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ABSTRACT
5G new radio (NR) employs frequency range 2 (FR2) in the
millimeter-wave (mmWave) bands, which employs a much
shorter slot duration compared to FR1 (sub-7GHz) systems
and, therefore, poses significant challenges for softwarized
baseband processing in virtualized radio access networks
(vRANs). Existing systems supporting software baseband
processing focus on enabling (massive) multiple-input and
multiple-output (MIMO) using multi-core edge server(s).
These solutions may fail to meet the more stringent pro-
cessing deadline in FR2 or require more intensive compu-
tational resources. In this paper, we present Savannah, an
efficient mmWave baseband processing framework using
minimal and heterogeneous computing resources including
CPU and eASIC. Savannah addresses the challenges associ-
ated with baseband processing in FR2 by applying techniques
for vectorizing matrix operations and memory access pat-
terns, supporting heterogeneous computation via offloading
LDPC decoding to an eASIC, and enabling single-core oper-
ation. We show that Savannah, using a single CPU core and
the ACC100 accelerator, can support a 2×2 MIMO link with
100MHz bandwidth, yielding a data rate of up to 487Mbps.
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Figure 1: 99.9th percentile elapsed time and power consump-
tion achieved by Agora [13] and Savannah (this work) in a
2×2 MIMO link with 100MHz bandwidth in 5G FR2 with
0.125ms slot. The gray dashed line indicates Agora process-
ing the same amount of fronthaul traffic in an 8×8 MIMO
link with 20MHz bandwidth in FR1 with 1ms slot. Power
consumption excludes the system’s standby power.

Conference on Mobile Computing and Networking (ACM MobiCom
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1 INTRODUCTION
5G networks are designed to support diverse applications
that require high wireless data rates. 3GPP has defined fre-
quency range 1 (FR1) and frequency range 2 (FR2) utilizing
the sub-7 GHz andmillimeter-wave (mmWave) bands, respec-
tively [7]. Recent research targeting FR2 systems has received
significant attention due to the widely available spectrum in
themmWave band [15, 17, 18, 24, 41, 42]. However, the higher
data rate is accompanied by a tighter processing deadline due
to the much shorter slot duration in FR2, posing significant
challenges associated with real-time baseband processing [3].
Another feature of the 5G network is the virtualized Radio
Access Network (vRAN), where the Physical layer (PHY)
is centralized and assigned to distributed units (DUs) and
centralized units (CUs). vRAN enables multiple radio units
(RUs) to share compute resources, improving facility utiliza-
tion and efficiency. 3GPP reports multiple split options [3] to
offload the PHY processing stages to the DU/CU and option
8 only leaves radio frequency processing in RU, benefiting
from vRAN architecture the most. Studies thrive in the con-
text of split option 8 for both software baseband processing
and sharing resource pool [13, 21, 25, 53, 61].
Previous research [13, 21] has focused on improving the

efficiency of 5G vRANs via the softwarization of baseband
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processing. For example, Agora [13] is a real-time software
framework running on a single multi-core server to support
FR1 massive MIMO up to 64×16. To demonstrate the unique
challenges associated with software baseband processing in
FR2 due to the much shorter latency requirements, we run
Agora to process the same volume of fronthaul traffic in two
settings: (i) 8×8 MIMO with 20MHz bandwidth in FR1 with
1ms slot, and (ii) 2×2 MIMO with 100MHz bandwidth in
FR2 with 0.125ms slot. For both settings, we set a processing
deadline of three slots for a five-slot frame schedule of DDDSU.
Fig. 1(a) shows that Agora is able to meet the 3-slot deadline
of 3ms in FR1 with 9 cores. However, it fails to meet the 3-
slot deadline of 0.375ms in FR2, even with more CPU cores,
due to the tighter deadline and inefficient matrix operations.

In this paper, we present Savannah1, a system for efficient
mmWave baseband processing using minimal and hetero-
geneous computing resources, including CPU and eASIC.
To address these challenges associated with baseband pro-
cessing imposed by FR2, Savannah applies techniques for
(i) optimizing vectorized matrix operations and memory ac-
cess patterns, (ii) supporting heterogeneous computation
via offloading LDPC decoding to Intel’s ACC100 accelera-
tor [49], and (iii) enabling single-core scheduling. We also
comprehensively characterize the ACC100 accelerator for
its decoding throughput and energy efficiency. Savannah
achieves real-time processing for the given FR2 configura-
tion in (i) the multi-core variant (Savannah-mc) with five
CPU cores, or (ii) the single-core variant (Savannah-sc) with
heterogeneous computing resources. The two variants show
the performance tradeoff between dedicated hardware and
CPU, where Savannah-sc outperforms both Savannah-mc
and Agora in energy efficiency, as shown in Fig. 1(b).

We also evaluate Savannah without the ACC100 accelera-
tor and compare it to previous software baseband processing
works. These works focus on supporting massive MIMO
systems in FR1 with extensive computing resources, while
Savannah can achieve the same data rate in FR2 with mini-
mal hardware resources. For example, Agora [13] requires 26
cores on a single server to achieve a data rates of 454Mbps us-
ing 64×16 MIMO with 64QAM and 1/3 code rate; Hydra [21]
utilizes four 32-core servers (among which 71 cores are allo-
cated for processing) to achieve a data rate of 950Mbps of
150×32 MIMO following the same FR1 configuration. In FR2,
a data rate of 487Mbps and 976Mbps can be achieved by 2×2
and 4×4 MIMO links, both with 100MHz bandwidth, under
a similar modulation and coding scheme (MCS). Meanwhile,
the number of CPU cores required by Savannah to meet the
tighter processing deadline (5 and 21 cores) is reduced by
5.2× and 3.4× compared to Agora and Hydra, respectively.

1Savannah is a breed of hybrid cat from crossing a Leptailurus serval (a
wild cat native to Africa) with a domestic cat (Felis catus).

We also implement Savannah using real radio units (RUs) in
the PAWR COSMOS testbed [12, 43] with FR2 frontends and
evaluate it via over-the-air (OTA) experiments.

To summarize, the main contributions of this paper are:
• We design Savannah, a system achieving efficient, real-
time mmWave baseband processing through the joint opti-
mization of matrix operations and memory layout, comple-
mented by the incorporation of a hardware LDPC decoder;

• We present a first-of-its-kind in-depth characterization of
the performance of Intel’s ACC100 accelerator [49] with a
focus on the decoding throughput and energy efficiency,
as well as the comparison to a software LDPC decoder
based on Intel’s FlexRAN SDK;

• We experimentally evaluate Savannah and demonstrate
its capability to meet the demanding processing deadline
across various FR2 PHY configurations.

To the best of our knowledge, this is the first work that targets
real-time mmWave baseband processing and shows that the
stringent processing deadline imposed by FR2 settings can be
met using minimal and heterogeneous computational resources.

Savannah is open-sourced [2].

