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Abstract

In the t-online-erasure model in property testing, an adversary is allowed to erase t values of a queried function
for each query the tester makes. This model was recently formulated by Kalemaj, Raskhodnikova and Varma, who
showed that the properties of linearity of functions as well as quadraticity can be tested in Ot(1) many queries:
O(log(t)) for linearity and 22

O(t)

for quadraticity. They asked whether the more general property of low-degreeness
can be tested in the online erasure model, whether better testers exist for quadraticity, and if similar results hold when
“erasures” are replaced with “corruptions”.

We show that, in the t-online-erasure model, for a prime power q, given query access to a function f : Fn
q −→ Fq ,

one can distinguish in poly(logd+q(t)/δ) queries between the case that f is degree at most d, and the case that f is
δ-far from any degree d function (with respect to the fractional hamming distance). This answers the aforementioned
questions and brings the query complexity to nearly match the query complexity of low-degree testing in the classical
property testing model.

Our results are based on the observation that the property of low-degreeness admits a large and versatile family of
query efficient testers. Our testers operates by querying a uniformly random, sufficiently large set of points in a large
enough affine subspace, and finding a tester for low-degreeness that only utilizes queries from that set of points. We
believe that this tester may find other applications to algorithms in the online-erasure model or other related models,
and may be of independent interest.

1 Introduction
The main purpose of this paper is to further investigate the t-online-erasure model which was recently initiated
by Kalemaj, Raskhodnikova, and Varma [13]. The motivation behind this model stems from scenarios where
computations are performed on datasets that may contain erasures which can occur in places that are chosen by
an adversary but are limited in their number. For instance, consider an algorithm aiming to detect fraud, while an
adversarial party deliberately erases data to conceal the fraudulent activity.

The focus of this paper is the problem of low degree testing in the t-online erasure model. In this setting, an
algorithm is given query access to a function f : Fn

q −→ Fq , an erasure parameter t, a distance parameter δ, and a
degree parameter d. At the start of the computation, all entries in f ’s truth table are unerased. An algorithm may query
the value of f(x) for x ∈ Fn

q , but after each query, an adversary is allowed to erase any t-entries of f ’s truth table.
If the algorithm attempts to query an entry f(x) after it is erased, then ⊥ is returned. The goal of the algorithm is to
output accept with probability 1 if f is degree at most d and to output reject with probability at least 2/3 if f is δ-far
from low degree. In the standard property testing literature, the former stipulation is often referred to as completeness,
while the latter is often referred to as soundness. Algorithms accomplishing this task in the t-online erasure model are
called t-online-erasure-resilient.

Low degree testing is one of the most basic and well studied problems in property testing and can be traced all
the way back to Blum, Luby, and Rubinfeld’s seminal work on linearity testing [7]. Linearity testing can be thought
of as the d = 1 case of low degree testing, and after the work of [7], further low degree tests were constructed
and analyzed over the next decade - first for arbitrary degrees of univariate polynomials [22], and later for arbitrary
degrees of multivariate polynomials [1, 15, 12, 6, 11, 21, 14, 17]. These tests were also relevant within coding theory

*The full version of the paper can be accessed at https://arxiv.org/pdf/2308.15441
†Department of Mathematics, Massachusetts Institute of Technology, Cambridge, USA. Supported by NSF CCF award 2227876 and NSF

CAREER award 2239160.
‡Department of Mathematics, Massachusetts Institute of Technology, Cambridge, USA. Supported by the NSF GRFP DGE-2141064.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4395

D
ow

nl
oa

de
d 

11
/1

1/
24

 to
 1

8.
29

.9
7.

23
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://arxiv.org/pdf/2308.15441


as polynomials (both univariate and multivariate) over finite fields are the basis of two of the most well known error-
correcting codes - the Reed-Solomon and Reed-Muller Codes. Due to their efficient query complexity, low degree
tests for multivariate polynomials also found many applications elsewhere in theoretical computer science - perhaps
most notably to the construction Probabilistically Checkable Proofs [9, 3, 2, 23, 4]. The extensive work regarding low
degree testing also led to the testing of other properties of functions over finite fields, and more generally the study of
algebraic property testing [16].

Our work adds to the vast literature on low degree testing by giving the first such algorithms over all degrees and
field sizes in the online erasure model. Previously, the only known results were due to [13] who gave algorithms for
linearity and quadraticity (d = 1, 2) cases over the field F2.

We find that designing a tester in the online-erasure model requires one to depart significantly from classical
testers. To see why, consider what happens when one tries to implement the Blum-Luby-Rubinfeld linearity tester of
[7] over F2. The BLR tester is based on the observation that any linear f : Fn

2 −→ F2 satisfies f(x+ y) = f(x)+ f(y)
for any x, y ∈ Fn

2 and proceeds by choosing uniformly random x, y ∈ Fn
2 , querying f(x), f(y), f(x+ y), and finally

checking if f(x + y) = f(x) + f(y) is satisfied. The difficulties that arise in the online erasure model now become
clear. After the algorithm queries f(x) and f(y), the adversary can erase the point f(x + y) making it impossible to
directly carry out the BLR test.

Faced with this difficulty, the authors of [13] noted that one can attempt to “overwhelm” the adversary’s erasure
capacity with volume. One can first query a large number, say m = 100t, of uniformly random points, x1, . . . , xm so
that there are

(
m
2

)
⩾ 4000t2 possible xi + xj’s. At this point the adversary could have erased at most 100t2 of these

sums, making it possible to successfully query a random xi+xj , and perform the check f(xi+xj) = f(xi)+ f(xj).
This idea is adapted and refined into a tester for linearity over F2 by [13].

Dealing with online erasures becomes significantly more complicated for higher degrees, namely for d ⩾ 2. The
classical test here proceeds by choosing a d + 1-dimensional affine space V and then querying f(x) for any x ∈ V ,
[1]. Given the large number of points needed as well as the large number of dependencies between these points, it is no
longer clear how to craft enough strategies to obtain an entire d+ 1-dimensional affine subspace against an adversary.
Indeed, the tester of [13] in the online erasure model is much more involved, and it is not clear how to generalize it to
larger fields or higher degrees.

