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We develop a consistent adaptive framework in a multilevel collocated grid layout for 
simulating two-phase flows with adaptive mesh refinement (AMR). The conservative mo-
mentum equations and the mass equation are solved in the present consistent framework. 
This consistent mass and momentum transport treatment greatly improves the accuracy 
and robustness for simulating two-phase flows with a high density ratio and high Reynolds 
number. The interface capturing level set method is coupled with the conservative form of 
the Navier–Stokes equations, and the multilevel reinitialization technique is applied for 
mass conservation. This adaptive framework allows us to advance all variables level by 
level using either the subcycling or the non-subcycling method to decouple the data ad-
vancement on each level. The accuracy and robustness of the framework are validated 
by a variety of canonical two-phase flow problems. We demonstrate that the consistent 
scheme results in a numerically stable solution in flows with high density ratios (up to 
106) and high Reynolds numbers (up to 106), while the inconsistent scheme exhibits non-
physical fluid behaviors in these tests. Furthermore, it is shown that the subcycling and 
non-subcycling methods provide consistent results and that both of them can accurately 
resolve the interfaces of the two-phase flows with surface tension effects. Finally, a 3D 
breaking wave problem is simulated to show the efficiency and significant speedup of the 
proposed framework using AMR.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Numerical simulation of immiscible fluids involving liquid and gas is of considerable interest in many environmental 
problems and engineering applications, such as wind–wave interactions [1,2], ship hydrodynamics [3], bubbly flows [4], and 
liquid jets [5]. To simulate two-phase flow problems, it is necessary to resort to approaches that can accurately capture the 
moving interface and resolve surface tension effects [6]. There are many approaches to address these two-phase flow prob-
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lems, such as the front-tracking method [7], the volume-of-fluid (VOF) method [8–10], and the level set (LS) method [11,12]. 
The front tracking method solves the fluid part on a background Eulerian mesh while capturing the moving interface using 
Lagrangian markers [7]. However, it takes more computational resources to remesh when the deformed topology changes 
significantly [13]. The VOF method is of great interest because of its good conservation property and numerical robust-
ness [8,10]. This method relies on the specific geometric advection scheme considering the discontinuity of the VOF scalar 
across the interface and is susceptible to a parasitic current problem [14] caused by poor curvature estimation. Alterna-
tively, the LS method can accurately capture the topology change and the curvature of free surfaces [11,12]. Although the 
LS method suffers from a mass conservation issue due to the deviation from the signed distance LS function and numerical 
dissipation [15], using the reinitialization algorithms [16–18] can greatly help avoid this issue. In addition to the above 
methods, Kang et al. [19] extended the ghost fluid method (GFM) in [20] to capture the boundary conditions at a contact 
discontinuity of the multiphase incompressible flow. Lalanne et al. [21] built a unified framework, including both the level 
set method and the GFM, to evaluate their efficiency and accuracy. Similarly, Son and Dhir [22] utilized the LS method 
and GFM approach to match the boundary conditions at the fluid-solid interface, aiming at simulating film boiling on an 
immersed (or irregularly shaped) surface. Olsson et al. [23] introduced a conservative level set (CLS) approach, in which 
a conservative scheme with an intermediate step is used to keep the shape and width of the profile across the interface 
constant. Desjardins et al. [24] combined the accurate CLS method with the GFM approach for simulating two-phase flows, 
which shows that conservation errors associated with the accurate conservative level set technique remain small even for a 
complex liquid Diesel jet case. In the present work, we combine the LS method with the reinitialization technique [15,17,25]
to mitigate the mass loss of the fluids.

A challenging problem in the multiphase flow community is the treatment of flows with high density ratios [26–28]
and high Reynolds numbers [29–31], for which special numerical techniques are needed to ensure numerical stability. 
Recent studies have begun to address the numerical instabilities associated with flows with density ratios on the order of 
103−4 and greater. A variety of numerical approaches has been reported, including the LS method [29], VOF method [26,
27], lattice Boltzmann method [27,32], and diffused interface method [33]. For example, Sussman et al. [34] proposed 
a sharp-interface coupled level-set and volume-of-fluid (CLSVOF) method to solve the liquid and gas system separately. 
Because the extrapolated velocity from one side is used to advect the LS function, the VOF function, and the velocity, 
this method can handle flows with a high density ratio. Ding et al. [33] formulated a divergence-free staggered-velocity 
field from conservation laws, which works well for two-phase flows with a high density ratio in the context of the diffused 
interface method. Rudman [26] and Bussmann et al. [27] found that using a scheme to consistently transport the momentum 
equations and VOF scalar can reduce the problem of numerical instability. In the LS context, Raessi [28] and Raessi and 
Pitsch [35] first introduced geometric mass flux transport for tightly coupling the mass and momentum. However, their 
methods are limited to one and two dimensions owing to the inherent difficulty of reconstructing the interface using the LS 
function in three dimensions. Desjardins and Moureau [36] designed a consistent transport scheme for the 3D staggered grid 
in the context of the LS method, and Ghods and Herrmann [37] extended this scheme to the collocated unstructured grid. 
However, only the first-order upwind scheme was used for the density and velocity advection in [36,37], and this scheme 
smears both interface and velocities. An improved third-order Cubic Upwind Interpolation (CUI) interpolation scheme was 
proposed by Patel and Natarajan [38] in the hybrid staggered/nonstaggered framework for the consistent transport of mass 
and momentum. The CUI interpolation scheme was also used in [29,30,39,40] in the context of the staggered grid. In the 
present work, we employ the CUI scheme on a collocated grid to convect mass and momentum for robust simulations of 
flows with high density ratios. Using the collocated grid significantly simplifies the implementation of the interpolation 
schemes and the differential operators when multiple levels of grids are involved.

To capture the complex physical processes involved in two-phase flow problems, the grid cells around the free surface are 
sometimes refined to resolve small flow structures [6]. In addition to improving the resolution of the solution, the refined 
grid cells also alleviate the mass conservation problem to a great extent when using the LS method [29,41]. However, one 
does not need (or maybe cannot afford) a fine grid of uniformly high resolution across the whole domain. The need to 
resolve fine local features near the interface can be addressed by the adaptive mesh refinement (AMR) method. Briefly, the 
AMR simulations have high resolution at the places of interest and lower resolution elsewhere [42,43]. Based on the grid 
hierarchy and data structure, AMR methods can be classified into two groups: quadtree/octree-based AMR (TBAMR) [44–46]
and block-structured AMR (BSAMR) [42,43,47–51]. In TBAMR, each cell can be split into four cells in two dimensions or 
eight cells in three dimensions, and the hierarchy of the grid cells is organized using a tree structure [44,45,52]. BSAMR, on 
the other hand, builds the mesh as nested Cartesian grids [42,43,47–50,53–55]. It is relatively easy to use the multigrid (MG) 
solver for solving partial differential equations (PDEs) [47,50] and the domain decomposition method for parallelization [56]. 
In the present work, we choose BSAMR as the basis of our adaptive framework.

Over the past several decades, many researchers have begun to combine AMR with the above interface-tracking methods 
to simulate two-phase flow problems [17,57–59]. For example, Sussman et al. [17] developed an adaptive LS method for 
incompressible two-phase flows using the BSAMR framework, and Popinet [58] used the VOF method with the TBAMR 
framework for surface-tension-driven interfacial flows. Nevertheless, none of them combined AMR with the above consistent 
transport scheme to simulate two-phase flow problems with high density ratios. Some works [29,39,40] combine the CUI 
interpolation scheme with BSAMR to obtain stable solutions as well as to reduce the computational cost for high-density-
ratio flows. In those studies, the two-phase flow solutions were updated in time using the composite advancement method. 
For example, discretized equations of velocity and pressure were coupled through coarse-fine boundaries and solved for 
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multiple levels simultaneously. However, because of this coupling, the time step was restricted by the finest grid spacing 
for numerical stability. In our previous work [25], we developed a BSAMR framework that can utilize the level-by-level 
advancement method, especially the subcycling method, for the simulation of two-phase flows. However, that framework 
cannot handle high-density-ratio two-phase flow problems owing to the use of an inconsistent transport scheme. In the 
present work, we incorporate the consistent scheme into the BSAMR framework, with both subcycling and non-subcycling 
methods for level-by-level time advancement.

The main objective of the present work is to develop a consistent and unified adaptive framework to simulate two-phase 
flows with high density ratios and high Reynolds numbers. The AMReX package [60] is utilized to manage the multilevel 
grids and perform parallel operations. There are three contributions of this paper. First, we present a consistent transport 
scheme on a collocated grid that can transport mass and momentum consistently, which is specifically designed for the 
capability of the LS-based two-phase flow solver in simulating flows with high density ratios and high Reynolds numbers. 
Second, we embed the consistent scheme into an adaptive BSAMR framework. Both the subcycling method and the non-
subcycling method can be chosen to advance the solutions level by level. To our knowledge, this is the first framework 
that utilizes both subcycling and non-subcycling methods to simulate two-phase flows with a consistent transport scheme. 
A theoretical formula of the speedup is also derived by comparing the computational cost between the subcycling and non-
subcycling methods. Third, various canonical cases are tested to validate the robustness and efficacy of the framework for 
accommodating high-density-ratio and high-Reynolds-number two-phase flows.

