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In this study, we report one group of students’ efforts to create a community meaning for set-
builder notation collectively. Students’ ability to develop and interpret set-builder notation is
essential to transition-to-proof courses. Conventionally, a colon is used in set-builder notation to
(1) separate the universe of discourse from the set’s defining property and (2) indicate an
ordering to these components, with the universe to the left and the property to the right of the
colon. We describe one normative and non-normative interpretation of this notation and how the
students’ individual attribution of conventional meanings for the colon to different inscriptions
within the notation helped (or inhibited) them from interpreting these expressions. We report
how communicative discourse between the students affected their meanings and discussions.
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The mathematical notion of a set is a crucial component of advanced mathematics. In the
context of mathematical proof, students’ understanding of sets and ability to posit appropriate
relationships between sets can positively influence their interpretation of mathematical
statements and proofs (Dawkins, 2017; Dawkins et al., 2023; Dawkins & Roh, accepted; Hub &
Dawkins, 2018). Instructors often convey information about sets visually (e.g., Euler diagrams)
or symbolically (e.g., set-builder notation). Still, many students struggle to reason viably about
sets through these representational mediums. For example, Eckman et al. (2023) reported that
some students create oval regions in Euler diagrams to (1) gather elements of the universe of
discourse that fulfill a particular property or (2) distinguish between classes of elements when
comparing two equal sets. In the symbolic sense, Eckman et al. (2023) reported that students can
attribute various meanings to arbitrary particulars in set-builder notation (i.e., AABC).

This paper aims to investigate students’ conceptions of an additional symbolic component of
set-builder notation: the colon (:). In the conventional sense, mathematicians utilize the colon
(sometimes written as a vertical bar | ) in set-builder notation to (1) differentiate between the
universe of discourse and the property by which the elements of the universe are partitioned into
a set and its complement and (2) denote an ordinality to how students are supposed to create the
set (i.e., first define a universe, then sort the elements of the universe). For example, a student
considering the set S = {x € Z : x is divisible by 4} would first construe the universe as the set
of all integers and then sort these integers into two sets: the integers divisible by 4 (set S) and the
integers not divisible by 4 (set S¢, or the complement of S).

We report two instances where three students attempted to interpret set-builder notation to
determine the relationship between two sets. Our data stem from the fourth day of a semester-
long classroom teaching experiment we conducted to investigate the affordances of set-based
reasoning for students’ comprehension of transition-to-proof coursework. We provide the
following research question to guide our discussion: What do students’ meanings for the
expressions in set-builder notation reveal about their meanings for the colon?

Theoretical Perspective
We adopt the framework proposed by Eckman (2023) to describe students' symbolizing
activity or the process of mental activities that entails students’ creation or interpretation of a



perceptible artifact (writing, drawing, gesture, verbalization) to organize, synthesize, or
communicate their thinking. We use the term symbol to denote a personal artifact to which a
student has attributed a meaning (Thompson et al., 2014) that she can re-present to herself
through the artifact (c.f., Glasersfeld, 1995). We employ Eckman’s (2023) framework, which
involves three symbols: personal, communicative, and conventional expressions.

We use the following example to illustrate the difference between the three types of
expressions. Suppose an instructor of a transition-to-proof course presents her students with the
set A = {x € Z : x is a multiple of 3}. We consider the set-builder notation {x € Z :

x is a multiple of 3} to constitute a conventional expression because the instructor presents a
perceptible artifact to the students as an authorized representative of the mathematical
community. In the moment of the presentation, each student attributes a meaning (Thompson et
al., 2014) to the conventional notation {x € Z : x is a multiple of 3} to organize or synthesize
portions of their experience, forming a personal expression. As the students interact and
negotiate a community-approved meaning, the expression {x € Z : x is a multiple of 3} becomes
a communicative expression. A vital component of a communicative expression is that
individuals must interpret and reconcile the meanings others attribute to the expression (which
may or may not reflect their thinking) with their personal meanings for the symbol.

