of mental reasoning appeared less
frequently in conversations involving medium questions.

Despite this, hard tasks still present a significant challenge. This reveals a gap in the ability of non-professional
programmers to effectively communicate with Chat LLM for more complex coding tasks.

By analyzing the participants’ conversations and post-task interviews, we identified two key challenges that sig-
nificantly impacted participants’ performance on the tasks: code comprehension and error correction. In the next two
subsections, we examine each of these challenges in detail.

4.2 Code Comprehension

Participants comprehended code by interact with the LLM to understand the source code and interpret the logic,
structure, and semantic meaning of the code. Understanding the machine-generated code was important for participants
to be able to correctly edit the code to fix issues which were present. Participants often struggled to read and interpret
code and had to invent their own ways to prompt the LLM for code comprehension. We identified four distinct methods
participants used to interact with the Chat LLM to understand the code (Table 3).

• Complete Explanation: Across both tasks, over 85% of participants requested a complete line-by-line explana-
tion of the source code. This indicates that non-professional programmers often need comprehensive guidance
to understand the overall logic and structure of the code. In reviewing the model’s explanations, we found
that they generally align with the generated code. However, we found two key drawbacks: (1) Excessive length
and complexity: The explanations provided were often too detailed, complex, and lengthy. Non-professional
programmers, who may already find code comprehension difficult, may quickly lose patience or feel overwhelmed
by the amount of information. As a result, they may skim through the explanations without fully understanding
them. In our post-task interviews, 5 out of 10 participants reported experiencing this issue. (2) Use of technical
language: Even when the explanations were semantically correct, participants often struggled to understand them
due to a lack of foundational programming knowledge. Post-task interviews revealed that many participants
were unable to understand LLM-generated explanations when the explanations mentioned SQL keywords such
as JOIN and GROUP BY or advanced Python programming concepts such as recursion.

• Technical Jargon Clarification: Participants faced challenges working with technical jargon and concepts
central to programming, such as the concepts of “loop” and “recursion” in Python and the preserved keywords
in SQL. Participants sought explanations for technical jargon present either in the source code itself or in the
responses of the LLM. 37.50% of participants in the Text-to-SQL task and 22.22% in the Python task asked for
clarification of technical jargon. Participants often requested clarification after first asking the LLM for a complete
explanation. This sequential behavior shows their need for further explanation of the code, suggesting that just
asking the LLM for a complete explanations is not sufficient for non-professional programmers to understand
the code. Interestingly, in the later phase of the user study (e.g., after the participant completed the first 6-7
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Methods of Code Compre-

hension

Example Participant Input

Frequency (%)

Text-to-SQL Python

Complete Explanation "Can you explain what each line of code is doing?" 86.75 87.22

Technical Jargon Clarifi-

cation

"isinstance(item, list): is that a helper function or an inbuilt
function?"

37.50 22.22

Execution Process Simula-

tion

"Show me you doing number 35." 31.25 38.89

Explanation on Unclear

Concept in the Question

"Define "predominantly spoken language"." 12.50 11.11

Table 3. Various methods of how non-professional programmers interact with a vanilla Chat LLM for code comprehension and its

frequency. (Note that the participant may apply multiple methods in one conversation.)

questions), a few participants began requesting clarification on technical jargon without asking for complete
explanations. This suggests that they were actively learning the code syntax and were able to more directly
engage in code debugging as they accumulated more experience.

• Execution Process Simulation: Beyond only requesting explanations from the Chat LLM, participants also
asked the LLM for execution process simulation, stepping through how the code actually runs. This method was
used in 31.25% of conversations in the Text-to-SQL task and 38.89% in the Python task. However, we observed
that GPT-3.5 often failed to generate execution steps that fully reflected the logic of the code. When the code
included mathematical calculations, the results could be incorrect, even if the execution steps appeared accurate.
In some cases, the LLM “faked” the final execution result to match the expected output rather than reflecting the
true execution. This is an example of a “LLM Hallucination”, where the LLM generates incorrect or fabricated
information. Participants who relied on this method were often misled by the simulation and ultimately failed
the coding task.

• Clarifying Concepts in the Questions: Participants also sought explanations for unclear concepts within the
input questions. This occurred less frequently, 12.5% in Text-to-SQL and 11.11% in Python. The low frequency
suggests that most participants felt confident in their understanding of the question.

Our analysis reveals that non-professional programmers interacting with a commercial Chat LLM must invent
strategies for code comprehension. Due to their lack of programming knowledge, participants struggled to understand
the code. However, analysis of participants strategies in understanding code does not directly reveal the ultimate success
of these methods in helping participants understand the code. For participants, the key outcome of understanding
the code was the ability to successfully ask the LLM to correct the code. Therefore, we next investigated participants’
approach to offering corrections to the code.

4.3 Error Correction

In Table 4, we present the frequency of participants providing feedback for error correction, as well as the feedback
accuracy (defined as the percentage of feedback that precisely instructs the Chat LLM for error correction, which
was calculated through manual analysis). As shown in the table, participants were able to propose error correction
suggestions in over half of the conversations. At first glance, this might suggest that participants understood the
model-generated content sufficiently to identify and address potential errors. However, a closer examination shows that
the quality of the participant feedback was low, with only approximately 40% accuracy for both SQL and Python tasks.
The low accuracy of participant feedback highlights substantial gaps in error identification among non-professional
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Frequency of Participants Feedback for Er-

ror Correction (%)

Quality of Partici-

pant Feedback (%)

Easy Medium Hard Overall Accuracy

Text-to-SQL 62.50 43.75 44.44 51.53 38.46
Python Code Gen 64.72 79.17 53.33 65.64 42.22

Table 4. Frequency and accuracy of participant feedback for error correction when using the vanilla Chat LLM. Frequency was

calculated at the conversation level. Accuracy was calculated based on the first two feedback types listed in Table 5, as the other

types cannot be precisely measured.