The remainder of this paper is organized as follows: we start with the continuous formulation of the Navier–Stokes 
equations and the LS advection equation for incompressible two-phase flows in Section 2, followed by a description of 
concepts and definitions of BSAMR in Section 3. Next, both the single-level and multilevel advancement algorithms using 
the consistent scheme are presented in Section 4. Validation cases that highlight the importance of consistent mass and 
momentum transport are then given in Section 5. A comparison between the inconsistent scheme and the consistent scheme 
is also presented. Finally, the conclusions are given in Section 6.

2. Mathematical formulation

We begin with the conservative form of the incompressible Navier–Stokes equations,

∂ (ρ (x, t)u (x, t))
∂t

+ ∇ · (ρ(x, t)u(x, t)u(x, t))

= −∇p(x, t) + ∇ ·
[
μ(x, t)

(
∇u(x, t) + ∇u(x, t)T

)]
+ ρ(x, t)g + fs(x, t),

(1)

∇ · u(x, t) = 0, (2)

where u(x, t), p(x, t), ρ(x, t), and μ(x, t) are the spatially and temporally varying fluid velocity, pressure, density, and 
dynamic viscosity, respectively, g is the vector form of the gravitational acceleration, and fs(x, t) is the continuum sur-
face tension force. Note that the continuity constraint Eq. (2) is obtained from the incompressibility nature of the fluid 
Dρ(x, t)/Dt = 0, and mass conservation over the computational domain is expressed as

∂ρ(x, t)

∂t
+ ∇ · ρ(x, t)u(x, t) = Dρ(x, t)

Dt
+ ρ(x, t)∇ · u(x, t) = 0. (3)

By combining Eqs. (1), (2), and (3), the incompressible Navier–Stokes equations can also be cast into nonconservative form 
as

ρ(x, t)
(

∂u(x, t)

∂t
+ ∇ · u(x, t)u(x, t)

)
= −∇p(x, t) + ∇ ·

[
μ(x, t)

(
∇u(x, t) + ∇u(x, t)T

)]
+ ρ(x, t)g + fs(x, t),

(4)

∇ · u(x, t) = 0, (5)

Although the conservative and nonconservative forms of the Navier–Stokes equations are mathematically equivalent, differ-
ent numerical treatments lead to different behaviors of the simulation results, as shown in later sections.

In this work, we use the LS function φ(x, t) to explicitly capture the evolution of the two-phase interface [15,61]. As 
illustrated in the left part of Fig. 1, the densities of the liquid and gas are denoted by ρl and ρg , respectively, and the 
corresponding dynamic viscosities are μl and μg . The right part of Fig. 1 shows that φ(x, t) is a signed distance from the 
two-phase interface, with φ(x, t) > 0 in phase 1 and φ(x, t) < 0 in phase 2. The advection equation of φ(x, t) is

∂φ(x, t)

∂t
+ ∇ · (uφ(x, t)) = 0 (6)

and the density and dynamic viscosity can be calculated using φ(x, t) as

ρ(x, t) = ρg
[
1− H

(
φ(x, t)

)] + ρl H
(
φ(x, t)

)
, (7)
3
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Fig. 1. Left: two-phase flow on a multilevel Cartesian grid. Right: schematic definition of the LS function.

Fig. 2. Diagram of a three-level adaptive grid with three types of boundaries. �i, j represents patch j on level i for all i ≥ 0, j ≥ 1.

μ(x, t) = μg
[
1− H

(
φ(x, t)

)] + μl H
(
φ(x, t)

)
, (8)

Here, H
(
φ(x, t)

)
is the Heaviside function and can be smoothed around the interface as [15,17]

H
(
φ(x, t)

) =

⎧⎪⎨⎪⎩
0, φ(x, t) < −ε,

1
2

[
1+ x

ε − 1
π sin

(
πφ(x,t)

ε

)]
, |φ(x, t)| ≤ ε,

1, φ(x, t) > ε,

(9)

where ε is the smearing width and is usually set to be one or two grid lengths [15,29].

3. Concepts and definitions in BSAMR

This section introduces some important concepts of BSAMR [60]. In the present work, the coarsest level of the grid in 
the entire computational domain � is referred to as level 0. The finest level that the grid can be refined to is denoted as 
level lmax . In other words, the total number of levels is lmax + 1. Fig. 2 illustrates a three-level adaptive grid with lmax = 2 as 
an example.

Grid cells can be dynamically tagged and refined following certain criteria [43]. In BSAMR, although tagging is performed 
on individual cells, we do not refine or de-refine the cells individually. Instead, these tagged cells are grouped to form a 
series of rectangular patches for 2D grids or cuboid patches for 3D grids. There can be more than one patch on a specific 
level, and these patches are refined simultaneously to the next level. For example, in Fig. 2, level 2 consists of two patches. 
Because the BSAMR uses a nesting hierarchy of rectangular patches, the union patches on level l + 1 must be contained in 
the union patches on level l for all 0 ≤ l < lmax , i.e., �l+1 ⊂ �l , where �l denotes the union of the patches on level l. Because 
of this nesting property, three types of boundaries exist on the adaptive grid:
4
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◦ Physical boundary: the boundary that encloses the computational domain, illustrated using the dashed lines in Fig. 2.
◦ Coarse–fine (CF) boundary: the boundary between the grid cells of different levels. These boundaries are illustrated using 

the thick solid lines in Fig. 2.
◦ Fine–fine (FF) boundary: the boundary between two patches at the same level, marked using the dotted lines in Fig. 2.

Ghost cells are defined at all boundaries, and their values are assigned to represent the boundary effects accurately. The 
ghost cells at the physical boundaries are filled based on the physical boundary conditions. At the CF boundaries, we adopt 
a conservative interpolation (Icons) method [47,60] to fill the ghost cells of the fine level. Specifically, we reconstruct a 
continuous functional form, f (x), on the ghost cells by combining the values of the coarse level and the values of the fine 
level. In addition to satisfying the continuity across the CF boundary, the function f (x) is also subject to the requirement 
that the average of f (x) over the area of a coarse cell is equal to the original coarse cell value [62]. Owing to the collocated 
grid, only one set of interpolation and averaging schemes is needed for all cell-centered variables when the multilevel grid is 
involved. The conservative interpolation scheme maintains the second-order accuracy of the proposed multilevel algorithms, 
as verified in Section 5. At the FF boundaries, the ghost cell values are copied from neighboring patches.

4. Time advancement

In this work, we use a level-by-level method [48,49] for the time advancement of variables on the multilevel grid. As 
our multilevel advancement algorithm is based on the single-level advancement method, we first introduce the consistent 
scheme for the single-level advancement in Section 4.1. The multilevel advancement algorithm is discussed in Section 4.2, 
which combines the single-level advancement algorithm with two different cycling methods, i.e., the subcycling and non-
subcycling methods, in Section 4.2.1. The synchronization operations are discussed in Section 4.2.2. A summary of the 
multilevel advancement algorithm is given in Section 4.2.3.

4.1. Single-level advancement

This section mainly discusses the temporal and spatial discretizations of equations using the consistent scheme for 
the single-level advancement. Because our main focus is the consistent scheme, the numerical details of the inconsistent 
schemes [25] are placed in Appendix A.

4.1.1. Consistent scheme
For the consistent scheme, the discretizations are applied to the conservative form of the Navier–Stokes equations 

(Eqs. (1) and (2)). At time tn , we have the velocity un , pressure pn−1/2, and LS function φn [17,29]. During the time in-
terval [tn, tn+1], the time step proceeds as follows.

Step 1: The LS function φ, which is used to describe the two-phase interface, is updated by

φn+1 − φn

	t
+ Q

(
u
n+ 1

2
adv , φn+ 1

2

)
= 0 (10)

where Q
(
u
n+ 1

2
adv , φn+ 1

2

)
is computed using the second-order Godunov scheme [17,47].