Eckman (2023) described a relational meaning as one that students might attribute to their
personal expressions. This paper focuses on relational meaning students may attribute to the
colon in set-builder notation, which instructors conventionally use to express a relationship
between the universe of discourse and the defining property for a set. There are two components
to a relational meaning: connector and comparator. A connector-oriented meaning refers to
students’ conception of a relationship between two expressions and attributing this relationship
to a symbol separating the two expressions. For example, the normative connector-oriented
meaning an instructor may attempt to convey through the colon in the expression {x € Z :

x is a multiple of 3} would be that the set of integers, Z, is the universe of discourse and
“multiples of 3” is the property defining the elements in the set. A comparator-oriented meaning
refers to (1) a comparison action the student attributes to the symbol separating the two related
expressions and (2) an ordering in which this comparison must occur. For example, an instructor
might portray the colon as denoting an ordered process by which the set is created: (1) define the
universe as the set of integers, Z, and (2) use the property “x is a multiple of 3” to separate the
elements of the universe into set A and its complement. The instructor would expect her students
to use the notation (generally) and the colon (specifically) as communicative expressions to
convey to others their images of the relationships between the integers and the multiples of three.

Mathematicians often attribute multiple meanings to a mathematical expression (Gray &
Tall, 1994). In this sense, we consider a conventional meaning for the relational inscription (:) in
set-builder notation to include viable connector-oriented and comparator-oriented meanings. We
further expect that students possessing these meanings can re-present them through their
personal and communicative expressions. In the results section of this paper, we address how the
students’ various comparator-oriented meanings for the components of set-builder notation
facilitated or hindered their construction of communicative expressions.

Methodology
The data we present in this paper come from an ongoing project to investigate how set-based

reasoning might help students to access transition-to-proof coursework (Dawkins et al., 2023;
Eckman et al., 2023; Roh et al., 2023; Ruiz et al., 2023; Tucci et al., 2023). Specifically, we



report data from the fourth day of a semester-long constructivist teaching experiment (Steffe &
Thompson, 2000) during the Fall 2022 semester at a large public university in the United States.
During this session, the students worked in groups to determine relationships between sets
defined using set-builder notation. The instructor had presented the conventional meaning of set-
builder notation immediately before this activity, and we consider the students’ group work to
constitute their attempt to co-construct set-builder notation as a communicative expression. We
focus on one group of three male students, Enrique, Simo6n, and Juan. The second author was the
instructor for the course, and the first author served as the discussion facilitator.

We collected students’ work through audio recordings, photographs of students’ notes, and
pictures of collective whiteboard work. Our analysis first consisted of identifying moments in the
data when the students disagreed about the meaning of an expression and needed to negotiate a
collective interpretation. We analyzed these key moments using the principles of grounded
theory (Strauss & Corbin, 1998). For example, we initially modeled the coevolution of the
students’ meanings for the set-builder notation during the critical moments (i.e., open coding).
After generating a set of initial codes, we attempted to coordinate our codes into an overarching
idea, which we determined to be students’ attribution of meaning to the colon inscription (i.e.,
axial coding). In the results section of this paper, we describe how students’ relational meanings
they attributed (or did not attribute) to the colon inscription allowed them to interpret set-builder
notation appropriately or, in other instances, led to cognitive conflict.

Results
The results section comprises two subsections. First, we provide an example of Enrique,
Simon, and Juan’s productive reasoning about set-builder notation and the relationship between
two sets. Second, we share an example where each group member interpreted an instance of set-
builder notation differently. In the discussion section, we describe how the students might have
leveraged the non-normative interpretations for components of the notation they exhibited to
make the seemingly “correct” interpretations we describe in the first subsection.

Distinct Meanings for Set-builder Notation Producing a Conventional Interpretation
At one point during the class, the students compared sets A = {x € Z : x is a multiple of 3}
and F = {x € Z : x* — 1 is not a multiple of 3}. The mathematical relationship between these
sets is A = F (i.e., both sets contain, and only contain, the multiples of 3).
During this comparison exercise, Simén and Enrique quickly interpreted the elements of set
F and posited a relationship between sets A and F:
Simén Ok, so they’re saying x2 — 1 leaves a remainder of either 1 or 2 (unintelligible).
So either x is a multiple of 3 itself, or, no, I think that’s the only option, x has to
be like a multiple of 3 because ,like, yeah (...) Ok, so I guess it’s the same thing
[i.e., set A and set F are identical].
Eckman Juan is looking confused.
Juan I don’t understand how you got there.
Simén  Because it’s like, x, so, like if x were a multiple of 3, then this [x? — 1] won’t be
[a multiple of 3], like this x% — 1.
Enrique Right, because x2 would also be a multiple of 3, but if you subtract 1, then it’s no
longer a multiple of 3.
(omitted dialogue)
Simén  Or, I guess, it’s like you could factor x> — 1 as (x — 1) and (x + 1).