Feedback Types

Text-to-SQL Python

Frequency

(%)

Accuracy

(%)

SR for Accurate

Feedback (%)

Frequency

(%)

Accuracy

(%)

SR for Accurate

Feedback (%)

Instruction for Error

Correction

71.06 42.86 60.00 67.39 42.86 94.44

Question Rephrasing 9.26 0.00 0.00 4.44 33.33 100.00

Input-Output Sam-

ples

1.67 - 0.00 15.06 - 12.50

Self-Debug 25.34 - 11.11 21.44 - 30.00

Table 5. Frequency, accuracy, and success rate (when the feedback is accurate) for different types of participant feedback when

interacting with the vanilla Chat LLM.

programmers when interacting with the vanilla Chat LLM. In Table 5, we further summarize the major types of feedback
provided by the participants, as well as their frequency and accuracy (except for “input-output samples”, which are
accurate test cases, and “self-debug”, which refers to participants feeding the same model-predicted code). For each
type of feedback, we also present the Chat LLM’s SR in error correction when the feedback is accurate, so as to ablate
the effect of the LLM’s capability limit. These feedback types include:

• Instructions for Error Correction. The most frequent type of feedback is the instruction pinpointing errors and
suggesting fixes to the Chat LLM. For example, the participant may directly point out the LLM’s misunderstanding
of the question, such as “official languages are not necessarily predominant.” However, the low accuracy of these
instructions suggests that participants still struggle with code comprehension, making it difficult for them to
precisely identify errors. On the other hand, the high SR for accurate feedback indicates that when participants
correctly identified issues, their suggestions were effectively taken. This underscores the importance of improving
code comprehension to better support non-professional programmers in pinpointing errors.

• Question Rephrasing. This type of feedback occurs when participants perceive errors in the generated code
and attribute these errors to the underspecified or unclear intent of the original question. Participants attempt
to rephrase the question to clarify their intent and guide the LLM towards generating more accurate code.
However, due to their limited understanding of programming concepts, many of these rephrasings turned out
to be imprecise, which eventually misled the LLM. In the context of Python code generation, only 3 instances
of this feedback type were observed, with 1 out of 3 resulting in a correct outcome. This leads to a seemingly
higher SR. However, this single instance does not provide enough evidence to confirm the overall effectiveness
of question rephrasing as a better feedback strategy than others.

• Input-Output Samples. In Python code generation, participants also frequently pointed out test examples
where the LLM failed and provided the expected output as guidance. However, the absence of detailed instructions
to fix the mistakes rendered this type of feedback ineffective (12.5% SR).
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• Self-Debug. Finally, participants also tried to feed the entire generated code and let the LLM debug the code
itself. Same as the input-output samples as feedback, such feedback is not helpful (11% and 30% SRs) given that it
does not provide any instructive hints on the error correction.

Our analysis shows that participants, when interacting with a vanilla Chat LLM, were not able to provide accurate
and effective feedback. This inaccuracy and ineffectiveness was caused by both ineffective code comprehension and
a lack of structured interaction between the participant and the Chat LLM. For both code comprehension and error
correction, we observed the participants’ struggle when there was no structured design to facilitate their interaction
with the Chat LLM, and they hence had to invent their strategies, though these strategies were often unhelpful. These
findings highlight the need for both better explanation methods for code comprehension and a more structured interaction

paradigm to facilitate non-professional programmers’ interactions with the Chat LLM.

5 IntelliExplain: A Novel Interaction Paradigm with Enhanced NL Explanation

In this section, we introduce IntelliExplain, a prompting framework for supporting non-professional programmers in
conversational code generation. IntelliExplain features an iterative process where a carefully repurposed Chat LLM
explains its generated code, seeks user feedback on the explanation, and refines the code based on that feedback.

5.1 Design Goals

Our approach was shaped by two key design goals.
(1) Enable non-professional programmers to understand the model-generated code and identify errors

without directly interacting with the code. Our study with the vanilla Chat LLM demonstrates that non-professional
programmers struggle to understand lengthy and complex code explanations. Sometimes the explanations were also
imprecise. These observations suggest the need for explanations that are both accurate and accessible, particularly to
allow non-professional programmers to understand the code without directly reading or interacting with it. Explanations
should also facilitate error identification, enabling users to easily identify defects.

(2) Enable effective incorporation of the non-professional programmer’s feedback for error correction.

From our user study with the vanilla LLM, we observed that when participants could precisely articulate errors and
provide accurate feedback of type “instruction for error correction,” the LLM effectively addressed those errors. However,
the study also revealed a large variation across different participants’ interaction patterns, including the type of feedback
they would provide. When the human-LLM interaction is unstructured and fully open-ended, it is not guaranteed
that the programmer will always provide the most effective type of feedback. This insight motivated us to design a
structured interaction paradigm that is well-integrated with our proposed explanation.

In the remaining section, we will first detail our proposed explanation method in Section 5.2 and then present our
designed interaction paradigm in Section 5.3.

5.2 Enhanced Natural Language Explanations

Explanations from the vanilla Chat LLM are often too lengthy and complex to be read by non-professional programmers.
To address this limitation, we propose two distinct styles for program explanations for SQL and Python respectively.

5.2.1 Question Restatement from Source Code. In our user study using the vanilla Chat LLM, we observed that a
substantial portion of LLM errors in text-to-SQL tasks originated from the model’s misunderstanding of concepts in
the user’s question. These errors are particularly challenging for non-professional programmers to detect from the
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Translate the following SQL into question. The question should be consistent with the SQL and follow a similar style as
the original question.

[...triplets of <SQL, Original Question, Restated Question> as few-shot demonstrations...]

SELECT status_code FROM bookings GROUP BY status_code ORDER BY count(*) DESC LIMIT 1

Original Question: What is the most frequent status of bookings?

Explanation (Restated Question): Which status code appears most often in bookings?