Step 2: The LS function φn+1 is then reinitialized to keep its signed distance property and guarantee mass conservation of 
the two-phase flow. In this step, a temporary LS function d(x, τ ) is updated iteratively using the following pseudoevolution 
equation:

∂d

∂τ
= S(φ)(1− |∇d|), (11)

with the initial condition

d(τ = 0) = φn+1, (12)

where

S(φ) = 2 (H(φ) − 1/2) . (13)

Here, τ is the pseudotime for iterations. A second-order Runge–Kutta method is applied for the pseudo time advancement 
d [15,17]. To ensure mass conservation, the LS function φn+1 is corrected by d after pseudotime advancement [15,17,61]. 
The midpoint value of φ is then calculated as φn+ 1

2 = (φn+1 + φn)/2.
Step 3: The viscosity μn+1 field is reset through the Heaviside function as

μn+1 = μg + (
μl − μg

)
H̃

(
φn+1) , (14)
5
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where μl and μg are the viscosities of the liquid phase and the gas phase, respectively. The smoothed Heaviside function, 
which has been regularized over ncells grid cells on either side of the two-phase interface, is defined as

H̃
(
φn+1) =

⎧⎪⎨⎪⎩
0, φn+1 < −ncells	x
1
2

(
1+ 1

ncells	xφ
n+1 + 1

π sin
(

π
ncells	xφ

n+1
))

,
∣∣φn+1

∣∣ ≤ ncells	x

1, otherwise

(15)

where the uniform grid spacing 	x = 	y is assumed to be [29] and ncells = 1 or 2 are applied for all testing cases in 
Section 5. We have tested ncells ≥ 3 and found that larger smearing width leads to more diffusion and generate spurious 
vortices near the interface. Therefore, we choose ncells = 1 or 2, depending on the specific simulation case. Although ncells = 1
leads to a sharper interface, ncells = 2 leads to less iterations and accelerates the convergence of the multigrid solver used in 
this work. This result is consistent with the numerical experiments in Nangia et al. [29] and Yang et al. [30], which also used 
ncells = 1 or ncells = 2 for their consistent schemes. The midpoint value of μ is then calculated as μn+ 1

2 = (μn+1 + μn)/2.
The density field evolves based on Eq. (3) using the third-order accurate strong stability preserving Runge–Kutta (SSP-

RK3) time integrator [29,39] as

ρ(1) = ρn − 	tR
(
un
adv,ρ

n
lim

)
,

ρ(2) = 3

4
ρn + 1

4
ρ(1) − 1

4
	tR

(
u(1)
adv,ρ

(1)
lim

)
,

ρn+1 = 1

3
ρn + 2

3
ρ(2) − 2

3
	tR

(
u(2)
adv · ρ(2)

lim

)
.

(16)

R 
(
uadv, ρ̌lim

) ≈ (∇ · (uadvρ̌lim
))

i, j is an explicit CUI approximation to the cell-centered advection term of the density. The 
details of the CUI scheme are given in Section 4.1.2. Here, the subscript ‘lim’ indicates the limited face-centered variables, 
and these variables are interpolated from the corresponding cell-centered variables using the CUI scheme (Section 4.1.2). 
In the variables un

adv, u
1
adv, and u2

adv, the subscript ‘adv’ represents the face-centered advection velocities. To obtain these 
velocities, we define two auxiliary variables u(1) and u(2) as

u(1) = 2un − un−1, (17)

u(2) = 3

2
un − 1

2
un−1. (18)

Note that un−1 and un are the cell-centered velocity in the previous time step and the current time step, respectively. As 
shown in [29,39], it is crucial to use these interpolated and extrapolated velocities to maintain the time accuracy of the 
consistent scheme while calculating the advection velocities. The cell-centered velocities, including un , u(1) , and u(2) , are 
then averaged onto the face of the cell-centered control volume to obtain un

f c , u
(1)
f c , and u(2)

f c . Finally, the marker and cell 

(MAC) projection is applied to these face-centered velocities to obtain the divergence-free advection velocities un
adv, u

(1)
adv, 

and u(2)
adv [17,47]. The midpoint value of the density is calculated by ρn+ 1

2 = (ρn+1 + ρn)/2.
Step 4. The intermediate velocity ũ∗,n+1 is solved semi-implicitly as

ρn+1ũn+1,∗ − ρnun

	t
+ Cn+ 1

2 = −∇pn− 1
2 + 1

2
(∇ · (μn+ 1

2 ∇un) + ∇ · (μn+ 1
2 ∇ũn+1,∗)) + ρn+ 1

2 g+ f
n+ 1

2
s , (19)

where the approximation to the convective derivative is given by

C
(
u(2)
adv,ρ

(2)
limu(2)

lim

)
≈

[(
∇ ·

(
u(2)
advρ

(2)
limu(2)

lim

))
i, j

,
(
∇ ·

(
u(2)
advρ

(2)
limv(2)

lim

))
i, j

]
(20)

using the CUI scheme (Section 4.1.2). Here, we use the same advection velocity uadv and the limited density ρ(2)
lim as in 

Eq. (16). This is the key requirement to ensure consistent mass and moment transport [39]. Finally, we note that the 
transition region continues to grow wider as the simulation time increases if and only if we use the convected density
field to capture the interface. However, in both our consistent and inconsistent schemes, the density field ρn+1 is reset 
by the LS function φn+1 using Eq. (41) after the Step 4 of each time step. This postprocessing step helps synchronize the 
density field and LS field to avoid significant distortions in the interface and the growth of the transition regions [29,30]. 
In Appendix B, a counterexample of a 2D convected droplet is illustrated using the consistent scheme, in which the density 
field is not reset by the level set function. We can clearly see that the density region grows as the simulation time increases. 
However, despite the “unbounded” growth of transition region, the simulation remains stable because of the consistent 
mass-momentum transport formulation.

Step 5: After obtaining the intermediate velocity, a level projection is applied to obtain the updated velocity ũn+1 and 
pressure pn+1/2 fields. An auxiliary variable V is first calculated by
6
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V = ũ∗,n+1

	t
+ 1

ρn+1/2
∇pn− 1

2 . (21)

Then, V is projected on the divergence-free velocity field to obtain the updated pressure pn+1/2 via

Lcc,l
ρn+1/2 p

n+1/2 = ∇ · V , (22)

where Lcc,l
ρn+1/2 p

n+1/2 is the density-weighted approximation to ∇ · (1/ρn+1/2∇pn+1/2) on level l. Finally, the divergence-free 
velocity ũn+1 on level l is obtained as

ũn+1 = 	t

(
V − 1

ρn+1/2
∇pn+1/2

)
. (23)

As a remark, the level gradient operator ∇ is not the minus transpose of the level divergence operator ∇·, i.e., ∇ 	=
−(∇·)T [48,49]. As a result, the idempotency of the approximate projection P = I − ∇(	)−1∇· is not ensured [47], i.e., 
P 2 	= P . Yet, this nonidempotent approximate projection is stable and appears to be well-behaved in various numerical 
tests [48,63,64] and practical applications [17,49]. Notably, for a uniform single grid with periodic boundary conditions, 
Lai [65] theoretically proved that this approximate projection method is stable, in that ‖P‖ ≤ 1. We remark that the level 
projection is applied to the intermediate velocity u∗,n+1 (Eq. (21)). Compared with the form that projects the increment 
velocity u∗,n+1 − un , e.g., as used in Almgren et al. [47], the projection method used here can reduce the accumulation of 
pressure errors and lead to a more stable algorithm [64,66,67]. In our previous work [25], both the level projection and the 
synchronization projection methods are tested with a sample problem [44], which confirms the stability of the approximate 
projection method. We also simulated the Taylor–Green vortex (TGV) case there to show that our numerical schemes can 
achieve the desired second order of accuracy on a static multi-level mesh for both the subcycling and non-subcycling 
methods.

4.1.2. Discretization of the convective term and surface tension term
To obtain the convective terms in Eqs. (16) and (20), a third-order accurate Koren’s limited CUI scheme is applied, which 

was first proposed by Roe and Baines [68] and further studied by Waterson and Deconinck [69] and Patel and Natarajan [38]
in the multiphase flow simulation. For simplicity, only the 2D discretized formulas of the CUI scheme are given in this 
section. The 3D formulas can be extended in a straightforward way.

A cell-centered variable ψlim, which can be ρlim in Eqs. (16) or ρlimulim in Eqs. (20), is advected by uadv using

∇ · (uadvψlim)i, j =
ueψe − uwψw

	x
+ vnψn − vsψs

	y
, (24)

where ue , uw , vn , and vs are edge-centered divergence-free velocities located on the east, west, north, and south sides of 
cell (i, j). With these associated velocities, the CUI scheme is utilized to obtain ψw , ψe , ψn , and ψs on the edges of the 
control volume, which is marked by the green dashed line in Fig. 3. For a given face of the cell centered control volume 
f ∈ {e, w,n, s}, the upwind ψC , the far upwind ψU and the downwind ψD are labeled according to the direction of the 
edge-centered advection velocity. The upwinded approximation of ψ f is then calculated as [29]

ψ̃ f =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3ψ̃C , 0 < ψ̃C ≤ 2

13
5
6 ψ̃C + 1

3 , 2
13 < ψ̃C ≤ 4

5

1, 4
5 < ψ̄C ≤ 1

ψ̃C , otherwise

(25)

where the normalized value is given by [69]

ψ̃ = ψ − ψU

ψD − ψU
. (26)

After obtaining ψw , ψe , ψn , and ψs on the edges of the control volume f in Eq. (25), the convective terms can be calculated 
using Eq. (24).

We note that the CUI scheme satisfies both a convection-boundedness criterion (CBC) and the total variation dimin-
ishing (TVD) property, which are essential to ensure a bounded and monotonic scheme [70]. According to Waterson and 
Deconinck [69], this method belongs to the class of nonlinear monotonic schemes, which attempts to overcome Godunov’s 
first-order barrier theorem while maintaining the monotonicity of the convected variables [29,71].