Enrique Right, since you have a plus 1 and minus 1. Like, the thing about the second
number [i.e., the expression “x“ — 1 not a multiple of 3] is it [i.e., x] has to be a
multiple of 3, so it’s got to be a multiple of 3 in order for it to [work].

Juan Oh yeah, that makes sense. So they would be the same set.

In this excerpt, Simo6n’s order of reasoning indicates that he considered the multiples of 3
(i.e., set A) to be a subset of all integers x with the property “x? — 1 is not a multiple of 3” (i.e.,
set F). In contrast, Enrique’s order of reasoning indicates that he considered the integers
fulfilling the property “x? — 1 is not a multiple of 3” (i.e., set F) to be a subset of the multiples
of 3 (i.e., set A). Collectively, Simdn’s reasoning that A € F and Enrique’s reasoning that F € A
satisfy the conditions to show that A = F. However, there was no indication from this excerpt
that (1) Enrique and Simon recognized the subtle (to them) difference in their thinking or (2)
either student attributed both conceptions to their communicative expression F = {x € Z : x? —
1 is not a multiple of 3}. Juan’s final comment indicates the possibility that he considered both
qualifications (i.e., A € F and F € A) when positing the elements of set F.

We purposefully made no direct reference to the colon (:) in this subsection. Instead, we
chose to describe the possibility that Enrique, Juan, and Simén agreed on a collective meaning
for the elements of the set F while maintaining distinct personal meanings for the set-builder
notation denoting these elements. In the following subsection, we describe how these students’
differences in relational meanings for their communicative expressions might be attributed to
their meanings for the colon (:) inscription.

Distinct Meanings Producing a Mathematically Incorrect Interpretation

Immediately prior to comparing sets A and F, the students compared the sets A = {x € Z :

x is a multiple of 3} and E = {2x € Z : x is a prime number}. The mathematical relationship
between these two sets is that E € A (i.e., both sets share only the number 6).

The students spent most of their discussion negotiating a meaning for the elements of set E.
Similar to the comparison between sets A and F, each student consecutively expressed a different
personal meaning for the expression {2x € Z : x is a prime number}:

Enrique To answer [the question] is anything in both sets, maybe there’s nothing in E.
Because you can’t have a prime number that’s a multiple of 2.

Simon ~ Well, E, to me E was either the set of primes or the set of all the primes times two.

Juan I think [the set E is] all the prime numbers multiplied by two.

In contrast with their comparison between sets A and E, the students recognized the
differences in their thinking this time. Enrique first claimed that set E is empty because (to him)
no integers exist that are simultaneously even and prime (in actuality, the number 2 satisfies both
conditions). Simén countered that the set E' constituted one of two options (between which he
could not decide): (1) the set of all primes or (2) the set of all primes multiplied by 2. Finally,
Juan posited that the set E' contains only the doubles of all primes (the normative interpretation).
In the following subsections, we describe how each student’s responses were influenced by their
comparator-oriented meanings for the relationship between the expressions 2x € Z and “x is a
prime number,” which mathematicians conventionally attribute to the colon (:) inscription.

Enrique: The colon does not matter—the universe is determined by x. Enrique talked the
least during the negotiation of meaning for the expression {2x € Z : x is a prime number} and
did not explicitly agree to Simén and Juan’s final decision for the meaning of this notation. Still,
Enrique’s comments about his meaning for set E were relatively consistent, as evidenced by the
following statements he made at various times during this discussion:



Enrique Right. But, if you were to like plug in, I don’t think this, it can’t even exist.

Enrique No, because then if three equals x, then you’d have six [for 2x] and six is not a
prime number.

Enrique 2x is an element of the integers such that x is a prime number. Could you, does
that even exist?

Enrigue To answer [the question] is anything in both sets, maybe there’s nothing in E.
Because you can’t have a prime number that’s a multiple of 2.