Table 6. Restated Question from Source Code as Explanation. The table shows our prompt and an example explanation. Explanation

in this format seeks a high-level description of the source code. By comparing the restated question with the original one, users can

easily identify any conceptual misunderstanding made by the LLM, which is common in text-to-SQL programming.

code generated, given their limited programming knowledge. The code explanations often contain technical jargon,
which can further obscure the underlying concepts and distract users from accurately identifying the LLM’s conceptual
misunderstanding (Figure 1, right). Observing this challenge, we propose to use a restated question from the source code

as an explanation for text-to-SQL programming (Table 6). A restated question is an NL question generated by the LLM
to describe the intent of a model-generated code. Prior work [25] found that prompting users to compare the restated
question with the original one helps them easily spot any mismatched concepts. For non-professional programmers,
these explanations are concise and free of technical jargon. Unlike the previous work which adopted template-based
question restatement, we prompt the Chat LLM to generate the question restatement to follow a similar linguistic pattern

as the user’s initial question. Our investigation showed that participants can more easily identify mismatched concepts
when the questions to compare follow a similar linguistic structure.

Table 6 shows our prompt to the Chat LLM for restated question generation. To align the restated question with the
style of the source question, we additionally include the input question in the prompt and explicitly instruct the LLM to
produce a restated question following a similar language style. For a more reliable explanation generation, we manually
wrote 13 triplets of <SQL, Original Question, Restated Question> as few-shot demonstrations to guide the LLM. The
SQL queries were selected to encompass a broad range of syntax that may appear in the given programming language,
such as keywords “SELECT”, “WHERE”, “DISTINCT”, etc.

5.2.2 Concise Description of Source Code. In our exploration, we observed that the question restatement as an expla-
nation was more effective for relatively shorter code snippets, such as SQL queries, especially when there is a need
to identify conceptual errors in code. However, it does not allow for the detection of logical errors inside the source
code, especially in scenarios with lengthy generated code and complex tasks. This issue arises when the LLM makes
an inaccurate generation despite correctly understanding concepts in the input question. To address it, we propose
a concise explanation of the source code that strikes a balance between the brevity of question restatement and the
verbosity of a line-by-line explanation. An example and our prompt design are shown in Table 7. We begin by randomly
selecting 8 examples and providing each with a human-written description. The description includes a summary of the
predicted code at an abstract level, followed by a breakdown of the code logic to illustrate how the LLM approaches the
problem. Unlike a line-by-line explanation, our concise description offers a more readable and shorter format while still
covering essential logical details. These annotated examples serve as few-shot demonstrations in our prompt to guide
the LLM in generating such explanations.
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You are an expert Python programmer. Your task is to write a description for the following Python program. The
description should be accurate, concise, and easily understood by non-programmers.

[...pairs of <Python Program, Explanation> as few-shot demonstrations...]

Python Program:
import math

def is_not_prime(n):

result = False

for i in range(2,int(math.sqrt(n)) + 1):

if n % i == 0:

result = True

return result

Explanation (Concise Description): This program checks if a given number is not a prime number. It does this by
iterating through all numbers from 2 to the square root of the given number and checking if any of them divide the
number evenly. If a divisor is found, the program returns True, indicating that the number is not prime. Otherwise, it
returns False, indicating that the number is prime.

Table 7. Concise Description of Source Code as Explanation. The table shows our prompt and an example explanation. The explanation

includes more details about the thought process behind the source code and thus enables users to identify logic errors in it.

5.3 IntelliExplain: An Interactive Framework for Conversational Code Generation for Non-Professional
Programmers

With our proposed NL explanation, we now present a new interaction paradigm, which is designed to address the
variation in how non-professional programmers interact with a Chat LLM and encourage more effective coding task
completion (Figure 3). This new interaction paradigm leads to IntelliExplain, a new interactive framework that is
much more effective in assisting non-professional programmers in conversational code generation tasks. Below, we
detail the process of this interaction paradigm.

Code Generation and Execution. We adapt the few-shot prompts from Chen et al. [11] for text-to-SQL and Austin et al.
[4] for Python code generation in IntelliExplain to generate the initial code. Building on previous findings, where a
number of participants sought “execution process simulation” for code comprehension (Section 4.2), we additionally
incorporate an external code interpreter for both tasks. This allows us to execute the generated code to obtain the
execution results, which will be utilized by subsequent processes.

Explanation Generation. After the initial code is generated, IntelliExplain prompts the LLM to generate the NL
explanation for the code. As introduced in Section 5.2, we adopt question restatements as explanations for SQL queries
and concise descriptions as explanations for Python code.

User Feedback Request. IntelliExplain then presents the NL explanation and the execution results to the user and
seeks feedback on whether their question is correctly answered. In text-to-SQL, participants review a restated question
derived from the source code to check if it aligns with their intentions. In Python code generation, users directly assess
the correctness of the LLM-generated code by comparing its execution results with the ground truths of the test cases.
If the generated code fails any test cases, users identify logical or implementation errors in the code by examining the
presented NL explanation. In both tasks, users can mark the question as “complete” if no errors are found or provide
feedback for error correction.
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Explanation
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Fig. 3. Our proposed interaction paradigm, consisting of (1) a user asks a coding question and provides the context that is necessary

for answering the question; (2) LLM predicts an initial code answer; (3) LLM generates an NL explanation for the initial code; (4) the

user judges the explanation and determines whether the code is correct; if any error is found in the explanation, the participant

provides NL feedback for error correction; and (5) the LLM refines its answer based on the feedback. Steps 3-5 repeat until the user

cannot find more errors in the explanation.

Error Correction. If feedback for error correction is provided, IntelliExplain refines the code by taking the initial
code, its NL explanation, and the user feedback as input. This correction process is formulated using few-shot in-context
learning, with 4 human-annotated error correction demonstrations included in the prompt to guide the LLM.

With this interaction paradigm, IntelliExplain iteratively refines the code until participants either identify no
further errors or choose to end the conversation.

6 How Does IntelliExplain Assist Non-Professional Programmers in Coding?

We conducted an additional user study with 10 participants to evaluate how non-professional programmers interact
with IntelliExplain. The recruiting process is the same as those in our study with the vanilla Chat LLM.