Following the continuum surface tension model in Brackbill et al. [72], the cell-centered surface tension force fs in 
Eqs. (43) and (19) is defined as

fs = σκ∇H = −σ∇ ·
( ∇φ

)
∇H, (27)
|∇φ|

7
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Fig. 3. In each diagram, the green dashed line represents the control volume over which the convective term ∇ · (uadvψlim)i, j is computed. The upwind, 
centered, and downwind variables are labeled as ψU , ψC , and ψD , respectively. (a) Required CUI stencil to compute ψe when ue ≥ 0. (b) Required CUI 
stencil to compute ψe when ue < 0. (c) Required CUI stencil to compute ψn when vn ≥ 0. (d) Required CUI stencil to compute ψn when vn < 0.

where σ is the surface tension coefficient and H is the smoothed Heaviside function defined in Eq. (42). This discretization 
yields a good balance between the surface tension force and the pressure gradient, as indicated by [29,72].

4.2. Multilevel advancement

This section first extends the single-level advancement algorithm to the multilevel advancement algorithm using the 
subcycling and non-subcycling methods in Section 4.2.1. We then introduce synchronization to make the solutions consistent 
among different levels (Section 4.2.2). At last, a summary of the multilevel advancement algorithm is given in Section 4.2.3.

4.2.1. Subcycling and non-subcycling methods
Two cycling methods are applied to advance the variables on the multilevel grid. The first is the subcycling method, 

in which solutions on different levels advance with different time-step sizes. We assume that the CFL number is kept the 
same among different levels and that the refining ratio r between two consecutive levels [25,55] is a constant. Then, the 
time step sizes on levels l and l + 1 satisfy 	tl = r	tl+1 for all 0 ≤ l < lmax . As shown in the left part of Fig. 4, we have 
	t0 = r	t1 = r2	t2 = ... = rn−1	tn−1 while using the subcycling method on a multilevel grid with lmax = n − 1. Another 
cycling method is the non-subcycling method, in which all levels have the same time step size as the finest level to avoid 
instability. As shown in the right part of Fig. 4, we have 	t0 = 	t1 = 	t2 = ... = 	tn−1. To advance the solution from tn
to tn+1, the subcycling method is more efficient than the non-subcycling method because the former takes fewer substeps. 
On the other hand, the subcycling method needs time interpolation because of the mismatch of the time among different 
levels [47]. The non-subcycling method does not need this time interpolation because all levels are at the same time instant.

To compare the computational cost between the subcycling and non-subcycling methods, a manufactured case is set 
up here. As shown in Fig. 5 the domain size is Lx × L y = 1 × 1 and the grid number is N(r/β)l × N(r/β)l on level l, in 
which β is the shrinking ratio of the domain length between two consecutive levels. Let us assume that the solution needs 
to be advanced from t = 0 to t = T on a multilevel grid, in which T = nstep	t0 and 	t0 is the time step size on level 
0 for the subcycling method. We also assume that only a single CPU is used in this case. For level l, the computational 
cost Cl , dominated by the solving process of the PDEs [41,47,49], is proportional to the grid number N(r/β)l × N(r/β)l , i.e., 
Cl ∝ N2(r/β)2l . For the subcycling method, it takes rl substeps for the solution on level l to advance from 0 to 	t0. Thus, 
the total computational cost in [0, T ] for the subcycling method on all levels is

Cs = nstep

n−1∑
l=0

rlN2(r/β)2l =
{
nstepN2n, β = r3/2,

nstepN2β2 1−(r3/β2)n

β2−r3
, otherwise.

(28)

For the non-subcycling method, all levels take rn−1 substeps to advance the solution from 0 to 	t0. Thus, the total compu-
tational cost in [0, T ] for the non-subcycling method on all levels is
8
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Fig. 4. Schematic of the substeps in the level-by-level advancement method for a n-level grid (lmax = n − 1). Left: the subcycling method. Right: the non-
subcycling method. Parameter r is the refining ratio between two consecutive levels.

Fig. 5. Schematic of a manufactured case in the level-by-level advancement method for a n-level grid (lmax = n − 1). On level l (0 ≤ l ≤ lmax), the domain 
size is 1/βl × 1/βl , and the grid number is N(r/β)l × N(r/β)l .

Cns = nstep

n−1∑
l=0

rn−1N2(r/β)2l =
{
nstepN2nrn−1, β = r,

nstepN2rn−1β2 1−(r2/β2)n

β2−r2
, otherwise.

(29)

Based on Eqs. (28) and (29), the speedup, defined as γ = Cns/Cs, can be calculated as

γ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nrn−1(r−1)

rn−1 , β = r,
rn−1
n(r−1) , β = r3/2,

rn−1[1−(r2/β2)n](β2−r3)
(β2−r2)[1−(r3/β2)n] , otherwise.

(30)

Below are several remarks about Eqs. (28)–(30).

◦ For the single-level case (n = 1), there is no speedup (γ = 1). For the multilevel case (n > 1), the speedup γ > 1 if 
and only if the refining ratio r > 1. Because r > 1 is expected in the simulations with AMR [42,43,47,73], the subcycling 
method is more efficient than the non-subcycling method for the multilevel case.

◦ When β = r3/2, the total computational cost on each level is the same in the subcycling method. There are fewer grid cells 
on the finer levels than on the coarser levels, while coarser-level solutions take fewer substeps for the time advancement.

◦ When β = r, the computational cost on each level is the same in the non-subcycling method. The number of grid cells 
and the substeps for time advancement are the same for each level.

◦ The contours in Fig. 6 illustrate how the speedup γ varies with the total number of levels n and the refining ratio r
when β = r or β = r3/2. The speedup γ increases when n or r increases, which is also true for the cases in which β 	= r
and β 	= r3/2.

We note that the above formulas are limited to one CPU core. In practical two-phase flow simulations, more CPUs are 
utilized in parallel computing. The communication cost among different CPUs and the load-balancing problem are thus 
9
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Fig. 6. Contours of the log value of the speedup γ , which varies with the total number of levels n and the refining ratio r. Left: the shrink ratio β and the 
refining ratio r satisfy β = r. Right: the shrink ratio β and the refining ratio r satisfy β = r3/2.

involved [49,60], which makes it difficult to derive a general formula for the speedup γ . At the end of Section 5, a dynamic 
and complex 3D Stokes wave problem is simulated using multiple CPUs to compare the computational cost among the 
single-level and multilevel subcycling and non-subcycling cases.

4.2.2. Synchronization
Synchronization is applied to update the data on multiple levels to make them consistent and better represent the 

composite solution. The synchronization step is necessary for both the subcycling and the non-subcycling methods [47–49]. 
There are three substeps of the synchronization step. The first substep is conservative averaging, in which all cell-centered 
variables (e.g., velocity u, pressure p, and LS function φ) on the coarser levels are replaced by the averaged values from 
the finer levels because the finer solutions with the mesh refinement are assumed to be more accurate [47,48]. The second 
substep is refluxing. Because level-by-level time advancement is used in this work, the momentum fluxes are imbalanced at 
the CF boundaries. We collect these fluxes during the single-level time advancement and redistribute them on the coarser 
and finer levels at the reflux substep. As found by [25,47], refluxing is necessary and helpful for mass conservation on 
the multilevel grid. The last substep is synchronization projection, which is used to obtain the divergence-free velocity on 
all levels. This substep is needed because the level projection used in the single-level time advancement can guarantee 
divergence-free velocity on that level only, not all levels. The synchronization projection is applied to the velocities on all 
levels and updates them simultaneously [48,49].

The stability of the projection operation is an important issue. For the non-graded TBAMR, the stability of the discrete 
projection can be affected by the presence of the large size ratio of the adjacent cells. Min and Gibou [44] proposed a dif-
ferent projection formulation to enforce the orthogonality of the projection. The stability of the synchronization projection 
method used in the present work has been validated by Martin and Colella [48] using a three-vortex problem. The robust-
ness and stability of the approximate projection are related to the careful interpolations of the ghost cell values [66,74]. The 
projection is applied to the updated velocity at the new time (un+1) rather than the increment velocity (un+1 − un), which 
helps to stabilize the synchronization projection as found by Martin and Colella [48].

4.2.3. Summary of multilevel advancement
Algorithm 1 summarizes the unified multilevel advancement algorithm for both the subcycling and non-subcycling meth-

ods. We first initialize the velocity u, pressure p, and LS function φ on all levels at the beginning of the simulation based on 
some refinement criteria. After the initialization, we can use either the subcycling or the non-subcycling method for time 
advancement. We can also choose either the inconsistent or the consistent scheme for spatial discretization. For the solver 
part, only the cell-centered multigrid solver is needed because all unknown variables are defined at the cell centers. The 
synchronization operations are then applied when a coarser level catches up with a finer level. Finally, the grid is either 
refined or derefined before moving to the next step.

