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Abstract We implement a ML-based attention framework with component-specific decoders, improving
optical power spectrum prediction in multi-span networks. By reducing the need for in-depth training on
each component, the framework can be scaled to multi-span topologies with minimal data collection,
making it suitable for brown-field scenarios. ©2024 The Author(s)
Introduction
Today’s network operators depend on advanced
networks, which include reconfigurable optical
Add-Drop Multiplexer (ROADM) systems using
flex-grid Dense Wavelength Division Multiplexing
(DWDM), for high-speed and low latency services.
As these networks become more configurable and
adaptable, accurate estimation of optical link per-
formance, including power spectrum evolution and
Optical Signal-to-Noise Ratio (OSNR), has be-
come crucial[1]. DWDM signals experience dif-
ferent propagation characteristics through various
components, for example due to the wavelength
dependent gain of Erbium-Doped Fiber Ampli-
fiers (EDFAs) and losses induced by fibers and
Wavelength Selective Switches (WSSs). The chal-
lenge largely arises from the difficulty in develop-
ing accurate models of devices like EDFAs, where
different units can show significant variations, for
example, in their wavelength-dependent gain.

Traditional monolithic end-to-end system mod-
els, when applied to a large network, require exten-
sive in-field data collection and may overlook the
nuanced interactions between components, which
are important for understanding power evolution
through the network[2],[3]. In addition, these models
are limited in the sense that any network topology
change will require training of new models, with
extensive collection of new data[4]. It has been
shown that individual components such as EDFAs
can be characterized using Machine Learning (ML)
to predict optical power spectrum. However, in
multi-span networks involving multiple such com-
ponents, a direct cascade of these models perform
poorly, resulting in high error accumulation[5],[6].
Recently, a Cascaded Learning (CL) framework
was proposed using component-level models for
each EDFA in a multi-span network, utilizing addi-
tional end-to-end measurements[7]. This method
enabled models trained in the lab to be applied in
the field as a scalable approach for large networks.
However, this process requires detailed characteri-
zation of each EDFA before deployment in order to
achieve low end-to-end prediction errors. This mo-
tivates the challenge of finding the right balance
of lab data collection and field measurements–

minimizing the quantity and complexity of the field
measurements while achieving high accuracy.

In this paper, we introduce a novel approach by
interpreting a network as a series of data points
from Optical Channel Monitors (OCMs) deployed
within in-line ROADMs. We propose a sequen-
tial Multi-Decoder Attention Model (MDAM) that
leverages intermediate data to accurately emulate
power spectrum evolution across a network. This
is achieved by encoding the input signal with a
shared attention-based Long Short-Term Memory
(LSTM) encoder, and utilizing component-specific
decoders to predict the power spectrum at each
network node, improving power spectrum evolu-
tion prediction in multi-span networks. Instead
of cascading discrete component-models, the en-
coder maintains a shared information layer through
the model, while decoders enable accurate pre-
dictions for specialized component modeling in a
unified and scalable framework.

Another key issue in modeling power spectrum
evolution is the limited number of measurements
that might be available for green field and brown
field scenarios[1]. In brown field scenarios, working
with fewer measurements is the key because of the
high cost/complexity associated with live network
probing, as these could introduce impairments on
existing live channels. In green field scenarios,
using less training data speeds up the process of
accurately modeling each device. To enable high
adaptability and ensure minimal data collection
in these scenarios, we introduce a novel Transfer
Learning (TL) process. We first develop a base
model of encoder and device-specific decoders
within a controlled laboratory setup, featuring a
single physical device for each component type.
TL is then applied to the other devices in a multi-
span topology to scale up the model. This strategy
can, for example, be used to first carry out in-depth
data collection in a laboratory environment, and
reduce the number of data points from the live
network. This greatly simplifies model training and
deployment, requiring in-depth characterization
of only single physical devices to predict power
spectra for unseen, multi-span networks.

