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Abstract

In this article, the optimal sample complex-
ity of learning the underlying interactions
or dependencies of a Linear Dynamical
System (LDS) over a Directed Acyclic
Graph (DAG) is studied. We call such a
DAG underlying an LDS as dynamical DAG
(DDAG). In particular, we consider a DDAG
where the nodal dynamics are driven by
unobserved exogenous noise sources that
are wide-sense stationary (WSS) in time
but are mutually uncorrelated, and have the
same power spectral density (PSD). Inspired
by the static DAG setting, a metric and
an algorithm based on the PSD matrix of
the observed time series are proposed to
reconstruct the DDAG. It is shown that
the optimal sample complexity (or length
of state trajectory) needed to learn the
DDAG is n = Θ(q log(p/q)), where p is the
number of nodes and q is the maximum
number of parents per node. To prove
the sample complexity upper bound, a
concentration bound for the PSD estimation
is derived, under two different sampling
strategies. A matching min-max lower
bound using generalized Fano’s inequality
also is provided, thus showing the order
optimality of the proposed algorithm. The
codes used in the paper are available at
https://github.com/Mishfad/Learning-
Dynamical-DAGs

1 Introduction

Learning the interdependency structure in a network
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of agents, from passive time series observations, is
a salient problem with applications in neuroscience
Bower and Beeman [2012], finance Kim et al. [2011],
meteorology Ghil et al. [2002], etc. Reconstructing
the exact structure with the dependency/causation di-
rections has a wide range of applications. For exam-
ple, the identification of causation structure among the
shares helps in obtaining robust portfolio management
in the stock market Kim et al. [2011]. Similarly, causal
graphs are useful in understanding dynamics and iden-
tifying contributing factors of a public epidemic emer-
gency situation Yang et al. [2020].

The structure of directed interactions in a network
of agents is conveniently represented using directed
graphs, with the agents as nodes and the directed in-
teractions as directed edges. If the underlying graph
doesn’t have cycles, it is called a Directed Acyclic
Graph (DAG). In general, it is not possible to recon-
struct the exact structure with the direction of differ-
ent edges. Instead, in many networks it is possible to
retrieve only the Markov equivalence graphs, the set
of graphs satisfying the same conditional dependence
property, from data without any intervention Ghoshal
and Honorio [2018]. In applications such as finance
Kim et al. [2011], climate science Ghil et al. [2002]
etc., the agent states, instead of being temporally in-
dependent, can evolve over time due to past directed
interactions. Such temporal evolution can be repre-
sented by a linear dynamical system (LDS). In LDS,
the interaction between agent states is captured by a
linear time-invariant function. In this paper, we study
the identifiability and present the first sample com-
plexity results for learning a DAG of LDS, which we
term as Dynamical DAG or DDAG. This is distin-
guished from static DAG, where the agent states are
temporally independent and the DAG does not corre-
spond to temporal dynamics.

1.1 Related Work

Static DAG Learning: The problem of obtaining
an upper bound on the sample complexity of learn-
ing static DAGs goes back twenty-five years Fried-
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man and Yakhini [1996], Zuk et al. [2006]. How-
ever, tight characterization of optimal rates for DAG
learning is a harder problem compared to undirected
networks Gao et al. [2022], primarily due to the or-
der identification step. Identifiability conditions for
learning static DAGs with linear interactions and ex-
cited by equal variance Gaussian noise were given
in Peters and Bühlmann [2014]. Several polynomial
time algorithms have been proposed for static DAG
reconstruction using samples of states at the graph
nodes; see Ghoshal and Honorio [2017a,b, 2018], Chen
et al. [2019], Gao et al. [2022], Park [2020], Park and
Raskutti [2017], Runge et al. [2019] Sugihara et al.
[2012] Shimizu et al. [2006] Spirtes and Zhang [2016],
and the reference therein. An information-theoretic
lower bound on structure estimation was studied in
Ghoshal and Honorio [2017a]. In Gao et al. [2022], it
was shown that the order optimal sample complexity
for static Gaussian graphical model with equal vari-
ance is n = Θ(q log(p/q)), where p is the number of
nodes and q is the maximum number of parents. The
authors showed that the algorithm given in Chen et al.
[2019] provides an upper bound that matches a min-
max lower bound for the number of samples. How-
ever, similar results for DDAGs, with underlying tem-
poral directed interaction between agent states, have
not been studied, to the best of our knowledge.

LDS Learning: Graph reconstruction, in general, is
challenging in a network of LDS (undirected, or bi-
directed), as it involves time-dependencies between
collected samples of nodal states. Learning the con-
ditional independence structure in LDS with inde-
pendent and identically distributed (white) excitation
was explored in Basu and Michailidis [2015], Loh and
Wainwright [2011], Songsiri and Vandenberghe [2010],
Simchowitz et al. [2018], Faradonbeh et al. [2018], and
the references therein. However, the methods in the
cited papers do not extend to LDS that is excited by
WSS (wide-sense stationary) noise, which makes cor-
relations in state samples more pronounced. For LDS
with WSS noise, Tank et al. [2015], Dahlhaus [2000],
Materassi and Salapaka [2013], and Materassi and In-
nocenti [2009], estimated the conditional correlation
structure, which contains true edges in the network
and extra edges between some two-hop neighbors Mat-
erassi and Salapaka [2012]. A consistent algorithm for
the recovery of exact topology in LDS with WSS noise
was provided in Talukdar et al. [2020], with the cor-
responding sample-complexity analysis developed in
Doddi et al. [2022], using a neighborhood-based regres-
sion framework. However, the developed algorithms
and related sample complexity results do not extend
to directed graphs and hence exclude DDAG recon-
struction. DDAG reconstruction from the time-series
data has been explored using the framework of directed

mutual information in Quinn et al. [2015] but without
rate characterization for learning from finite samples.
Recently, extending the results in Chen et al. [2019],
Dallakyan [2023] studied the graph reconstruction for
Discrete Time Fourier Transform (DTFT) models, a
special case of LDS with i.i.d. noise, but again without
rate characterization for learning from finite samples.

Contribution: This article presents an information-
theoretically optimal sample complexity analysis for
learning a dynamical DAG (DDAG) excited by wide-
sense stationary (WSS, i.e., non i.i.d) noise of equal
power spectral density, using samples of state tra-
jectories of the underlying linear dynamical system
(LDS). To the best of our knowledge, this is the
first paper to study and prove sample complexity
analysis for DDAGs. We consider learning under
two sampling scenarios, viz; 1) restart and record,
2) continuous sampling. While the former pertains
to samples collected from disjoint (independent) tra-
jectories of state evolution, the latter includes sam-
ples from a single but longer state trajectory (see
Fig. 3). Surprisingly, the results in this article show
that the estimation errors are not influenced by the
sampling strategy (restart and record, or continuous)
as long as the number of collected samples are over
a determined threshold given by n = O(q log(p/q)),
where p is the number of nodes and q is the max-
imum number of parents per node. We also pro-
vide a matching information-theoretic lower-bound,

max
(

log p
2β2+β4 ,

q log(p/q)
M2−1

)
, where β and M are system

parameters (see Definition 2.4); thus obtaining an or-
der optimal bound n = Θ(q log(p/q)).

Our learning algorithm relies on first deriving rules for
DDAG estimation using the Power Spectral Density
Matrix (PSDM) of nodal states, inspired by the esti-
mator for static DAGs based on covariance matrices
Chen et al. [2019]. Subsequently, the sample complex-
ity associated with learning is derived by obtaining
concentration bounds for the PSDM. In this regard,
characterization of non-asymptotic bounds of PSDMs
for a few spectral estimators have been obtained in
Fiecas et al. [2019], Veedu et al. [2021], Zhang and
Wu [2021] previously. A unified framework of concen-
tration bounds for a general class of PSDM estima-
tors was recently presented in Lamperski [2023]. Our
concentration bounds of the PSDM are reached using
different proof steps, based on Rademacher random
variables and symmetrization argument Wainwright
[2019].

The rest of the paper is organized as follows. Section
2 introduces the system model and the preliminary
definitions for LDS and DDAGs. Section 3 discusses
Algorithm 1 and the main results for DDAG recon-
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struction from PSDM. Section 4 provides a concen-
tration bound for the error in estimating the PSDM
and a sample complexity upper bound for DDAG re-
construction using Algorithm 1. Section 5 contains a
sample complexity lower bound.

Notations: Bold faced small letters, x denote vectors;
Bold faced capital letters, A denote matrices; For a
time-series, x, x̆(t) denotes the value of x at time
t, x(ω) denotes the discrete time Fourier transform
of x, x(ω) :=

∑∞
k=−∞ x̆(k)e−iωk, ω ∈ Ω = [0, 2π];

diag(v1, . . . , vp) operator creates a diagonal matrix
with diagonal entries v1, . . . , vp; ΦxAB

or ΦAB denotes
the matrix obtained by selecting rows A and columns
B in Φx; A

∗ denotes conjugate transpose of A. ∥A∥
is the spectral norm of A and ∥v∥2 is the Euclidean
norm of vector v.