Our approach. Our algorithm forgoes the task of mimicking the classical low-degree testers by attempting to
query all of the points in a subspace of Fn

q altogether. Instead, we show that given any suitable number of points inside
of a fixed affine subspace of dimension large enough in terms of d and t, one has enough points to design a degree d
tester. Thus, our algorithm circumvents the adversary by querying uniformly random points inside of some suitably
large affine subspace. As it turns out, the adversary cannot foil our plan if there is no plan.

In other words, the main new observation behind our result is that the collection of local testers for the Reed-
Muller code is versatile — so much so that we can fit a tester through a typical, small set of inputs. To the best of
our knowledge, this observation is new even in the setting without erasures, and we believe that it may have other
applications and be of independent interest.

1.1 Our Results We present our testers for low degree polynomials over prime fields and non-prime fields
separately. Although the testers are essentially the same, the analysis in the non-prime field case requires more care
and must be handled separately. This also leads to slightly different parameters for our two testers. Formally, our main
theorems are the following.

THEOREM 1.1. (PRIME FIELD CASE) Let f : Fn
p −→ Fp be the input function over a prime-field vector space, d be

the degree parameter, and δ be the distance parameter. Then for t ⩽ δ
30p

n/(20d), there is a t-online-erasure resilient

tester with query complexity O

(
(log3d+3(t/δ))

δ

)
satisfying:

• Completeness: If f is degree d then the algorithm outputs accept with probability 1.

• Soundness: If f is δ-far from degree d then the algorithm outputs reject with probability at least 2/3.

THEOREM 1.2. (NON-PRIME FIELD CASE) Let f : Fn
q −→ Fq be the input function, d be the degree parameter,
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and δ be the distance parameter. Then for t ⩽ δ
100q

n
100(d+q)

−1, there is a t-online-erasure resilient tester with query

complexity qO(1)

δ O
((

log3d+3q(t/δ)
))

satisfying:

• Completeness: If f is degree d then the algorithm outputs accept with probability 1.

• Soundness: If f is δ-far from degree d then the algorithm outputs reject with probability at least 2/3.

In the p = 2 and d = 1 case, our algorithm is essentially the same as that of [13]. Furthermore, we remark that
our testers also hold with two sided error in the t-online corruption model with two sided error. In this model, the
adversary may change the value of points f(x) instead of erasing them. Our algorithms are still effective in the online-
corruption because no matter what points the adversary chooses to erase, the probability that our algorithm queries a
corrupted point is bounded by a small constant. Therefore the corruptions only induce a small additive error to the
completeness and soundness cases. Our result for corruptions follows from a reduction from [13], showing that online
erasure-resilience implies online corruption-resilience if the probability of querying a corrupted point is small (see [13,
Lemma 1.8] for a precise statement).

THEOREM 1.3. The algorithms of Theorems 1.1 and 1.2 are also t-online-corruption resilient and satisfy:

• Completeness: If f is degree d then the algorithm outputs accept with probability 2/3.

• Soundness: If f is δ-far from degree d then the algorithm outputs reject with probability at least 2/3.

In the online corruption model, one can never hope for perfect completeness as there is always a nonzero probability
that a large enough number of queries made are corrupted, and there is no way for the algorithm to tell if a query has
been corrupted or not. In contrast, in the erasure model, the algorithm can always tell if a query is erased as ⊥ is
returned.

1.2 Proof Overview The starting point of our algorithm is the observation that the degree of a function when
restricted to a k-dimensional affine subspace can be tested using any set of points of size only polynomial in k. This
result is obtained by considering inner product testers and reviewing properties of linear affine-invariant functions [16],
which are explained in Section 2. Specifically, we rely on the fact that a degree d tester for functions over prime fields
is sound if there exists even a single degree d + 1 monomial that it can reject. Thus our task now becomes designing
a tester that accepts all degree at most d monomials while rejecting at least one degree d + 1 monomial. The view
of testing as taking the inner product with functions that are dual to the desired property, as in is done in [21, 17],
turns out to be useful for this task. This further reduces our algorithm to the following algebraic observation: for any
S ⊂ Fk

q of size roughly kd, there is a function h : Fk
q −→ Fq whose support is contained within S such that the inner

product of h with any monomial of degree at most d is 0, and the inner product of h with some specific degree d + 1
monomial is nonzero. This fact follows from counting/ dimension arguments, and armed with it the algorithm follows
rather naturally.

The case of non-prime fields is a bit harder but is very similar in spirit. Here, we once again show that testing
low-degreeness over Fq admits a versatile and large enough family of inner product testers, enough so that we can fit
a test through every large enough set of points.

1.3 Related Work Prior to this work, the t-online erasure model was presented and studied in [13]. In [13], it is
shown that the query complexity of linearity testing over F2 with erasure parameter t is Θ(log(t)), and that quadraticity
testing can be accomplished using a number of queries that is doubly exponential in t. As such, the quadraticity testing
result only applies for constant t and furthermore does not apply in the online corruption model. Other properties
including the sorted and Lipschitz properties of sequences are also considered in [13] as examples that cannot be
tested in the online-erasure model, even for t = 1.

The online erasure model we study is also similar to the offline erasure model of Dixit, Raskhodnikova, Thakurta,
and Varma [8] where all erasures are made by the adversary at the start of the computation, as well as the tolerant testing
model, where there is the additional requirement that functions close to the desired property should be accepted with
constant probability [18].
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In a concurrent work, Ben-Eliezer, Kelman, Meir and Raskhodnikova [5] investigate the online erasure model in
the q = 2 case. Of interest to this paper are the following results. For linearity testing (d = 1), they obtain a tester
with query complexity matching the lower bound in [13]. For general degree, d, they show that any tester requires at
least Ω

(
logd(t)

)
queries.

For constant distance parameter δ, in the q = 2 case, our tester in Theorem 1.1 achieves query complexity
O(log3d+3(t)). Thus, when compared to the lower bound of [5] the polynomial dependence in logd(t) is optimal, but
improving the exponent to match the lower bound is an intriguing open question. We remark that we did not attempt
to optimize the query complexity of our testers and instead focused on obtaining a tester with poly(logd(t)) query
complexity that also worked for all degrees and field sizes. Optimizing just the analysis in this paper, however, will
not close the gap to the lower bound. Instead, what appears to be missing is an “optimal analysis” of the soundness
of our basic tester (see Algorithm 1), that makes O(logd+1(t)) queries. In this paper, we rely on a generic result from
[16] to obtain soundness roughly Ω( 1

log2d+2(t)
), which in turn requires us to repeat the basic test O(log2d+2(t))-times

in order to obtain constant soundness. This ultimately results in O(log3d+3(t)) queries. If instead, we had an optimal
analysis, similar to what is achieved for the testers in [17], then the soundness of the basic test would be Ω(1), and
only O(1) repetitions would be needed. Unfortunately the analysis of [17] does not apply to our testers.