These excerpts indicate that to Enrique, membership in set E, as defined by the expression
{2x € Z : x is a prime number}, required an integer first to satisfy the property “x is a prime
number” and then satisfy the property 2x € Z (where 2x is also prime). In other words, Enrique
first selected the set of prime numbers, P, as the universe of discourse. Then, he attempted to
classify primes whose double was also prime as the elements of set E. Conventionally, we might
write Enrique’s definition for set E as {x € P : x is a multiple of 2}. When he could find no
integers that satisfied his personal meaning for set E, he claimed the set was empty.

Enrique also stated that “the colon [in the set-builder notation] is like a subset.” His comment
emerged in response to Simon reviewing an example of set-builder notation he had written down
in his notes. Enrique’s meaning for E and his subset comment about the colon implies that he
attributed his personal comparator-oriented meaning for the set-builder notation for E to the
inscription x. In effect, Enrique considered x in relation to the universe of discourse and the
colon as a synonym for “subset,” giving no indication that he considered the colon to be more
than a dividing symbol between two expressions (e.g., x € P, x is a multiple of 2) whose subset-
relationship could be utilized to define the elements of a set.

Simo6n: Does x or the colon relate to the universe? Simon often led group discussions and
frequently presented conventional interpretations of sets and relationships. Simoén’s initial
conception of set E was that it contained “the set of primes.” After realizing that neither Enrique
nor Juan agreed with his personal meaning for the expression {2x € Z : x is a prime number},
Simon began to wonder whether the set E contained the set of primes or the set of primes
doubled. At this point of the discussion, the group facilitator intervened and asked the students to
consider whether individual integers were elements of set E.

Eckman So I think in this case it might be nice to just pick some numbers and say like,
“Oh, [Is] five in E? Is eight in E?” and see if you can figure it out that way.

Simon  Okay, so ... like the number 5. So 5 is a prime number, and 10 is an element of
the integers?

Enrique 1s that what it’s saying that?

Simon  But so then is 5 or 10 the number that is in the set [E]?

Simon’s words indicate that to him, membership in E, as defined by the expression
{2x € Z : x is a prime number}, required an integer to satisfy the properties “x is a prime
number” and 2x € Z. Unlike Enrique, who envisioned E = {x € P : x is a multiple of 2}, Simén
considered two distinct sets: E; = {x € P : 2x is an integer} and E, = {2x is an integer : x €
P }. For set E;, Simén considered the set of primes to be the universe of discourse and claimed E
contained all primes whose doubles were integers. This was a different approach than Enrique,
who insisted that the double of a prime must also be prime to merit inclusion in set E. For set E,,
Simon considered the universe to constitute the set of even integers, and the elements of set E to
comprise those even numbers whose value, when divided by two, is prime.

Although Simén did not explicitly describe his meaning for the colon (:) in the expression for
set E, we infer, based on his remarks, that he recognized the order of comparison mattered for



the expressions 2x € Z and “x is a prime number.” At the beginning of the discussion, Simon
appeared to attribute this ordinality to the inscription x (similar to Enrique). His later cognitive
confusion emerged from considering whether to attribute the ordinality to the positions of the
expressions (and the colon dividing them) or the variable x. In this case, Simon’s comparator-
oriented meaning for the inscription (:) was in development from a simple connector to an
indication of an ordered process and relationship.

Juan: The colon divides the universe (left) from the property (right). Juan actively
participated in group discussions when he agreed with the claims of his fellow students and
quietly interjected or listened if he did not agree with or understand others’ comments.
Throughout the discussion about sets A and E, Juan insisted (quietly at first, then more
rigorously later) that the set E contained the set of all primes doubled (the normative
interpretation of set E). After Simon attempted to discern whether 5 or 10 was an element of E,
Juan took command of the discussion:

Juan Is the variable x the number that’s in the set [E']? I don’t think it is.
(omitted dialogue)
Juan Yeah, so what I’'m reading here in my notes for set-builder notation is that where

the 2x is in the general form [of set-builder notation], there’s an f(x) that
represents a format by which every element of the set can be represented.
Enrique Obh, that’s useful.
Juan So, every element of the set [E] is 2 times a prime number.

In this excerpt, Juan pinpointed what he considered the central point of conflict in the
discussion: whether the integers represented by x were given inclusion in set E or the integers
represented by 2x were given inclusion in the set. After referring to his notes on the general form
of set-builder notation that he had taken during direct instruction, Juan stated that the expression
2x € Z was the arbitrary “format” (i.e., universe) by which to define the set and concluded that
“2 times a prime number” was the way to denote the elements in set E.

