
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 996±1008

November 12-16, 2024 ©2024 Association for Computational Linguistics

RoseLoRA: Row and Column-wise Sparse Low-rank Adaptation of
Pre-trained Language Model for Knowledge Editing and Fine-tuning

Haoyu Wang†, Tianci Liu§, Ruirui Li⋆, Monica Xiao Cheng⋆, Tuo Zhao∗, and Jing Gao§

†SUNY Albany, Albany, NY, USA
§Purdue University, West Lafayette, IN, USA

∗Georgia Institute of Technology, Atlanta, GA, USA
⋆Amazon, Palo Alto, CA, USA

†hwang28@albany.edu, §{liu3351,jinggao}@purdue.edu,
∗tourzhao@gatech.edu , ⋆{ruirul,chengxca}@amazon.com

Abstract

Pre-trained language models, trained on large-

scale corpora, demonstrate strong general-

izability across various NLP tasks. Fine-

tuning these models for specific tasks typi-

cally involves updating all parameters, which

is resource-intensive. Parameter-efficient fine-

tuning (PEFT) methods, such as the pop-

ular LoRA family, introduce low-rank ma-

trices to learn only a few parameters effi-

ciently. However, during inference, the product

of these matrices updates all pre-trained pa-

rameters, complicating tasks like knowledge

editing that require selective updates. We

propose a novel PEFT method, which con-

ducts row and column-wise sparse low-rank

adaptation (RoseLoRA), to address this chal-

lenge. RoseLoRA identifies and updates only

the most important parameters for a specific

task, maintaining efficiency while preserving

other model knowledge. By adding a sparsity

constraint on the product of low-rank matrices

and converting it to row and column-wise spar-

sity, we ensure efficient and precise model up-

dates. Our theoretical analysis guarantees the

lower bound of the sparsity with respective to

the matrix product. Extensive experiments on

five benchmarks across twenty datasets demon-

strate that RoseLoRA outperforms baselines in

both general fine-tuning and knowledge editing

tasks.

1 Introduction

Pre-trained language models, trained on extensive

and diverse general-domain corpora, exhibit robust

generalization capabilities, benefiting various natu-

ral language processing (NLP) tasks, such as natu-

ral language understanding (Kenton and Toutanova,

2019; Liu et al., 2019) and generation (Touvron

et al., 2023; Ouyang et al., 2022). To further adapt

these pre-trained models to a specific downstream

task, fine-tuning is typically performed. However,

these models often comprise numerous parameters,

rendering full fine-tuning resource-intensive.

To address this challenge, parameter-efficient

fine-tuning (PEFT) methods (Ding et al., 2023b;

Han et al., 2024) are proposed. These method in-

troduce a small number of learnable parameters

and update only the lightweight introduced param-

eters during fine-tuning. Among existing meth-

ods, LoRA family (Hu et al., 2021; Zhang et al.,

2023; Ding et al., 2023b; Liu et al., 2024) has

gained remarkable popularity because of its high

efficiency and good performance. Conceptually,

these LoRA methods add new low-rank matrices to

model weights for fine-tuning. Unlike other PEFT

methods such as Adapter (Houlsby et al., 2019),

LoRA family does not modify the model architec-

ture and is easier to incorporate.

LoRA family has demonstrated notable perfor-

mance on tasks, such as commonsense reasoning

and arithmetic reasoning (Hu et al., 2023; Liu et al.,

2024), that mainly rely on a language model’s

ability to understand and generate text without re-

quiring to modify its internal knowledge explicitly.

However, some specialized tasks require updating

this internal knowledge. For instance, in knowl-

edge editing (Zhang et al., 2024; De Cao et al.,

2021), a language model should incorporate new

provided knowledge while preserving other exist-

ing knowledge simultaneously. On such tasks, the

LoRA family of methods are less-suited due to

the coarse-grained control they offer. In particular,

the product of the low-rank matrices introduced by

LoRA methods is a dense matrix, which is added

to the pre-trained model weights during inference.

Consequently, all pre-trained parameters are up-

dated, making it challenging to selectively modify

specific internal knowledge. This motivates a natu-

ral question: Is there a PEFT method that can be

effectively employed for tasks that require editing

the internal knowledge of language models?