2 RELATEDWORK
mmWave communications and networking. Compared
to the sub-7GHz band, the mmWave band is featured with
larger attenuation over distance and weaker multipath ef-
fects. To obtain the channel information, beam training [19,
23, 28, 59, 63] is usually adopted before establishing the
mmWave link; furthermore, beam tracking [37, 52, 57] is
the successive step that maintains the established link over
time, especially in dynamic scenarios with user mobility.
Due to the heavy overhead incurred, recent efforts have
been devoted to accelerating these two steps [23, 57, 59].
In the higher layers, recent research focused on multi-user
MIMO and joint transmission (e.g. [62]), integrated access
and backhaul (e.g., [38]), and various applications such as
sensing and localization (e.g., [60]).
mmWave testbeds. There has been extensive recent work
on the design and implementation of mmWave radios and
testbeds in both the SISO and MIMO settings. These in-
clude the unlicensed 60GHz band for 802.11ad (e.g., Open-
Mili [64], X60 [47], MillimeTera [39], M-Cube [65], and MI-
MORPH [29]), and the 28GHz band for 5G FR2 (e.g., mMo-
bile [27], and COSMOS [11, 43]). In particular, the PAWR
COSMOS testbed provides the research community access
to a set of advanced mmWave radios that integrate the IBM
28GHz 64-element phased array antennamodule (PAAM) [46].
LDPC decoding. The optimization of LDPC decoding has
gathered significant attention in communication systems,
particularly with the advancement of 5G technologies. Deep
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Table 1: 5G NR FR2 PHY layer configurations with numerol-
ogy 3 (𝜇 = 3) and a slot duration of 0.125ms.

Channel
Bandwidth

SCS,
Δ𝑓

Max # of RBs
(# of Subcarriers)

FFT
Size

Sampling
Rate, 𝐹s

100MHz 120 kHz 66 (792) 1,024 122.88MSa/s
200MHz 120 kHz 132 (1,584) 2,048 245.76MSa/s
400MHz 120 kHz 264 (3,168) 4,096 491.52MSa/s

unfolding technique [58] is adopted to improve performance
for binary linear codes while [33] illustrates the architecture
that supports frame parallelism to maximize the utilization
of processing units in field-programmable gate array (FPGA).
Practical GPU-based acceleration for the LDPC decoding
has been investigated in [54, 56]. In contrast, Savannah inte-
grates Intel’s ACC100 eASIC [49] for LDPC decoding which,
to the best of our knowledge, has not been thoroughly char-
acterized or integrated into any open-source framework.
Software baseband processing. The innovation of using
commodity CPUs for high-performance PHY processing is
first illustrated by Sora [53] on wireless signal processing for
WiFi and BigStation [61] expanded the concept to address
more complex scenarios specifically multiuser MIMO. More
recent studies such as Agora [13] present the processing for
massive MIMO in a single server while Hydra [21] expanded
the idea to a distributed system across multiple servers. Open
source projects such as srsRAN [50] and OpenAirInterface
(OAI) [35] benefit the research community with mature soft-
ware solutions on 5G vRAN. Though srsRAN [50] supports
full FR1 and 15/30 kHz subcarrier spacing, the open docu-
ment does not report any FR2 support upon submission time
of this work. In constrast, OAI [35] supports FR2 𝜇 = 3 and
up to 100MHz bandwidth. Savannah explores the real-time
baseband processing possibilities under FR2’s stringent time
requirements withminimal and heterogeneous resources and
prototypes 200MHz bandwidth in the SISO configuration.

3 PRELIMINARIES
3.1 5G NR Specifications
5G NR frame structure and numerology. A radio frame
in 5G NR has a fixed duration of 10ms and consists of 10
subframes, each with a duration of 1ms. Unlike LTE, which
employs a fixed subcarrier spacing (SCS) of 15 kHz, 5G NR in-
troduces a flexible numerology (𝜇) and supports various SCS
values given by Δ𝑓 = 2𝜇 · 15 kHz. The 3GPP Release 17 spec-
ifies seven numerology options [8], each of which can only
be used for specific types of physical channels. For example,
𝜇 = 3 (Δ𝑓 = 120 kHz) can only be used in FR2, including the
physical downlink/uplink shared channel (PDSCH/PUSCH),
whereas 𝜇 = 2 (Δ𝑓 = 60 kHz) can be used in both FR1 and
FR2. Each 1ms subframe consists of 2𝜇 slots, indicating that
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Figure 2: Baseband processing stages for the uplink and down-
link with centralized processing under 5G split option 8.

a higher numerology leads to a much shorter slot duration
as the SCS increases (e.g., 0.125ms for FR2 with 𝜇 = 3).
5G NR employs PHY based on the orthogonal frequency

division multiplexing (OFDM) technique, where data are
modulated onto and carried by orthogonal subcarriers in the
frequency domain. To convert each OFDM symbol between
the frequency domain and time domain (I/Q waveform), Fast
Fourier Transform and its inverse (FFT/IFFT) are used. Since
each slot contains a fixed number of 14 OFDM symbols, a
higher numerology leads to a shorter symbol duration. The
FFT size, denoted by 𝑁FFT, is selected to cover the required
number of resource blocks (RBs), each being 12 consecutive
subcarriers. 𝐹s = 𝑁FFT × Δ𝑓 calculates the PHY sampling
rate. Table 1 lists the key PHY parameters in 5G NR FR2.
Baseband processing. Baseband processing refers to the
signal processing operations responsible for preparing the
data prior to transmission over a communication channel
and decoding the received data. Fig. 2 shows the standard
baseband processing stages for the uplink and downlink. 5G
NR supports different functional split options, which deter-
mines how different RAN functions are distributed across the
radio unit (RU), distributed unit (DU), and centralized unit
(CU). In the context of vRAN, split option 8 [3], where all
RAN functionalities are centralized, can largely benefit from
centralized baseband processing and facilitate load balancing
and sharing of computing resources across distributed RUs.
However, it also places the highest demands on the fronthaul
network with high capacity and strict latency requirements.

Consider uplink processing with split option 8, where the
RU receives frames from the user and streams the I/Q sam-
ples to be processed by the edge server over the fronthaul.
These I/Q samples are first converted to frequency domain
symbols via FFT (fft), from which the pilot symbols are used
to estimate the channel state information (csi). The CSI is
used to calculate the precoder (precode) to equalize (equal)
the data symbols. The equalized symbols are demodulated
(demod), and a decoder (dec) performs forward error correc-
tion (FEC) before passing the frame to the medium access
control (MAC) layer. 5G NR employs LDPC codes for both
the uplink and downlink channels (i.e., PUSCH and PDSCH).
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Figure 3: The 5-slot DDDSU frame schedule where the special
slot (S) contains 10/2/2 downlink/guard/uplink symbols.

3.2 Low-Density Parity Check (LDPC) Code
In 5G NR, a transport block (TB) is a packet of data passed
between the PHY and MAC layers. For LDPC encoding, a
TB with size 𝑇 (bits) is appended with a cyclic redundancy
check (CRC) of 𝑇crc bits (16 or 24 bits). Let 𝑇 ′ = 𝑇 + 𝑇crc
denote the total size of the TB including the CRC. Prior to
the LDPC coding process, a critical step is the selection of
the base graph (BG), which determines the maximum code
block (CB) size and whether CB segmentation is needed. 5G
NR specifies two BG types [6], where BG1 is selected if (i)
𝑇 > 3,824 and the code rate 𝑅 > 0.25, or (ii) 𝑇 > 292 and
𝑅 > 0.67. If neither condition is met, BG2 is selected. In
the interest of brevity, we elaborate on the scenario where
CB segmentation is not involved, and details on scenarios
involving CB segmentation can be found in [31]. For the
selected BG, the number of information bit columns, denoted
by 𝐾𝑏 , is determined based on𝑇 and 𝑅, e.g., 𝐾𝑏 = 22 for BG1.
Following this, the lifting size, 𝑍𝑐 , is determined by selecting
the smallest value from the set of supported lifting sizes
that satisfies 𝐾𝑏 · 𝑍𝑐 ≥ 𝑇 ′. The final CB size is then given by
𝐾cb = 𝑇

′ = 𝐾𝑏 ·𝑍𝑐 . If needed, filler bits are added to match the
required CB size and maintain the code rate. Finally, LDPC
coding produces the sequence of coded bits for each CB.