6.1 Overall Performance

Following the same evaluation process of the Chat LLM user study, Table 8 presents the average success rate (SR)
and average time spent per question (Avg. Time/Question) for using IntelliExplain. Similarly, the results excluded
skipped samples (6 samples across 4 distinct questions in text-to-SQL and 15 samples across 7 distinct questions in
Python) due to “Cannot understand the question”. IntelliExplain enables participants to achieve SRs 11.53% and
29.89% higher than the vanilla GPT-3.5 group in text-to-SQL and Python code generation, respectively, demonstrating
the advantage of our interactive framework. In addition to the improved SR, IntelliExplain also reduced participants’
time spent by 60 seconds per question in text-to-SQL and 25 seconds per question in Python code generation. A t-Test
(Figure 4) indicated that the difference in means between the two groups are statistically significant, both for SR (SQL:
𝑡 = 1.935, 𝑝 = 0.042; Python: 𝑡 = 2.361, 𝑝 = 0.021) and time spent on each question (SQL: 𝑡 = −2.611, 𝑝 = 0.014; Python:
𝑡 = −1.873, 𝑝 = 0.047).

We attached one example from our user study for Python code generation in Figure 5; an example of SQL code
generation has been presented in Figure 1. In this example, the participant successfully composed the correct Python
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Success Rate (%)

Easy Medium Hard Overall

Text-to-SQL 32.14 (6.31 ↑) 10.00 (10.00 ↑) 17.50 (17.50 ↑) 21.86 (11.53 ↑) (𝑆𝐷 = 0.22)
Python Code Gen 57.34 (28.45 ↑) 45.56 (0.74 ↓) 50.48 (47.15 ↑) 51.75 (25.31 ↑) (𝑆𝐷 = 0.16)

Ave. Time Spent/Question (s)

Text-to-SQL 97.75 (77.20 ↓) 67.46 (20.29 ↓) 93.63 (56.53 ↓) 90.04 (57.55 ↓) (𝑆𝐷 = 35.97)
Python Code Gen 158.43 (8.82 ↓) 137.73 (43.27 ↓) 160.37 (39.76 ↓) 152.80 (28.44 ↓) (𝑆𝐷 = 53.09)

Table 8. Overall participant performance on test questions using IntelliExplain. We reported the average success rate (in percentage)

and time spent (in seconds). IntelliExplain outperforms vanilla Chat LLM in success rate and generally needs less time (↑ denotes an

increase compared to the vanilla Chat LLM, while ↓ represents a decrease).

Fig. 4. Box plots of the success rate and task time by tool for the Text-to-SQL and Python Code Gen tasks

code using just 2 interactions with IntelliExplain, whereas users relying on the vanilla Chat LLM required significantly
more interactions to understand the generated code and validate whether it is correct. Finally, participants using the
vanilla Chat LLM failed to identify errors in the generated code, which resulted in an incorrect answer without the user’s
awareness. In the example of IntelliExplain, we noticed that while the participant correctly pointed out the code
error in the first turn, their feedback was not incorporated by the framework. IntelliExplain grasped the meaning
and made corresponding corrections only when the participant rephrased the feedback in the second turn. While the
final outcome is positive, this reveals room for further improvement of IntelliExplain in the future, which we will
discuss in Section 8. In what follows, we look deeply into what exactly makes IntelliExplain work better and quicker
than the vanilla Chat LLM.

6.2 Code Comprehension

Through enhanced explanations, IntelliExplain allows participants to understand the code without directly reading
or interacting with it, which makes code comprehension much easier for them. To investigate the helpfulness of our
enhanced explanations, we manually examined all explanations generated by IntelliExplain, particularly looking at
whether they precisely describe the LLM-generated code (Preciseness) and capture code errors (Discriminativeness). As
summarized in Table 9, our explanations align precisely with the generated code in all cases. We present some of the
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(Execution Results: 2, 0, 1)

(Execution Results: 2, 6, 2)

I've finalized my answer based on your input and passed all the
tests! Here is it:

import math
defdef  compute_Last_Digitcompute_Last_Digit((aa,, b b))::
    factorial_a     factorial_a == math math..factorialfactorial((aa))
    factorial_b     factorial_b == math math..factorialfactorial((bb))
    quotient     quotient == factorial_b  factorial_b //// factorial_a factorial_a
    last_digit_quotient     last_digit_quotient == quotient  quotient %%  1010
        returnreturn last_digit_quotient last_digit_quotient

(Question)
compute_Last_Digit(2,4) == 2 
compute_Last_Digit(6,8) == 6
compute_Last_Digit(1,2) == 2

Write a python function to find the last digit when factorial of a
divides factorial of b.

(Tests)

I generated a code that cannot pass all test cases. Can you tell
me what is wrong with my code? Here is the description of my
code:
This program calculates the last digit of the result when
computing the factorials of two given numbers, 'a' and 'b'. It uses
the math module to calculate the factorials of 'a' and 'b'. Then, it
finds the last digit of each factorial by taking the modulus of 10. If
the last digit of 'a' is 0, it returns 0. If the last digit of 'b' is 0, it
returns the last digit of 'a'. Otherwise, it returns the last digit of 'a'
modulo the last digit of 'b'.
The execution results are shown on the top right. (Explanation)

(Feedback)

(Corrected Code)

Divide factorial of b by factorial of a and find return the last digit.

I generated a code that cannot pass all test cases. Can you tell
me what is wrong with my code? Here is the description of my
code:
This program calculates the last digit of the result when
computing the factorials of two given numbers, 'a' and 'b'. It uses
the math module to calculate the factorials of 'a' and 'b'. Then, it
finds the last digit of each factorial by taking the modulus of 10. If
the last digit of 'a' is 0, it returns 0. If the last digit of 'b' is 0, it
returns the last digit of 'a'. Otherwise, it returns the last digit of 'a'
modulo the last digit of 'b'.
The execution results are shown on the top right.