To answer this question, we propose a row

and column-wise sparse low-rank adaptation

method (RoseLoRA). The motivation is to identify

996



and update only the most important and influential

parameters in the pre-trained model concerning a

specific task. In this way, the pre-trained model

can be updated effectively with minimal impacts

on knowledge that does not require modification.

Specifically, RoseLoRA inherits the structure of

LoRA to enable parameter-efficient fine-tuning. To

selectively fine-tune the most important parameters,

we introduce a sparsity constraint, i.e., the ℓ0 norm,

on the product of the low-rank matrices. However,

this constraint is non-trivial to optimize. While

ℓ0 norm constraint is widely explored in model

pruning (Zhu and Gupta, 2017; Wang et al., 2019;

Sun et al., 2023), these methods can only address

the sparsity constraint on each low-rank matrix in-

dividually. Unfortunately, even if each low-rank

matrix is sparse, this does not guarantee that their

product will be sparse. To overcome this challenge,

we propose converting the original sparsity con-

straint to row and column-wise sparsity constraints

on two low-rank matrices (i.e., B and A in LoRA).

We provide a theoretical lower bound of the spar-

sity of the product of the two low-rank matrices.

Furthermore, we propose using a sensitivity-based

importance score to incrementally solve the row

and column-wise sparsity constraints.

Beyond knowledge editing, the proposed

RoseLoRA can also be applied to other general

tasks, e.g., commonsense and arithmetic reason-

ing, instruction following, and natural language

understanding. RoseLoRA updates the few most

important parameters of the model via enforcing

the row or column-wise sparsity for the low-rank

matrices , and can match or even outperform LoRA

performance with significantly fewer modified pa-

rameters.

The contributions are summarized as follows:

1) We propose RoseLoRA, a novel PEFT method

that detects and optimizes the most important

task-related parameters, resulting in highly pre-

cise and effective model updates while being more

lightweight than existing methods. 2) We propose

a novel row and column-wise sparsity constraint to

control the sparsity of the product of two low-rank

matrices. Additionally, we provide a theoretical

sparsity lower bound for the proposed RoseLoRA.

3) We conduct extensive experiments on five bench-

marks covering over twenty datasets. The exper-

iments show that the proposed RoseLoRA can

outperform baselines on both general fine-tuning

tasks and knowledge editing tasks.

2 Related Works
In this section we provide a concise overview of

related works.

2.1 Parameter Efficient Fine-Tuning (PEFT)

PEFT injects a small fraction of trainable parame-

ters into pre-trained large language models (LLMs)

to adapt them to downstream tasks. Prefix Tun-

ing (Li and Liang, 2021) prepends soft tokens

to the input and learns their continuous embed-

dings while keeping the original parameters frozen.

Adapter (Houlsby et al., 2019; He et al., 2021), on

the other hand, inserts lightweight bottleneck neu-

ral network modules into the transformer blocks.

The third paradigm, LoRA and its variants (Hu

et al., 2021; Zhang et al., 2023; Ding et al., 2023a;

Dettmers et al., 2024; Li et al., 2023b; Liu et al.,

2024), learns low-rank matrices to approximate

the desired updates of the original model weights

and has achieved state-of-the-art performance. Re-

cently, ReFT (Wu et al., 2024) learns low-rank up-

dates on model representations instead of weights

and achieves performance comparable to LoRA

with significantly fewer parameters. However, the

underlying linear representation hypothesis may

not hold valid (Engels et al., 2024), which greatly

undermines its generalization ability. In this work,

we propose an effective method to learn sparse and

low-rank updates on model weights, demonstrat-

ing superior performance using as few parameters

as ReFT. Recent works such as AdaLoRA (Zhang

et al., 2023) and SoRA (Ding et al., 2023a) have

applied pruning to LoRA to increase its computa-

tional efficiency. However, it is worth mentioning

that the proposed RoseLoRA is significantly differ-

ent from these methods. In particular, these works

prunes to control the rank of learned model updates,

but the updates are still dense in the sense that all

parameters are affected, and cannot offer precise

updates as RoseLoRA thereof.