To summarize, the single-level consistent scheme is extended to the multilevel grid so that the multilevel advance-
ment algorithm can accurately simulate the high-density-ratio and high-Reynolds-number two-phase flows using AMR. We 
emphasize that our multilevel advancement algorithm is a level-by-level advancement method, which differs from the 
composite advancement method [17,29,39,75]. The level variables are used for time advancement in the level-by-level ad-
vancement method. Before the synchronization step, each level can be advanced individually without taking into account 
the finer levels. The time step restrictions on the coarser levels are alleviated because the time advancements at various 
levels are decoupled. This is in contrast to the composite advancement technique, in which the multilevel multigrid (MLMG) 
solver is used to update the velocity and pressure in the valid areas of all levels at the same time. Because of this differ-
ent treatment, the composite advancement method is not flexible enough to easily integrate both the subcycling and the 
non-subcycling methods, while the level-by-level method used in this study can easily manage both.
10
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Algorithm 1 Multilevel advancement algorithm.
1: Initialize u0, φ0, and p0 on level 0
2: l ← 0
3: while refinement criteria are satisfied on level l and l < lmax do
4: Regrid the patch hierarchy to obtain level l + 1
5: Initialize u0, φ0, and p0 on level l + 1
6: l ← l + 1
7: end while
8: Determine the time step 	tlmax on the finest level
9: if subcycling method is used then

10: 	tl = 2lmax−l	tlmax for all 0 ≤ l < lmax

11: else
12: 	tl = 	tlmax for all 0 ≤ l < lmax

13: end if
14: for n = 1, nmax do � nmax is the number of time steps to be simulated
15: LevelCycling(0, t0n , t0n + 	t0, 	t0)
16: Regrid the patch hierarchy, and interpolate u, φ , and p onto new patches
17: end for
18:
19: procedure LevelCycling(l, tl , tlmax , 	tl )
20: while tl < tlmax do
21: if consistent scheme is used then
22: Perform single-level advancement on level l from tl to tl + 	tl using Eqs. (10)–(23)
23: else
24: Perform single-level advancement on level l from tl to tl + 	tl using Eqs. (10)–(13), Eqs. (40)–(43), and Eqs. (21)–(23)
25: end if
26: if l < lmax then
27: LevelCycling(l + 1, tl , tl + 	tl , 	tl+1)
28: end if
29: tl ← tl + 	tl

30: end while
31: Apply the synchronization step
32: end procedure

5. Results

This section presents several multiphase flow problems to test the convergence, consistency, and stability of the proposed 
schemes within the BSAMR framework from various aspects. The consistent and inconsistent schemes are compared to show 
the importance and necessity of using the consistent scheme in the high-density-ratio and high-Reynolds-number two-phase 
flow problems. In these problems, either the subcycling or non-subcycling methods are employed for time advancement 
when the multilevel grid is involved. We first define some common parameters here. For each problem, 	t0 denotes the 
time step on level 0. We use 	x0, 	y0, and 	z0 to represent the grid spacings in the x-, y-, and z-directions, respectively, 
on level 0. For the multilevel grid, the grid spacings on level l satisfy 	xl = 	x0/2l , 	yl = 	y0/2l , and 	zl = 	z0/2l for 
all 0 ≤ l ≤ lmax . For the time step size, the finest level 	tlmax is first determined by restrictions of the CFL condition, gravity, 
viscosity, and surface tension [17,25,76,77]. The time step sizes on the coarser levels, depending on whether the subcycling 
or the non-subcycling method is used, are then calculated based on Algorithm 1.

5.1. 2D reversed single vortex problem

In this section, we test the order of convergence for the consistent scheme in a 2D reversed single vortex problem [78,
79] on the multilevel grid. In this problem, a 2D circular drop with radius R = 0.15 is placed at (0.5, 0.75) in a unit 
computational domain [0, 1] × [0, 1]. The velocity field is given by the stream function,

�(x, y, t) = 1

π
sin2(πx) sin2(π y) cos

(
πt

T

)
, (31)

in which the rotational period is T = 4.0. The velocities in the x and y directions are defined as u(x, y, t) = ∂�/∂ y and 
v(x, y, t) = −∂�/∂x, respectively. The periodic boundary condition is applied in both x and y directions.

To obtain the pointwise convergence rate on the multilevel grid, we consider four cases here, of which the grid number 
Nx × Ny on level 0 is 16 × 16, 32 × 32, 64 × 64, and 128 × 128. The finest level lmax is 2, and the refinement criterion 
is based on the distance to the drop interface, i.e., grid cells (i, j) on level l (0 ≤ l < lmax) are refined to the finer level if 
|φi, j| < 8.0 max(	xl, 	yl), which ensures that the surface of the drop is always placed on the finest level. The upper part 
of Fig. 7 shows the state of the drop at t = T /2 and t = T for two different resolutions using the subcycling method. As 
we increase the resolution, the interface at the tail of the stretching vortex becomes sharper. At t = T , the interfacial profile 
of the drop at the high resolution converges to its initial profile, which represents the exact solution. On the other hand, 
11
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Fig. 7. Profiles of the drop interface in the reverse single vortex problem using the subcycling method (upper) and non-subcycling method (lower) at 
different time instants. The red and black lines represent the drop interface with the coarsest grid numbers 32 × 32 and 64 × 64, respectively. The green 
and blue lines represent patches on levels 1 and 2, respectively.

the circular shape of the drop is distorted for the simulation with low resolution. The lower part of Fig. 7 shows the grid 
hierarchy and the shape of the drop using the non-subcycling method. The subcycling and non-subcycling methods produce 
consistent and accurate results in this simulation. The error of the results is defined as [78,79]

Eshape =
Nx∑
i=1

Ny∑
j=1

|φ(i, j, t = T ) − φ(i, j, t = 0)|	x	y, (32)

where φ(i, j, t = 0) is the exact reference solution. The corresponding rates of convergence are given in Fig. 8. The errors 
decrease with an approximately second-order convergence rate for both the subcycling and the non-subcycling methods. 
These errors are also comparable with the values reported by [79].
12
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Fig. 8. Spatial–temporal convergence for the 2D reversed single-vortex problem on a multilevel grid.

5.2. 2D convected droplet with a high density ratio

The convected droplet is a canonical problem to demonstrate the importance of consistent mass and momentum trans-
port in flows with a high density ratio. We first consider a single-level 2D test by employing both the consistent and the 
inconsistent schemes. A dense droplet is placed in a periodic computational domain with size [0, 1] × [0, 1]. The initial cen-
ter position of the droplet is (X0, Y0) = (0.25, 0.5), and the diameter of the droplet is D = 0.4. The density ratio between 
the inner and outer parts of the droplet is ρi/ρo = 106, where ρo = 1.0. The viscosity, gravity, and surface tension force 
are all set to zero. The vertical velocity is initialized as zero, and the horizontal velocity is ui, j = 1 − H̃ f

i, j , where H̃ f
i, j is a 

smoothed Heaviside function defined as

H̃ f
i, j =

⎧⎨⎩
1, φi, j < −ε,
1
2

(
1+ 1

ε φi, j + 1
π sin

(
π
ε φi, j

))
,

∣∣φi, j
∣∣ ≤ ε,

0, otherwise.
(33)

Here, φ(x, 0) = D/2 −
√

(x− X0)
2 + (y − Y0)

2 is the initial LS function, and ε = min(	x0, 	y0) is the smearing width [29]. 
After initialization, the level projection is applied to generate a divergence-free initial velocity field [30]. This problem has 
been investigated by Bussmann et al. [27], Desjardins and Moureau [36], Ghods and Herrmann [37], Patel and Natarajan [38]
and Nangia et al. [29]. In the following 2D cases, the grid size is discretized as Nx × Ny = 128 × 128. Each case is run until 
t = 0.5 with a constant time step size 	t = 1/(31.25Nx) [29].

Because of the high density contrast between the droplet and the outer fluid, it is expected that the droplet moves at 
a constant velocity and maintains its circular shape. As shown in the lower part of Fig. 9, the simulations are stable when 
using the consistent mass and momentum transport scheme. For the cases using the inconsistent scheme, as plotted in 
the upper part of Fig. 9, the surface distortion of the original droplet is clearly seen, and small spurious droplets are then 
generated when the simulation becomes unstable.

5.3. 2D dam breaking

This section investigates a dynamic 2D dam-breaking problem to further validate the robustness and necessity of the 
consistent scheme when the multilevel grid is involved. As shown in Fig. 10, a square block with side length a = 0.057m
is placed at the left-bottom corner, and the computational domain size is 7a × 1.75a. A no-slip boundary condition is 
imposed on the bottom wall, while all other walls are considered free-slip boundaries [80,81]. The dimensionless front is 
defined as d̃ f = d f /a, in which d f refers to the dimensional distance between the front position (point A in Fig. 10) and the 
origin. Other dimensionless parameters are set as Re = ρlUa/μl = 2950, Fr = U/

√
ga = 1.0, and We = ρlU2a/σ = 0.54. The 

density ratio and viscosity ratio are set as ρg/ρl = 0.0012 and μg/μl = 0.016, respectively [29]. Table 1 gives the parameters 
of four simulation cases. The refinement criterion is based on the distance to the air–water interface, the same as the 2D 
reversed vortex problem in Section 5.1.