2 Preliminaries
2.1 Notations For a prime power q = pℓ, let Fq denote the finite field with q elements and F∗

q denote the nonzero
elements of Fq . When ℓ = 1, then q = p and we refer to Fq = Fp as a prime field. For a fixed field, Fq , let Tn,k denote
the set of affine transformations T : Fk

q −→ Fn
q . Though the definition of Tn,k also depends on a field parameter q, we

will often drop it from the notation and it will always be clear from the context. For T ∈ Tn,k let f ◦ T denote the
function over Fk

q given by f ◦ T (x) := f(T (x)), for x ∈ Fk
q . For a function h : Fk

q −→ Fq , we define its support as the
set of points z such that h(z) ̸= 0.

For α ∈ Fn
q , and e ∈ {0, . . . , q − 1}n, let αe =

∏n
i=1 α

ei
i , where αi and ei are the ith coordinates of α and e

respectively. Let xe denote the monomial
∏n

i=1 x
ei
i where the xi’s are variables and the number of variables parameter

n will be clear from context. The degree of xe is deg(xe) = |e|1 =
∑n

i=1 ei. For a function f : Fn
q −→ Fq , recall that

it has a unique polynomial expression, f(x) =
∑

e∈{0,...,q−1}n Cex
e, where each coefficient Ce ∈ Fq . The degree of

f is the maximum degree of a monomial appearing in its expansion, or equivalently deg(f) = maxe:Ce ̸=0 |e|1. For
each Ce ̸= 0, we say that the monomial xe appears in f or that f contains xe.

As mentioned, the set of degree d polynomials is often referred to as the degree d Reed-Muller Code. We use the
notation RM[n, q, d] = {f : Fn

q −→ Fq | deg(f) ⩽ d}. The notion of distance that we use is fractional hamming
distance. That is, for two functions f, g over Fn

q , define δ(f, g) = Prx∈Fn
q
[f(x) ̸= g(x)]. The distance of f to degree

d, is δd(f) = ming∈RM[n,q,d] δ(f, g), and we say that f is δ-far from degree d if δd(f) ⩾ δ.

2.2 Properties of Linear Affine Invariant Families We require a few basic facts about linear, affine invariant
families of functions, which we present in this section. These results can all be found or derived from [16]. For a
family of polynomials F , let

MonomialSupp(F) = {xe | e ∈ {0, . . . , q − 1}n, ∃f ∈ F containing xe}

denote the set of monomials that appear in at least one of these polynomials. It is well known that these monomials
form a basis for F if F is linear and affine-invariant. These notions are defined as follows.

DEFINITION 1. A family of functions, F ⊂ {f : Fn
q −→ Fq} is linear if

• 0 ∈ F , where 0 is the constant zero function.

• For any α, β ∈ Fq , if f, g ∈ F , then α · f + β · g ∈ F .

DEFINITION 2. A family of functions, F ⊂ {f : Fn
q −→ Fq}, is called affine invariant if it is closed under compositions

with affine transformations. That is, if f ∈ F and T ∈ Tn,n, then f ◦ T ∈ F .
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Linear, affine-invariant function families have the following nice properties. The first asserts that affine invariant
codes are defined by the set of monomials, MonomialSupp(F).

LEMMA 2.1. (MONOMIAL EXTRACTION LEMMA [16]) If F is a linear, affine-invariant family of polynomials then
F = span(MonomialSupp(F)).

The next property is called p-shadow closed, and requires some additional notions. For two integers a, b ∈
{0, . . . , q − 1}, let a =

∑ℓ−1
i=0 p

iai and b =
∑ℓ−1

i=0 p
ibi be their base p representations. We say a is in the p-shadow

of b if ai ⩽ bi for i = 0, . . . , ℓ − 1, and denote this by a ⩽p b. Then for two exponent vectors e = (e1, . . . , en) and
e′ = (e′1, . . . , e

′
n), we say e ⩽p e′ if ei ⩽p e′i for every i. Linear, affine-invariant families of polynomials have the

following shadow closed property.

LEMMA 2.2. Let F = span(MonomialSupp(F)) be a linear, affine invariant family of polynomials. If e ⩽p e′ and
xe′ ∈ MonomialSupp(F), then xe ∈ MonomialSupp(F) as well.

In the case where q = p, the shadow lemma simplifies to the following statement.

LEMMA 2.3. LetF = span(MonomialSupp(F)) be a linear, affine invariant family of polynomials over a prime field
vector space. If xe ∈ MonomialSupp(F) and each entry of e− e′ is nonnegative, then xe′ ∈ MonomialSupp(F).

Finally, we will need the a lemma which will allow us to go from one monomial in F to another with the same
degree, but with the distribution of the individual degrees shifted. In order to show this lemma, we will need Lucas’
Theorem.

THEOREM 2.1. (LUCAS’ THEOREM) For any r1 and r2, we have
(
r2
r1

)
is nonzero modulo p if and only if r1 ⩽p r2.

LEMMA 2.4. Suppose xe ∈ F and suppose m ⩽p e2. Then xe′ ∈ F , where e′ = (e1 +m, e2 −m, e3, . . . , en).

Proof. Let T be the affine transformation T (x) = (x1, x1 + x2, x3, . . . , xn). Then,

xe ◦ T = xe1
1 (x1 + x2)

e2

n∏
j=3

x
ej
j =

(
e2∑
i=0

(
d2
i

)
xe1+i
1 xe2−i

2

)
n∏

j=3

x
ej
j .

By Lucas’s Theorem and the assumption m ⩽p e2,
(
d2

m

)
̸= 0 in Fq , and so xe ◦T = xe1

1 (x1+x2)
e2
∏n

j=3 x
ej
j contains

the monomial xe′ . The result then follows from Lemma 2.1.