For LDPC decoding, the same parameters are applied and
the log-likelihood ratios (LLRs) produced from the demod
stage via soft demodulation are used as input to the decoder,
which represent the likelihood of a bit being “0” or “1”. Belief
propagation algorithms [10, 44] are then used to iteratively
refine these likelihoods to converge on the most likely so-
lution. For efficiency, early termination mechanism can be
applied to pause the decoding process once a sufficient level
of confidence is achieved. LDPC decoding is typically more
time-consuming compared to encoding due to the iterative
nature of the belief propagation. Hence, it can become the
bottleneck in baseband processing when using a software
decoder [13]. The hardware accelerator becomes favorable
due to specialized parallel processing to speed decoding up.

3.3 PHY Latency Requirements in FR2
3GPP specifies a list of frame structures for 5G NR to support
different applications with diverse requirements. In partic-
ular, 5G NR supports various slot formats [5] to define if
each symbol within a specific slot is used for uplink (UL)
or downlink (DL). These include the full UL/DL slot (U/D),

where all 14 symbols are allocated for uplink/downlink trans-
mission, and the special slot (S), which can include mixed
UL/DL/guard symbols. We focus on the TDD frame structure
formatted DDDSU as shown in Fig. 3, which includes 52/2/16
DL/guard/UL symbols over five slots. The DDDSU format has
been widely adopted [20, 30, 32] due to its potential latency
improvement as recommended by 3GPP [16].
In this paper, we refer to the 5-slot TDD schedule DDDSU

as a frame and set a PHY processing latency deadline of three
slots (0.375ms when 𝜇 = 3) at the 99.9th percentile. This allows
two slots for the MAC layer to schedule the downlink NACK
to the user in the case of a failed uplink transmission. Note
that this represents a much tighter PHY processing deadline
imposed by FR2, in contrast to the more relaxed deadlines
considered by previous works focusing on FR1 settings, e.g.,
1–5ms in Agora [13] and 2.5ms in Hydra [21].

4 SYSTEM DESIGN
In this section, we present the design of Savannah, which
integrates a set of optimization strategies listed in Table 2 to
address the stringent PHY processing requirements in FR2.

4.1 Challenges and Motivations
Existing real-time baseband processing systems for FR1 such
as Agora [13] cannot be directly applied to FR2 due to the
more stringent processing deadline (e.g., 375 μs if 𝜇 = 3) or
requires more computational resources. FR2 PHY presents
its unique opportunities for efficient baseband processing.
Accelerating batchmatrix operations. In an𝑀×𝑁 MIMO
system, the channel state across the 𝑁sc subcarriers can be
represented by a tensor H ∈ C𝑀×𝑁×𝑁sc , obtained by the
csi stage. Since subcarriers in each OFDM symbol can be
independent, processingH becomes batch matrix operations.
Massive MIMO systems in FR1 must operate on relatively
large matrices, particularly in the csi, precode, and equal
stages. FR2 systems, however, typically focus on smaller
MIMO dimensions supporting up to 4 or 8 streams (e.g., 4×4
or 8×8MIMO) [14, 22] with amuch larger channel bandwidth
and shorter slots to enhance data rates significantly. This
fact motivates optimizing matrix operations for FR2 systems.
Existing works such as Agora [13] and Hydra [21] lever-

age subcarrier-parallelism to distribute the precode and equal
tasks over CPU cores. However, this parallelism can cause
inefficient batch matrix operations and memory access when
processing small matrices. As shown in Fig. 1, Agora can
meet the deadline in FR1 (𝜇 = 0) but not in FR2 (𝜇 = 3) under
the same amount of fronthaul traffic. Careful profiling of
Agora in FR2 settings (see §7) reveals that the bottlenecks
are the precode, equal, and dec stages, where the former two
involve heavy batch matrix operations. We propose vector-
ization with the SIMD instructions (e.g., AVX-512) provided
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Table 2: Savannah focuses on the real-time baseband processing in FR2 with a more stringent latency processing deadline
through optimization across various dimensions in comparison to Agora [13].

Target Scenario Batch Matrix Operation Memory Layout Arithmetic Library LDPC Decoder Model

Agora [13] FR1 (𝜇 = 0) Subcarrier-parallel Subcarrier Armadillo FlexRAN [25] Multi-core
Savannah-mc FR2 (𝜇 = 3) Vectorized Antenna AVX-512 FlexRAN [25] Multi-core
Savannah-sc FR2 (𝜇 = 3) Vectorized Antenna AVX-512 ACC100 [49] Single-core

by CPUs (§4.2) and the corresponding memory layout to
optimize performance (§4.3) for FR2 MIMO dimensions.
Minimizing hardware resources. The optimization tar-
geting the smaller MIMO dimension in FR2 not only allows
Savannah to meet the processing deadline but also largely
reduces the hardware resources required to achieve the same
data rate compared to existing solutions. In particular, previ-
ousworks in FR1 often target solving the computation ofmas-
sive MIMO with a single or many multi-core servers [13, 21].
In addition, LDPC decoding contributes significantly to the
baseband processing latency. To further enhance the system
performance, especially in scenarios constrained by com-
puting resources (e.g., a limited number of CPU cores), we
propose a heterogeneous computing scheme that incorpo-
rates Intel’s ACC100 hardware accelerator [49] for LDPC
decoding (§4.4). We present first-of-its-kind comprehensive
profiling and investigate the decoding capability and energy
efficiency of this accelerator (§5). As shown in Fig. 1, this
heterogeneous processing paradigm enables Savannah to
support 2×2 MIMO over 100MHz channel with a single CPU
core. Our detailed profiling also reveals multi-dimensional
tradeoffs between the hardware and software decoders with
respect to the decoding throughput and energy efficiency.
Below, we elaborate on the optimization techniques and

hardware/software components employed by Savannah.

4.2 Matrix Operation Optimization
We first focus on optimizing the equal and precode stages
through vectorizedmatrix operations, leveraging the antenna-
parallelism and seamless integration with SIMD instructions.
Optimizing batch matrix-vector multiplication (MVM)
for equalization. For the 𝑘-th subcarrier, let H(𝑘 ) denote
the CSI matrix andP(𝑘 ) denote the linear precoder, e.g., based
on zero-forcing (ZF). Equalizing an OFDM symbol is a batch
MVM operation

⃗⃗⃗
y (𝑘 ) = P(𝑘 ) × ⃗⃗

x (𝑘 ) with a batch size of
𝑁sc.

⃗⃗
x (𝑘 ) and ⃗⃗⃗

y (𝑘 ) denote the vector of I/Q samples on the
𝑘-th subcarrier before and after equalization, respectively,
with a length determined by the MIMO dimension. Consider
2×2 MIMO with [P(𝑘 ) ]𝑁sc

𝑘=1 ∈ C2×2×𝑁sc , equalizing an OFDM
symbol with a subcarrier-parallel design requires executing

𝑁sc times of MVM iteratively across the subcarriers, i.e.,[
𝑦
(𝑘 )
1

𝑦
(𝑘 )
2

]
=

[
𝑝
(𝑘 )
1,1 𝑝

(𝑘 )
1,2

𝑝
(𝑘 )
2,1 𝑝

(𝑘 )
2,2

]
×
[
𝑥
(𝑘 )
1

𝑥
(𝑘 )
2

]
, ∀𝑘. (1)

For small matrics utilized in 2×2 MIMO, each MVM involves
heterogeneously four scalar multiplications and two scalar
additions, unfriendly to processors with SIMD capabilities.