Fig. 11 compares the dimensionless front d̃ f of the single-level cases (Cases 1 and 2) and the two-level cases (Cases 3 
and 4) with previous experimental and numerical results [29,80,82]. The results of the cases that use the consistent scheme 
(Cases 1 and 3) agree well with the literature. For cases using the inconsistent scheme (Cases 2 and 4), the magnitude of the 
dimensionless front d̃ f is underestimated. As shown in Fig. 11, d̃ f decreases and then increases at approximately t/T = 2.4. 
This phenomenon is also obtained in [81] because the liquid part of the dam front becomes unstable and breaks into small 
droplets in the inconsistent scheme cases.

To further compare the differences of the results between the consistent scheme and the inconsistent scheme, the time 
evolution of the normalized velocity amplitude and normalized fluid mass are plotted in Fig. 12. Here, the normalized 
13
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Fig. 9. Geometry and density evolution of the 2D convected droplet problem. The upper and lower parts show the results of the inconsistent and consistent 
schemes, respectively.

Fig. 10. Sketch of the 2D dam-breaking problem. Solid line: dam interface at t = 0. Dashed line: dam interface at t > 0. A: dam front position at t > 0.

Table 1
Parameters for cases of the dam-breaking problem.

Case No. Grid number on level 0 lmax 	t0 Scheme Cycling method

1 512× 128 0 1.25× 10−4 Consistent –
2 512× 128 0 1.25× 10−4 Inconsistent –
3 256× 64 1 2.50× 10−4 Consistent Subcycling
4 256× 64 1 2.50× 10−4 Inconsistent Subcycling

velocity amplitude is defined as the maximum value of ||u(t)||/||u(0)||, where ||u|| = √
u2 + v2 is the L2 norm of the 

velocity vector. The normalized fluid mass is defined as ||m(t)||/||m(0)||, where m = ∫
ρ dV is the total fluid mass. As shown 

in the left part of Fig. 12, the normalized velocity amplitude agrees well between Cases 3 and 4 when t/T < 1.0. Over time, 
the normalized velocity in the case with the inconsistent scheme becomes unreasonably large, and the simulation quickly 
becomes unstable. Compared with the consistent scheme, the instability induced by the inconsistent scheme also affects the 
conservation of the fluid mass. Although the same LS reinitialization method is used for both Cases 3 and 4, the right part 
of Fig. 12 shows that the mass loss of Case 3 is less than 2%, while the simulation of Case 4 quickly becomes unstable.

Next, the evolution of the breaking dam for the two-level consistent scheme case (Case 3) and the two-level inconsistent 
scheme case (Case 4) is depicted in Fig. 13, in which patches are dynamically refined around the interface as time evolves. 
The left part of Fig. 13 shows that the results of the consistent case remain stable and produce a physically reasonable 
14
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Fig. 11. Comparison of the evolution of the dimensionless front d̃ f among the single-level cases (Cases 1 and 2), the two-level subcycling cases (Cases 3 
and 4), and the literature: ( ) Gu et al. [82]; ( ) Rezende et al. [80]; ( , ) Nangia et al. [29]. Cases 1 and 3 use the consistent scheme, while Cases 2 and 4 
use the inconsistent scheme.

Fig. 12. Comparison of the time evolution of the normalized velocity amplitude (left) and the normalized fluid mass (right) between the case using the 
consistent scheme (Case 3) and the case using the inconsistent scheme (Case 4) in the 2D dam-breaking problem.

Table 2
Parameters for cases of a 2D droplet splashing on a thin film.

Case No. Grid number on level 0 lmax 	t0 Scheme Cycling method

1 256 × 64 3 1.2× 10−3 Consistent Subcycling
2 256 × 64 3 1.5× 10−4 Consistent Non-subcycling

solution. The shape of the dam also compares favorably to the experimental results [83] and the numerical results [29] (not 
plotted). On the other hand, in the right part of Fig. 13, unphysical deformations appear because of the dissimilar transport 
of mass and momentum caused by the inconsistent scheme. We again emphasize that consistent mass and momentum 
transport are important for stable simulations of this dam breaking problem with a large liquid–gas density ratio.

5.4. 2D droplet splashing on a thin liquid film

In this section, we aim to validate the consistency of the results between the subcycling and non-subcycling methods 
when a multilevel grid is involved. We consider the problem of droplet splashing on a thin liquid film, which has ap-
plications in inkjet printing [84] and spray cooling [85]. The computational domain is 8D × 2D with a no-slip boundary 
condition at all sides. The droplet is initially placed at (X0, Y0) = (4D, 0.75D) with a diameter of D = 1.0 and an initial 
downward velocity of U = 1.0. The thin film fills one-tenth of the computational domain with an initial height of 0.2D [29]. 
The density ratio and the viscosity ratio between the liquid (or the thin film) and the surrounding gas are ρl/ρg = 815 and 
μl/μg = 55, respectively. Owing to the high impact velocity, the gravitational force does not play an important role and can 
be neglected [29,81]. The Reynolds number is Re = ρgU D/μg = 66, and the Weber number is We = ρgU2D/μg = 0.126.

Two multilevel cases are considered in Table 2. For these multilevel cases, the finest level lmax is 3, and the refinement 
criterion is based on the distance to the gas–liquid interface; i.e., grid cells (i, j, k) on level l (0 ≤ l < lmax) are refined to the 
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Fig. 13. Profiles of water surface in the breaking dam for the two-level subcycling cases using the consistent scheme (left) and inconsistent scheme (right) 
at different time instants. The red and green lines represent patches on levels 0 and 1, respectively.

Fig. 14. Left: sketch of the jet base location x J ; right: comparison of the temporal evolution of the dimensionless jet base location among the four-level 
subcycling case (Case 1), four-level non-subcycling case (Case 2), Nangia et al. [29], and the asymptotic results from theoretical analysis [86–88].

finer level if |φi, j,k| < 8.0 max(	xl, 	yl, 	zl), which ensures that the thin film and the splashing droplet are always placed 
on the finest level. Simulations of these two cases are carried out until t/T = 1.5.

The left part of Fig. 14 shows the jet base location x J , which is the midpoint of the two neck points of the splashing 
sheet. The right part shows the temporal evolution of the dimensionless spread factor x J /D , which follows a power law 
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Fig. 15. Grid hierarchy and evolution of droplet splashing on a thin liquid film at five different time instances. Left: subcycling method; right: non-subcycling 
method. Green patches: level 1; black patches: level 2; red patches: level 3.

defined by x J /D ∝ (Ut/D)1/2 [86–88], where U is the characteristic velocity. Our simulation results agree with Nangia 
et al. [29]. The slope is consistent with the power law, and the results of the subcycling case (Case 1) and non-subcycling 
case (Case 2) are similar. Fig. 15 plots the time evolution of the splashing at different time instances for both the subcycling 
and the non-subcycling methods. Although the grid patches for different cycling methods are different, the shapes of the 
thin film and the splashing droplet are almost identical between these two cycling methods. We note that this problem 
was also simulated in [89], where a lattice Boltzmann method was used, and in [81], where a VOF method was applied. 
Although using a different method, our simulations agree favorably with those results.

In summary, the proposed framework produces consistent results between the subcycling and non-subcycling methods 
when multiple levels of grids are involved in the simulation. The surface tension and droplet splashing dynamics can be 
accurately captured using the consistent scheme.

5.5. 2D rising bubble

In our previous work [25], we validated the inconsistent scheme by comparing the simulations of a rising bubble at 
low Reynolds number with the experimental results [90]. In this section, we use our consistent scheme with AMR to 
simulate the rising bubble. A large computational domain [−3.3D, 3.3D] × [−3.2D, 8.0D] is chosen to circumvent wall 
effects [91], in which D = 1.0 is the bubble diameter. Free-slip conditions are applied at all boundaries. A spherical bubble 
of dimensionless radius one is placed at (x, y) = (0, 0) surrounded by stationary fluid as the initial condition. The key 
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Fig. 16. Time series of the bubble top position under different grid sizes for the rising bubble case with Re = 18.3, Eo = 339, and Mo = 43.1.

Table 3
Comparison of the computed Reynolds number with 
the experimental result (Re = 18.3).

Grid spacing Re Relative error (%)

D/10 15.25 16.67
D/20 17.11 6.50
D/30 17.63 3.66
D/40 17.92 2.08

dimensionless parameters in this simulation include the Reynolds number Re = ρwDU/μw , Eotvos number Eo = ρw gD2/σ , 
and Morton number Eo = μ4

w g/(ρwσ 3), where ρw is the liquid density, μw is the liquid viscosity, U is the bubble terminal 
velocity, g is the acceleration of gravity, and σ is the surface tension coefficient.