In order to study the performance of MDAM and



Fig. 1: (a) Multiple-Decoder Attention Model (MDAM) architecture, (b) Dot-product attention layer mechanism for nth component, (c)
Component-specific decoder model structure, (d) Base model training setup

End-component absolute prediction error: Mean/95th percentile (dB)
Random Goalpost

Direct Cascade Benchmark MDAM Direct Cascade Benchmark MDAM
Topo. #1 (6-span, 234 km): 40 km–40 km–40 km–32 km–32 km–50 km 1.73/4.39 0.16/0.43 0.16/0.27 2.13/2.60 0.59/1.48 0.20/0.49

Topo. #2 (4-span, 234 km): 40 km–72 km–72 km–50 km 0.61/2.03 0.16/0.42 0.14/0.21 1.03/1.28 0.58/1.43 0.24/0.47

Tab. 1: Mean/95th percentile absolute error of end-component predictions for different topologies (italics spans indicate field fibers)

its ability to carry out transfer learning across dif-
ferent networks, we carry out experiments across
two different testbeds. A first model pre-training
in OpenIreland[8] is followed by a transfer towards
two multi-span target topologies, over 234 km of
fiber, in the COSMOS PAWR Testbed[9]. Experi-
mental results show that our approach achieves a
50-fold reduction in the amount of training data
with respect to a state of the art benchmark
model[7], while also improving prediction accuracy.

Model Architecture
The data from OCMs in a transmission system
with N components comprises a sequence of
power spectrum values for each component[10]

P (λi) = [P0(λi), P1(λi), P2(λi), ...PN (λi)], which
defines the environment. P0(λi) is the input power
spectrum at first ROADM’s EDFA, and Pn(λi), n ∈
{0, 1, · · · , N} denotes the power spectrum after
component n. Given the initial power spectrum
P0, our objective is to predict power spectra after
transmission through each component in the net-
work. Since the output of each component serves
as an input to the next component, this can be
treated as an auto-regressive sequential modeling
problem. For any nth component, the input fea-
tures Pin(λi) and output features Pout(λi) can be
defined as Pn−1(λi) and Pn(λi) respectively.

We employ a sequential model architecture us-
ing a shared encoder and multi-decoder model
with attention layer (refer to Fig. 1(a)). The encoder
is a 3 layer LSTM model with a hidden size of 100
units each, with a dropout of 20% applied at each
layer to reduce overfitting. Given the substantial
variations in the physical behavior of different net-
work devices, a single shared output layer proves
inadequate for accurately modeling each compo-

nent. Instead, we create component-specific de-
coders for each component used, namely, Booster,
Preamp, Span and WSS. As shown in Fig. 1(c),
decoders are shallow neural networks consisting
of a single hidden layer of 100 neurons, and 95
neurons in the final layer, predicting the channel-
wise power output. A deeper encoder helps the
model accommodate diverse components across
longer networks, while shallow decoders are suffi-
cient to model a single component[11]. Dot-product
attention is implemented to avoid error accumu-
lation and dynamically focus on signal’s evolution
through the network, without adding parameter
overhead[12]. As the signal progresses, at any
step n, the encoder processes the output from
previous step, generating a hidden state vector hn.
The attention layer (refer Fig. 1(b)) computes atten-
tion scores for all previous components using dot
product attention where score(n) = hn · hs, with
hs = [h1, h2, · · ·hn−1] denoting all the previous hid-
den states. Softmax is applied to these scores to
derive attention weights αns, and a context vector
cn is calculated as a weighted sum of all previ-
ous hidden states weighted by their respective
attention weights, give by cn =

∑
αnshs. This con-

text vector is concatenated along with the current
hidden state and corresponding device configura-
tion features dn(such as EDFA target gain, span
length and WSS attenuation), to get the final out-
put vector on = hn ⊕ cn ⊕ dn. This output vector is
then passed to the corresponding decoder to get
the predicted power spectrum for that component.
This predicted power spectrum serves as the input
for next component step.

