

QUICK FIELD: Author First Author Abstract Year Fulltext All Search Terms ▾

VIEW

Abstract

Citations

References

Co-Reads

Similar Papers

Volume Content

Graphics

Metrics

Export Citation

FEEDBACK

Systematic imaging magma bodies beneath Cascades volcanoes using receiver function

Show affiliations

Pang, Guanning ; Abers, Geoffrey A. ; Moran, Seth C. ; Thelen, Weston A.

Most eruptions at continental arc volcanoes are proximally supplied from crustal magma reservoirs. However, the depths of these crustal magma systems and their volumes are poorly constrained at most active volcanoes. During the last decade, the U.S. Geological Survey's Cascades Volcano Observatory has upgraded the seismic monitoring networks along the Cascade Arc, with new broadband stations within 10-20 km of the summit of seven volcanoes: Mount Rainier, Mount St. Helens, Mount Hood, Three Sisters, Newberry, Crater Lake, and Mount Shasta. In this study, we take advantage of the improved seismic networks and systematically image seven key volcanic centers using the receiver function technique on broadband stations within 10-20 km from the summits. In most cases, receiver functions identify sharp interfaces at the tops of magma bodies that produce distinctive seismic velocity inversions. We also explore the finite-frequency effects on the converted wavefield from the small (a few kilometers in width and thickness) magma body with spectral-element numerical simulations. Most magma bodies are of sizes comparable to the wavelengths of the signals, so the resulting converted seismic wavefield differs from those from much larger structures. Our results enable a systematic assessment of magma reservoir characteristics of volcanoes across the Cascadia arc.

Publication:

AGU Fall Meeting 2023, held in San Francisco, CA, 11-15 December 2023, Session: Volcanology, Geochemistry and Petrology / Geophysical Imaging of Magma Storage and Transport at Volcanoes II Oral, id. V33B-07.

Pub Date:

December 2023

Bibcode:

2023AGUFM.V33B..07P

Feedback/Corrections?

© The SAO Astrophysics Data System

✉ adshelp[at]cfa.harvard.edu

The ADS is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative Agreement 80NSSC21M0056

CENTER FOR
ASTROPHYSICS
HARVARD & SMITHSONIAN

*The material contained in this document is based upon work supported by a National Aeronautics and Space Administration (NASA) grant or cooperative agreement. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA.

Resources

About ADS

ADS Help

What's New

Careers@ADS

Accessibility

Social

@adsabs

ADS Blog

Privacy Policy

Terms of Use

Smithsonian Astrophysical Observatory

Smithsonian Institution

NASA

Project

Switch to basic HTML