Clearly Lemma 2.4 also holds with the indices 1 and 2 replaced by arbitrary, distinct indices i and j.

2.3 Functions over Finite Fields We now present some additional facts about functions over finite fields. These
facts will lead to the inner-product view of testing which was used to construct low-degree tests in [21, 17]. For two
functions f, g : Fn

q −→ Fq , define their inner product as

⟨f, g⟩ =
∑
α∈Fn

q

f(α)g(α).

It is clear that this inner product is bi-linear. A key part of our testing algorithm is the observation that the presence
of high degree monomials can be “detected” by using inner products with polynomials of relatively sparse support. In
order to see this, we will first need a couple of basic facts about finite fields. First, it is a well known fact that F∗

q has a
multiplicative generator. From this, we can deduce the following two lemmas.

LEMMA 2.5. For any prime power q and integer i ∈ {0, . . . , q − 1},

∑
α∈Fq

αi =

{
−1, if i = q − 1,

0, otherwise.
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Proof. If i = q− 1, then αi = 1 for all α ̸= 0, while 0i = 0. Therefore, the sum is one summed up q− 1 times which
is −1 in Fq . For i ∈ {1, . . . , q − 2}, recall that F∗

q has a generator γ. That is, F∗
q = {1, γ, . . . , γq−2}. Since γi ̸= 1,

we may write ∑
α∈Fq

αi =

q−2∑
j=0

(γi)j =
(γi)q−1 − 1

γi − 1
=

1− 1

γi − 1
= 0.

On the other hand, if i = 0 then the sum on the left hand side of the lemma is equal to
∑

α∈Fq
α0 =

∑
α∈Fq

1 =

q = 0.

LEMMA 2.6. For e, e′ ∈ {0, . . . , q − 1}n, suppose that xe′′ = xe · xe′ where xe′′ is reduced so that its individual
degrees are in {0, . . . , q − 1}.

⟨xe, xe′⟩ =

{
(−1)n, if e′′ = (q − 1, . . . , q − 1),

0, otherwise,

Proof. This is a straightforward application of Lemma 2.5. By definition

⟨xe, xe′⟩ =
∑

(α1,...,αn)∈Fn
q

n∏
i=1

α
ei+e′i
i =

n∏
i=1

∑
α∈Fq

αe′′i .

The result follows from Lemma 2.5.

Lemma 2.6 suggest one method for using inner products to test low degree. Suppose that q = 2 and we want to
detect if f contains the degree d+1 monomial x1 · · ·xd+1. Then by Lemma 2.6 this is equivalent to checking whether
or not ⟨f, xd+2 · · ·xn⟩ is nonzero.

2.4 Local Characterizations and Testing Using the ideas from the last section, we can first attempt to find
functions h : Fk

q −→ Fq that are local characterizations of RM[n, q, d]. These are defined as follows.

DEFINITION 3. For h : Fk
q −→ Fq , define Fn(h) = {f : Fn

q −→ Fq | ⟨f ◦ T, h⟩ = 0,∀T ∈ Tn,k}. We call h a local
characterization for Fn(h).

Whenever we use the notation Fn(h), the field size q will be clear from context. Once we are able to construct
a local characterization, h, a candidate test becomes clear. Choose a random T ∈ Tn,k, and accept if and only if
⟨f ◦ T, h⟩ = 0. Carrying out this test requires querying f ◦ T (x) for every x ∈ supp(h). It is clear from the definition
of local characterization that this test satisfies completeness, while for soundness we may appeal to a general result
from [16]. For our purposes, this lemma states the following.

THEOREM 2.2. (LEMMA 2.9 [16]) For any local characterization h : Fk
q −→ Fq and function f : Fn

q −→ Fq , we have

Pr
T∈Tn,k

[⟨f ◦ T , h⟩ ≠ 0] ⩾
δ

4Q2
,

where Q = | supp(h)| and δ = δ(f,Fn(h)).

3 The Prime Field Case: Proof of Theorem 1.1
Fix a degree parameter d, a prime field size q = p, and an erasure parameter t. In this section we prove Theorem 1.1
by describing and analyzing a t-erasure-resilient degree d tester for functions over Fn

p . For distance parameter δ, our
test is t-online-erasure resilient for all t ⩽ δ

30p
n/(20d).
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3.1 A Local Characterization for RM[n, p, d] To start, we give a sufficient condition for a function h to be a local
characterization RM[n, p, d]. This requires the following Corollary of Lemma 2.4 applied to the prime field case.

LEMMA 3.1. Let F be a linear affine invariant family of functions over Fn
p and suppose xe ∈ F for some

e ∈ {0, . . . , p− 1}n. Then xe′ ∈ F for any e′ ∈ {0, . . . , p− 1}n such that |e′|1 ⩽ |e|1,

Proof. Note that for a, b ∈ {0, . . . , p − 1} the relation a ⩽p b is equivalent to a ⩽ b. Thus, by repeatedly apply
Lemma 2.4, it is clear that xv ∈ F for every v ∈ {0, . . . , p − 1}n such that |v|1 = |e|1. In particular, there exists a v
such that e′ ⩽p v and xv ∈ F . By Lemma 2.2, it follows that xe′ ∈ F .

Broadly, Lemma 3.1 states that in order for h to be a local characterization for RM[n, p, d], it is sufficient for h to
detect any monomial of degree d+ 1. This idea is formalized in the lemma below.

LEMMA 3.2. For any k ⩾ ⌈d+1
p−1⌉, if h : Fk

p −→ F2 satisfies deg(h) = k(p − 1) − (d + 1) then, h is a local
characterization for RM[n, p, d]. Equivalently RM[n, p, d] = Fn(h).

Proof. Let h : Fk
p −→ Fp have degree k(p− 1)− (d+ 1). We show that RM[n, p, d] = Fn(h).

By Lemma 2.6, RM[n, p, d] ⊆ Fn(h). Indeed, for any f ∈ RM[n, p, d] and any affine transformation T ∈ Tn,k,
we have the degree of f ◦T is at most d. Thus if xe is a monomial appearing in f ◦T and xe′ is a monomial appearing
in h, then |e + e′|1 ⩽ k(p − 1) − (d + 1) + d ⩽ k(p − 1) − 1. It follows that e + e′ ̸= (q − 1, . . . , q − 1), and by
Lemma 2.6, ⟨xe, xe′⟩ = 0. Since this holds for every pair of monomials appearing in f ◦ T and h, by the bilinearity
of the inner product, ⟨f ◦ T, h⟩ = 0 for every T ∈ Tn,k.