(Feedback)
Find the last digit of the quotient b factorial divided by a factorial.

I think you are correct.

Here is the Python function to find the last digit when the factorial
of a divides the factorial of b:

def compute_Last_Digitdef compute_Last_Digit((aa,, b b))::
        defdef  factorialfactorial((nn))::
                ifif n  n ====  00  oror n  n ====  11::
                        returnreturn  11
                elseelse::
                        returnreturn n  n ** factorial factorial((nn--11))
    factorial_a     factorial_a == factorial factorial((aa))
    factorial_b     factorial_b == factorial factorial((bb))
    last_digit_a     last_digit_a == factorial_a  factorial_a %%  1010
    last_digit_b     last_digit_b == factorial_b  factorial_b %%  1010
        ifif last_digit_a  last_digit_a ====  00  oror last_digit_b  last_digit_b ====  00::
                returnreturn  00
        ifif last_digit_a  last_digit_a ==== last_digit_b last_digit_b::
                returnreturn last_digit_a last_digit_a
        returnreturn last_digit_a last_digit_a

What are the factorials of 8 and 6.

The factorial of 8 is calculated as 8! = 8 x 7 x 6 x 5 x 4 x 3 x 2 x
1 = 40,320.
The factorial of 6 is calculated as 6! = 6 x 5 x 4 x 3 x 2 x 1 = 720.

What is the output of compute_Last_Digit(2, 5).

The factorial of 8 is 40320 and the factorial of 6 is 720.
The output of compute_Last_Digit(2, 5) is 2.

I asked for the factorials of 5 and 2, not 8 and 6.

Apologies for the confusion. The factorials of 5 and 2 are: ...

6 More Turns

I think you are correct.

 IntelliExplain (ours) Vanilla Chat LLM (GPT-3.5-turbo)

(Execution Results: 2, 0, 1)

(Explanation)

Could not identify
errors in the
source code

Successfully
identify errors and
make corrections

User seeks
help for code

generation

Fig. 5. With IntelliExplain, the participant can comprehend the source code via NL explanation (in □) to more easily identify

potential errors. IntelliExplain makes corrections based on participant feedback. In contrast, when interacting directly with code

in vanilla GPT-3.5, the participant struggles to understand source code and fails to identify errors. GPT-3.5 may also sometimes

generates responses that are irrelevant to the user question (in □).

examples in Table 10. In most cases (50% for SQL and 70% for Python), the explanations are also discriminative enough
to allow users to identify code errors. The cases of less or non-discriminative explanations happened more frequently in
text-to-SQL tasks, due to the brevity of the restated questions as explanations. While we chose this explanation design
to facilitate the identification of code errors caused by conceptual misunderstanding, it compromised the potential of
finding other types of code errors from the explanations. In Python code generation, we observed a similar situation. As
the code became more complex, concise explanations sometimes failed to capture all the detailed logic and the contained
errors. To further examine this problem, we conducted an analysis independent of the user study with a larger sample
size. Specifically, we used GPT-3.5 to generate code for the entire Spider-dev set (1,034 test examples) and the MBPP-test
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Preciseness Discriminativeness

Text-to-SQL 10/10 5/10
Python Code Gen 10/10 7/10

Table 9. The frequency when the NL explanation of IntelliExplain precisely describes the generated code (Preciseness) and when

code errors could be found from the explanation (Discriminativeness). Results are calculated based on explanations in the first turn of

the participant conversations (hence out of “10” explanations).

Question (Text-to-SQL) How many different winners both participated in the WTA Championships and were left handed?

Predicted Code SELECT COUNT(DISTINCT winner_id) FROM matches WHERE tourney_name = ’WTA Championships’
AND winner_hand = ’L’ AND loser_hand != ’L’

Explanation What is the count of unique winners who were left-handed and participated in the WTA Championships,
but their opponents were not left-handed?

Errors The predicted code include additional condition that is not mentioned in the original question.

Question (Python Code

Gen)

Write a function to find the kth element in the given array.

Predicted Code def kth_element(arr, n, k):

arr.sort()

return arr[k-1]

Explanation This program finds the kth smallest element in an array. It takes an array, the size of the array (n), and the
value of k as input. The program first sorts the array in ascending order. Then, it returns the element at the
k-1 index position from the sorted array, which represents the kth smallest element.

Errors The array does not need to be sorted.

Table 10. Example explanations that accurately describe the source code and capture errors existing in the source code.

Frequency of Participants Feedback for Er-

ror Correction (%)

Quality of Partici-

pant Feedback (%)

Easy Medium Hard Overall Accuracy

Text-to-SQL 50.71 (11.79 ↓) 55.00 (11.25 ↑) 63.61 (19.17 ↑) 56.73 (5.20 ↑) 52.83 (14.37 ↑)
Python Code Gen 94.44 (29.72 ↑) 96.30 (17.13 ↑) 100.00 (46.67 ↑) 96.67 (31.03 ↑) 63.86 (21.64 ↑)

Table 11. Frequency (at the conversation level) and accuracy of participant feedback for error correction when using IntelliExplain

(The ↑ denotes an increase compared to the vanilla Chat LLM, while the ↓ represents a decrease).

set (500 test examples). From the results, we collected 214 erroneous predictions in text-to-SQL and 140 in Python code
generation. Then, we prompted GPT-3.5 to generate the explanation for these predictions following our methods in
Section 5.2. For each task, we randomly selected 30 cases and manually inspected their quality. In text-to-SQL, only
one explanation was found to be inconsistent with the source code, while all explanations for the Python code were
precise. Among these precise explanations, 51.7% of the restated questions for text-to-SQL and 66.7% of the concise
explanations for Python code generation successfully captured errors in the source code. These results confirmed our
observations from the user study, showing that our explanations are highly precise and largely error-discriminative,
although further improvement to balance the conciseness of the explanation with its comprehensiveness is needed.