2 System model of DDAG

We describe different aspects of DDAG (DAG under-
lying an LDS) and the sampling strategies considered.
We begin with some necessary DAG terminologies.

DDAG terminology: The dynamical directed
acyclic graph (DDAG), is given by G := (V,E), where
node set V = {1, . . . , p}, and E is edge set of directed
edge i −→ j. A directed path from i to j is a path of
the form i = v0 −→ v1 −→ . . . −→ vℓ −→ vℓ+1 = j, where
vk ∈ V and (vk, vk+1) ∈ E for every k = 0, . . . , ℓ. A
cycle is a directed path from i to i, which does not
exist in DDAG G. For G, pa(i) := {j ∈ V : (j, i) ∈ E}
denotes the parents set and desc(i) denotes the de-
scendants of i, the nodes that have a directed path
from i. The set nd(i) := V \ desc(i) denotes the non-
descendants set and the set an(i) ⊂ nd(i) denotes the
ancestors set, the nodes that have a directed path to
i. At set C ⊆ V is called ancestral if for every i ∈ C,
pa(i) ⊆ C. Figure 1 shows an example DDAG with
the node definitions.

An ordered node set C ⊆ V is said to be a topological
ordering on G if for every i, j ∈ C, i ∈ desc(j) in G
implies i > j. Gp,q denotes the family of DDAGs with
p nodes and at most q parents per node. Without a
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Fig. 1: An electric circuit with transistors and tuned amplifiers. The 
transistors introduce direction, and inductors and capacitors introduce 
time-lag dependency across the circuit.

Fig. 2: A causal graph representation of the electric circuit in Fig. 1. 
Here, each node represents a transistor

Figure 1: An example DDAG. Node 1 is an ancestor
and node 7 is a descendant of every node in the graph.
The set {1, 2, 5} is an ancestral set but {2, 5} is not.
an(3) = {1, 2}, desc(3) = {4, 7}, nd(3) = {1, 2, 5, 6}.

loss of generalizability, we use the same terminology

for the DDAG and the underlying DAG.

LDS Model excited by equal PSD WSS noise:
For the DDAG G = (V,E) ∈ Gp,q, we consider a linear
dynamical system (LDS) with p scalar state variables,
corresponding to nodes in V . Node i’s states corre-
spond to {x̆i(k)}k∈Z, 1 ≤ i ≤ p. The LDS evolves
according to the linear time-invariant model,

x̆i(k) =

p∑

(j,i)∈E,j ̸=i

(h̆ij ⋆ x̆j)(k) + ĕi(k), k ∈ Z, (1)

where transfer function h̆ij ̸= 0 when directed edge
(j, i) ∈ E. The exogenous noise {ĕi(k)}k∈Z, 1 ≤ i ≤ p,
are zero mean wide sense stationary Gaussian pro-
cesses, uncorrelated across nodes. Taking the discrete-
time Fourier transform (DTFT) of (1) provides the
frequency representation for every ω ∈ Ω = [0, 2π],

xi(ω) =

p∑

(j,i)∈E,j ̸=i

Hij(ω)xj(ω) + ei(ω), 1 ≤ i ≤ p,

(2)

where xi(ω) = F{x̆i} :=
∑∞

k=−∞ x̆i(k)e
−iωk, ei(ω) =

F{ĕi}, and Hij(ω) = F{h̆ij}. The model in (2) can be
represented in the matrix form to obtain the following
LDS,

x(ω) = H(ω)x(ω) + e(ω), ∀ω ∈ Ω, (3)

where e(ω) is the WSS noise. In this arti-
cle, we are interested in the LDS with Φe(ω) =
σ(ω)diag(α1, . . . , αp), where αi are known and can be
a function of ω. For the simplicity of analysis, hence-
forth it is assumed that Φe(ω) = σ(ω)I.

Remark 2.1. The assumption Φe(ω) = σ(ω)I is a
restrictive assumption. However, we would like to re-
mark that some form of restriction is required for DAG
reconstruction in a general setup due to identifiability
issues Shimizu et al. [2006]. The assumption can be
relaxed using ordered conditions on Φei and H, simi-
lar to Ghoshal and Honorio [2018]. Furthermore, our
results on DDAG reconstruction require the equal PSD
to hold only at some known ω ∈ Ω, which is less re-
strictive.

The power spectral density matrix (PSDM) of the
time-series x at the angular frequency ω ∈ Ω is given
by

Φx(ω) = F {Rx(t)} =
∞∑

k=−∞

Rx(k)e
−iωk, (4)

where Rx(k) := E[x̆(k)x̆T (0)] is the auto-correlation
matrix of the time-series x at lag k. The (i, j)-th entry
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of Φx is denoted by Φij . For the LDS (3), the PSDM
is given by

Φx(ω) = (I−H(ω))−1Φe(ω)((I−H(ω))−1)∗. (5)

Consider the following non-restrictive assumptions on
the power spectral density and correlation matrix of
the LDS states.

Assumption 2.2. There exists a M ∈ R such that
1
M ≤ λmin(Φx) ≤ λmax(Φx) ≤ M , where λmin and
λmax respectively denote the minimum and maximum
eigenvalues.

Assumption 2.3. The auto-correlation matrix of the
time-series x at lag k, Rx(k) := E[x̆(k)x̆T (0)] satisfies
∥Rx(k)∥ ≤ Cρ−|k|, for some positive constants C, ρ ∈
R, ρ > 1.

In the remaining paper, following these assumptions,
our interest will be limited to the following family of
DDAGs and corresponding LDS.

Definition 2.4. Hp,q(β, σ,M) denotes the family of
LDS given by (3) such that the corresponding DDAG,
G(V,E) ∈ Gp,q (p nodes with each node having a
maximum q parents), with |Hij(ω)| ≥ β, ∀(j, i) ∈
E, Φe(ω) = σ(ω)I, and M−1 ≤ λmin(Φx(ω)) ≤
λmax(Φx(ω)) ≤M , ∀ω ∈ Ω

Sampling Strategy for LDS states: We consider
two sampling settings (see Fig. 2 for details):
i) restart and record: The sampling is performed
as follows: start recording and stop it after N mea-
surements. For the next trajectory, the procedure is
restarted with an independent realization and record
for another epoch of N samples; repeat the process
another n− 2 times providing n i.i.d trajectories of N
samples each.
ii) continuous sampling: Here, a single trajectory
of length n×N is taken consecutively. Then, the ob-
servations are divided into n segments, each having N
consecutive samples.

Start

Start

Stopx1

Stopx1

Start Stopx2 Start Stopxn

x2 xn

Figure 2: (a) shows restart and record sampling. (b)
shows continuous sampling.

The data collected using either strategy is thus
grouped into n trajectories of N samples each. For
the finite length rth trajectory, {x̆r(t)}N−1

t=0 , define for
each ω ∈ Ω,

xr(ω) =
1√
N

N−1∑

k=0

x̆r(k)e−iωk, r = 1, . . . , n. (6)

Note that xr(ω), if exists, is a zero mean random vari-
able with the covariance matrix given by

Φ̃x(ω) := E {xr(ω)[xr(ω)]∗} (7)

=
1

N

N−1∑

k=−(N−1)

(N − |k|)Rx(k)e
−iωk, ∀ω ∈ Ω.

For the restart and record setting (unlike for con-
tinuous sampling), {xr(ω)}nr=1 are i.i.d. Further, as

N −→ ∞, Φ̃x(ω) −→ Φx(ω) uniformly in Ω Stoica et al.
[2005].

3 Reconstructing DDAGs from
PSDM

In this section, we discuss some results on how the
PSDM, Φx, can be employed to completely reconstruct
the DDAG G, when the time series is generated ac-
cording to (3). Applying these results, inspired from
the algorithm for static setting Chen et al. [2019], we
propose Algorithm 1 for reconstructing the DDAG.
First, we prove that conditional PSD (CPSD) of i con-
ditioned on C, defined as

f(i, C, ω) := Φii(ω)− ΦiC(ω)Φ
−1
CC(ω)ΦCi(ω), (8)

is a metric sufficient to obtain a topological ordering
on the DDAG G, which aids in the reconstruction
of G. Notice that unlike Chen et al. [2019]’s static
setting that uses conditional covariance matrices, our
algorithm uses CPSD to unveil the dependencies in
the DDAG. This further affects the sample complex-
ity analysis, as discussed subsequently.

3.1 CPSD and Topological Ordering

Here, we will show that CPSD is the minimum for
the nodes that have all the parents included in the
conditioning set. We start by proving the result for
the source nodes.

Lemma 3.1. Consider the LDS described by (3). For
any ω ∈ Ω, let α∗ := min

k∈V
Φkk(ω). Then Φii(ω) = α∗

if and only if i is a source node.