2.2 Knowledge Editing

Knowledge editing seeks to update outdated knowl-

edge in pre-trained LLMs to accommodate a dy-

namic world. Early efforts involved fine-tuning

their parameters directly but suffered from se-

vere forgetting of original knowledge (Wang et al.,

2023). For more precise editing, only a minimal

amount of parameters should be updated (Wang

et al., 2023). This requires sparse parameter up-

dates, which proves NP-hard to solve (Natarajan,

1995). As a workaround, Zhu et al. (2020) used

a relaxed L2 norm constraint on the updates, and

997





illustrated in Figure 1. We introduce row and

column-wise sparsity constraints on the two low-

rank matrices, respectively. We theoretically prove

that the sparsity lower bound of the product of these

low-rank matrices can be guaranteed under these

constraints.

4.1 Row and Column-wise Sparse Low-rank

Adaptation

We aim to update minimal parameters to enable

the model to fit the training data, retain more previ-

ous knowledge, and become more lightweight. To

achieve this goal, we build on the popular and effec-

tive parameter-efficient fine-tuning method LoRA,

resulting in the following loss function:

min
A,B

L(D;W o +BA)

s.t.
∥BA∥0
d1d2

≤ τ, (5)

where τ is the sparsity threshold. However, Eqn. 5

is challenging to handle, with difficulty lie in two-

fold. First, the ℓ0 optimization is NP-hard. Despite

that some effective approximate solutions have

been proposed (Zhu and Gupta, 2017; Wang et al.,

2019; Sun et al., 2023), they cannot be applied

directly. In particular, due to the complex product-

based parameterization, it is extremely hard to learn

parameters in A,B even if we know which entries

in their product BA should be 0. Furthermore,

simply controlling the sparsity of B and A may

not work, as shown in Example 1.

Example 1. Let s(·) represent the sparsity (i.e.,

the portion of zero entries) of a vector or matrix.

For sparse matrix A = [a⊤;0(r−1)×d2 ] and B =
[b,0d1×(r−1)], where a and b contains non-zero

entries, we have s(A) = s(B) = r−1
r

that is

reasonably large for r > 1. However, s(BA) =
s(ba⊤) = 0, i.e., the product is a dense matrix.

To summarize, it is non-trivial to incorporate

sparsity in LoRA. To address this challenge, we

propose controlling the sparsity of each row of A

and each column of B. In this way, the sparsity of

BA can be bounded by s(Ai∗) and s(B∗i). We

present the theoretical analysis in Proposition 1

and the empirical results in Fig. 2. Based on this

finding, we can convert the optimization problem

in Eqn. 5 as the following problem:

min
A,B

L(D;W o +BA)

s.t.
∥Ai∗∥0

d2
≤ τ,

∥B∗i∥0
d1

≤ τ, i = 1, ..., r. (6)

Proposition 1. The sparsity of BA is greater or

equal to max{0, 1 +
∑r

i=1(s(Ai∗) + s(B∗i) −
s(Ai∗)s(B∗i))− r}.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sparsity of columns and rows

0

0.2

0.4

0.6

0.8

1

s
p
a
rs

it
y
 o

f 
th

e
 m

a
tr

ix
 p

ro
d
u
c
t rank=4

lower bound of rank 4

rank=32

lower bound of rank 32

Figure 2: The sparsity of the product of matrix B and

A with different column and row sparsity.

4.2 Optimization

In this section, we present how to solve the opti-

mization problem in Eqn. 6. We prune each row

of A and each column of B based on sensitivity

iteratively. Specifically, we first conduct stochastic

gradient decent with respective to A and B, i.e.

Ã
(t) = A

(t) −∇
A(t)L,

B̃
(t) = B

(t) −∇
B(t)L. (7)

Then, we estimate the sensitivity-based importance

scores based on Eqn. 4. Given the importance

scores, the A and B are pruned following

A
(t+1)
i∗ = TA(Ã

(t)
i∗ , Ī

(t)(A
(t)
i∗ )),

B
(t+1)
∗i = TB(B̃

(t)
i∗ , Ī

(t)(B
(t)
i∗ )), (8)

where i = 1, 2, ..., r, TA is defined as

(TA(Ã
(t)
i∗ , Ī

(t)(A
(t)
i∗ )))j

=

{

Ã
(t)
ij , Ī(t)(A

(t)
ij ) is top-τ (t) in Ī(t)(A

(t)
i∗ ),

0, otherwise,

and TB is defined as

(TB(B̃
(t)
i∗ , Ī

(t)(B
(t)
i∗ )))j

=

{

B̃
(t)
ji , Ī(t)(B

(t)
ji ) is top-τ (t) in Ī(t)(B

(t)
∗i ),

0, otherwise.