6.3 Error Correction

We further look into whether our proposed explanations and the structured interaction paradigm make error correction
more effective. As illustrated in Table 11, participants using IntelliExplain were able to provide corrective feedback

Manuscript submitted to ACM



20 Yan, Latoza, and Yao

Question Write a python function to find the last digit when factorial of a divides factorial of b.

Explanation This program calculates the last digit of the result when computing the factorials of two
given numbers, ‘a’ and ‘b’. It uses the math module to calculate the factorials of ‘a’ and ‘b’.
Then, it finds the last digit of each factorial by taking the modulus of 10. If the last digit of
‘a’ is 0, it returns 0. If the last digit of ‘b’ is 0, it returns the last digit of ‘a’. Otherwise, it
returns the last digit of ‘a’ modulo the last digit of ‘b’.

Feedback Types Example

Instruction for Error Cor-

rection

After finding the factorials of a and b you should divide the factorial of b by the factorial
of a. After dividing you return the last digit from the result.

Question Rephrasing You should write a Python function that determines the last digit of the factorial of number
a, which divides the factorial of another number b?

Step-by-Step Instructions First initialize variable fact_a as the factorial of number ‘a’ and fact_b as the factorial of
number ‘b’. Then divide fact_b by fact_a and assign the value to variable quotient. Then
take quotient and return the remainder when divided by 10.

Table 12. Types of feedback provided by participants. Errors mentioned in the explanation are marked in red. Diverse types of

feedback received from user study demonstrated the effectiveness of our explanation in aiding non-professional programmers in both

code comprehension and debugging.

based on our enhanced explanations in 56.73% of text-to-SQL tasks and 96.67% of Python code generation tasks. This
performance surpasses that of the vanilla Chat LLM at nearly all difficulty levels. A natural question here is: did the
participants provide more feedback simply because IntelliExplain additionally presented the code execution results
(see Section 5.3)? In post-task interviews, all 10 participants reported relying on the explanations to correct errors in
text-to-SQL tasks, except for one case where a participant noted that the execution results might be incorrect. For
Python code generation where test cases and expected outputs were available, 7 out of 10 participants chose to start by
reviewing the execution results. They used execution results to decide if the explanations needed careful examination;
when the execution results did not meet the expectations, they mainly provided feedback based on the presented
explanations. The remaining 3 participants focused on the explanations first, providing feedback immediately when
they identified errors, without referring to the execution results. These findings confirmed that, while the additional
execution results may make it easier for the participants to identify errors, our enhanced explanations play a critical
role in guiding them in providing corrective feedback.

Table 11 also shows that, in conversations where participants provided feedback for error correction, the accuracy of
their feedback increased by 14.37% and 21.64% compared to using the vanilla Chat LLM across the two tasks, respectively.
These improvements further demonstrate the effectiveness of IntelliExplain in code comprehension and debugging.
We list a few examples of participant feedback when using IntelliExplain in Table 12, and present further statistics
(i.e., frequency, accuracy, and the success rate for accurate feedback) in Table 13. The feedback can be classified into the
following three categories:

• Instructions for Error Correction. This type of feedback was identified as the most effective in our user study
with the vanilla Chat LLM, and it similarly dominated the user study with IntelliExplain. The key difference
lies in that participants were able to provide more accurate feedback through our enhanced explanations with
improvements of 18.90% and 29.72% over the vanilla Chat LLM group.

• Question Rephrasing. Participants were more likely to provide this type of feedback in text-to-SQL (39.18%)
compared to Python code generation (2.11%). This difference is due to the distinct explanation methods used. In
text-to-SQL, the restated question encouraged participants to compare the intent of the initial question with the
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Feedback Types

Text-to-SQL Python Code Gen

Frequency

(%)

Accuracy

(%)

SR for Accurate

Feedback (%)

Frequency

(%)

Accuracy

(%)

SR for Accurate

Feedback (%)

Instruction for Error

Correction

57.49 61.76 (18.90 ↑) 80.95 (20.95 ↑) 71.04 74.58 (31.72 ↑) 88.64 (5.80 ↓)

Question Rephrasing 39.18 41.18 57.14 2.11 50.00 100.00

Step-by-Step Instruc-

tions

3.33 0.00 0.00 26.85 36.36 50.00

Table 13. Frequency, accuracy, and success rate (when feedback is accurate) of each feedback type when participants interacted with

IntelliExplain.

restated one; when inconsistencies were identified, they were more likely to rephrase the question for clarity.
In contrast, in Python code generation, participants worked with concise descriptions that included more of
the underlying logic, reducing the likelihood of rephrasing the original question. In both tasks, the accuracy of
this feedback type is significantly higher (41.18% for SQL and 16.67% for Python) than its correspondence in the
vanilla Chat LLM’s interaction.

• Step-by-Step Instruction. A new type of feedback was observed in the user study with IntelliExplain
appearing in 3.3% of text-to-SQL and 26.9% of Python. This feedback involves participants providing detailed, step-
by-step instructions to guide the model in solving the problem. Participants, especially those with introductory
programming experience, tended to use this feedback when they felt confident in solving the problem themselves.
However, the accuracy of this feedback was low, likely due to their limited coding expertise.

The improvement of the participant feedback with IntelliExplain is reflected in not only its standalone accuracy,
but also how it makes feedback incorporation easier, as revealed by the better SRs in Table 13. Compared to the results
with the vanilla Chat LLM (Table 5), IntelliExplain’s SRs for the overlapped two types of feedback (i.e., “Instructions
for Error Correction” and “Question Rephrasing”) are 20.95% and 57.14% higher for text-to-SQL task, respectively. For
Python code generation, although IntelliExplain’s SR for “Instructions for Error Correction” was slightly lower than
vanilla Chat LLM, this result was based on a significantly larger number of cases (44 conversations with accurate
feedback) compared to the vanilla Chat LLM (only 18 conversations with accurate feedback). We include a more
thorough discussion about SRs of “Instructions for Error Correction” in Section 6.4. For “Question Rephrasing” in
text-to-SQL tasks, the SR is still relatively low, due to its limited capacity in pinpointing fine-grained errors (e.g., errors
about code logic). In Python code generation, IntelliExplain successfully incorporated “Step-by-Step Instruction”
feedback, when it was accurate, for 50% of the cases. In the remaining unsuccessful cases, the LLM demonstrated
difficulties in processing feedback that had unclear logic. Some participants tended to provide step-by-step feedback
that was either incomplete or contained too complex logic, making it harder for the system to follow and apply the
corrections effectively.

