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Abstract

We introduce a ML-based architecture for network operators to detect impairments from

specific OSaa$S users while blind to the users’ internal spectrum details. Experimental studies with
three OSaa$S users demonstrate the model’s capability to accurately classify the source of impairments,
achieving classification accuracy of 94.2%. ©2024 The Author(s)

Introduction

The recent move of optical networks to Elastic Op-
tical Networks (EONSs) has enabled new flexible
transport services, such as Optical Spectrum as
a Service (0SaaS)["'2l. OSaaS can be applied to
systems in which network users can operate multi-
ple optical channels (using their own transceivers),
leasing a given spectral window in a third party
fiber link (e.g., 400 GHz). This approach has been
used commercially in OSaaS[l, serving trusted en-
tities where the user is another network operator.
Extending OSaaS to more user types will create
new fiber leasing models, making more efficient
use of excess capacity. At the same time, it bene-
fits users who could gain access to optical network
spectrum without the costs and complications of
managing an entire fiber. An example is that of
mobile operators looking to operate an Open RAN
fronthaul network across a metro areal®l.

However, providing shared fiber access to third
parties opens the network to many vulnerabilities.
Due to inter-channel interference such as fiber
non-linearity based crosstalkl®!, the dynamics of
the channels within a given spectral window can af-
fect the performance of other channels in the fiber
link. Any user-initiated changes such as power
adjustments or channel addition, can inadvertently
introduce impairments for the operator’s own chan-
nels, and to other OSaaS users.

One attraction of the OSaaS approach is that
the user spectrum can be allocated as a block,
giving users flexibility of operating their signals
and simplifying the management overhead of the
hosting network operator. However, this limits the
ability of the operator to identify and respond to
faults or impairments generated by signals within
such blocks. In this scenario, the operator is only
able to monitor the overall power across that spec-
tral window, without any further visibility on the
number of channels allocated and individual chan-
nel power levels. We refer to this as user spectrum
blind OSaasS, differing it form the situation where
the operator wavelength in the user spectral, which
we call user spectrum aware configurations.

In this work we focus on the spectrum blind con-

figuration, where the network operators must make
use of the correlation among the available data to
assess impairments. In this case, the operator can
only rely on coarse power information across the
bandwidth and on the end-to-end performance of
its own channels, which can be used as probes
to indicate variations in performance. Thus, it is
essential for the operator to develop tools for iden-
tifying impairments generated by OSaaS users,
even with incomplete or partial information about
the underlying optical links.

By targeting the impairment source, the opera-
tor can address both malicious and non-malicious
user behaviors, maintaining service quality agree-
ments with other users. Although the inter-channel
interactions are complex, Machine Learning (ML)
can be leveraged to identify the misbehaving chan-
nels. While some recent studies have proposed
ML methods to identify failures from an end-user’s
standpoint!®, in this work we specifically address
the challenge of identifying failures from the per-
spective of an operator providing OSaasS.

We carry out experiments on a 150km long
Open Line System (OLS) with 6 uni-directional
Reconfigurable Optical Add-Drop Multiplexers
(ROADMSs), where one operator provides access
to three OSaaS users, each operating their own
ROADM. We propose that the operator can use
its own data carrying channels as probes (i.e., act-
ing as guard channels), allocated in between the
OSaaS windows of different users. We then intro-
duce a flexible ML model that utilizes data on these
operator channels, along with coarse power read-
ings at the in-line ROADMSs to determine which
user is causing the impairment. We achieve a
classification accuracy rate of 94.2%.

Experimental Setup

Our experimental setup is implemented in the
Openlreland Testbed!"}8l and is shown in Fig. 1.
The OLS consists of three Lumentum ROADM-
20 units configured for uni-directional operation
to represent 6 ROADMs with Wavelength Selec-
tive Switch (WSS) filtering and amplification in
each node. The ROADMs are connected by
4x25-km spans and one 50-km span. 4 Oper-
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Fig. 1: Experimental setup in Openlreland testbed.
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Fig. 2: Types of impairments induced: 1. Increase in power
across OSaaS window, 2.1 Channel ADD impairment, 2.2
Channel DROP impairment
ator channels, acting as the data carrying probe/-
guard signals, are generated with ADVA Teraflex
Transceivers, configured with 300-Gbit/s 64-QAM
modulation. An auxiliary ROADM multiplexed the
operator channels, with added ASE noise, in order
to collect performance data at 3 different Optical
Signal-to-Noise Ratio (OSNR) levels of operator
probe channels. We consider the scenario of
a system with 3 OSaa$S end-users. Each user is
allocated a bandwidth of 400-GHz across three
non-overlapping network segments within the OLS.
These user channels were emulated by shaping
an Amplified Spontaneous Emission (ASE) broad-
band source into 50 GHz channels with the edge
ROADMs. At the setup phase, the OSaaS end
user channels are probed to ensure the Quality of
Transmission (QoT) is sufficient to enable signal

transmission.

Each user is allocated an edge ROADM to con-
figure channel loading and power levels, and mul-
tiplex the different user signals in one spectrum
window. The signal from the operator, along with
the user spectra from each individual user, are mul-
tiplexed together in the first ROADM of the OLS.
The operator channels are inserted between dif-
ferent user spectra, and are shown in green color
in Fig. 2. The launch power of each signal is set
to 4 dBm at the input to each transmission span.
The signals were equalized at the input ROADM
MUX, and Booster/Preamp amplifiers were set to

a constant gain setting of 15 dB. For each operator
channel, we extracted 7 performance monitoring
features from the Teraflex transceivers, namely
Carrier Frequency Offset (CFQO), Chromatic Dis-
persion Compensation (CDC), Differential Group
Delay (DGD), optical received power, OSNR, Q-
factor, Polarization Dependent Loss (PDL), and
the electrical Signal to Noise Ratio (SNR). We
also collected the power levels of the operator’s
channels in the OLS through in-built Optical Chan-
nel Monitors (OCMs) in the ROADMs, and the total
output power of each ROADM. Data is collected
from all network components through the Network
Configuration (NETCONF) protocol, polling the de-
vices every 30 seconds.