To complete the proof we show thatFn(h) ⊆ RM[n, p, d]. Suppose
∏k

i=1 x
ei
i is one of the degree k(p−1)−(d+1)

monomials in h. Let e′i = p− 1− ei and define

e′ = (e′1, . . . , e
′
k, 0, . . . , 0) ∈ {0, . . . , p− 1}n.

Let T be the affine transformation that is identity on the first k-coordinates and sends all other coordinates to 0,
i.e. T (x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0). By Lemma 2.6, ⟨xe′ ◦ T, h⟩ ≠ 0 it follows that xe′ /∈ Fn(h). Since
|e′|1 = d + 1, it follows from Lemma 3.1 that Fn(h) contains no monomials of degree greater than d. Thus,
Fn(h) ⊆ RM[n, p, d].

3.2 An Erasure Resilient Low Degree Tester In order to design a low degree tester that works in the presence of
online erasures, we would like to have as little dependency between the queried points as possible. To this end, we
show that simply choosing ≈ kd uniformly random points in a k-dimensional tester for k ⩾ d + 1 to be determined
later suffices for low degree testing. To make this tester t-online-erasure resilient, we pick k sufficiently large relative
to the erasure budget t.

LEMMA 3.3. For every dimension k ⩾ d + 1 and every S ⊆ Fk
p such that |S| ⩾

(
d+k+1

k

)
+ 1, there exist a function

h : Fk
p −→ Fp such that

• deg(h) = k(p− 1)− (d+ 1)

• supp(H) ⊆ |S|

Proof. LetH be the set of functions from Fk
p −→ Fp whose support is contained in S. Then

|H| ⩾ p|S| ⩾ p(
d+k+1

k )+1.

On the other hand, the number of monomials over Fk
p of degree at least k(p− 1)− (d+1) is

(
d+k+1

k

)
. To see this, we

can bound the number of e ∈ {0, . . . , p− 1}k such that
∑k

i=1 p− 1− ei ⩽ d+1. The number of linear combinations

of such monomials over Fp is at most p(
d+k+1

k ). By the pigeonhole principle there must exist distinct h1, h2 ∈ H
that have the exact same coefficient for each monomial of degree at least k(p − 1) − (d + 1). Set h′ = h1 − h2,
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so that all of these monomials are cancelled out in h′. Then, deg(h′) ⩽ k(p − 1) − (d + 1). If this inequality is
in fact an equality, then we are done. Otherwise, let xe be a maximum degree monomial appearing in h′. Let xv be
a monomial of minimum degree such that xe · xv has degree k(p − 1) − (d + 1). Such a monomial indeed exists
and we can take h = h′ · xv to get the desired function. Indeed, xe · xv is a maximum degree monomial of h and
supp(h) ⊆ supp(h′) ⊆ S.

Combining Lemmas 3.3 and 3.2, we get that on any set S ⊆ Fk
p of size

(
d+k+1

k

)
+1, there is a local characterization

h whose support is contained inside S. This motivates the basic tester described in Algorithm 1. We will analyze
Algorithm 1 ignoring erasures. Thus, we give a lower bound on its rejection assuming that no points are erased.
To deal with erasures, we note that each query is uniformly random in a k-dimensional affine subspace. Hence by
choosing k large enough later, we can give an upper bound on the probability that any query we make is erased. For
the remainder of this section, fix

Q(k) =

(
d+ k + 1

k

)
+ 1.

Algorithm 1 A Basic Low Degree Tester over Fp

1: procedure RANDOMPOINTS(f, d, k)
2: Choose T ∈ Tn,k uniformly at random.
3: Choose S ⊆ Fk

p of size Q(k) uniformly at random.
4: Query f ◦ T (x) for each x ∈ S.
5: H(S)← the set of h with support contained in S that satisfy RM[n, p, d] = Fn(h).
6: if H(S) is empty then
7: return Accept.
8: end if
9: Choose h ∈ H(S) uniformly at random.

10: if ⟨f ◦ T , h⟩ = 0 then
11: return Accept.
12: end if
13: if ⟨f ◦ T , h⟩ ≠ 0 then
14: return Reject.
15: end if
16: end procedure

LEMMA 3.4. Let f : Fn
p −→ Fp be a function. If deg(f) ⩽ d, then Algorithm 1 outputs accept with probability 1. If f

is δ-far from degree d, Algorithm 1 outputs rejects with probability at least δ
4Q(k)2 .

Proof. We begin with the completeness of the tester, and towards this end assume that f has degree at most d. Since
deg(h) ⩽ k(p− 1)− (d+1) for all h ∈ H, and deg(f ◦ T ) ⩽ deg(f), it follows from Lemma 2.6 and the bilinearity
of inner product that ⟨f ◦ T, h⟩ = 0 for all T .

We move on to the second part of the lemma. For h ∈ H, let Pr(h) denote the probability that h is chosen in step
3 and let rejh(f) denote the probability over T ∈ Tn,k that ⟨f ◦T, h⟩ ≠ 0. The random T and h in Algorithm 1 induce
a product distribution over Tn,k × H where the distribution of Tn,k is uniform. Conditioned on any arbitrary h ∈ H
being chosen in line 9, T is uniform over Tn,k and the test rejects with probability at least rejh(f). By Theorem 2.2,
for every h ∈ H, rejh(f) ⩾

δ
4| supp(h)|2 ⩾ δ

4Q(k)2 .
Thus, by generating the distribution over T and h by first choosing h ∈ H with probability Pr(h) and then

choosing T ∈ Tn,k uniformly. This makes it clear that Test 1 rejects with probability at least∑
h∈H

Pr(h) rejh(f) ⩾
δ

4Q(k)2
.
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In order to output reject with probability at least 2/3 in the far from degree d case, we will repeat Algorithm 1.
Henceforth, set k = 20d logp(30t/δ). We will show that the resulting tester, described in Algorithm 2, is t-online-
erasure resilient. Before showing completeness and soundness, we give a bound on Q(k) which will be helpful for
calculations,

Q(k) ⩽ (3k/d)d+1 ⩽ (60 logp(30t/δ))
d+1.