Overall, the analysis shows that participants were able to provide more effective feedback with the support of our
enhanced explanations, as evidenced by significant improvements in feedback accuracy compared to using vanilla
GPT-3.5. The absence of uninformative feedback, such as “input-output sample” and “self-debug” (Section 4.3), suggests
that our system improves code comprehension and helps users engage more confidently with the LLM. These behaviors
were also shaped by our interaction paradigm, which played a crucial role in guiding participants to provide effective
feedback. While there are still areas for improvement, particularly in handling more complex codes, these results
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highlight the potential of well-structured explanations and the interaction paradigm to improve the overall effectiveness
of conversational code generation for non-professional programmers.

6.4 Understanding the Success Rate of “Instruction for Error Correction” Feedback

Frequency of Complete “Instruction for Error Correction” Feed-

back among Accurate Ones

Text-to-SQL Python

Vanilla Chat LLM 60.00% 27.78%

IntelliExplain 71.43% 72.73%

Table 14. Frequency of complete feedback instances out of the accurate ones for the type of “Instruction for Error Correction”.

Numbers were measured by counting the number of feedback instances that addressed all errors in the code out of all accurate

feedback provided.

To gain a deeper understanding of the success rate of accurate feedback with IntelliExplain, we conducted a
follow-up analysis focusing on the “Instruction for Error Correction” type, as it was the most frequent type in both tasks.
Specifically, for accurate feedback, we further assessed its completeness, i.e., whether the feedback comprehensively
addressed all errors present in the code. We calculate the frequency of complete feedback among accurate ones. The
results in Table 14 show that IntelliExplain significantly outperforms the vanilla Chat LLM. This highlights the critical
role of our enhanced explanations in assisting non-professional programmers in providing high-quality (accurate and
complete) feedback.

In Table 15, we further calculate, among the successful error correction cases with IntelliExplain, what percentage of
them were based on complete and accurate feedback. We note that all success cases came with at least accurate feedback.
The percentages shown in the table thus indicate to what extent the complete feedback is necessary for successful
error correction using IntelliExplain. For both tasks, we observed a clear relationship between the completeness of
user feedback and the success rate of error correction using IntelliExplain. 82.35% and 74.36% successful corrections
occurred when the feedback was both accurate and complete in SQL and Python tasks, respectively. This observation
between feedback completeness and success rate highlights the importance of providing thorough and detailed feedback
to the LLM for effective error correction. On the other hand, an analysis of the remaining successful cases with
incomplete feedback revealed an interesting finding: in situations where the generated code required a complete rewrite,
even when participants provided only partial or incomplete feedback, the LLM was sometimes able to produce correct
code during the reconstruction process.

Despite these improvements, there is still room for enhancing the completeness of feedback. Several factors may
contribute to this gap. First, the higher complexity of codes might have led to misunderstandings or incomplete
explanations, which in turn affected both the accuracy and the completeness of the feedback. Second, a participant’s
prior knowledge and experience influenced their ability to interpret an explanation and provide helpful feedback. Future
research could focus on creating more intuitive human-system interaction designs that help users better understand
complex code and provide more complete feedback.

In addition to examining successful cases, we also investigated instances where participants provided accurate and
complete feedback for error correction, but the LLM failed to implement the corrections into the code. We identified 4
such cases in the user study of IntelliExplain across two tasks. Although the number of failures is relatively small, this
finding underscores a potential limitation of the current Chat LLM, namely its inability to consistently follow human
Manuscript submitted to ACM
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Percentage of Success Cases with Complete Feedback for “In-

struction for Error Correction” Type

Text-to-SQL Python Code Gen

Percentage 82.35% 74.36%

Table 15. Percentage of successful error corrections with IntelliExplain that were based on complete feedback, calculated for the

feedback type of “Instruction for Error Correction”. Note that all successful cases in our study had at least accurate feedback.

instructions, even when those instructions are clear and precise. A potential reason is that the LLM might struggle
with understanding the intent behind the instructions, particularly if the language used by the participant is slightly
ambiguous or deviates from the language patterns that the LLM was pre-trained on. This sensitivity highlights the
need for further improvement of LLMs to better interpret and follow human instructions across a variety of formats
and linguistic styles.

7 Performance of IntelliExplain with GPT-4 as Backbone LLM

Performance of IntelliExplain (GPT-4)

Success Rate (%) Avg. Time/question (s)

Text-to-SQL 30.00 107.37
Python Code Gen 50.00 132.25

Table 16. Overall performance of IntelliExplain with GPT-4 as backbone Chat LLM. The result was collected based on a pilot study

with one non-professional programmer participant.

Our main investigation has been based on GPT-3.5-turbo rather than the state-of-the-art GPT-4 model. A natural
question here is thus: for the effectiveness we have shown with IntelliExplain in our study, as well as the findings we
have discovered, are they still applicable when people switch to the more powerful Chat LLM backend? Limited by the
available resources and budget, it is infeasible to re-conduct the user study. However, to gain some preliminary insights,
we still performed a pilot study with one participant who had no prior experience in SQL and Python programming.
Given GPT-4’s enhanced code generation capabilities, some questions we used in the main user study were not suitable
anymore. Specifically, we observed that 3 out of 10 questions in text-to-SQL and 2 out of 10 questions in Python code
generation could be accurately answered by GPT-4 without any specific interaction design. Consequently, we excluded
these questions and randomly selected additional questions to keep the same amount of questions. The results are
presented in Table 16. The results show an improved success rate in text-to-SQL and a comparable success rate in
Python code generation compared to IntelliExplain (GPT-3.5)’s (Table 8), which indicates that a stronger Chat LLM
could potentially yield even more effective human-LLM interaction for code generation. The results also demonstrate
that our designed prompts and interaction paradigm can work with a more powerful Chat LLM.