Impairments introduced by OSaa$S users

To investigate the potential impairments from the
OSaasS users, we have focused on two main use
cases, as shown in Fig. 2. We introduced these
perturbations for each user into the OLS, and mea-
sured the end-to-end performance of the opera-
tor's channels across three different OSNR set-
tings. We classify an observation as an impair-
ment when the Q-factor of any of the operator
channels falls below the OSNR threshold, relative
to the modulation format and baud rate used. In
total, we have collected 2920 measurements, with
184 measurements for each user’s impairment.

1. Increase in power in the OSaaS window:
The user’s total spectrum power is systematically
increased in 0.5 dB increments, across all chan-
nels, up to 6 dB.This can generate impairments
due to the EDFA cross-talk, caused by the non-flat
spectral gain interacting with the Automatic Gain
Control (AGC) mechanism, and in part also to the
nonlinear crosstalk from nearby channels. This
can in principle be detected by the operator, by
reading the OCM value of the entire OSaaS win-
dow. However we focus our identification only on
end-to-end performance monitoring of the opera-
tor’s channels.

2. ADD/DROP impairment: We increase the
power of the channels but reduce their number, so
that the total power within the OSaaS window re-
mains constant. Higher channel power increases
inter-channel non-linear interferencel®.. These
impairments are most difficult to identify, as the
power levels across the spectral window remain
constant, while the performance drops. These
cannot be identified by the operator through its
ROADM OCM for the user spectrum blind configu-
ration considered here.

Model Architecture

Conventional ML approaches for classification,
such as Boosted Trees and Artificial Neural Net-
works (ANNSs), are not suitable to address this
problem, as they possess static states, poten-
tially limiting their adaptability to network expan-
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Fig. 4: Confusion matrices of interferer classification for: baseline
and 1D-CNN model. Values are normalized by sum of each row.

sions or new user additions. We thus propose
and implement a novel architecture, based on a
1D-Convolutional Neural Network (CNN) model,
depicted in Fig. 3, tailored for dynamic networks.
We incorporate sinusoidal positional encoding!'®
of dimensionality 2, which aims to capture posi-
tional information of channels and components.
We implement positional encoding in two distinct
contexts: wavelength and components. The wave-
length encoding aims to identify dependencies like
crosstalk based on spectral layout, while compo-
nent encoding aims to track signal progression
and interactions in the network. For each posi-
tional encoded data, two CNN layers are applied.
Each of the CNN layers employ 3 distinct 1D ker-
nels of size 5. The outputs of these CNN layers
are flattened and concatenated, then fed into a
fully connected layer with 200 neurons. We apply
Rectified Linear Unit (ReLU) activation function af-
ter each layer of the model except the final output
layer, which uses the softmax function to output
the class probabilities. This layer outputs proba-
bilities across 4 classes, to identify if a network
state indicates an impairment and, if applicable,
attributing the impairment to a specific user.

The model is trained for 1,200 epochs using the
Adam Optimizer, minimizing cross-entropy error.
We utilize a batch size of 32 and a learning rate
of 0.001. Optimal parameters such as kernel size,
neurons and activation functions were identified
via a randomized-grid search. Data splitting for
performance evaluation maintained a 3:1 training-
to-test ratio, using stratified splits across classes,
ensuring a balanced class distribution.

Results

We compare our model with a baseline 5 layer
Multi Layer Perception (MLP) model, with 100 neu-
rons each in the first 4 layers, and 4 neurons in the

Fig. 5: Classification Metrics

output layer for classifying impairments across the
4 classes. In Fig. 4, the test set’s confusion matrix
is presented for the baseline MLP model and the
1D-CNN model respectively. The 1D-CNN model
achieves an overall user classification accuracy of
94.2%, with a minimum of 94% for each user. In
comparison, the benchmark MLP model achieves
an overall user classification accuracy of 76.8%,
with many impairments remaining unidentified.

Given the class imbalance, Tab. 5 provides pre-
cision, and recall scores for each user across both
impairment types. Our model excels in identify-
ing impairment sources causing overall power in-
crease across the OSaa$S spectrum, even though
identifying the specific OSaa$S user generating the
impairing is non-trivial. Even for the second use
case, where the total spectrum power remains
constant, our model can identify the user caus-
ing the impairment with high accuracy (between
94% and 96% for different users). For impairment
source identification, recall is a more relevant met-
ric as the costs of a false negative is higher. Our
model achieves a recall score greater than 90%
across all impairment types and users and per-
forms much better than the MLP model in the AD-
D/DROP impairment type. This shows the benefit
of our model architecture, which takes into account
the positions of user and operator spectra, as well
as power evolution through the network.

Conclusion

We have examined multiple impairment scenarios
in a multi-user OSaaS network and introduced a
methodology to embed operator’s probe signals
between the user spectra. Our results show that
the model achieves a 94.2% classification rate
in predicting the interfering user, offering OSaaS
operators a potential tool to identify impairments
and ensure service quality.
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