By the bound on t stated at the start of the section, we have k ⩽ n, so our tester is valid, in that f ◦ T is always well
defined for T ∈ Tn,k.

Algorithm 2 A t-online-erasure resilient tester over Fp.

1: procedure ERASURERESILIENT(f, d, δ)
2: Set k = 100d log

(
100dt

δ

)
+ q.

3: for i = 1→ 100Q(k)2

δ do
4: Run RandomPointsTest(f, d, k)
5: If Reject is outputted, return Reject.
6: end for
7: return Accept.
8: end procedure

The following result shows completeness and soundness for Algorithm 1 and hence proves Theorem 1.1

THEOREM 3.1. Given f : Fn
p −→ Fp, a degree parameter d, a distance parameter δ, and an erasure parameter t,

Algorithm 2 accepts f with probability 1 if deg(f) ⩽ d and rejects f with probability at least 2/3 if f is δ-far from

degree d. The number of queries made is O
((

log(t/δ)
δ

)3d+3
)

.

Proof. It is clear from Lemma 3.4 that if deg(f) ⩽ d, then f is accepted with probability 1.
Now suppose that f is δ-far from degree d. By Lemma 3.4, with probability at least 3/4, there is at least one

iteration where the basic tester outputs reject, so it remains to bound the probability that any queried point is erased.
The total number of erased points is at most 100Q(k)3t

δ and each query is uniformly random in some k-dimensional
affine subspace. Therefore by a union bound, the probability that any individual query is erased is at most,

100Q(k)3t

δpk
· Q(k)3t

δ
⩽

100t2(60 logp(30t/δ))
6d+6

δ2(30t/δ)20d
⩽

1

100
.

Overall, this shows that if f is δ-far from degree d then Algorithm 2 outputs rejects with probability at least
3/4− 1/100 ⩾ 2/3.

4 The Non-Prime Field Case
Our algorithm for low degree testing over non-prime fields follows the same outline as that of the prime field case, but
its analysis includes a few more complications. For the remainder of this section, write d+ 1 = s · (q − q/p) + r for
an integer s and an integer 0 ⩽ r < q − q/p. For distance parameter δ, our test is t-online-erasure resilient for all
t ⩽ δ

100q
n/(100(d+q))−1.

4.1 Local Characterizations for RM[n, q, d] Our first goal is to show the following lemma which gives sufficient
conditions for h : Fk

q −→ Fq to be a local characterization. Its proof has appeared before, first in [21] and later restated
closer to the language used here in the appendix of [17]. We include it below for completeness.

LEMMA 4.1. If h : Fk
q −→ Fq satisfies

• deg(h) ⩽ (q − 1) · k − (d+ 1).

• h contains the monomial
(∏s

i=1 x
q/p−1
i

)
xq−1−r′

s+1

(∏k
j=s+2 x

q−1
j

)
for all r ⩽ r′ ⩽ q − 1,
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then RM[n, q, d] = Fn(h).

We split the proof of Lemma 4.1 into two claims. Fix h : Fk
q −→ Fq to be a function satisfying the conditions above.

LEMMA 4.2. RM[n, q, d] ⊆ Fn(h).

Proof. This is a direct application of Lemma 2.6 and the same as the first part of the proof of Lemma 3.2

LEMMA 4.3. Fn(h) ⊆ RM[n, q, d].

Proof. Suppose for the sake of contradiction that there is g ∈ Fn(h) with degree greater than d and let xe be a
maximum degree monomial of g. By Lemma 2.1, xe ∈ Fn(h). Take the smallest index i such that e1 + · · ·+ ei > d,
and let e′ = (e1, . . . , ei, 0, . . . , 0) ∈ {0, . . . , q − 1}k. Then, e′ ⩽p e so xe′ ∈ Fn(h), and |e′|1 ⩾ s(q − q/p) + r′ for
some r ⩽ r′ ⩽ q − 1.

Next we will repeatedly use Lemma 2.4 to obtain a monomial inFn(h) where each of the first s individual degrees
are at least q − q/p. To this end, define

c(e) =

s∑
i=1

max(0, (q − q/p)− ei).

We will abuse notation and still refer to the monomial as xe′ after each application of Lemma 2.4. If e′ is not of the
desired form, then one of the following must be true:

• There is j > s such that ej > 0, in which case we simply find some pm ⩽p ej and apply Lemma 2.4 to obtain
the monomial xei+pm

i x
ej−pm

j in place of xei
i x

ej
j ,

• There is j ⩽ s such that ej > q − q/p. In this case we can find pm such that ej − pm ⩾ q − q/p, and apply
Lemma 2.4 to obtain the monomial xei+pm

i x
ej−pm

j in place of xei
i x

ej
j .

In either case, c(e′) strictly decreases, while |e′|1 does not change, so we will eventually end up with e′ such that
e′i ⩾ q− q/p for 1 ⩽ i ⩽ s, and |e′|1 = s(q− q/p)+ r′. At this point

∑s
i=1 e

′
i− (q− q/p)+

∑k
i=s+1 e

′
i = r′ ⩽ q−1

so we may apply Lemma 2.4 to shift all degree above q − q/p in the first s coordinates, and all degree in the s + 2
through kth coordinates, onto e′i, to obtain the monomial(

s∏
i=1

x
q−q/p
i

)
xr′

s+1,

where r ⩽ r′ ⩽ q − 1. As we only applied Lemma 2.4, this monomial must be in Fn(h). However, by the second
condition of Lemma 4.1 and Lemma 2.6, this monomial and h have nonzero inner product, leading to a contradiction.
It follows that Fn(h) does not contain any functions of degree greater than d, completing the proof.

4.2 An Erasure Resilient Low Degree Tester We now describe our t-erasure resilient degree d tester. Similar to
the prime field case, we show that a set of random points contains a local characterization, and then we repeat this
tester to reject with constant probability in the far from degree d case.

Fix a dimension k to be determined later. Set e⋆ ∈ {0, . . . , q − 1}k such that

• e⋆i = q − q/p for 1 ⩽ i ⩽ s,

• e⋆s+1 = q − 1,

• e⋆j = 0 for j ⩾ s+ 2.