Savannah vectorizes matrix operations by treating the ele-
ments across subcarriers as vectors and performing element-
wise vector-to-vector operations, i.e., the Hadamard product
‘⊙’. In such a way, (1) can be translated into a vector form,
⃗⃗⃗⃗ ⃗⃗
y1 =

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
p1,1 ⊙

⃗⃗ ⃗⃗ ⃗
x1 +

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
p1,2 ⊙

⃗⃗ ⃗⃗ ⃗
x2 and ⃗⃗⃗⃗ ⃗⃗

y2 =
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
p2,1 ⊙

⃗⃗ ⃗⃗ ⃗
x1 +

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
p2,2 ⊙

⃗⃗ ⃗⃗ ⃗
x2, (2)

where the addition/multiplication operations are performed
on vectors of length 𝑁sc. This vector-based computation
can exploit data parallelism with SIMD instructions such as
Intel’s AVX-512 [26]. Since AVX-512 only supports arithmetic
on real floating point numbers, we implement the complex-
valued number counterparts with a combination of AVX-512
intrinsics [26], including bit operations. Via the vectorized
batch MVM given by (2), Savannah reduces the equalization
time in a 2×2 MIMO, 100MHz, 𝜇 = 3 link by 22.3× from
Agora [13], as shown in Fig. 16. Although our discussions
focus on a precoder matrix P ∈ C2×2, the proposed method
can be easily extended to precoder matrices in arbitrary sizes.
Optimizing batchmatrix inversion for precoding. Batch
matrix inversion is the core computation for linear precoding,
e.g., based on ZF. Similar to optimizing batch MVM for equal,
Savannah optimizes precode through vectorizing batch ma-
trix inversion. Consider a square channel matrixH(𝑘 ) , the ZF
precoder can be calculated by P(𝑘 ) = 𝑐 (𝑘 )0 ·

(
H(𝑘 ) )−1, where

𝑐
(𝑘 )
0 is a constant factor for calibration. For 2×2 MIMO, in-
verting H(𝑘 ) ∈ C2×2 can be intuitively done following(

H(𝑘 )
)−1

=

[
𝑎 𝑏

𝑐 𝑑

]−1
=

1
𝑎𝑑 − 𝑏𝑐 ·

[
𝑑 −𝑏
−𝑐 𝑎

]
. (3)

This involves operations such as multiplication and addi-
tion, checking non-zero determinants, and finding recipro-
cal, which Savannah processes using similar vectorization as
that applied for equal, illustrated above. The same method
can be applied to obtain the inverse of larger 𝑁 × 𝑁 matri-
ces; however, the complexity can grow O(𝑁 3) (e.g., using
the adjugate matrix). As we will show in §6, the vectorized
precoding for SISO, 2×2 MIMO, and 4×4 MIMO can achieve
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Figure 4: The illustration of (a) batched 2×2 matrices as a 3D
tensor, where the z dimension is the subcarriers. (b) and (c)
are how the tensor can be mapped to the 2D memory space.

a speedup of 267×, 122×, and 34×, respectively, compared
to the loop-based precoder calculation employed by Agora.
Calculating the linear precoder for a non-square channel ma-
trix requires the computation of its pseudo-inverse, which
can similarly be adapted to the SIMD-friendly vector format.

4.3 Efficient Memory Access
The performance gain achieved by Savannah stems from
the joint contribution of vectorized computation and vector
memory alignment. We now discuss Savannah’s memory
layout and its compatibility across the DSP stages.
Memory layout. Memory access patterns can significantly
impact an application’s execution time and are determined
by multiple factors, such as the data structure and memory
layout. The performance gain of vectorizedmatrix operations
will be limited if the memory access pattern is suboptimal.
Fig. 4(a) illustrates a batch of 2×2 matrices, whereas Figs. 4(b)
and (c) show two memory arrangements. In a loop-based
batch matrix operation, arranging data matrix-by-matrix is
appropriate, and Fig. 4(b) shows how to place matrices in a
column-major manner. However, this per-matrix layout is
inefficient for the proposed vectorized matrix operations, as
the SIMD processor needs to fetch each element in a vector
with an offset, which is 4 in the case of 2×2 MIMO. Fetching
across discontinuous memory space can waste bandwidth on
thememory bus, incur high cachemiss rates, and induce long
memory access time. Savannah adopts the memory layout as
shown in Fig. 4(c), which aligns the best with the proposed
vectorized matrix by guaranteeing continuous memory fetch.
Parallelism paradigm. In addition to efficient fetching, the
vector memory allocation can significantly reduce unnec-
essary data rearrangement across the DSP stages shown in
Fig. 2. Previous research [13, 21] often describes the parallel
opportunities in each DSP stage as the antenna-, subcarrier-,
or user-parallelism, depending on the dimension of inde-
pendence. Techniques such as block fusion [13] and delayed
shuffling [21] were used to reduce the memory movement
across the DSP stages with the same parallelism paradigm
to guarantee the proximity of the data to the processor (i.e.,
CPU cores) within the memory hierarchy for efficient access.

HostData Structure

Device
Setup

Operation
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DPDK ACC100
rte_bbdev_info_get()

rte_bbdev_queue_configure()

rte_bbdev_start()

rte_bbdev_enqueue_ops()
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Device
Running

Detect Device

Config Queue

Bring up Device
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Execution
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Socket ID

Coded Bits

Algo Param

I/O Buffers

Encoding
or

Decoding

Device
Setup

Operations

Figure 5: Workflow for configuring and controlling Intel’s
ACC100 accelerator via the DPDK driver.

However, data rearrangements are still required for a DSP
stage to pass the operands to another stage with a different
parallelism paradigm. For example, fft is an antenna-parallel
stage since one FFT operation is performed for the signals
received by each antenna. For each received uplink symbol,
fft generates a vector with dimension 𝑁FFT corresponding to
the frequency domain representation of the received signal.
To pass these vectors as matrices to the downstream csi stage
that follows subcarrier-parallelism, Agora must distribute
the vector elements to an interleaving style, as shown in
Fig. 4(b). Interestingly, it can be easily observed that the
continuous memory allocation shown in Fig. 4(c) naturally
fits the output of fft and, as a result, data rearrangement can
be eliminated. Similarly, csi carrying outmatrix inversion can
keep the output memory layout in the vector form, enabling
more efficient data passing to equal stage. Then, passing
the equalized symbols from equal to demod can fall back to
block fusion [13] since they are both subcarrier-parallel.

4.4 Hardware LDPC Decoder
Savannah integrates a hardware LDPC decoder based on
Intel’s ACC100 accelerator [49] to enhance baseband pro-
cessing speed, particularly when a single CPU core fails to
meet the latency requirements in FR2. As a baseband de-
vice, the ACC100 accelerator provides a polling-mode driver
(PMD) interfacing with the user space program via DPDK.
Accessing the ACC100 accelerator via DPDK. The driver
functions of the ACC100 accelerator belong to the subset
of rte_bbdev, standing for the baseband device in the real-
time environment. While the ACC100 accelerator supports
multiple modes, we select LDPC decoding specifically as an
example. Fig. 5 shows the workflow to initiate ACC100 via
DPDK function calls, the corresponding operands, and ac-
tions by the host computer/server. In particular, the device
setup involves detecting the ACC100 accelerator and initial-
izing the communication sockets. The user program can use
device ID to select the device; DPDK manages a ring buffer
of the operations with the declared and initialized queues,
which can be accessed with socket ID. Before execution, the
user must prepare the input/output buffer and specify the
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Figure 6: The execution flow and core allocation of multi-
core and single-core scheduling.