Proof. Let T(ω) = (I−H(ω))−1 and Φe(ω) = σ(ω)In.
Then, Φx(ω) = σ(ω)T(ω)T∗(ω). By Cayley-Hamilton
theorem, there exists constants a0(ω), . . . , an(ω) such

that (I −H(ω))−1 =
∑n−1

k=0 ak(ω)(I −H(ω))k. Using
induction, it can be shown that non-diagonal entries
of (I−H(ω))k are zero if and only if there no k− hop
path between i and j (almost always) between j and
i?. Similarly, (i, i)th entry is 1 if and only if there is
no k-hop path between them (almost always).
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Then (ignoring (ω)), Φii = (Φx)ii = σ
∑n

k=1 TikTik =
σ(T2

ii+
∑

k ̸=i T
2
ik). If i is a source node, then Tik = 0

for every k ̸= i and Tii = 1, which implies Φii = σT2
ii.

For non-source nodes, Tik ̸= 0 for some k, which gives
Φii > σ.

3.1.1 Conditional PSD deficit

The following is the definition of conditional PSD
deficit, which is helpful in proving the subsequent re-
sults and in retrieving the DDAG.

Definition 3.2 (The CPSD deficit).

∆ := min
ω∈[0,2π]

min
j∈V

min
C⊂nd(j),

Pa(j)\C ̸=∅

f(j, C, ω)− σ(ω) (9)

The following lemma shows that f(i, C, ω) from Eq. 8
can be used as a metric to obtain a topological ordering
of G.

Lemma 3.3. Consider the DDAG, G, governed by
(3). Let j ∈ V and let C ⊆ V \{j} be an ancestral set.
Then for every ω ∈ Ω,

f(j, C, ω) = σ(ω) : if Pa(j) ⊆ C,

f(j, C, ω) ≥ ∆+ σ(ω) > σ(ω) : if Pa(j) ⊈ C.

The detailed proof is given in the supplementary mate-
rial, Section 1. The proof uses the fact that condition-
ing on a superset of all parents makes node j condi-
tionally independent of other ancestors and leaves only
the exogenous noise at the node as the only component
of its CPSD.

Corollary 3.4. If Pa(i) ⊆ C and Pa(i) ⊈ D, then
f(i,D, ω)− f(i, C, ω) ≥ ∆.

Lemma 3.5. ∆ ≥ β2σ.

Proof. The proof follows from Lemma 3.3. Please see
supplementary material for details.

To determine the DDAG G’s structure, we first deter-
mine a topological ordering of nodes as follows: Be-
ginning with an empty set S, we iteratively add node
i in S where

(i, C∗
i ) ∈ argmin

C⊆S,|C|≤q
1≤j≤p, j /∈S

f(j, C, ω), (10)

and f comes from (8). The following Lemma shows
that S is a valid topological ordering w.r.t. G.

Lemma 3.6. S is a valid topological ordering with
respect to G.

Proof. In the first step, C = ∅ and f(i, C, ω) = Φii.
By Lemma 3.1 and Lemma 3.3, Φii = σ if i is a source
node, where as Φii ≥ σ +∆ if i is not a source node.
Thus, the first node in the ordered set S, S1, is always
a source node. Induction assumption: Nodes S1 to
Sn in S follow topological order. For the n + 1, by
Lemma 3.3, for every C ⊆ S, f(k,C, ω) is minimum
for k ∈ V \S if and only if Pa(k) ⊆ C. Thus nodes S1
to Sn+1 follow a topological order, which proves the
result.

Identification of the parents: Parents of a node
are identified from the ordered set by applying Corol-
lary 3.4. LetD = C\{k}. As shown in Corollary 3.4, if
Pa(i) ⊆ C and k ∈ Pa(i), then f(i, C, ω)−f(i,D, ω) ≥
∆. Thus, from the set S, for every node Si, one can
eliminate nodes S1, . . . ,Si−1 by checking if the differ-
ence is greater than ∆. If the difference is greater than
∆ for some Sk, then Sk is a parent of Si. That is,

Lemma 3.7. Let (i, C∗
i ) be a solution of (10) and let

Pi := {j ∈ C∗
i | |f(i, C∗

i , ω)− f(i, C∗
i \ j, ω)| ≥ ∆} .

Then, Pa(i) = Pi.

Applying the above procedure and Lemma 3.3-Lemma
3.7, one can formulate Algorithm 1 to obtain the or-
dering of the DDAG, G and eventually reconstruct
the DDAG exactly. In Algorithm 1, f̂(i, C, ω) :=

Φ̂ii(ω)− Φ̂iC(ω)Φ̂
−1
CC(ω)Φ̂Ci(ω), an empirical estimate

of f(i, C, ω), is employed instead of f and γ is taken as
∆/2 (see Definition (9)). The following lemma proves

that if the empirical estimate f̂(·) is close enough to
the original f(·), then Algorithm 1 reconstructs the
DDAG exactly.

Lemma 3.8. If |f̂(i, C, ω) − f(i, C, ω)| < ∆/4, for
every i, ω, C, then Algorithm 1 reconstructs the DAG,
G successfully. That is, G = Ĝ.

Proof. See supplementary material, section 2

Therefore, it suffices to derive the conditions under
which |f(·) − f̂(·)| < ∆/4. In the following section,
we derive a concentration bound to guarantee a small
error, which in turn is applied in obtaining the upper
bound on the sample complexity of estimating G.

4 Finite Sample Analysis of
Reconstructing DDAGs

In Lemma 3.8, it was shown that the DDAG, G, can
be reconstructed exactly if the error in estimating
f(i, C, ω) (given by (8)) is small enough. In this sec-
tion, a concentration bound on the error in estimating
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Algorithm 1 Ordering algorithm

Input: Estimated PSDM, Φ̂(ω): ∆, ω ∈ [0, 2π]

Output: Ĝ

1. Initialize the ordering, S ←−()

2. For i = 1, . . . , p

(a) Compute
(
j∗, C∗

j

)
∈ argmin

C⊆S,|C|≤q
1≤j≤p, j /∈S

f̂(j, C, ω)

(b) S ←− (S, j∗)

3. Ĝ = (V, Ê), V ←− {1, . . . , p}, Ê ←− ∅

4. For i = 1, . . . , p

(a) Pi :=
{
j ∈ C∗

i

∣∣∣ |f̂(Si, C
∗
i , ω)− f̂(Si, C

∗
i \ j, ω)| ≥ γ

}
(b) ∀k ∈ Pi, Do Ê ←− Ê ∪ {(k, i)}

5. Return Ĝ

Φx from finite data is obtained, which is used later to
obtain a concentration bound on the error in estimat-
ing the metric f .

Recall that we consider n state trajectories (see Fig. 3
for the two sampling strategies) with each trajectory

being of length N samples, i.e
{
{x̆r(k)}N−1

k=0

}n
r=1

. The
DFTs for each trajectory, xr(ω), is a complex Gaussian

with mean zero and covariance matrix, Φ̃x(ω)), i.e., for

every r = 1, . . . , n, xr(ω) ∼ N (0, Φ̃x(ω)), as given in

Eq. 7. Increasing N ensures that Φ̃x is close to Φx. To
estimate the PSDM, we thus rely on the spectrogram
method and estimate Φ̃x(ω)) using finite n samples for
xr.

4.1 Non-Asymptotic Estimation Error in
Spectrogram Method

Let Φ̂x(ω) := 1
n

∑n
r=1 x

r(ω)[xr(ω)]∗. Let the esti-

mation error in estimating Φx by Φ̂x(ω) be Q :=

Φ̂x(ω)− Φx(ω).

Applying the triangle inequality, ∥Q∥ ≤ ∥Qapprox∥ +
∥Q2∥, where Qapprox := Φ̃x(ω) − Φx(ω) and Q2 :=

Φ̂x(ω) − Φ̃x(ω). Note that Φ̃x(ω) is the covariance of
the DFT of each trajectory. To bound the estimation
error, we bound both Qapprox and Q2.

The following Lemma shows that Qapprox is small if N
(length of each trajectory) is large.

Lemma 4.1 (Lemma 5.1, Doddi et al. [2022]). Con-
sider an LDS given by (3) that satisfies Assumption

2.3. Let Qapprox = Φ̃x(ω) − Φx(ω) where Φ̃x(ω)
is given in Eq. 7. Then ∥Qapprox∥ < ε1 if N >

2Cρ−1

(1−ρ−1)2ε1
.

The next step is to characterize Q2, the error in es-
timating Φ̃x using Φ̂x(ω). Since E (xr(ω)[xr(ω)]∗) =

Φ̃x(ω)), Φ̂x(ω) is an unbiased estimator of Φ̃x(ω). The
following theorem provides a concentration bound on
∥Q2∥. The concentration bound is applicable under
two sampling scenarios; the restart and record setting
and continuous sampling setting, as shown in Fig. 3.

Theorem 4.2. Suppose {x̆r(k)}N−1
k=0 , 1 ≤ r ≤ n be

the time series measurements obtained from an LDS
governed by (3), satisfying Assumption 2.2. Then
∀ω ∈ Ω,

P
(∥∥∥Φ̂x(ω)− Φ̃x(ω))

∥∥∥ ≥ ϵ
)
≤ exp

(
− ϵ2n

128M2
+ 6p

)
.