To perform a grid refinement study, we first simulate the rising bubble problem on a uniform single-level grid. The 
dimensionless parameters are set as Re = 18.3, Eo = 339, and Mo = 43.1, which are the same as those of the skirted 
bubble in Sussman et al. [34]. The grid spacing in the x and y directions is set as D/10, D/20, D/30, and D/40 for the 
coarse, medium, fine, and finer grid, respectively. The evolution of the bubble top position is plotted in Fig. 16 with different 
grid sizes. The computed terminal velocities in terms of the Reynolds number Re are shown in Table 3. Our results are close 
to the experimental results in [92] and the numerical results (Re = 17.74) in [91]. Because the relative error of the case 
with the grid spacing D/30 is already less than 4%, we use it as our finest resolution when performing the simulations on 
the multi-level grid with AMR next.

For the multi-level grid simulation, the subcycling method is used. The finest level lmax is 2 and the refinement criterion 
is based on the distance to the gas–liquid interface. Besides the skirted bubble, the oblate ellipsoidal cap bubble (Re = 7.77, 
Eo = 243, and Mo = 266) is also considered in the simulation. The computed terminal bubble shapes are shown in Fig. 17, 
which agree well with the experimental benchmark results (Fig. 2, bubble (d) and bubble (g)) in [92] and the numerical 
results (Fig. 17 (c)) in [91]. The above result shows that the consistent scheme in the present adaptive framework is stable 
and robust for the simulation of rising bubbles with different shapes.

5.6. 3D liquid jet

In this section, we compute the growth rate of instability of a co-flowing jet using our consistent scheme. The numerical 
sketch of this problem is shown in Fig. 18 and the initial coaxial flow is given by [93,94],

W1(r) = −1+ Nr2

N − (
1− l2

) {
1− 1 − Q

4N
R

[
2 ln l +

(
1 − l2

)]}
, (34)

W2(r) = − l2 − r2

N − (
1− l2

) {
1− 1− Q

4N
R

[
2 ln l +

(
1− l2

)]}
+ 1− Q

4N
R

[
l2 − r2 − 2 ln

(
l

r

)]
, (35)

U1(r) = U2(r) = V1(r) = V2(r) = 0, (36)

in which N = μ2/μ1, l = R2/R1, Q = ρ2/ρ1, Re = ρ1W0R1/μ1, Fr = W0/gR1, and R = Re/Fr. Here, the subscripts 1 and 
2 represent the liquid and gas phase, respectively. The r is the radial distance normalized by R1, W0 is the magnitude of 
the jet velocity on the z-axis, and W (r) is the axial velocity distribution normalized by W0. The dimensionless parameters 
N , Q , Re, We, l, and Fr−1 are defined case by case.
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Fig. 17. Computed terminal shapes of the rising bubble. Left: an oblate ellipsoidal bubble with Re = 7.77, Eo = 243, and Mo = 266. Right: a skirted bubble 
with Re = 18.3, Eo = 339, and Mo = 43.1.

Fig. 18. Sketch of the co-flowing jet model.

The computational domain with a rectangular grid is (x, y, z) ∈ [0, 1] × [0, 1] × [0, 2], same as that in [95]. To perform 
the grid refinement study, the dimensionless parameters are defined as N = 0.0018, Q = 0.0013, Re = 50, We = 10, l = 10, 
and Fr−1 = 0 [94,96]. The initial level set function is prescribed as

φ(x, y, z) = R1 + ε sin(2π z/λ) −
√
x2 + y2, (37)

in which the perturbation of the initial jet is ε = 0.02 and the wavelength is λ = 2. By varying the grid size, the time series 
of the amplitude of growth rate predicted by the consistent scheme is plotted in Fig. 19. As the grid number increases, it is 
found that the present results converge to the linear stability analysis (LSA) result in [94–96].

We then compute the growth rate of instability with the realistic density ratio and viscosity ratio, and compare our 
results with those in Lin and Chen [93]. Due to the limited computational resources, the simulations are conducted on 
a multi-level grid with the finest grid resolution 128 × 128 × 256 and lmax = 2. The amplification curves of the Rayleigh 
mode and the Taylor mode are plotted in Fig. 20. The Rayleigh mode tends to break up the jet into the drop that has 
the comparable diameter with the jet diameter. In the left part of Fig. 20, Q and We are chosen to satisfy Q ∼ We−1

to yield the Rayleigh mode [91,93]. The Taylor mode, on the other hand, arises from the pressure and shear fluctuations 
at the gas-liquid interface, which tends to produce the droplets with diameters smaller than the jet diameter. As shown 
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Fig. 19. Comparison of the amplitude of growth rate under different grid sizes for the co-flowing jet problem.

Fig. 20. Left: growth rate curve for the Rayleigh mode with N = 0.018, Q = 0.0013, Re = 1000, We = 400, l = 10, and Fr−1 = 0. Right: growth rate curve 
for the Taylor mode with N = 0.019, Q = 0.013, Re = 1000, We = 4761.9, l = 10, and Fr−1 = 0.0001. The blue line represents the linear stability analysis 
(LSA) results in Lin and Chen [93].

in the right part of Fig. 20, Q and We are chosen such that Q > We−1 to yield the Taylor mode [91,93]. In our direct 
numerical simulations (DNS), the input wavelengths are chosen to capture the growth rate of the instability. It is found 
that the present results obtained by the consistent scheme can capture the maximum spatial amplification rate kim , and the 
differences between our scatter points and LSA results in [93] might be due to the nonlinear effect neglected in the LSA. 
In the next section, a more complex Stokes wave case is considered to further validate the consistent scheme for the 3D 
problem.

5.7. 3D breaking wave

This section investigates a 3D Stokes breaking wave, which is a dynamic and complex problem that is considered com-
putationally expensive. In addition to validating the consistent scheme for 3D problems, another objective of this test is to 
compare the computational cost among the single-level and multilevel subcycling and non-subcycling cases. The computa-
tional domain is Lx × L y × Lz = λ × λ/2 × λ, where λ = 0.25m is the wavelength. The boundary conditions in the x and z
directions are periodic, and the free slip boundary condition is applied in the y direction. The sideview (xy-plane) of the 
initial wave geometry and the computational domain is given by Fig. 21. The mean water depth is h = λ/2. The surface 
profile of a deep-water wave is initialized as

η(x, y, z) = a

(
cos(kx) + 1

2
ε cos(2kx) + 3

8
ε2 cos(3kx)

)
, (38)

where a is the wave amplitude, k = 2π/λ is the wavenumber, λ is the wavelength, and ε = ak is the initial wave steepness. 
The velocities are

u(x, y, z) = �a exp(ky) cos(kx), v(x, y, z) = �a exp(ky) sin(kx), (39)

where � = √
gk(1+ ε2) [97]. The free slip boundary condition is imposed in the y direction, and the periodic boundary 

condition is applied in the x direction.
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Fig. 21. Sideview (xy-plane) of the initial wave geometry and the computational domain for the 3D breaking wave problem.

Table 4
Parameters of cases for the 3D breaking wave problem.

Case No. Grid number on level 0 lmax 	t0 Cycling method

1 512× 256× 512 0 1.6× 10−5 –
2 128× 64× 128 2 6.4× 10−5 Subcycling
3 128× 64× 128 2 1.6× 10−5 Non-subcycling

Table 5
Number of grid cells of the cases in the 3D breaking wave problem at t/T = 0.5.

Case No. Cells on level 0 Cells on level 1 Cells on level 2 Total cells Total cells normalized by Case 3

1 67,108,864 – – 67,108,864 4.92
2 1,048,576 4,194,304 8,388,608 13,631,488 1
3 1,048,576 4,194,304 8,388,608 13,631,488 1

Three cases using the consistent scheme are considered, as listed in Table 4. In all these cases, we follow the parameters 
in [30,97], in which λ = 0.27m, a = 0.0236m, and ε = 0.55. Let λ be the characteristic length scale and T = √

λ/g denote 
the characteristic time scale. The Reynolds number is Re = ρwλ3/2g1/2/μw = 4.0 × 106. Other dimensionless numbers are 
the Froude number Fr = √

λ/g/T = 1.0, Weber number We = ρwλ2g/σ = 99.6, density ratio ρa/ρw = 0.0012, and dynamic 
viscosity ratio μa/μw = 0.04. For the cases on the multilevel grid, grid cells are refined near the air–water interface.

Fig. 22 shows the evolution of the air–water interface obtained from the three-level subcycling case (Case 2). Grid patches 
are dynamically refined around the interface as time evolves. At the initial stage of the simulation, the 3D wave geometry 
is similar to that in the 2D simulation. Then, the plunging jets form at the wave crest and strike the front wave face. 
At approximately t/T = 2.0, air bubbles are entrained by the plunging jets, and 3D structures are observed. Next, upward 
splashes are generated, and more air is entrained at approximately t/T = 3.0. Water droplets and bubbles are also generated 
(t/T = 4.0) by the plunging breaker. From t/T = 8.0, the bubbles burst out of the surface, the droplets fall into the water, 
and the wave surface gradually becomes smooth. The breaking process obtained in our 3D simulation is consistent with the 
results in [30,98]. The left part of Fig. 23 compares the total mechanical energy in the above three cases with results in the 
literature. The time series of the total mechanical energy obtained from the consistent scheme agrees with the results of 
Wang et al. [99] and Yang et al. [30].