desired operation. In the case of LDPC decoding, the input
buffer contains the bits to be decoded, and one operation
describes the buffer pointer and LDPC parameters, such as
the MCS and lifting size (𝑍𝑐 ). The execution of the decoding
tasks is triggered by enqueuing the pre-determined opera-
tions into the queue via DPDK. The host then actively polls
the status using the dequeue request. A successful dequeue
marks the completion of LDPC decoding for one CB.
Integration with Savannah. At run-time, each OFDM
symbol after demod (i.e., the LLR outputs) is reorganized
following the DPDK-BBDEV specifications, and is then trans-
ferred to the ACC100 device. To best utilize the built-in paral-
lelism of the hardware accelerator, each demodulated OFDM
symbol is immediately dispatched to the ACC100 device af-
ter the demod task using the rte_bbdev_enqueue_ops() func-
tion. Then, upon the completion of all software tasks for
each frame, the program initiates a bulk dequeue operation
using the rte_bbdev_dequeue_ops() function and produces
all decoded symbols for a specific frame. Such a design en-
sures a continuous data flow and allows the subsequent soft-
ware tasks (e.g., fft for the next OFDM symbol) to execute in
parallel with the ACC100 accelerator decoding tasks. As a
result, this parallel enqueue-dequeue strategy significantly
enhances the decoding and overall throughput from the se-
quential counterpart, where the program awaits the decoding
completion of the current OFDM symbol before proceeding
to the next software task.

4.5 Minimizing Computational Resources
The optimization techniques presented in §4.2 and §4.3 can
effectively reduce the number of CPU cores required in a
multi-thread system. Given the decoding performance gain
provided by the ACC100 accelerator, Savannah reveals the
potential to use a single CPU core augmented with the hard-
ware decoder to serve the intensive baseband processing
workloads in FR2. To better analyze the contribution of each
proposed design, we present two variants of Savannah:
• Savannah-mc uses multiple CPU cores and the software
LDPC decoder based on FlexRAN. We refer to Savannah-
𝑁 c as Savannah-mc using 𝑁 CPU cores, e.g., Savannah-4c

uses 4 CPU cores that are shared for all processing tasks,
including LDPC decoding;

• Savannah-sc integrates the scheduler and DSP processors
in a single core with an ACC100 accelerator for decoding.

Both variants adopt the optimized matrix operations.
Fig. 6(a) (left) shows the workflow of a multi-core pro-

cessing system (e.g., Agora and Savannah-mc), where the
scheduler core assigns tasks to the processor core(s), and
then busy waiting for the task completion to schedule the
next task. However, the idle time appears when the load is
imbalanced, especially when the number of processor cores
is small. In the case of a single processor core, the scheduler
and processor cores will idle half of the time, waiting for
each other to complete execution. Under this condition, all
scheduling and processing tasks can be merged into a sin-
gle execution flow to improve core utilization and reduce
inter-core communication, as shown in Fig. 6(a) (right).

Figs. 6(b) and 6(c) show the core allocation under the multi-
core and single-core scheduling scheme, respectively. The
inter-core communication is marked in thick arrows, while
the intra-core counterpart is marked in thin arrows. The
streamer cores are dedicated and can always be busy to keep
up with the high volume of fronthaul traffic. On the other
hand, the scheduler and processor cores can be merged in
some cases to avoid inter-core communications. Inter-core
communication must be handled with synchronization, such
as lock-free concurrent queues, which incur overhead when
the individual processing core is unnecessary. In addition
to the software optimization, Savannah can process all the
DSP stages in one core by offloading the LDPC decoding to
dedicated hardware. This leads to the design of Savannah-sc
following the scheduling strategy shown in Fig. 6(c).

5 UNDERSTANDING THE PERFORMANCE
OF INTEL’S ACC100 ACCELERATOR

In this section, we detail the characterization of Intel’s ACC100
accelerator to understand its LDPC decoding performance.2
We use Silicom’s Lisbon P2 ACC100 FEC accelerator server
adapter [49] that integrates an ACC100 eASIC. To the best of
our knowledge, this is the first comprehensive performance
benchmark for the ACC100 accelerator in terms of decoding
throughput and energy efficiency.

5.1 Decoding Throughput Characterization
Decoding unit test setup. We develop a unit test program
based on the DPDK’s test-bbdev benchmarking tool [55],
which is widely used in the bbdev API for FEC processing in
vRANs. We consider the setting where each OFDM symbol

2We focus on LDPC decoding for uplink processing in this work. The LDPC
encoding performance can be characterized using a similar method.
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Figure 7: CB size (solid black line) and code rate (dashed gray
line) corresponding to each MCS index (MCS0–MCS28).

carries at most one CB, i.e., with no CB segmentation (see
§3.2), and expand the test-bbdev tool to support the 29 MCS
(MCS0–MCS28) for the 5G NR PUSCH/PDSCH as specified
in [4, Table 5.1.3.1-1]. For each MCS with modulation order,
𝑄𝑚 , and code rate, 𝑅, we derive the LDPC parameters using
the unit test for Intel FlexRAN. Fig. 7 shows the mapping be-
tween theMCS index and its associated CB size and code rate.
Subsequently, the test vectors for each MCS are prepared.
Once all the assigned decoding tasks are completed, the unit
test records the time duration, calculates the throughput,
and validates the block error rate (BLER) upon the ground
truth. One key aspect of utilizing the ACC100 accelerator is
determining the number of CBs that can be “queued” into the
hardware for concurrent processing. We refer to this as the
level of parallelism, defined by NUM_CB in the unit test, where
multiple CBs can be enqueued without the need to wait for
the completion of the dequeue operation of the previous CBs.
This unit test design also aligns with how the ACC100 device
is integrated into Savannah (see §4.4).

In addition, we develop a unit test for the software LDPC
decoder based on Intel’s FlexRAN SDK [25], which can be
configured with identical parameters as used by the unit test
for the ACC100 accelerator. It utilizes OpenMP (Open Multi-
Processing) version 4.5 [36] for execution across multiple
CPU cores, which facilitates the comparison of the perfor-
mance tradeoffs between hardware and software decoders
across varied computing resources.
Performance metrics. Upon completing the unit test and
validating the output BLER, we analyze the decoding through-
put (dec_tput) across MCS and LDPC parameters. The de-
coding throughput is defined as the number of uncoded in-
formation bits that can be decoded per second, i.e.,

dec_tput = (𝐾cb × NUM_CB) / dec_time, (4)
where the decoding time (dec_time) denotes the time duration
required for the LDPC decoder to complete the decoding for
a total number of NUM_CB CBs. We use the Read Time-Stamp
Counter (RDTSC) instruction for precise time measurements.
Results and comparison to the software decoder. We
first evaluate the LDPC decoding throughput of the ACC100
accelerator across varying NUM_CB and CB size values, 𝐾cb.
Note that there is a one-to-one mapping between CB size
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Figure 8: LDPC decoding throughput profiling for the Intel
ACC100 eASIC within Silicom’s Lisbon-2 FEC Accelerator.