(11)

The detailed proof is provided in the Supplementary
material, Section 3. We provide a concise proof sketch
below.

Proof sketch of Theorem 4.2: The first step is to
upper bound the spectral norm using a finite δ-cover
of unit sphere Sp, that is, ∥Q∥ := supv∈Sp v

∗Qv ≤
2maxj=1,...,m |(vj)∗Qvj |, where vj denotes the center
of the jth sphere in the finite spherical cover. We
then upper bound the moment-generating function,

E
[
eλ∥Q∥] ≤ ∑m

j=1 E
[
e2λ(v

j)∗Qvj
]
+ E

[
e−2λ(vj)∗Qvj

]
.

The upper bound on E
[
e−2λ(vj)∗Qvj

]
is divided into

two parts. We first show the proof for the restart and
record sampling by exploiting the properties of i.i.d.
nature of the DFT of the samples. Next, we gener-
alize the results to the continuous sampling settings.
The proofs involve using the Rademacher random vari-
able based symmetrization argument followed by a se-
ries of standard inequalities. Finally, Chernoff bound-
ing technique is applied to the upper bound of the
moment-generating function.

By combining Lemma 4.1 and Theorem 4.2, the follow-
ing corollary is obtained, which gives a concentration
bound on the estimation error, ∥Q∥.

Corollary 4.3. Consider an LDS governed by (3) that
satisfies Assumptions 2.2 and 2.3. Let {x̆r(k)}N−1

k=0 ,
1 ≤ r ≤ n be the time series measurements obtained

for the LDS. Suppose that N > 2Cρ−1

(1−ρ−1)2ε1
, where 0 <

ε1. Let 0 < ε1, ε2 < ε be such that ε2 = ε − ε1. Then
∀ω ∈ Ω,

P
(∥∥∥Φx(ω)− Φ̂x(ω))

∥∥∥ ≥ ε
)
≤ exp

(
− ε22n

128M2
+ 6p

)
.

(12)
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4.2 Sample Complexity Bounds: Upper
Bound

In the previous subsection, concentration bounds on
the estimation errors in PSDM were obtained. Here,
a concentration bound on the error in estimating f
is obtained, which is used to obtain a concentration
bound in reconstructing the DDAG, G. The following
result provides a concentration bound on |f − f̂ |.

Lemma 4.4. Consider an LDS governed by (3) that
satisfies Assumptions 2.2 and 2.3. Let {x̆r(k)}N−1

k=0 ,
1 ≤ r ≤ n be the time series measurements obtained

for the LDS. Suppose that N > 2Cρ−1

(1−ρ−1)2ε1
, where 0 <

ε1. Let 0 < ε1, ε2 < ε be such that ε2 = ε − ε1. Then
there exists a c0 ∈ R such that, for any ω ∈ Ω,

P
(
|f(i, C, ω)− f̂(i, C, ω) ≥ ε

)
≤ c0e

(
− ε22n

10368M6 +6(q+1)

)
,

where q is the maximum number of parents any node
has in G.

The proof, provided in Section 4 of the Supplemen-
tary material, uses Corollary 4.3 for different entries
in the formula for f(i, C, ω) as defined in (8). Based
on Lemma 4.4, the following upper bound on the prob-
ability of error in estimating G can be obtained.

Theorem 4.5. Suppose q ≤ p/2. Consider an LDS
that belongs to Hp,q(β, σ,M) (Definition 2.4) that sat-
isfies Assumptions 2.2 and 2.3. Let {x̆r(k)}N−1

k=0 , 1 ≤
r ≤ n be the time series measurements of the LDS and
let Ĝ be the DDAG reconstructed by Algorithm 1. Sup-

pose that N > 2Cρ−1

(1−ρ−1)2ε1
, where 0 < ε1 < ∆/4. Let

0 < ε1, ε2 < ε < ∆/4 be such that ε2 = ε − ε1. Then

P
(
G(ω) ̸= Ĝ(ω)

)
≤ δ if

n ≳
M6 (q log(p/q)− log δ)

ϵ22
.

Proof. See supplementary material, Section 5.

In the following section, a matching lower bound is
derived.

5 Sample Complexity Bounds: Lower
Bound

The lower bound for reconstructing DDAG is derived
using information-theoretic techniques, in particular
Fano’s inequality, and by restricting the interested
family of graphs to a finite set. Notice that, except
for a couple of non-trivial facts in dynamic setup, this
is a direct extension of the lower bound for the static
case provided in Gao et al. [2022]. The approach is

to construct restricted ensembles of graphical models
and then to lower bound the probability of error us-
ing Generalized Fano’s inequality. Theorem 5.1 below
provides the lower bound. For completeness, the proof
is provided in the supplementary material.

Theorem 5.1. Suppose q ≤ p/2. If

n ≤ (1− 2δ)max

(
log p

2β2 + β4
,
q log(p/q)

M2 − 1

)

then

inf
Ĝ

max
H∈Hp,q(β,σ,M)

P{(G(H) ̸= Ĝ)} ≥ δ,

That is, if n ≤ (1 − 2δ)max
(

log p
2β2+β4 ,

q log(p/q)
M2−1

)
, then

any given estimator fails to reconstruct the DDAG
with probability greater than δ. The lower-bound
provides the fundamental limit on reconstructing the
DDAG from finite samples.

Theorem 5.1 provides the lower bound

Ω
(

log p
2β2+β4

∨ q log(p/q)
M2−1

)
. Notice that the upper

bound in Theorem 4.5 is O(q log p
q ). Thus we obtain

a matching order bound when the lower bound is
dominated by the second term.

6 Simulation Experiments

The effectiveness of Algorithm 1 is demonstrated with
the help of a simulation study here. In the simula-
tions, we fix the number of nodes, p, and the number
of parents, q as in Gao et al. [2022]. The exogenous
noise PSD is fixed to be the same for all the nodes.
To generate the random DAGs, first obtain a ran-
dom permutation of [p] nodes to obtain an ordering
τ . Then for each j ∈ [p], randomly select min(q, j− 1)
number of parents from τ[1:j−1]. Then for each edge
(j, i), generate Bij ∼ ϵ × Unif(.5, 1), where ϵ is the
Rademacher random variable. The matrix B is then
scaled by 1

1.002∥B∥ to satisfy Assumption 2.3. The data

is generated according to the model

xi(t) =
∑

j ̸=i

Bijxj(t− 1) + ei(t), ∀i ∈ [p], t ∈ [T ] (13)

We consider two scenarios for ei(t), viz 1) zero mean
i.i.d. Gaussian noise with variance σ = .5, and 2)
temporally correlated WSS Gaussian noise. The cor-
related WSS noise is generated according to the model
e(t) = αe(t−1)+w(t), for every t ∈ [T ], with α = 0.5
and w(t) i.i.d. Gaussian noise with covariance matrix
0.5I. The total number of samples, T = N × n, where
N is the length of each trajectory and n is the number
of trajectories. We perform both restart and record
and continuous sampling, as detailed in Fig. 3.
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Figure 3: Probability of error with number of trajectories, for different networks under restart and record (RR)
and continuous (conti) sampling strategies, when the system is excited by either i.i.d. or WSS noise. p and q
refer to the number of nodes and degree of each node in the network, respectively. The trajectory length N = 64
is fixed for each trajectory, and ω = 17

64 .

For each p and q, we generated 50 random networks
and time series data according to the model above.
For each set of parameters, n, T and N , we applied
Algorithm 1 along with the estimator from Section 4
for ω = 17

64 to reconstruct the graph. Then, P(G =

Ĝ) is empirically given by by #(G = Ĝ)/50. Fig. 3
show the comparison for various test parameters. The
simulations are performed using Python in a Macbook
with M1 pro chip and 16 GB RAM. The codes are
available here.

Conclusion

In this article, we characterized the optimal sample
complexity for structure identification with directions
in linear dynamical networks. Inspired by the static
setting, a metric, and an algorithm were proposed
based on the power spectral density matrix to exactly
reconstruct the DAG. It is shown that the optimal
sample complexity is n = Θ(q log(p/q)). For the upper
bound characterization, we obtained a tight concentra-
tion bound for the power spectral density matrix. An
information-theoretic min-max lower bound also was
provided for (sub) Gaussian linear dynamical systems.
It was shown that the upper bound is order optimal
with respect to the lower bound.
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Supplementary Material

1 Proof of Lemma 3.3

Let C ⊆ V \ {j} be an ancestral set and let D = nd(j) \ C. Then,

xj(ω) = HjC(ω)XC(ω) +HjD(ω)XD(ω) + ej(ω).

Applying ΦejC = ΦejD = 0, we obtain ΦjC(ω) = HjC(ω)ΦCC(ω) +HjD(ω)ΦDC(ω) and

Φj(ω) = HjC(ω)ΦCHjC(ω)
∗ +HjD(ω)ΦDC(ω)H

∗
jC(ω) +HjC(ω)ΦCD(ω)H∗

jD(ω) +HjD(ω)ΦD(ω)H∗
jD(ω) + Φejej (ω).