Let d⋆ = |e⋆|1, let G = {g : Fk
q −→ Fq | deg(g) ⩽ d⋆ − 1}, and let E = {e ∈ {0, . . . , q − 1}k | |e|1 ⩽ d⋆ − 1}. Note

that d⋆ ⩽ d + q, s ⩽ ⌈ d+1
q−q/p⌉, |E| ⩽

(
k+d⋆

d⋆

)
, and |G| ⩽ q(

k+d⋆

d⋆ ). Now construct the following system of equations
over the variables {zα}α∈S :
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• For each e′ ∈ E , include the equation
∑

α∈S zαα
e′ = 0.

• Include the equation
∑

α∈S zαα
e⋆ = 1.

We first claim that over uniformly random S ⊆ Fk
q of size Q(k) = 2qs+1 log(q)

(
k+d⋆

d⋆

)
, this system of equations

is solvable with high probability. To show this, we first state the following simple observation, which can also be seen
through the Schwartz-Zippel lemma or combinatorial nullstellensatz.

LEMMA 4.4. For any g ∈ G,

Pr
α∈Fk

q

[g(α) ̸= xe⋆(α)] ⩾
1

qs+1
.

Proof. For any (αs+2, . . . , αk) ∈ Fk−s−1
q the s+1-variate polynomial obtained by setting xi = αi for s+2 ⩽ i ⩽ k

into g(x)− xe⋆ is nonzero as it contains the monomial
∏s+1

i=1 x
e⋆i
i . Thus for any setting of the last k− s− 1 variables,

there exists (α1, . . . , αs+1) such that g(x) − xe⋆ ̸= 0 for x = (α1, . . . , αs+1, αs+2, . . . , αk) and the lemma follows.

LEMMA 4.5. Choose S ⊆ Fk
q uniformly at random of size Q(k). Then the probability that the above system of

equations over {zα}α∈S has no solution is at most q−(
k+d⋆

d⋆ ).

Proof. The system will have a solution as long as the coefficients in the last equation are not in the span of the
coefficients of the other equation. In other words, if

(αe⋆)α∈S /∈ span{(αe′)α∈S}e′∈E .

However, the span on the right side is simply the set {(g(α)α∈S) | g ∈ G}. Therefore the above event will happen if
for every g ∈ G there exists at least one α ∈ S such that g(α) ̸= αe⋆ . By Lemma 4.4, for any individual g, we have

Pr
S
[g(α) = αe⋆ ,∀α ∈ S] ⩽ (1− q−(s+1))Q(k) ⩽ e−q−(s+1)Q(k).

Therefore, by a union bound, the probability that there is at least one g ∈ G equal to xe⋆ on all of S is at most

|G|e−q−(s+1)Q(k) ⩽ e− log(q)(k+d⋆

d⋆ ) ⩽ q−(
k+d⋆

d⋆ ).

Finally, we note that if the system of equations we constructed is solvable, then there exists h : Fk
q −→ Fq with

support contained in S that satisfies the conditions of Lemma 4.1, and is thus a local characterization of RM[n, q, d].

LEMMA 4.6. Choose S ⊆ Fk
q uniformly at random of size Q(k). Then with probability at least 1 − q−(

k+d⋆

d⋆ ), there
exists h : Fk

q −→ Fq with support contained in S such that RM[n, q, d] = Fn(h).

Proof. By Lemma 4.5 with probability at least 1− q−(
k+d⋆

d⋆ ) the previously described system of equations is solvable.
Suppose this is the case, and abusing notation, let {zα}α∈S denote the solution. Define h1 : Fk

q −→ Fq so that
h1(α) = zα if α ∈ S and h1(α) = 0 if α /∈ S. Then each of the previous equations states the value of an inner
product involving h1. In particular we have ⟨h, xe⟩ = 0 for all e ∈ {0, . . . , q − 1}k such that |e|1 ⩽ d⋆ − 1 and
⟨h, xe⋆⟩ = 0. By Lemma 2.6, h1 contains the monomial

∏s
i=1 x

q/p−1
i

∏k
j=s+2 x

q−1
j and all other monomials in h1

are degree at most (q − 1) · k − (d⋆ + 1). We may write,

h1(x) =
s∏

i=1

x
q/p−1
i

k∏
j=s+2

xq−1
j + g(x),
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where deg(g) ⩽ k(q − 1)− (d⋆ + 1).
To complete the proof, take

h = h1 ·

(
q−1∑
r′=r

xq−1−r′

s+1

)
.

From
∏s

i=1 x
q/p−1
i

∏k
j=s+2 x

q−1
j

(∑q−1
r′=r x

q−1−r′

s+1

)
we get each of the monomials in the second condition of

Lemma 4.1 and these cannot get cancelled out by g(x)
(∑q−1

r′=r x
q−1−r′

s+1

)
. Moreover the highest degree monomial of

h is (
s∏

i=1

x
q/p−1
i

)
xq−1−r
s+1

k∏
j=s+2

xq−1
j ,

and its degree is precisely k(q − 1)− (d+ 1), so the first condition is satisfied as well.

Therefore we show that with probability at least 1− q−(
k+d⋆

d⋆ ) over S, there exists h with support contained in S
such that RM[n, q, d] = Fn(h).

We are now ready to present our basic tester, described in Algorithm 3. Henceforth, we will fix

k = 100d⋆ logq

(
100tq

δ

)
.

For t ⩽ δ
100q

n/(100d⋆)−1, we have k ⩽ n and our basic tester is valid. The following bound on Q(k) will be helpful
for computations:

Q(k) ⩽ 2q
d+1

q−q/p
+1 log(q)

(
300 logq

(
100tq

δ

))d⋆

.

Algorithm 3 A Basic Tester over Fq

1: procedure GENERALRANDOMPOINTS(f, d, k)
2: Choose T ∈ Tn,k uniformly at random.
3: Choose S ⊆ Fk

q of size Q(k) uniformly at random.
4: Query f ◦ T (x) for each x ∈ S.
5: H(S)← the set of h with support contained in S that satisfy RM[n, q, d] = Fn(h).
6: if H(S) is empty then
7: return Accept.
8: end if
9: Choose h ∈ H(S) uniformly at random.