Although Juan used his written notes to justify his claim about membership in set E, he
repeatedly commented throughout the discussion that the elements of set E were the set of
primes multiplied by 2. His consistent comments imply his comparator-oriented meaning for the
colon (:) included a distinct and consistent ordering. This ordering included a notion that the
expression that comes to the left of the colon constitutes the universe, and the expression
following the colon constitutes the defining property for determining membership in a set. Juan’s
description of set-builder notation in arbitrary form (e.g., the first expression is f(x)) could also
indicate that he was beginning to construct a general form of set-builder notation, which has been
called a personal expression template (Eckman, 2023) or a symbolic form (e.g., Jones, 2013).

Discussion

The purpose of this paper was to provide insight into the question: What do students’
meanings for the expressions in set-builder notation reveal about their meanings for the colon?
In this discussion, we address three distinct ideas: (1) the three types of comparator-oriented
meanings revealed by our data, (2) how Simoén and Enrique might have leveraged their meanings
for set E to make their mathematically correct interpretation of set F, and (3) the relevance of
this paper in the context of research literature and student instruction.

We have described three relational comparator-oriented meanings that Juan, Simén, and
Enrique attributed to the expressions {2x € Z : x is a prime number} and {x € Z : x? —
1 is not a multiple of 3}. All three students appeared to attribute viable connector-oriented



meanings to both expressions, perceiving that the expression on one side of the colon referred to
the universe of discourse and that the other expression referred to the property by which
elements of the set are identified.

However, the portion of the expression to which each student wished to attribute a
comparator-oriented meaning differed. For instance, Enrique (and, at times, Simon) attributed a
comparator-oriented meaning to the inscription x, which they considered to relate to the
universe of discourse. Consequently, in these moments, the students merely attributed a
connector-oriented meaning to the colon to divide two connected (to them) ideas. As the
discussion progressed, Simén’s comparator-oriented meaning developed so that he discerned
two distinct ways to describe the elements of set E. In this moment, Simdn began attributing a
comparator-oriented meaning to the colon. Still, his meaning was tenuous and only achieved
equal status with his prior meaning for x. Finally, Juan’s intervention and description of his
comparator-oriented meaning resulted in the group attributing exactly one order to the notation,
indicating the relationship between a universe of discourse and a set defined within that universe.

Simon agreed, and Enrique did not disagree, with the Juan-proposed meaning for the
communicative expression E = {2x € Z : x is a prime number}. Still, it is possible that Simo6n
and Enrique continued to leverage their personal meanings for x as an indicator of the universe
to relate the two expressions for the set F = {x € Z : x? — 1 is not a multiple of 3}. For
instance, these students might have (1) identified the expression containing x (x € Z) to define
the universe of discourse and (2) selected elements in the domain of discourse that satisfied the
other expression (i.e., x? — 1 is not a multiple of 3) to define the elements of F.

This study furthers previously reported research on students’ understanding of sets, set-
builder notation, and symbolization. For example, our report provides additional insight into how
students might interpret set-builder notation previously reported by (Eckman et al., 2023).
Additionally, our explanation of comparator-oriented meanings including an ordered component
adds to the examples and constructs proposed by (Eckman, 2023). This study also supports (to
some extent) that conventional meanings for mathematical topics and symbols are not merely
transmitted to individuals. Instead, the individuals must construct their personal meanings and
attribute them to a conventional symbol to achieve a normative meaning for a mathematical
topic. The students' active participation in the group discussion seemed to serve as a catalyst to
bridge their personal meaning and conventional meaning by engaging in community efforts to
build a collective meaning for the notation as a communicative expression.

This study also informs efforts to improve the instruction of sets and set-based reasoning in
the context of transition-to-proof courses. For example, our results provide further insight into
how students come to interpret set-builder notation, which can further inform teaching-oriented
research projects related to set-based reasoning (Dawkins & Roh, accepted; Hub & Dawkins,
2018; Roh et al., 2023). Specifically, we describe a potential idiosyncratic student interpretation
of set-builder notation, students’ attribution (or misattribution) of comparator-oriented meanings
in the context of set-builder notations. We encourage transition-to-proof instructors to explicitly
address the comparison order between expressions in set-builder notation and the inscription
(i.e., the colon :) to which this meaning should be attributed.
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