Here, τ (t) is the budget of the percentage of re-

maining parameters at the t-iteration. To enable

the optimization to be more stable, we decrease

the number of τ (t) gradually following the cubic

strategy (Li et al., 2023c):

τ (t) =















1, 1 ≤ t ≤ ti,

τ + (1− τ)

(

1−
t− ti

tf − ti

)3

, ti ≤ t ≤ tf ,

τ, tf ≤ t ≤ T,

999



where T is the number of total training iterations,

and ti, tf are hyper-parameters.

5 Experiment

In the experiments, we evaluate the proposed

RoseLoRA and answer the following questions:

RQ1) How does the proposed RoseLoRA ben-

efit knowledge editing tasks? RQ2) How does

RoseLoRA perform compared to state-of-the-art

PEFT methods on general tasks? RQ3) Does

the proposed RoseLoRA alleviate the model for-

getting issue? RQ4) How does the performance

change with varying amounts of training data?

5.1 Datasets and Experiment Settings

Datasets. We conduct experiments on five dif-

ferent benchmarks: 1) Knowledge Editing, in-

cluding WikiDatarecent, WikiDatacounterfact (Cohen

et al., 2024), ZsRE (Yao et al., 2023), and Wik-

iBio (Hartvigsen et al., 2024); 2) Commonsense

Reasoning, including BoolQ (Clark et al., 2019),

PIQA (Bisk et al., 2020), SIQA (Sap et al.,

2019), HellaSwag (Zellers et al., 2019), Wino-

Grande (Sakaguchi et al., 2021), ARC-e, ARC-c

(Clark et al., 2018), and OBQA (Mihaylov et al.,

2018); 3) Arithmetic Reasoning, including AQuA

(Ling et al., 2017), GSM8K (Cobbe et al., 2021),

MAWPS (Koncel-Kedziorski et al., 2016), and

SVAMP (Patel et al., 2021); 4) Instruction Follow-

ing with Ultrafeedback (Cui et al., 2023) as training

data and evaluation on Alpaca-Eval v1.0 (Li et al.,

2023a); 5) Natural Language Understanding

consists of eight datasets from the GLUE bench-

mark (Wang et al., 2018). More details about

datasets, metrics, and hyper-parameters we use can

be found in the Appendix.

Baselines. Our baselines are constructed on a

task basis. In specific, on each task the proposed

RoseLoRA is compared with representative base-

lines from corresponding domain as listed below.

• On Knowledge Editing, we follow Zhang

et al. (2024) and choose AdaLoRA (Zhang

et al., 2023), ROME and FT-L (Meng et al.,

2022a), and MEMIT (Meng et al., 2022b)

as our baselines as they, same as us, do not

require hard-to-access data or training addi-

tional models. In specific, AdaLoRA keeps

unimportant weights in an LLM unchanged

and achieves a highly efficient and precise

PEFT. ROME applies a causal-tracing to iden-

tify the layer wherein the knowledge is stored

and then learns a rank-one update. FT-L, on

the other hand, directly finetunes the layer

identified by ROME. Recently, MEMIT ex-

tends ROME to a large-scale setting, where

the edits can be made more efficiently.

• On the other four tasks, we follow the setup

from existing works (Hu et al., 2023; Liu et al.,

2024; Wu et al., 2024) that evaluated a vari-

ety of representative PEFT methods including

prefix tuning (Li and Liang, 2021), adapters

(Houlsby et al., 2019), LoRA and its recent

variants (Hu et al., 2021; Zhang et al., 2023),

and ReFT (Wu et al., 2024). Due to page

limitation we refer the readers to Hu et al.

(2023); Wu et al. (2024) and reference therein

for more details.