and MCS (see Fig. 7). For each configuration, we execute
the unit test 5,000 times and collect the detailed decoding
throughput statistics. Fig. 8(a) presents the average LDPC
decoding throughput for the ACC100 accelerator when pro-
cessing different numbers of CBs in parallel, with MCS10
(𝐾cb = 968), MCS17 (𝐾cb = 1,936), and MCS28 (𝐾cb = 4,224).
We empirically determine the maximum number of CBs to
be 210. Overall, the decoding throughput improves with in-
creased parallelism levels indicated by NUM_CB. With MCS28
and NUM_CB = 26, the ACC100 accelerator achieves the peak
decoding throughput of 8.30Gbps, which aligns with the
hardware specifications [49]. For lower MCS such as MCS17
and MCS10, the it achieves a maximum decoding throughput
of 5.20Gbps and 2.61Gbps, respectively, with NUM_CB = 210.
Fig. 8(b) shows the average LDPC decoding throughput

for the ACC100 accelerator with different CB sizes and par-
allelism levels, NUM_CB ∈ {24, 26, 28}. In general, the decoding
throughput increases with larger CB sizes and, as a result,
the number of CBs to be processed in parallel by the ACC100
accelerator needs to be carefully selected for optimal per-
formance. This is particularly crucial for higher MCS that
involve larger CB sizes, for which a threshold on NUM_CB

exists that will impact the decoding performance.
Fig. 9 shows the average decoding throughput gain for

the ACC100 accelerator compared to the software decoder
using different numbers of CPU cores. Note that since the
hardware and software decoders process the same number
of CBs in the unit tests, the throughput gain is equivalent
to the speedup in decoding latency for the ACC100 accel-
erator. Here, the selection of 16 and 64 CBs matches with
the full traffic load for SISO and 4×4 MIMO in the DDDSU
frame structure (see §3.3 and Fig. 3). For example, under the
moderate MCS17, the ACC100 accelerator achieves a decod-
ing throughput gain of 31.8× and 30.9× with 16 and 64 CBs,
respectively, compared to the software decoder with four
cores. These gain values degrade to 25.2× and 16.7× when
the software decoder uses doubled computing resources, i.e.,
eight cores. While the software decoder is able to achieve
high decoding throughput, it usually requires intensive com-
putational resources and can lead to poor energy efficiency.
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Figure 9: LDPC decoding throughput gain for the ACC100
accelerator compared to the software decoder (FlexRAN).
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Figure 10: (Left) Setup for measuring the power consumption
of Silicom’s Lisbon P2 ACC100 accelerator; (Right) Example
power consumption profiles during parallel decoding.

5.2 Energy Efficiency Characterization
Power profiling setup. We utilize two approaches to pro-
file the power consumption of the hardware and software
LDPC decoders. Fig. 10 depicts the setup for measuring the
power consumption of Silicom’s Lisbon P2 ACC100 acceler-
ator server adapter. In particular, we interface the ACC100
device with the host through a PCIe 4.0 riser cable, and
isolate the wires associated with the 12V power pins from
the riser cable [45]. This setup allows us to apply a digital
power clamp meter (Infurider 570S-APP), which records the
current draw across the isolated wires. The measurement ac-
curacy is validated using an NVIDIA GTX1070 GPU with the
nvidia-smi tool. Fig. 10 also shows an example power con-
sumption profile for the ACC100 accelerator. It can be seen
that the ACC100 device consumes 20.4W of power (4.8W
in addition to the idle power of 15.6W) when achieving an
LDPC decoding throughput of 4.93Gbps, with 𝐾cb = 1,936
and NUM_CB = 256. To accurately measure the CPU power con-
sumption for the software LDCP decoder, we utilize Intel’s
performance counter monitor (PCM) tool [1] and allocate
specific CPU cores exclusively for running the FlexRAN unit
test on one socket. We also measure the system’s idle power
to obtain the power consumption for decoding.
Performance metrics. We consider the energy efficiency
of the LDPC decoder, which is defined as the ratio of its
power consumption (W) to its decoding throughput (Gbps)
and measured with the unit of nJ/bit. We exclude the idle
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Figure 11: Energy efficiency gain achieved by the ACC100
accelerator compared to the software decoder (FlexRAN).

power consumption of the eASIC and CPU hardware when
calculating the energy efficiency of the LDPC decoder.
Results and comparison to the software decoder. Fig. 11
presents the average energy efficiency gain achieved by the
ACC100 accelerator compared to the software decoder using
different numbers of CPU cores. Our profiling results reveal
the superior energy efficiency of the hardware decoder. In
particular, with 16 CBs, the ACC100 accelerator achieves
an energy efficiency of 3.18 nJ/bit and 1.54 nJ/bit for MCS10
and MCS17, respectively. With a higher parallelism level
of 64 CBs, the energy efficiency numbers are improved to
1.33 nJ/bit and 0.90 nJ/bit for MCS10 andMCS17, respectively.

On the other hand, the software decoder underperforms
in energy efficiency, primarily due to (i) the lower decod-
ing throughput and (ii) CPU power consumption increases
linearly to the number of cores. In particular, the software
decoder peaks its energy efficiency when only a single CPU
core is used for decoding. Under this condition, the ACC100
accelerator achieves an energy efficiency gain of 81–87× and
151–197× with 16 and 64 CBs, respectively. The ACC100 ac-
celerator can achieve an energy efficiency gain of two orders
of magnitude when more CPU cores are used for decoding.
Such an improved energy efficiency, therefore, offsets the
upfront capital cost of the hardware. As shown in Figs. 1(a)
and 11, the energy efficiency of five CPU cores is 200×worse
than that of the ACC100 accelerator to achieve comparable
decoding performance. Moreover, an ACC100 accelerator
can be configured as multiple virtual instances and support
multiple cells simultaneously through DPDK. For example,
a 2×2 100MHz link with MCS10 and full uplink traffic load
requires a decoding throughput of 0.38Gbps, which is only
5% of the peak decoding throughput of 8 Gbps [9].

6 IMPLEMENTATION
We implement Savannah in 10K lines of source code in C++
on top of the Agora codebase [13], including 5K lines of
functional code and 5K lines of testing code. Specifically,
Savannah optimizes matrix operations following vectorized
computation and memory arrangement. Savannah-mc ap-
plies Intel’s FlexRAN SDK for LDPC decoding and runs in a
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multi-core model, whereas Savannah-sc incorporates Intel’s
ACC100 accelerator and runs with a single CPU core.
Matrix operations and memory layout. Savannah fea-
tures vectorized matrix operations and SIMD-friendly mem-
ory layout for software-based processing. Savannah lever-
ages continuous memory layout with antenna-continuous
data arrangement and uses AVX-512 provided by the In-
tel Xeon CPUs. We implement required complex-number
arithmetic with real floating point numbers and/or bit oper-
ations provided by Intel intrinsics [26]. Savannah accesses
the memory with raw pointers and manages the resource
using C++ standard libraries, where the memory layout is
written manually and handled case-by-case with respect to
the matrix dimensions. Note that Agora [13] leverages Ar-
madillo [48, 51], a C++ library for linear algebra & scientific
computing, to handle matrix operations and memory layout.
Server configuration. We perform experiments on a Dell
PowerEdge R750 server, equipped with a 56-core Intel Xeon
Gold 6348 CPU @2.6 GHz and runs Ubuntu OS (20.04.6 LTS).
To guarantee real-time processing, we enable core isolation
and mark specific cores dedicated for Savannah. The server
runs DPDK 21.11.2 to interface with Silicom’s Lisbon P2
ACC100 card. To optimize performance and minimize OS
context switches, we configure the CPU to operate in per-
formance mode and execute Savannah as a real-time pro-
cess with the highest scheduling priority. We also disable
hyper-threading and enable thread affinity to mitigate un-
predictable hazards in high-throughput applications due to
shared resources between logical cores. Similar to Agora, two
additional threads are dedicated to handling the network I/O,
i.e., streaming I/Q samples between the server and RU.
ACC100 accelerator binding. We integrate Silicom’s Lis-
bon P2 ACC100 accelerator with Savannah using DPDK’s
igb_uio driver, which is the userspace I/O (UIO) driver for
5G FEC device and facilitates direct access to the ACC100
accelerator from userspace, bypassing Linux kernel’s net-
working stack. We employ DPDK’s dpdk-devbind tool to bind
the ACC100 accelerator to the igb_uio driver and configure
two virtual functions (VFs) (max_vfs = 2), and set up the
I/O memory management unit (IOMMU) for managing the
memory address visible to the VFs. To configure the ACC100
device with specific FEC parameters, we use Intel’s physical
function bbdev configuration application (pf_bb_config).
Emulated and real RUs. We use both emulated and real
RUs, as shown in Fig. 12, to evaluate the performance of
Savannah. For emulated RUs, we use one edge server that
integrates an ACC100 accelerator, whose configurations are
described above, to emulate RU traffic with different PHY
parameters and MIMO dimensions. We run Savannah where
the RU and user are allocated on two separate NUMA nodes
of the same server. For real RUs support over-the-air (OTA)