To gain deeper insights into the differences between GPT-4 and GPT-3.5, we conducted an analysis focusing on the
quality of their generated NL explanations. As expected, we observed that GPT-4 could produce explanations as precise
as GPT-3.5’s. Beyond preciseness, we found that in two cases, the explanations generated by GPT-4 show even higher
quality in terms of comprehensibility, as exemplified in Table 17. This enhanced comprehensibility could potentially
improve the user experience with clearer insights into the generated code. However, the observation that only two
explanations reveal this enhanced comprehensibility indicates that there is still room for improvement even with a
more advanced Chat LLM. We have also examined whether the participant could provide effective feedback for error
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Question Write a function to find the depth of a dictionary.

Predited Code
def dict_depth(dictionary):

depth = 0

if not isinstance(dictionary, dict) or len(dictionary) == 0:

return depth

else:

depth += 1

return depth + max(dict_depth(value) for value in dictionary.values())

GPT-3.5 Explanation This program calculates the depth or level of nesting in a given dictionary. It checks if the
input is a dictionary and if it is not empty. If it is not a dictionary or is empty, it returns a
depth of 0. Otherwise, it recursively calculates the depth of each value in the dictionary
and returns the maximum depth found, incremented by 1.

GPT-4 Explanation This program calculates the depth of a dictionary. The depth of a dictionary is the maxi-
mum number of levels it contains. If the dictionary contains other dictionaries as values,
those are considered additional levels. The program checks each value in the dictionary,
and if a value is another dictionary, it recursively calculates the depth of that dictionary.
The final depth is one more than the maximum depth of any value. If the dictionary is
empty, its depth is considered to be zero.

Table 17. Explanations provided by GPT-3.5 and GPT-4 on the same question for the generated code. GPT-4 generates an explanatory

sentence on how to solve the problem in general (in □). This information makes the explanation generated by GPT-4 more compre-

hensible than GPT-3.5.

correction. In the pilot study, the participant mainly provided feedback of type “Instruction for Error Correction”, except
one “Question Rephrasing” feedback for text-to-SQL. The observation reaffirms that with our designed explanations,
users can find errors and provide feedback without directly interacting with the source code. However, its low success
rate underscores the need for future exploration on this topic.

8 Discussion

Our user study with the vanilla Chat LLM revealed key insights into how non-professional programmers interact with
LLMs for conversational code generation. Building on these findings, we proposed IntelliExplain, which introduced
an improved interaction paradigm with enhanced explanations and a more effective feedback loop. While these
enhancements have shown promising results, it’s important to acknowledge the limitations in success rates and explore
potential future improvements that could further advance this framework.

Improving Explanation to Handle More Complex Code Logic: The success rate in both user studies highly
depends on the accuracy and completeness of human feedback. Our current design of code explanations shows
limitations in fully describing the underlying logic of more complex code. These shortcomings can hinder users’ ability
to provide precise feedback, which is crucial for effective error correction. Although LLM-generated step-by-step
explanations might appear comprehensive, they often fall short, as their excessive length and complexity can confuse
non-professional programmers. To address these issues, new design considerations for explanations should focus on
clarity and conciseness. Explanations need to strike a balance between being detailed enough to capture the code’s
logic and simple enough to be easily understood by users without sufficient expertise. This approach should reduce
cognitive load, enabling users to engage more effectively with the explanations and provide more accurate feedback.
Additionally, the design should include mechanisms to highlight the most critical aspects of the code, ensuring that
users can quickly grasp the essential elements without getting lost in unnecessary details.
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Interactable Explanations and Feedback: From post-task interviews using IntelliExplain, we noticed that
some participants could not notice small changes in the explanations, which led to incorrect error corrections. The
differences between code iterations and their corresponding explanations could be more explicit. This could include
visually highlighting changes between turns, so users can easily track adjustments and understand the changes in the
code. Additionally, an actionable mechanism that shows how different parts of user feedback impact code generation
would be beneficial. This would allow users to see the immediate effects of their input, providing a clearer understanding
of its effectiveness and helping them refine their feedback for better results.

Implementing Mechanism of LLMs Seeking Clarifications on Uncertain Concepts in User Input: In addition
to analyzing how user experience in code comprehension and error correction can be improved in conversational
code generation, we also examined why the Chat LLM fail to generate correct code following human instructions. Our
analysis of unsuccessful conversations both with and without user feedback for error correction showed that the Chat
LLM struggled with ambiguous user input, where the description of the input question or user feedback was unclear in
some extent. Rather than seeking clarification on unclear concepts, the Chat LLM often proceeded based on incorrect
assumptions, which led to incorrect responses. This observation suggests a need for mechanisms that allow the LLM to
recognize confusion and request clarification when it encounters ambiguous input.

LLM Hallucination: As discussed in Section 4.2, we observed hallucinated behaviors in the vanilla Chat LLM, such
as generating code execution processes that are not logically aligned with the code or providing “fake” execution results.
In Section 6.2, we systematically examined IntelliExplain for the quality of its generated explanations and found
no hallucination issues. We attributed this success to our careful prompt design in Section 5.2. However, we note that
slight hallucination was still found in other parts of IntelliExplain’s function; for example, we observed one SQL
query where IntelliExplain did not join two tables based on the correct keys.

9 Conclusion

In this work, we systematically explored the usability and limitations of Chat LLMs in helping non-professional
programmers with conversational code generation. We identified challenges in the vanilla Chat LLM and proposed a
new structured interaction paradigm with enhanced explanations to address these issues. Our results show that the
improved explanations help users better understand and debug code, allowing them to provide more accurate feedback.
The interactive feedback loop also effectively refines the code based on user input, leading to higher success rates and a
better overall experience compared to the vanilla LLM.
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