Then

f(j, C, ω) = Φj − ΦjCΦ
−1
C ΦCj = Φejej +HjD(ΦD − ΦDCΦ

−1
CCΦCD)H∗

jD.

Notice that when Pa(j) ⊆ C, HjD = 0, and f(j, C, ω) = Φejej , which shows the first part.

To prove the second part, suppose Pa(j) ∩D ̸= ∅. We need to show that HjD(ΦD − ΦDCΦ
−1
CCΦCD)H∗

jD > 0.
Let A = nd(j) = C ∪D and B = desc(j) ∪ {j}. From Talukdar et al. [2018], Veedu et al. [2021],

Φ−1
AA =S+ L, where

S = (IA −H∗
AA)Φ

−1
eA (IA −HAA),

L = HBAΦ
−1
eBHBA −Ψ∗Λ−1Ψ,

Ψ = H∗
ABΦ

−1
eA (I−HAA) + (I−H∗

BB)Φ
−1
eBHBA, and

Λ = H∗
ABΦ

−1
eAHAB + (I−H∗

BB)Φ
−1
eB (I−HBB).

Notice that since B is the set of descendants of j, HAB = 0, as cycles can be formed otherwise. Then, L = 0
and Φ−1

AA = (IA −H∗
AA)Φ

−1
eA (IA −HAA).

Φ−1
AA =

[
ΦDD ΦDC

ΦCD ΦCC

]−1

=

[
KDD KDC

KCD KCC

]
=

1

σ
(I−H∗

AA) (I−HAA)

By Scur’s complement, (ΦD −ΦDCΦ
−1
CCΦCD)−1 = KDD = 1

σ (ID −H∗
DD −HDD + (H∗

AAHAA)D×D). Moreover,

HAA =

[
HDD HDC

HCD HCC

]
and (H∗

AAHAA)D×D = H∗
DDHDD +H∗

CDHCD.

Since C is ancestral, HCD = 0 and

KDD =
1

σ
(ID −HDD)∗(ID −HDD).

Since G is a DAG, the rows and columns of H can be rearranged to obtain a lower triangular matrix with zeros
on the diagonal. Thus eigenvalues of (ID −HDD) and its inverse are all ones. Hence minimum eigenvalue of
K−1

DD is greater than σ. Applying Rayleigh Ritz theorem on HjDK−1
DDH∗

jD, we have

HjD(ΦD − ΦDCΦ
−1
CCΦCD)H∗

jD = HjDK−1
DDH∗

jD ≥ σ|D|β2 (14)

which is strictly greater than zero if D is non-empty.
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2 Proof of Lemma 3.8

The proof is done in two steps. First, we show that S in Algorithm 1 is a topological ordering. Then, we show
that step (4) in Algorithm 1 can identify the parents of every node in G. The first step is shown via induction.

Since |f̂(i, C, ω) − f(i, C, ω)| < ∆/4 for empty set, |Φii − Φ̂ii| < ∆/4 for every i. Recall from Lemma 3.3 that

Φii−Φjj > ∆ if i is a source node and j is a non-source node. Then, Φ̂jj ≥ Φjj−∆/4 ≥ Φii+3∆/4 ≥ Φ̂ii+∆/2.

Thus, i ∈ arg min
1≤k≤p

Φ̂kk if and only if i ∈ arg min
1≤k≤p

Φkk and thus S1 is always a source node.

For the induction step, assume that S1, . . . ,Sn forms a correct topologically ordered set w.r.t. G. Let C ⊆ S(1 :

n). If Pa(i) ⊆ C and Pa(j) ⊈ C, then by applying Lemma 3.3, f̂(j, C, ω) > f(j, C, ω) − ∆/4 ≥ σ + 3∆/4 =

f(i, C, ω) + 3∆/4 ≥ f̂(i, C, ω) + ∆/2. Thus, i ∈ arg min
k∈V \S

f̂(k,C, ω) if and only if i ∈ arg min
k∈V \S

f(k,C, ω) and

thus (S,Sn+1) forms a topological order w.r.t. G, by Lemma 3.6.

To prove the second step, let C ⊆ S(1 : i). Since S(1 : i) is a valid topological ordering, Pa(i) ⊆ S(1 : i − 1).
Let k ∈ Pa(i) and let D = C \ {k}. Then, as shown in Corollary 3.4 f(i, C, ω)− f(i,D, ω) ≥ ∆, and

∆ ≤ |f(i, C, ω)− f(i,D, ω)| ≤ |f(i, C, ω)− f̂(i, C, ω)|+ |f̂(i, C, ω)− f̂(i,D, ω)|

+ |f̂(i,D, ω)− f(i,D, ω)|

< ∆/4 + ∆/4 + |f̂(i, C, ω)− f̂(i,D, ω)|

=⇒ |f̂(i, C, ω)− f̂(i,D, ω)| > ∆/2.

Suppose k /∈ Pa(i) but k ∈ S(1 : i). Then, for D = C \ {k}, f(i, C, ω) − f(i,D, ω) = 0. Repeating the same

series of inequalities above by exchanging f and f̂ , we obtain |f̂(i, C, ω)− f̂(i,D, ω)| < ∆/2.

Thus, from the set S, for every node Si, one can check nodes S1, . . . ,Si−1 and verify if the difference of including
and excluding the node is greater than ∆/2. If the difference is greater than ∆/2 for some k, then k is a parent
of i, and if not, then the node is not a parent of i. That is, let Ci = {S1, . . . ,Si−1}, i > 1, and let

P̂i :=
{
j ∈ Ci

∣∣∣ |f̂(Si, Ci, ω)− f̂(Si, Ci \ {j}, ω)| > ∆/2
}
.

Then, Pa(i) = P̂i.

3 Proof of Theorem 4.2

By the variational form of spectral norm Horn and Johnson [2012],

∥Q∥ = sup
v∈Cp,∥v∥=1

|v∗Qv|,

where the max is taken over a p-dimensional unit complex sphere, Sp := {v ∈ Cp : ∥v∥2 = 1}. The first step
here is to reduce supremum to finite maximization using finite covers of a unit ball, which is done using a δ
cover. A δ-cover of a set A is a set v1, . . . , vm such that for every v ∈ A, there exists an i ∈ 1, . . . ,m such that
∥vi − v∥2 ≤ δ. The following Lemma is obtained by extending example 5.8 in Wainwright [2019] to the complex
field.

Lemma 3.1. Let v1, . . . , vm be a δ-covering of the unit sphere Sp. Then there exists such a covering with
m ≤ (1 + 2/δ)2p vectors.

Proof. The proof follows by extending (5.9) in Wainwright [2019], to the complex field.

Let v ∈ Sp and let vj be such that v = vj +∆, where ∥∆∥ ≤ δ. Then, v∗Qv = (vj)∗Qvj +2ℜ{∆∗Qvj}+∆∗Q∆.
Applying triangle inequality,

|v∗Qv| ≤ |(vj)∗Qvj |+ 2∥∆∥∥Q∥∥vj∥+ |∆∥2∥Q∥
≤ |(vj)∗Qvj |+ 2δ∥Q∥+ δ2∥Q∥

≤ |(vj)∗Qvj |+ 1

2
∥Q∥ for δ ≤ 0.22474.



Mishfad Shaikh Veedu, Deepjyoti Deka, Murti V Salapaka

Thus,

∥Q∥ = max
v∈Sp
|v∗Qv| ≤ max

j=1,...,m
|(vj)∗Qvj |+ 1

2
∥Q∥ and

∥Q∥ ≤ 2 max
j=1,...,m

|(vj)∗Qvj |

Next, we find an upper bound for E
[
eλ∥Q∥], which is treated with Chernoff-type bounding technique to obtain

the desired result.

E
[
eλ∥Q∥

]
≤ E

[
exp

(
2λ max

j=1,...,m
|(vj)∗Qvj |

)]

≤
m∑

j=1

E
[
e2λ(v

j)∗Qvj
]
+ E

[
e−2λ(vj)∗Qvj

]
(15)

Next, we complete the proof for the restart and record sampling and the continuous sampling separately.