To compare the computational cost for different cases, we profile each case for t/T = 0 − 0.5 using 256 CPUs on a Cray 
XC40/50 (Onyx) system at the U.S. Army Engineer Research and Development Center, excluding the I/O costs. Table 5 shows 
the total number of grid cells for different cases at t/T = 1.0. Compared with the adaptive cases with lmax = 2 (Cases 2 and 
3), the single-level case (Case 1) has nearly five times more cells; i.e., the adaptive refinement considerably reduces the total 
number of grid cells.

The right part of Fig. 23 compares the wall clock time between the single-level case and the multilevel cases for the time 
range t/T = 0 − 0.5. Compared with the single-level case (Case 1), the three-level subcycling case (Case 2) achieves more 
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Fig. 22. Evolution of a 3D plunging breaker obtained from the three-level subcycling case (Case 2) using the consistent scheme. The black, green, and red 
lines represent patches on levels 0, 1, and 2, respectively.

Fig. 23. Left: comparison of the time evolution of the total energy among the single-level case (Case 1), three-level subcycling case (Case 2), three-level 
non-subcycling case (Case 3), and previous results (Yang et al. [30], Wang et al. [99]) for the 3D breaking wave problem. Right: comparison of the wall 
clock time of key advancing steps among the single-level case (Case 1), three-level subcycling case (Case 2), and three-level non-subcycling case (Case 3) 
for the 3D breaking wave problem.

than a 10× speedup in terms of wall clock time, which significantly reduces the computational cost of the 3D simulation. By 
comparing the nonsubcycled case (Case 3) with the subcycled case (Case 2), we find that the subcycled case further lowers 
the computational cost by a factor of 1.8. The reason is that, compared to the non-subcycling method, the subcycling method 
uses a larger time step size for the coarser levels. In addition to the total wall clock time, the wall clock time spent on some 
key parts of the algorithm is also documented, including advection, viscous solver, level projection, and synchronization. 
Among them, the level projection takes the most time, followed by the advection step and the viscous solver step. Therefore, 
optimization of these three parts is desired in future work. The part denoted as the “Others”, including the regridding, the 
interpolation operations, and the reinitialization step, account for only approximately 2% of the total computation time.

Finally, we emphasize that only the cases using the consistent scheme are presented here. For 3D breaking wave cases 
with a relatively low Reynolds number and a low density ratio, we simulate them using both the inconsistent scheme and 
the consistent scheme and then compare their computational cost. We find that the computational time in the consistent 
scheme is approximately the same as that in the inconsistent scheme, which indicates that the consistent scheme has 
negligible computational overhead compared with the inconsistent scheme.
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6. Conclusions

In this work, we have developed a consistent adaptive framework for the simulations of incompressible two-phase flows 
with high density ratios and high Reynolds numbers. It is found that a consistent discretization of convective terms in 
mass and momentum equations is important to ensure the stability of the simulations for high-density-ratio flows. This is 
achieved by employing the bounded and monotonic CUI scheme for the discretization of the convective fluxes. Although 
the inconsistent scheme, in which a Godunov scheme is applied in place of the CUI scheme for momentum transport, could 
work well in the rising bubble and Rayleigh–Taylor instability cases [25,38], it does not perform satisfactorily at high density 
ratios, as evidenced in the convected droplet, dam breaking, and droplet splashing cases, and at high Reynolds numbers, as 
shown in the breaking wave cases in Section 5.

Different from the previous work [29,81], a purely collocated grid is employed in the present framework, in which all 
variables are defined at the center of the grid cells. This design eases the implementation of the CUI scheme because the 
divergence-free advective velocity uadv for the cell-centered variables can be directly obtained after the MAC projection. 
Moreover, only one set of interpolation and averaging schemes is needed when the multilevel grid is involved.

Both subcycling and non-subcycling advancement methods are embedded in this unified framework. One can choose 
either of these two methods or even combine them for time integration. Note that multilevel advancement (Algorithm 1 in 
Section 4.2.3) decouples the time advancement for different levels, which relaxes the time step constraint on the coarser 
levels if the subcycling method is applied. On the other hand, the non-subcycling method avoids time interpolation across 
the different levels because data on all levels are synchronized to the same time instant during the simulation. Numerical 
simulations of the droplet splashing problem demonstrate that the subcycling and non-subcycling methods can produce 
consistent results and accurately capture the complex dynamics when surface tension is involved. A synchronization algo-
rithm is employed to maintain the consistency of variables across multiple levels, and the reinitialization algorithm for the 
LS function is implemented on the multilevel grid to improve the mass conservation of the two-phase flow.

The consistent scheme provides a numerically stable and reasonably accurate solution to realistic multiphase flows, such 
as breaking waves with a high Reynolds number. It is found that an unphysical spurious thin sheet is generated at the 
wave crest when the inconsistent scheme is used. When AMR is applied to locally resolve the complex flow physics near 
the wave surface, the multilevel cases can achieve the same level of accuracy with fewer total grid cells compared with 
the single-level fine-grid cases. In particular, for the 3D breaking wave problem, the multilevel simulation can capture the 
evolution of the total mechanical energy accurately with substantial speedup compared with the single-level simulation. 
Therefore, the proposed AMR framework is promising for high-fidelity simulations of complex two-phase flows with high 
density ratios and high Reynolds numbers. In the future, we plan to support a high refining ratio between different levels 
and incorporate more interface-capturing methods (e.g. the ghost fluid method (GFM) [19,20,100], front-tracking method [7], 
volume-of-fluid (VOF) method [8–10], conservative level set (CLS) method [16,24,36], and the coupled level set and volume-
of-fluid (CLSVOF) method [101]) into this unified AMR framework. More practical 3D cases, including the turbulent liquid 
jets [24,102–104] and the liquid sheet atomization [105], will also be considered as illustrations to make the consistent 
scheme more compelling.
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Fig. 24. Geometry and density evolution of the 2D convected droplet problem using the consistent scheme. The density field is not reset by the level set 
function after each time step.

Appendix A. Inconsistent scheme

For the inconsistent scheme, the discretizations are applied to the nonconservative forms of the Navier–Stokes equations 
(Eqs. (4) and (5)) [25]. Due to the same advection and reinitialization schemes of the LS function φ, Step 1 and Step 3 in 
the inconsistent scheme are the same as those in the consistent scheme (Section 4.1.1). Step 5, which is used to obtain the 
updated velocity ũn+1 and pressure pn+1/2, is also the same as Step 5 in the consistent scheme, assuming the intermediate 
velocity ũ∗,n+1 has been calculated. Thus, we write only the details of Step 3 and Step 4 for the inconsistent scheme.

Step 3: Both the viscosity μn+1 and the density ρn+1 fields are reset through the Heaviside function as

μn+1 = μg + (
μl − μg

)
H̃

(
φn+1) , (40)

ρn+1 = ρg + (
ρl − ρg

)
H̃

(
φn+1) , (41)

where μl and ρl are the viscosity and density of the liquid phase and μg and ρg are those for the gas phase, respectively. 
The smoothed Heaviside function, which is regularized over ncells grid cells on either side of the two-phase interface, is 
defined as

H̃
(
φn+1) =

⎧⎪⎨⎪⎩
0, φn+1 < −ncells	x
1
2

(
1+ 1

ncells	xφ
n+1 + 1

π sin
(

π
ncells	xφ

n+1
))

,
∣∣φn+1

∣∣ ≤ ncells	x

1, otherwise

(42)

where the uniform grid spacing 	x = 	y is assumed [29] and ncells = 1 or 2 is applied for all testing cases in Section 5. 
The midpoint values of ρ and μ are then calculated as ρn+ 1

2 = (ρn+1 + ρn)/2 and μn+ 1
2 = (μn+1 + μn)/2, respectively.

Step 4: The intermediate velocity ũ∗,n+1 is solved semi-implicitly as

ρn+ 1
2

(
ũ∗,n+1 − un

	t
+ ∇ · (uu)n+ 1

2

)
= −∇pn− 1

2 + 1

2

(∇ · μ(φn+1)∇ũ∗,n+1 + ∇ · μ(φn)∇un) + ρn+ 1
2 g+ f

n+ 1
2

s ,

(43)

where the convective term ∇ · (uu)n+ 1
2 is calculated using the Godunov scheme [17,47]. Same as the consistent scheme, the 

density field ρn+1 is reset by the LS function φn+1 using Eq. (41) after the Step 4 of each time step.

Appendix B. Necessity of resetting the density field

We provide more evidence for the necessity of resetting the density field by the level set function. Using the same 
parameters of the 2D convected droplet problem in section 5.2, we preform a simulation without resetting the density field 
after each time step, which means that the level set function has no influence on the density and there is no information 
exchange between these two fields. By comparing the lower part of Fig. 9 and Fig. 24, it is evident that the density region 
grows without resetting it by the level set function.
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