We develop the shared encoder and base
models for four decoders types, each corre-



Fig. 2: Comparison of absolute error distribution in power evolution predictions for Benchmark vs MDAM model for Topology-1 in (a)
Random, (b) Goalpost, and for Topology-2 in (c) Random and (c) Goalpost configurations. Markers denote the median, and the

whiskers denote the inter-quartile range (25th-75th percentile). (Comparison with Direct Cascade model shown only in (a) for clarity)

sponding to a different component type (Booster,
Preamp, Span, and WSS). This is implemented
in a laboratory environment in the OpenIreland
Testbed[8], shown in Fig. 1(d), where we carry out
a total of 3,168 power spectrum measurements.
The model undergoes a two-phase training pro-
cess: a. Teacher-Forcing Phase: for the initial
3,000 epochs, training uses ground-truth power
spectra to accelerate learning and reduce error
propagation[13]. b. Auto-Regression Phase: the
model is trained in auto-regressive mode for 9,000
epochs. Throughout both processes, Stochastic
Gradient Descent (SGD) optimizer is used to op-
timize the total weighted Mean Absolute Error
(MAE) across all components[14], with an initial
rate of 1e-03, decaying exponentially every 1,000
epochs. The encoder and decoders are preserved
separately for subsequent transfer learning.
Experimental Setup and Transfer Learning
To evaluate the performance of MDAM, we em-
ploy the PAWR COSMOS testbed in Manhattan,
USA[9] as the target network, conducting transfer
learning with base models developed in OpenIre-
land and then collect the performance results. We
set up two multi-span topologies: one 6-span link
with 12 EDFAs and one 4-span link with 8 EDFAs.
The span configuration for the two topologies is
summarized in Table 1, with total lengths of 234
km (including 64 km of Manhattan field fibers).
For both topologies, all booster and pre-amplifier
EDFAs are set to high gain mode with 18 dB gain
and zero gain tilt. A comb source is used to gener-
ate 95×50 GHz Wavelength Dependent Multiplex-
ing (WDM) channels in the C-band, and channel
configurations and spectrum flattening are man-
aged at the initial MUX, with the signal traversing
all spans and being dropped at the end DEMUX.
We consider three types of channel loading config-
urations with different number of loaded channels:
(i) Fixed (fully/half loaded), (ii) Random (loading
with randomly selected channels), and (iii) Goal-
post (groups of channel loading in different spec-
tral bands). For transfer learning, we employ the
pre-trained base encoder and replicate component
specific decoders–assigning them to correspond-
ing devices in the target network. In total, we use
48 measurements (fixed and random loading) for
transfer learning into the COSMOS target network,

using the same two-phase training process de-
scribed in the previous section. However, we use
a reduced initial learning rate of 1e-5 and a lower
gradient clipping threshold of 0.5.
Results
We compare our model against a Direct Cascade
of individually trained component-level models for
each EDFA in the network, and the benchmark
CL-Model[7]; with the test set consisting of 658 ran-
dom and 27 goalpost data points. Table 1 summa-
rizes the mean and 95th percentile absolute errors
of end-EDFA power spectrum prediction for two
topologies across random and goalpost configura-
tions. It can be seen that Direct Cascade suffers
high accumulation of errors, while CL-Model and
MDAM achieves a similar MAE for random configu-
ration. However, MDAM displays improved predic-
tions in extreme/edge cases, showing a lower 95th

percentile error. Moreover, MDAM outperforms the
benchmark model in goalpost configuration, show-
ing a more stable distribution of errors across di-
verse channel configurations. This improvement is
particularly significant, given the reduction in mea-
surements from over 160,000 in the direct cascade
model and the benchmark study[7] to 3,216 in this
work (of which only 48 is in the target network).

Fig. 2 shows the distribution of absolute pre-
diction errors across both topologies for random
and goalpost configurations. MDAM displays a
reduced error accumulation through the network
and a more stable error distribution. Especially
in the goalpost scenario, MDAM outperforms the
benchmark model with a consistent median abso-
lute error<0.3 dB through all components. Note
that MDAM jointly predicts power spectrum for all
components along the network, other methods
require separate models to be trained for individ-
ual devices. Additionally, MDAM can be fine-tuned
with added measurements for network expansions,
while other models require complete retraining for
new network configurations.
Conclusion
We demonstrate a scalable ML-based model pre-
trained on devices of the same manufacturer that
can be generalized and transferred to a larger
network. Our results show improved performance
with respect to a state-of-the-art benchmark model,
while achieving a 50-fold reduction in training data.
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