3.1 Restart and Record Sampling

Under the restart and record sampling settings, for any given ω ∈ Ω, {xr(ω)}nr=1 is i.i.d. Thus

E
[
exp

(
t(vj)∗Qvj

)]
= E

[
exp

(
t(vj)∗(Φ̂x(ω)− Φ̃x(ω)))v

j
)]

= E

[
exp

(
t

n

n∑

r=1

(vj)∗xr(ω)[xr(ω)]∗vj − (vj)∗Φ̃x(ω)v
j

)]

=
n∏

r=1

E
[
exp

(
t

n
(vj)∗xr(ω)[xr(ω)]∗vj − (vj)∗Φ̃x(ω)v

j

)]

=

(
E
[
exp

(
t

n
(vj)∗x1(ω)[x1(ω)]∗vj − (vj)∗Φ̃x(ω)v

j

)])n

=

(
E
[
exp

(
t

n
|v∗xr(ω)|2 − v∗Φ̃x(ω)v

)])n

Let ε ∈ {−1,+1} be a Rademacher variable independent of xr. It can be shown that Proposition 4.11 in
Wainwright [2019] will hold for complex numbers also. Then

Exr(ω)

[
exp

(
t

n
|v∗xr(ω)|2 − v∗Φ̃x(ω)v

)]
≤ Exr(ω),ε

[
exp

(
2tε

n
|v∗xr(ω)|2

)]
(16)

=

∞∑

k=0

(2t/n)
2k

2k!
E
[
|v∗xr(ω)|4k

]
(17)

Recall that Φ̃x is a positive definite matrix and v∗xr ∼ N(0, η), where η = v∗Φ̃xv ≤ λmax(Φ̃x) ≤ M. The even

moments of y ∼ N(0, η) is given by E{y2k} = η2k(2k − 1)!! = (2k)!
2kk!

η2k. Then

E
[
|v∗xr(ω)|4k

]
≤ (4k)!

22k(2k)!
M2k.
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Therefore using the inequality (4k)! ≤ 22k[(2k)!]2,

Exr(ω)

[
exp

(
t

n
|v∗xr(ω)|2 − v∗Φ̃x(ω)v

)]
≤ 1 +

∞∑

k=1

(2t/n)
2k

2k!

(4k)!

22k(2k)!
M2k

≤ 1 +
∞∑

k=1

(2t/n)
2k

2k!

22k[(2k)!]2

22k(2k)!
M2k

= 1 +
∞∑

k=1

(
2Mt

n

)2k

=
1

1−
(
2Mt
n

)2

≤ exp

(
8M2t2

n2

)

whenever 2Mt
n < 3/4, where the final inequality follows by applying 1 − x ≥ e−2x for x ∈ [0, 3/4] (to be precise

0.77). Thus,

E
[
exp

(
t(vj)∗Qvj

)]
≤ exp

(
8M2t2

n

)
, ∀|t| ≤ 3n

8M
.

Applying Lemma 3.1 and the bound 2m ≤ 2(1 + 2/0.22474)2p ≤ 2e4.6p ≤ e5p+0.693 ≤ e6p,

From (15), E
[
eλ∥Q∥

]
≤ E

[
exp

(
2λ max

j=1,...,m
|(vj)∗Qvj |

)]

≤
m∑

j=1

E
[
e2λ(v

j)∗Qvj
]
+ E

[
e−2λ(vj)∗Qvj

]

≤ 2m exp

(
32M2λ2

n

)

≤ exp

(
32M2λ2

n
+ 6p

)
, ∀|λ| ≤ 3n

16M
.

Applying Chernoff-type bounding approach,

P (∥Q∥ ≥ t) ≤ e−λtE
[
eλ∥Q∥

]
≤ exp

(
−λt+ 32M2λ2

n
+ 6p

)
, ∀|λ| ≤ 3n

16M
.

The tightest bound is given by g∗(t) := inf
|λ|≤ 3n

16M

{
−λt+ 32M2λ2

n + 6p
}
, where the objective is convex. Taking

derivative w.r.t. λ and equating to zero, λ∗ = tn
64M2 and g∗ = − t2n

64M2 + 32M2

n
t2n2

642M4 + 6p = 6p − t2n
128M2 , if t is

such that t ≤ 12M , which is reasonable as we can always pick M ≥ 1.

Thus, P (∥Q∥ ≥ t) ≤ exp
(
− t2n

128M2 + 6p
)
The theorem statement follows.

3.2 Continuous Sampling

In the continuous sampling setting, the samples x̆(0), . . . , x̆(N − 1), x̆(N), . . . , x̆(2N − 1), . . . , x̆((n− 1)N),
. . . , x̆(nN − 1) are sampled continuously and are correlated with each other. Thus, xr(ω) and xs(ω), r ̸= s, 1 ≤
r, s ≤ n, can be correlated, in contrast to the restart and record (RR) setting, where the xr(ω) and xs(ω),
r ̸= s are i.i.d. For any given ω ∈ Ω, let x(ω) := [[x1(ω)]T , [x2(ω)]T , . . . , [xn(ω)]T ]T ∈ Cpn×1 be the vectorized
form of {xr(ω)}nr=1 and let C(ω) := E{x(ω)x∗(ω)} be the covariance matrix of x(ω). Under the RR setting,
C(ω) ∈ Cpn×pn will be a block-diagonal matrix (of block size p × p), whereas in the continuous sampling, the
non-block-diagonal entries of C(ω) can be non-zero. However, the vector x(ω), with correlated entries, can be
written as a linear transformation of i.i.d. vector w ∈ Cpn×1 with unit variance, i.e. x(ω) = C1/2(ω)w, where
C1/2 is the square-root of C and w ∼ N (0, Ipn). It follows from Doddi et al. [2022] that xr(ω) and thus x(ω)
are Gaussian distributed when {ĕ(k)}nk=1 in the linear time-invariant model (1) are Gaussian. It can be verified
that E{x(ω)x∗(ω)} = C1/2(ω)E{ww∗}C1/2(ω) = C(ω). Notice that the covariance matrix C(ω) is a block matrix,
defined as
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C =




C11 C12 . . . C1n
C21 C22 . . . C2n
...
Cn1 Cn2 . . . Cnn


 ,where Crs(ω) ∈ Cp×p, 1 ≤ r, s ≤ n,

where the entries of Crs(ω) is given by E {xr(ω)[xs(ω)]∗}. Recall that

xr(ω) =
1√
N

N−1∑

ℓ=0

x̆((r − 1)N + ℓ)e−iωℓ.

Let Ir =
[
0| . . . |0|Ip×p| . . . |0

]
∈ Rp×np be such that rth block is identity matrix. Then xr(ω) = Irx(ω). The

estimated PSDM is then given by

Φ̂x(ω) =
1

n

n∑

r=1

xr(ω)[xr(ω)]∗ =
1

n

n∑

r=1

Irx(ω)x
∗(ω)I∗r .

Substituting x(ω) = C1/2(ω)w, and letting B(ω) := (C1/2)∗(ω)
∑n

r=1 I
∗
ruu

∗IrC1/2(ω)

E [exp (tu∗Qu)]=E

[
exp

(
t

n

n∑
r=1

u∗xr(ω)[xr(ω)]∗u− u∗Φ̃x(ω)u

)]

=E

[
exp

(
t

n

n∑
r=1

[x∗(ω)I∗ruu
∗Irx(ω)− E {x∗(ω)I∗ruu

∗Irx(ω)}]

)]

=E

[
exp

(
t

n

n∑
r=1

[
w∗(C1/2)∗(ω)I∗ruu

∗IrC1/2(ω)w − E
{
w∗(C1/2)∗(ω)I∗ruu

∗IrC1/2(ω)w
}])]

=E

[
exp

(
t

n

[
w∗(C1/2)∗(ω)

n∑
r=1

(I∗ruu
∗Ir)C1/2(ω)w − E

{
w∗(C1/2)∗(ω)

n∑
r=1

(I∗ruu
∗Ir)C1/2(ω)w

}])]

= E
[
exp

(
t

n
[w∗B(ω)w − E {w∗B(ω)w}]

)]

Notice that I∗ru =
[
0, . . . , 0, uT , , . . . , 0

]T
is a column vector,

I∗ruu
∗Ir =



0 0 0 . . . 0
. . . . . . 0

... . . . uu∗︸︷︷︸
(r,r)th block

. . . 0

...
... · · ·

. . . 0
0 0 . . . 0


and

n∑
r=1

I∗ruu
∗Ir =


uu∗ 0 . . . 0
0 uu∗ . . . 0
...

. . . · · · 0
0 0 . . . uu∗

 ,

i.e., rank(I∗ruu
∗Ir) = 1 and rank(B(ω)) ≤ n. Let B(ω) = U(ω)Λ(ω)U∗(ω) be the eigen value decomposition of
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B(ω), where Λ = diag(λ1, . . . , λn). Consequently, omitting ω from the notations,

E [exp (tu∗Qu)] = E
[
exp

(
t

n
[w∗Bw − E {w∗Bw}]

)]

= E
[
exp

(
t

n
[w∗UΛU∗w − E {w∗UΛU∗w}]

)]

(a)
= E

[
exp

(
t

n
[w∗Λw − E {w∗Λw}]

)]

= E

[
exp

(
t

n

n∑

i=1

λi

[
w2

i − E
{
w2

i

}]
)]

=
n∏

i=1

E
[
exp

(
tλi

n

[
w2

i − E
{
w2

i

}])]
,

where (a) follows because w is invariant under unitary transformations Cui et al. [2019]. Let ε ∈ {+1,−1} be a
uniform random variable independent of w. Similar to (16), we can now apply the Rademacher random variable
trick.