USRP N321USRP N320

Server Rack
With ACC100

(a) USRP SDRs in Lab (b) 28GHz SDRs in COSMOS

Figure 12: OTA evaluation setup usingUSRP SDRs in Lab (sub-
6GHz front ends) and 28GHz SDRs in COSMOS (mmWvae
front ends), both with FR2 PHY configurations.

transmissions, we use a local testbed in a Lab environment,
which consists of two USRP N32x software-defined radios
(SDRs). The radios are connected to the same server used
for the emulated RU and controlled by UHD [34]. Due to the
lack of mmWave front ends, we set up a 3GHz wireless link
between the radios, while employing PHY parameters that
reflect FR2 settings with SISO 100MHz configuration.

To further evaluate Savannahwith real RUs equipped with
FR2 front ends, we leverage the open-access PAWR COS-
MOS testbed [40, 43]. In particular, we conduct experiments
using the COSMOS Sandbox 2 (sb2), which includes two IBM
28GHz phased array antenna module (PAAM) boards (see
Fig. 12(b)) and two USRP N310 SDRs. Both the 28GHz front
ends and USRP SDRs are connected to and controlled by a
Dell PowerEdge R740 server equipped with a 48-core Intel
Xeon Gold 6226 CPU operating @2.7 GHz. We apply similar
server configurations as described above to the COSMOS
server. Due to the limited bandwidth supported by the USRP
N310 and lack of the ACC100 accelerator in the COSMOS
server, we implement Savannah-mc with SISO 100MHz con-
figuration and conduct OTA experiments over a 28GHz link.

7 EVALUATION
We now present the evaluation results for Savannahwith the
PHY configurations listed in Table 1. For each configuration,
the achievable data rate is a function of channel bandwidth,
MCS, and MIMO dimension. We consider MIMO dimensions
of 1×1 (SISO), 2×2, and 4×4, and the MCS listed in Table 3,
from which the corresponding data rate can be obtained.
For example, with MCS17 and 100MHz bandwidth, the data
rates for SISO, 2×2 MIMO, and 4×4 MIMO configurations
are 243.9Mbps, 487.8Mbps, and 975.7Mbps, respectively.

As described in §3.3, we focus on the baseband processing
of uplink traffic and refer to full (100%) traffic load with 16
uplink symbols corresponding to the DDDSU frame schedule
(see Fig. 3). The traffic load can also be varied by adjusting
the number of uplink symbols in the frame. We set a PHY
processing latency deadline of 0.375ms, or three slots for FR2
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Table 3: Considered MCS used for the experimental evalua-
tion of Savannah and the corresponding spectral efficiency.

Modulation Order Code Rate Spectral Efficiency

MCS10 16QAM (𝑄𝑚 = 4) 340/1,024 1.328 bit/s/Hz
MCS17 64QAM (𝑄𝑚 = 6) 438/1,024 2.566 bit/s/Hz
MCS22 64QAM (𝑄𝑚 = 6) 666/1,024 3.902 bit/s/Hz
MCS28 64QAM (𝑄𝑚 = 6) 948/1,024 5.555 bit/s/Hz

𝜇 = 3, at the 99.9th percentile for Savannah (see §3.3). We fo-
cus on the elapsed time, which is the overall PHY processing
latency from the reception of each packet to the completion
of LDPC decoding. We also consider the CPU time, which
is the time consumed across all DSP tasks, excluding the
scheduling and inter-core communication overhead.

7.1 End-to-End Evaluation
Feasibility of Savannah-sc. We first evaluate the capabil-
ity of Savannah-sc with different FR2 PHY configurations
and Fig. 13 (a) shows the median and 99.9th percentile of the
elapsed time achieved by Savannah-sc with varying uplink
traffic loads. For each configuration, we run Savannah-sc for
100K frames and collect the baseband processing time. The
results show that using a single CPU core and the ACC100
accelerator, Savannah-sc supports real-time processing for
SISO 200MHz and 2×2 100MHz under full uplink traffic, both
corresponding to a data rate of 487Mbps with MCS17. With
the same configuration andMCS28, Savannah-sc can achieve
a data rate of 1.06Gbps. Fig. 13 (b) shows the complemen-
tary cumulative distribution function (CDF) of the elapsed
time achieved by Savannah-sc, measured across 100K frames.
Under full uplink traffic, Savannah-sc achieves a 99.9th per-
centile elapsed time of 349 μs and 312 μs for SISO 200MHz
and 2×2 100MHz, respectively. We also run Savannah-sc
with the 2×2 100MHz and different MCS listed in Table 3,
and observe similar latency with less than 11% variation.

Fig. 13 (c) shows the breakdown of 99.9th percentile elapsed
time achieved by Savannah-sc with different FR2 channel
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Figure 14: Elapsed time and CPU time distributions for Sa-
vannah in 2×2 100MHz configuration with full traffic load.

bandwidth and MIMO dimensions. With the support of the
ACC100 accelerator, the most time-consuming tasks for soft-
ware processing include fft, demod, and equal. We also con-
sider more computationally intensive PHY configurations
with increased bandwidth and MIMO dimensions. These in-
clude SISO 400MHz, 2×2 200MHz, and 4×4 100MHz, where
the maximum uplink traffic loads that can be supported by
Savannah-sc are 50%, 43.75%, and 37.5%, respectively.
ACC100 accelerator utilization and cost. One instance
of Savannah-sc can support a 2×2 MIMO link with 100MHz
bandwidth using one CPU core and an ACC100 accelera-
tor, where the latter is not utilized at its full capacity when
serving a single cell (see §5.2). The under-utilization of the
ACC100 accelerator reveals an opportunity for resource shar-
ing in a multi-cell system. Theoretically, one ACC100 ac-
celerator and 20 CPU cores can support 20 instances of
Savannah-sc, each running 2×2 MIMO and 100MHz band-
width, whereas without the ACC100 accelerator requires 100
CPU cores. Thus, the operating cost of an ACC100 accelera-
tor will be amortized when shared across multiple cells.
Comparison to Agora [13] Fig. 14 presents the distribu-
tions of the elapsed time and CPU time for Savannah-mc
and Agora, across different numbers of CPU cores with the
2×2 100MHz configuration and full traffic load. Note that
the 99.9th percentile elapsed time for Savannah-sc under
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Figure 16: Breakdown of the average processing time in 2×2
100MHz for Savannah-5c and Agora, both using 5 CPU cores.

the same configuration is 0.312ms. Specifically, to meet the
processing deadline, Savannah-mc requires only five CPU
cores, whereas Agora fails to support the desired FR2 con-
figuration, demonstrating the performance gain achieved
by the optimization techniques employed by Savannah. It
can also be observed that although the CPU time decreases
with an increased number of cores for both Savannah-mc
and Agora, the elapsed time does not further reduce due the
overhead in scheduling and inter-core communication.
Furthermore, we consider a more computationally inten-

sive configuration of 4×4 100MHz, where Savannah-mc re-
quires 21 cores to meet the 3-slot deadline, achieving a data
rate of 975Mbps with MCS17. Fig. 15 shows the breakdown
of the 99.9th percentile elapsed time, which is dominated by
the software LDPC decoder and increased overhead due to
inter-core communication. Note that Agora fails to support
this configuration even with 32 cores. While the current im-
plementation of Savannah-mc supports only the software
LDPC decoder, we believe that the required number of cores
can be reduced by 4× with the ACC100 accelerator based on
the profiling results with NUM_CB = 64 (see §5.1).