10: if ⟨f ◦ T , h⟩ = 0 then
11: return Accept.
12: end if
13: if ⟨f ◦ T , h⟩ ≠ 0 then
14: return Reject.
15: end if
16: end procedure

LEMMA 4.7. Suppose f : Fk
q −→ Fq is δ-far from RM[n, q, d]. Then Algorithm 3 on inputs f, d, k rejects with

probability at least δ
5Q(k)2 .

Proof. Suppose that H(S) is nonempty. Then by Theorem 2.2 combined with an argument identical to Lemma 3.4,
the tester rejects with probability at least δ

4Q(k)2 . The probability thatH(S) is empty is at most

q−(
k+d⋆

d⋆ ) ⩽
δ

q(
k+d⋆

d⋆ )−1
⩽

δ

q100d+10d log(k)
⩽

δ

100Q(k)2
.
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Hence, we may subtract this probability out and get that f is rejected with probability at least δ
5Q(k)2 .

Finally, repeating our basic tester yields a t-online-erasure resilient tester for RM[n, q, d].

Algorithm 4 A t-online-erasure resilient tester over Fq .

1: procedure GENERALERASURERESILIENT(f, d, δ)
2: Set k = 100dt log

(
100dt

δ

)
+ q.

3: for i = 1→ 100Q(k)2

δ do
4: Run GeneralRandomPointsTest(f, d, k)
5: If Reject is outputted, return Reject.
6: end for
7: return Accept.
8: end procedure

THEOREM 4.1. Given f : Fn
q −→ Fq , degree parameter d, and a distance parameter δ in the t-online erasure model,

Algorithm 4 outputs accept with probability 1 if deg(f) ⩽ d and outputs reject with probability 2/3 if f is δ-far from
degree d. The query complexity of Algorithm 4 is 100Q(k)3

δ .

Proof. The query complexity is clear, and it is also clear from Lemma 4.7 that if deg(f) ⩽ d then Algorithm 4 outputs
accept with probability 1.

To see the soundness, note that if every query is obtained successfully, i.e. no queried point is erased, then by
Lemma 4.7, reject is outputted with probability at least 3/4 when f is δ-far from degree d. It remains to upper
bound the probability that any query is erased. The total number of erased points is at most 100Q(k)3t

δ and each query
is uniformly random in some k-dimensional affine subspace. Therefore by a union bound, the probability that any
individual query is erased is at most,

100Q(k)3t

δqk
· 100Q(k)3t

δ
⩽

106q6d log(q)6(300 logq(100tq/δ))
6d⋆

δ2 (100tq/δ)
100d⋆ ⩽

1

100
.

Overall, this shows that if f is δ-far from degree d then Algorithm 4 outputs rejects with probability at least
3/4− 1/100 ⩾ 2/3.

5 Online-Corruption Resilient Testers
As noted, our testers also work with two sided error with the same parameters in the t-online-corruption model, since
the probability that a corrupted point is queried at all by our algorithms is at most 1/100. Recall that in this model, the
adversary is allowed to alter entries of the input function’s truth table, f(x), and thus one can only hope for testers with
two sided error as the probability of a querying a corrupted point must now be subtracted from both the completeness
and the soundness.

A formal reduction from online-erasure resilient to online-corruption resilient testing is given in [13, Lemma 1.8].
Applying this lemma to our results yields the following theorems.

THEOREM 5.1. (PRIME FIELD CASE) Let f : Fn
p −→ Fp be the input function over a prime-field vector space, d

be the degree parameter, and δ be the distance parameter. Then for t ⩽ δ
30p

n/(20d), there is a t-online-corruption

resilient tester with query complexity O
(

(log(t/δ))3d+3

δ

)
satisfying:

• Completeness: If f is degree d then the algorithm outputs accept with probability at least 2/3.

• Soundness: If f is δ-far from degree d then the algorithm outputs reject with probability at least 2/3.
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THEOREM 5.2. (NON-PRIME FIELD CASE) Let f : Fn
q −→ Fq be the input function, d be the degree parameter, and

δ be the distance parameter. Then for t ⩽ δ
100q

n
100(d+q)

−1, there is a t-online-corruption resilient tester with query

complexity qO(1)

δ O
(
(log(t/δ))

3d+3q
)

satisfying:

• Completeness: If f is degree d then the algorithm outputs accept with probability at least 2/3.

• Soundness: If f is δ-far from degree d then the algorithm outputs reject with probability at least 2/3.

6 Further Directions
In this work we take a step towards investigating problems in algebraic property testing within the online erasure
model. Regarding further directions, recall the gap in the q = 2 case between our upper bound and the lower bound of
[5] discussed in Section 1.3. Closing this gap is an intriguing avenue for future work.

Another potential direction is to develop testers for other algebraic properties or to show generally that local
characterizations (as defined in Definition 3) yield local tests in the online erasure model. The latter result in the
classical model is the main theorem of Kaufman and Sudan’s seminal work on algebraic property testing [16]. Their
main theorem is restated in this paper as Theorem 2.2.

In our current work, we require there to be many local characterizations so that any large enough set of points
in a k-dimensional affine subspace will contain the support of some local characterization with probability close to 1.
Naively, one could try to make the same kind of argument work for a single characterization and appeal to the Density
Hales-Jewett Theorem [10, 19]. This would give that for a fixed local characterization h and any fraction c > 0 there
is some dimension kc such that any set of cqkc points in a k-dimensional affine subspace will contain the support of h
(where h is extended to the entire subspace in some manner). However, in order for this approach to work even with a
constant erasure parameter, one would need cqkc < qkc/2, and such a statement is far stronger than what is guaranteed
by the Density Hales-Jewett theorem.

Yet another intriguing direction is testing other algebraic properties that are not necessarily affine-invariant, for
example, the dual BCH property which is equivalent to being the trace of a low degree polynomial from Fqn −→ Fq .
The set of such functions still has a 2-transitive symmetry group but this group is much less rich than the affine-
invariant symmetries that we work with.

Finally, it may be possible that our techniques can answer other questions regarding Reed-Muller codes in the
online erasure model. For example, it could be interesting to explore analogues of other well studied tasks in coding
theory like local decoding or local correction for Reed-Muller codes. We remark that local decoding in an (offline)
erasure model appears in [20].
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