Ewi

[
exp

(
λ
[
w2

i − E
{
w2

i

}])]
≤ Ewi,ε

[
exp

(
2λεw2

i

)]

=
∞∑

k=0

(2λ)
2k

(2k)!
E
[
w4k

i

]

≤
∞∑

k=0

(2λ)
2k

2k!

(4k)!

(2k)!22k

≤
∞∑

k=0

(2λ)
2k

=
1

1− 4λ2
≤ exp(8λ2),

for every |λ| < 3/8. Thus, (with the substitution λ = tλi/n and the upperbound λi ≤ ∥B∥)

E [exp (tu∗Qu)] =
n∏

i=1

E
[
exp

(
tλi

n

[
w2

i − E
{
w2

i

}])]

≤
n∏

i=1

exp

(
8t2λ2

i

n2

)

= exp

(
8t2

n2

n∑

i=1

λ2
i

)

≤ exp

(
8t2

n
∥C∥2

)
, ∀ |t| ≤ 3n

8∥C∥
,

where we have used ∥B∥ ≤ ∥C∥ in the final equality. Now, combining this with the δ−cover argument,

E
[
et∥Q∥

]
≤

m∑

j=1

E
[
e2t(v

j)∗Qvj
]
+ E

[
e−2t(vj)∗Qvj

]

≤ 2m exp

(
32∥C∥2t2

n

)

≤ exp

(
32∥C∥2t2

n
+ 6p

)
, ∀|t| ≤ 3n

16∥C∥
.

Finally, applying Chernoff bound, P (∥Q∥ ≥ t) ≤ exp
(
− t2n

128∥C∥2 + 6p
)
.
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3.2.1 Tight upper bound for ∥C∥

An explicit expression for C is given as follows:

Crs(ω) := E {xr(ω)[xs(ω)]∗} = 1

N

N−1∑

ℓ=0

N−1∑

k=0

E
{
x̆((r − 1)N + ℓ)[x̆((s− 1)N + k)]T

}
e−iω(ℓ−k)

=
1

N

N−1∑

ℓ=0

N−1∑

k=0

Rx̆((r − s)N + ℓ− k)e−iω(ℓ−k)

=
1

N

N−1∑

τ=−N+1

(N − |τ |)Rx̆((r − s)N + τ)e−iωτ

=
N−1∑

τ=−N+1

(
1− |τ |

N

)
Rx̆((r − s)N + τ)e−iωτ

=

N−1∑

τ=−N+1

(
1− |τ |

N

)
e−iωτRx̆((r − s)N + τ).

Let ατ = e−iωτ
(
1− |τ |

N

)
. Then

C =

N−1∑
τ=−N+1

ατ


Rx̆(τ) Rx̆(−N + τ) . . . Rx̆((1− n)N + τ)

Rx̆(N + τ) Rx̆(τ) . . . Rx̆((2− n)N + τ)
...

...
. . .

Rx̆((n− 1)N + τ) Rx̆((n− 2)N + τ) . . . Rx̆(τ)

 .

Notice that ğ(τ) := 1 − |τ |/N is a triangle function, and the Fourier transform of ğ(τ), g(ω) has the property
that |g(ω)| ≤ 1. Then for any u ∈ Cnp such that ∥u∥2 ≤ 1,

u∗Cu =
n∑

i,j=1

[ui]∗
N−1∑

τ=−N+1

ατRx̆((i− j)N + τ)uj

(a)

≤ Fτ{u}Fτ{Rx(tN + τ)}Fτ{u}
(b)

≤ ∥Φx(ω)∥ ≤M,

where (a) follows by taking Fourier transform with respect to τ (Fτ denotes Fourier transform with respect to

the variable τ) and (b) since ∥Fτ{u}∥2 ≤ 1. Thus, P (∥Q∥ ≥ t) ≤ exp
(
− t2n

128M2 + 6p
)
, similar to the restart and

record case.

4 Proof of Lemma 4.4

Notice that ∥Ax∥2 ≤ ∥A∥∥x∥2 for every matrix A and vector x. Applying this identity with x = [1, 0 . . . , 0],
∥ΦCi∥2 ≤ ∥ΦAA∥, where A = [k, C]. Then, applying CBS inequality for complex vectors, |x∗Ay| ≤ ∥x∥2∥Ay∥2 ≤
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∥x∥2∥A∥∥y∥2, the error can be upper bounded as

|f(i, C, ω)− f̂(i, C, ω)| = |(Φii − ΦiCΦ
−1
CCΦCi)− (Φ̂ii − Φ̂iCΦ̂

−1
CCΦ̂Ci)|

= |(Φii − Φ̂ii) + (Φ̂iCΦ̂
−1
CCΦ̂Ci − ΦiCΦ

−1
CCΦCi)|

≤ |Φii − Φ̂ii|+ |Φ̂iC(Φ̂
−1
CC − Φ−1

CC)Φ̂Ci)|

+ |(Φ̂iC − ΦiC)Φ
−1
CCΦ̂Ci)|+ |ΦiCΦ

−1
CC(Φ̂Ci − ΦCi)|

≤ |Φii − Φ̂ii|+ ∥Φ̂iC∥2∥Φ̂−1
CC − Φ−1

CC∥∥Φ̂Ci∥2
+ ∥Φ̂iC − ΦiC∥2∥Φ−1

CC∥∥Φ̂Ci∥2 + ∥ΦiC∥2∥Φ−1
CC∥∥Φ̂Ci − ΦCi∥2

≤ |Φii − Φ̂ii|+ ∥Φ̂−1
CC − Φ−1

CC∥∥Φ̂Ci∥22
+M∥Φ̂iC − ΦiC∥2∥Φ̂Ci∥2 +M2∥Φ̂Ci − ΦCi∥2

≤ |Φii − Φ̂ii|+ ∥Φ̂−1
CC − Φ−1

CC∥∥Φ̂Ci − ΦCi∥22 + ∥Φ̂−1
CC − Φ−1

CC∥∥ΦCi∥22
+M∥Φ̂iC − ΦiC∥2

(
∥Φ̂Ci − ΦCi∥2 + ∥ΦCi∥2

)
+M2∥Φ̂Ci − ΦCi∥2

≤ |Φii − Φ̂ii|+ ∥Φ̂−1
CC − Φ−1

CC∥∥Φ̂Ci − ΦCi∥22 + ∥Φ̂−1
CC − Φ−1

CC∥M
2

+M∥Φ̂iC − ΦiC∥2
(
∥Φ̂Ci − ΦCi∥2 +M

)
+M2∥Φ̂Ci − ΦCi∥2

= |Φii − Φ̂ii|+ ∥Φ̂−1
CC − Φ−1

CC∥∥Φ̂Ci − ΦCi∥22 + ∥Φ̂−1
CC − Φ−1

CC∥M
2

+M∥Φ̂Ci − ΦCi∥22 +M2∥Φ̂Ci − ΦCi∥2 +M2∥Φ̂Ci − ΦCi∥2
≤ |Φii − Φ̂ii|+ ∥Φ̂−1

CC − Φ−1
CC∥∥Φ̂Ci − ΦCi∥22 +M2∥Φ̂−1

CC − Φ−1
CC∥

+M∥Φ̂Ci − ΦCi∥22 + 2M2∥Φ̂Ci − ΦCi∥2.

The above expression can be bounded above if we can bound the three errors, ∥Φ̂ii−Φii∥ = ϵi, ∥Φ̂AA−ΦAA∥ = ϵA,

and ∥Φ̂−1
CC − Φ−1

CC∥ = ϵCinv. Simplifying the above expression,

|f(i, C, ω)− f̂(i, C, ω)| ≤ |Φii − Φ̂ii|+ ∥Φ̂−1
CC − Φ−1

CC∥∥Φ̂Ci − ΦCi∥22 +M2∥Φ̂−1
CC − Φ−1

CC∥

+M∥Φ̂Ci − ΦCi∥22 + 2M2∥Φ̂Ci − ΦCi∥2
≤ ϵi + ϵCinvϵ

2
A + 2M2ϵCinv +Mϵ2A + 2M2ϵA

≤ ϵi + ϵCinv(ϵ
2
A + 2M2) + 3M2ϵA

≤ ϵi + 3M2ϵCinv + 3M2ϵA

Pick ϵi = 3M2ϵCinv = 3M2ϵA = ϵ/3. Then |f(i, C, ω) − f̂(i, C, ω)| < ϵ. From Section 5.8 in Horn and Johnson
[2012],

∥ΦCC − Φ̂CC∥ ≤ ∥ΦCC∥∥Φ−1
CC∥

−1∥Φ̂−1
CC − Φ−1

CC∥
M2

1−M2 ∥Φ̂−1
CC−Φ−1

CC∥
∥Φ−1

CC∥

,

≤
M4∥Φ̂−1

CC − Φ−1
CC∥

1−M∥Φ̂−1
CC − Φ−1

CC∥
≤ ϵ =⇒ ∥Φ̂−1

CC − Φ−1
CC∥ ≤

ϵ

M4 +Mϵ
≤ ϵ

M4
.