7.2 Effectiveness of Optimization
Vectorized matrix operations and memory layout. To
evaluate the effectiveness of the proposed matrix operation
and memory layout scheme, we present the latency break-
down of Savannah-5c and Agora processing a 2×2 100MHz
link. Note that the minimum number of cores required for
Savannah-mc to meet the 3-slot deadline is 5, while Agora’s
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Figure 17: Average cumulative matrix operation time across
CPU cores with 100MHz bandwidth. precode and equal in-
volve matrix inversion and MVM operations, respectively.

processing latency exceeds the deadline given the same hard-
ware resources, as shown in Fig. 16(a). On the other hand,
Fig. 16(b) shows the performance gain achieved by Savan-
nah across the DSP stages. It can be seen that the precode
time is improved by 122.4×with vectorized matrix inversion,
and equal time is improved by 22.3× with vectorized MVM.
Note that each DSP stage has the antenna-, subcarrier-, or
user-parallelism that can be exploited [13, Table. 2]. How-
ever, the transition between parallelism often requires data
re-ordering [21]. Savannah’s vectorization in precode and
equal can be viewed as continuing the antenna-parallelism
from the fft stage. Thus, csi time is reduced by 2.5× even
without any modification on the fft stage. This is because
the vector memory layout fits the csi output format and thus
eliminates additional memory access for data rearrangement.
Varying MIMO dimensions. We also evaluate the per-
formance of the proposed antenna-parallel, AVX512-based
matrix operations across different MIMO dimensions (SISO,
2×2, and 4×4). Specifically, Savannah-mc requires at least
4, 5, and 21 cores to meet the 3-slot processing deadline for
SISO, 2×2 MIMO, and 4×4 MIMO with 100MHz bandwidth,
under full traffic load. Note that Agora cannot meet the dead-
line with the same number of cores. Fig. 17 demonstrates
the average matrix operation time accumulated across the
CPU cores for each MIMO configuration, which represents
the overall computation time and complexity for each DSP
stage. The results show that compared to Agora, Savannah
achieves a CPU time reduction of 30–250× and 10–40× time
reduction for precode and equal, respectively. It can also be
seen from Fig. 17 that the proposed solution yields a more
significant time reduction for smaller MIMO dimensions.
Overhead of generalized matrix operations. Note that
Armadillo [48] provides an abstraction layer, including oper-
ator and data structure, for vectors, matrices, and 3D tensors
(or “cube”) with performance overhead, as shown in Fig. 17.
Savannah-mc (arma-vec) vectorizes matrix operation and
memory layout in the same way as Savannah-mc but uses
Armadillo’s vector APIs instead of AVX-512, showing that
the overhead of the abstraction layer leads to at least 1.5×
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Figure 18: Elapsed time achieved by Savannah-sc and
Savannah-mc with real RUs in the Lab setup and COSMOS
testbed, respectively, under the SISO 100MHz configuration.

precoder calculation and 1.2× equalization time. Savannah-
mc (arma-cube) keeps Armadillo’s “cube” memory layout
and uses its “cube” APIs to perform vectorization. In SISO
(1×1), Savannah-mc (arma-cube) reduces to Savannah-mc
(arma-vec). However, as the MIMO size grows, Savannah-mc
(arma-cube) suffers frommismatched computation andmem-
ory layout, diminishing the benefit of vectorization. Baseline
Agora uses “cube” data structure/APIs without vectorization.

7.3 Over-the-Air Evaluation
We evaluate the performance of Savannah-sc and Savannah-
mc with real RUs connected to a server using the Lab setup
and COSMOS testbed, whose settings are described in §6.
For each setup, a SISO 100MHz link is established between
two radios under full uplink traffic load, and we empiri-
cally set the link signal-to-noise ratio (SNR) to be 23.2 dB
and 28.5 dB for MCS10 and MCS17, respectively. These SNR
values ensure a zero BLER over the wireless link for the
corresponding MCS. Fig. 18 shows the distribution of the
elapsed time for Savannah-sc and Savannah-mc, where the
number of CPU cores is varied for the latter setup. The ex-
perimental results show that Savannah-sc achieves similar
performance compared to Savannah-mc using 5 CPU cores.
Note that compared to Fig. 13 (a), the elapsed time achieved
with real RUs exhibits a longer tail performance due to the
potential jitter from the NIC that streams baseband signal
between the RU and server. In addition, the 99.9th percentile
elapsed time for Savannah-mc is 0.291ms and 0.357ms for
MCS10 and MCS17, respectively, when using 5 cores. We
acknowledge that UHD also provides DPDK support to re-
duce this jitter, and integrating DPDK for both streaming
and baseband device control is left to future work.

8 LIMITATIONS
Scaling tomassiveMIMO in FR2. Savannah demonstrates
that an FR2 system can achieve comparable data rates to an
FR1 system when employing smaller MIMO dimensions and
larger signal bandwidth, while requiring less intensive com-
puting resources. However, spectrum and spatial efficiency

are orthogonal, and the service providers may prioritize the
data rates over cost. As illustrated in Fig. 17, the vectoriza-
tion of matrix operations works better in a smaller MIMO
dimension. Enabling massive MIMO in the FR2 band needs a
scalable matrix operation algorithm. In addition, evaluation
of Savannah in OTA experiments would require off-the-shelf
FR2 front ends that support large MIMO dimensions.
Adaptive scheduling. Savannah-sc supports up to 4×4
MIMO with a single CPU core and ACC100 accelerator in
FR2, and scaling to larger antenna counts requires more hard-
ware resources. Integrating the ACC100 accelerator into a
multi-core system requires a precise prediction of task exe-
cution time and an adaptive scheduler, since it requires the
host CPU to poll the finish signal, and busy-wait polling
leads to inefficiency. Further exploration into cross-layer de-
sign is necessary, particularly in co-optimizing the baseband
processing and resource allocations in higher layers.
Tradeoffs between programmability and systemperfor-
mance. As mentioned in §7.2, existing arithmetic libraries
can lead to overhead. However, programmability is essen-
tial for the rapid adoption and deployment of the system.
Savannah provides a solution to accelerate the matrix opera-
tions but still requires the developers to be familiar with the
techniques in §4.2 and AVX-512 instructions. A general code
generation tool to “hide” the implementation details from
the developer will increase the accessibility of Savannah.

9 CONCLUSION
Wepresent Savannah, a real-time baseband processing frame-
work targeting the FR2 signals in the context of 5G vRAN.
Savannah leverages techniques such as vectorizing small-
matrix operations, efficient memory access patterns, single-
core processing, and incorporating ACC100 accelerator for
LDPC decoding. Savannah achieves a data rate of 487Mbps
via minimal and heterogeneous computing resources in a
2×2, 100MHz link. Future research directions include migrat-
ing low PHY to hardware, evaluating the ACC100 accelerator
in a multi-core model to facilitate resource sharing, and eval-
uating Savannah with real FR2 MIMO frontends.
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