Therefore, to guarantee that ∥Φ̂−1
CC −Φ−1

CC∥ < ϵ, it is sufficient to guarantee that ∥Φ̂CC −ΦCC∥ < ϵ since M ≥ 1.
Rewriting Corollary 4.3,

P
(
|Φii − Φ̂ii| ≥ ϵ

)
≤ e−

ϵ2n
128M2 +6, (18)

P
(
∥ΦAA − Φ̂AA∥ > ϵ

)
≤ e−

ϵ2n
128M2 +6(q+1), and (19)

P
(
∥ΦCC − Φ̂CC∥ > ϵ

)
≤ e−

ϵ2n
128M2 +6q, ∀ϵ ≥ 0. (20)
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Plugging these bounds in the above expressions gives the concentration upper bound

P
(
|f(i, C, ω)− f̂(i, C, ω) ≥ ϵ

)
≤ P

(
|Φii − Φ̂ii| ≥ ϵ/3

)
+ P

(
∥Φ̂−1

CC − Φ−1
CC∥ ≥ ϵ/(9M2)

)

+ P
(
∥Φ̂AA − ΦAA∥ ≥ ϵ/(9M2)

)

≤ P
(
|Φii − Φ̂ii| ≥ ϵ/3

)
+ P

(
∥Φ̂CC − ΦCC∥ ≥ ϵM2/(9)

)

+ P
(
∥Φ̂AA − ΦAA∥ ≥ ϵ/(9M2)

)

≤ e

(
− ϵ2n

1152M2 +6
)
+ e

(
− ϵ2M2n

10368 +6q
)
+ e

(
− ϵ2n

10368M6 +6(q+1)
)

≤ c0e

(
− ϵ2n

10368M6 +6(q+1)
)
.

5 Proof of Lemma 4.5

Applying the bound in Lemma 4.4,

P
(
G(ω) ̸= Ĝ(ω)

)
= P


 ⋃

k∈V,C⊆V \{k},|C|≤q

{
|f(i, C, ω)− f̂(i, C, ω)| > ϵ

}



(a)

≤
∑

k∈V,C⊆V \{k},|C|≤q

P
({
|f(i, C, ω)− f̂(i, C, ω)| > ϵ

})

(b)

≤ p

[(
(p− 1)

1

)
+ · · ·+

(
(p− 1)

q

)]
c0e

(
− ϵ2n

10368M6 +6(q+1)
)

(c)

≲ c1p× q × (p/q)qe

(
− ϵ2n

10368M6 +6(q+1)
)

≈ exp

(
log p+ log q + q log (p/q) +

(
− ϵ2n

10368M6
+ 6(q + 1)

))

≈ exp

(
log p+ log q + q log (p/q) + 6q − ϵ2n

M6

)

≲ exp

(
q log (p/q)− ϵ2n

M6

)
< δ,

where (a) follows by union bound, (b) follows since |V | = p and there are
(
p−1
k

)
number of combinations with

|C| = k. (c) follows by applying Stirling’s approximation,
(
n
k

)
≤ (ne/k)k. Thus, n ≳ M6(q log(p/q)−log δ)

ϵ2 . By

selecting the threshold γ in the algorithm appropriately, we can get a sample complexity n ≳ M6q log(p/q)
∆2 .

6 Lower bound: Proof of Theorem 5.1

The proof is based on Generalized Fano’s inequality.

Lemma 6.1 (Generalized Fano’s method). Gao et al. [2022] Consider a class of observational distribution F
and a subclass F ′ = {F1, . . . , Fr} ⊆ F with r distributions and the estimators θ̂. Then

inf
θ̂
max
F∈F

E{I(θ(F ) ̸= θ̂)} ≥ αr

2

(
1− nβr + log 2

log r

)
,

where n is the number of samples,

αr := max
k ̸=j

I(θ(Fk) ̸= θ(Fj)),

βr := max
k ̸=j

KL(Fk||Fj),
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with KL(P ||Q) := EP

[
log P

Q

]
= EP [logP ]− EP [logQ] being the KL divergence.

Corollary 6.2. Consider subclass of graphs G′ = {G1, . . . , Gr} ⊆ Gp,q, and let Hi be the distribution corre-

sponding to a distinct Gi ∈ G′. Then, any estimator Ĝ :=
⋃

ω∈Ω

Ĝ(ω) of Gi is δ unreliable,

inf
Ĝ

sup
Gi∈G′

P{(G(Hi) ̸= Ĝ} ≥ δ,

if

n ≤ (1− 2δ) log r − log 2

βr

Therefore, building a lower bound involves finding a subclass that has 1) small βr and 2) large r. First, we can
find an upper bound of r by upper bounding the number of directed graphs possible with at most q parents.
Overall, p2 number of possible positions are there and at most pq many edges. The number of possible ways

to choose k edges is
(
p2

k

)
. Thus r =

pq∑
k=1

(
p2

k

)
≤ pq

(
p2

pq

)
≲ pq(p/q)pq. Therefore, log r ≲ log(pq) + pq log(p/q)

≲ pq log(p/q) Similarly, it can be shown that log r ≳ pq log(p/q) Gao et al. [2022].

Consider the LDS (3), with ĕ(k) ∼ N(0, σkI), i.i.d. across time. Then e(ω) ∼ N (0,Φe(ω)) and x(ω) ∼ N(0,Φx),
where Φe(ω) =

∑
k∈Z σkI and Φx(ω) = (I −H(ω))−1Φe(ω)((I −H(ω))−1)∗.

Ensemble A: Consider all possible DAGs in G′ with i.i.d. Gaussian exogenous distribution such that Φe(ω)
exists. For the two distributions, Fk and Fj such that for any ω ∈ Ω, Fk(ω) ∼ N (0,Φ(k)(ω)) and Fj(ω) ∼
N (0,Φ(j)(ω)),

KL(Fk(ω)||Fj(ω)) =
1

2

(
EFj(ω)[x

∗(ω)[Φ(k)(ω)]−1x(ω)]− EFj [x
∗(ω)[Φ(j)(ω)]−1x(ω)]

)

=
1

2

(
EFj(ω)[tr(x(ω)[Φ

(k)(ω)]−1x∗(ω))]− p
)

=
1

2

(
tr([Φ(k)(ω)]−1Φ(j)(ω))− p

)

≤ 1

2

(√
∥[Φ(k)(ω)]−1∥2F ∥Φ(j)(ω)∥2F − p

)

≤ 1

2

(
pM2 − p

)
≤ (M2 − 1)p

Therefore one of the lower bounds is

inf
Ĝ

sup
G∈G′

P{(G ̸= Ĝ)} ≥ δ,

if

n ≤ (1− 2δ)pq log(p/q))− log 2

(M2 − 1)p

≲
q log(p/q)

M2 − 1
.

Ensemble B: Here, we consider graphs in Hp,q(β, σ,M) (recall Definition 2.4) with a single edge u −→ v with
Hvu(ω) = β for every ω ∈ Ω, i.e. constant matrix. For LDS with i.i.d. Gaussian noise with PSD matrix Φx

that satisfies this condition, H is such that Hvu ̸= 0 and Hij = 0 otherwise. Here, the total number of graphs,
r = 2

(
p
2

)
= (p2 − p) ≈ p2
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Notice that [Φ−1
x ]ij = (Iij −Hij −H∗

ji +
∑p

k=1 H
∗
kiHkj)/σ. Thus (ignoring ω),

[Φ−1
x ]uv =

−H∗
vu+

∑p
k=1 H∗

kuHkv

σ =
−H∗

vu

σ = −β/σ and [Φ−1
x ]ij = 0 if i, j ̸= u, v. Then,

x∗Φ−1
x x =

∑

ij

x∗
i [Φ

−1
x ]ijxj

=
1

σ

[
p∑

i=1

|xi|2(1 +
∑

k

|Hki|2) + x∗
u[Φ

−1
x ]uvxv + x∗

v[Φ
−1
x ]vuxu

]

=
1

σ


∑

i̸=u

|xi|2 + (1 + |Hvu|2)|xu|2 − 2βℜ{x∗
uxv}




=
1

σ

[∑

i

|xi|2 + β2|xu|2 − 2βℜ{x∗
uxv}

]

=
1

σ


∑

i̸=v

|xi|2 + |xv − βxu|2



Therefore,

KL(Fuv||F jk) = EFuv

[
logFuv − logF jk

]

=
1

2σ
EFuv

[
|xv|2 + |xv − βxu|2 − |xk|2 − |xk − βxj |2

]

=
1

2σ

[
β2σ + EFuv

(
β2|xj |2 − 2βℜ{x∗

jxk}
)]

Considering all the cases of (u, v) vs (j, k) it can be shown that KL(Fuv||F jk) ≤ β2 + β4/2 Gao et al. [2022].
Thus, n ≳ log p

β2+β4/2 gives the second lower bound. The lower bound follows by combining ensembles A and B.
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