5.2 Performance Comparison

Knowledge Editing When performing knowl-

edge editing, we introduce an additional norm con-

straint for low-rank matrices, as detailed in the

Appendix. The results of knowledge editing are

presented in Table 1, addressing RQ1. From this

table, we observe that the proposed RoseLoRA

outperforms all state-of-the-art baselines in terms

of average performance, achieving the highest edit

success rate while preserving the most knowledge

that should not be updated. Moreover, RoseLoRA

demonstrates excellent generalization ability, as

indicated by its high portability score which is a

metric to measure if the edited model can reason

correctly about the updated knowledge.

Commonsense Reasoning In this section, we

present experiments on eight commonsense reason-

ing datasets to address RQ2, as shown in Table 2.

The table indicates that the proposed RoseLoRA

again outperforms all state-of-the-art parameter-

efficient fine-tuning methods on average. Among

the eight datasets, RoseLoRA ranks the first in

five cases. Remarkably, its parameter numbers

are the same as that of LoReFT, significantly

smaller than PrefT, Adapter, LoRA, and DoRA.

Yet, RoseLoRA still achieves higher accuracy on

the commonsense reasoning datasets. This clearly

demonstrates RoseLoRA’s effectiveness of fine-

tuning the most crucial parameters of LLaMA for

commonsense reasoning tasks.

Arithmetic Reasoning In this section, we

present experiments on four arithmetic reasoning

datasets to address RQ2, with results shown in Ta-

ble 3. The table indicates that LoRA achieves the

1000



Table 1: Performance comparison of LLaMA-7b-chat against existing knowledge editing methods on four knowledge

editing datasets. Results marked with "♡" are taken from Zhang et al. (2024). "AVG" means the average of edit

success, locality, portability, and fluency. Because fluency is not at the same magnitude as other metrics, we leverage

"fluency/10" when computing AVG values.

Dataset Metric FT-L♡ AdaLoRA♡ ROME♡ MEMIT♡ RoseLoRA

WikiDatarecent

Edit Succ.(↑) 71.2 65.6 85.1 85.3 98.4

Locality(↑) 63.7 55.8 66.2 64.8 83.4

Portability(↑) 48.7 47.2 37.5 37.9 54.3

Fluency(↑) 549 538 574 567 585

AVG(↑) 59.6 55.6 61.5 61.2 73.7

WikiDatacounterfact

Edit Succ.(↑) 51.1 72.1 83.2 83.4 99.4

Locality(↑) 62.5 66.8 65.4 63.7 90.9

Portability(↑) 39.1 55.2 38.7 40.1 57.2

Fluency(↑) 545 554 579 569 592

AVG(↑) 51.8 62.4 61.3 61.0 76.7

ZsRE

Edit Succ.(↑) 51.1 72.1 83.2 83.4 100

Locality(↑) 62.5 66.8 65.4 63.7 92.5

Portability(↑) 39.1 55.2 38.7 40.1 50.9

Fluency(↑) 545 554 579 569 574

AVG(↑) 54.6 62.1 58.2 54.0 75.2

WikiBio

Edit Succ.(↑) 66.3 97.0 95.1 94.3 99.5

Locality(↑) 60.1 57.9 47.0 51.6 92.5

Fluency(↑) 604 616 617 617 620

AVG(↑) 62.3 72.2 67.9 69.2 84.6

Table 2: Accuracy comparison of LLaMA-7B against PEFT baselines on eight commonsense reasoning datasets.

Results marked with "♡" are taken from Liu et al. (2024). "AVG" means the average accuracy of all datasets. For

RoseLoRA, Params (%) is calculated by dividing the number of final low-rank matrices parameters by the number

of parameters of the base LMs (number of low-rank matrix parameters times sparsity).

PEFT Params (%)
Accuracy (↑)

BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA AVG

PrefT♡ 0.11% 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6

AdapterS♡ 0.99% 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8

AdapterP♡ 3.54% 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.3

LoRA♡ 0.83% 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7

DoRA (half)♡ 0.43% 70.0 82.6 79.7 83.2 80.6 80.6 65.4 77.6 77.5

DoRA♡ 0.84% 68.5 82.9 79.6 84.8 80.8 81.4 65.8 81.0 78.1

LoReFT♡ 0.03% 69.3 84.4 80.3 93.1 84.2 83.2 68.2 78.9 80.2

RoseLoRA 0.03% 71.0 84.9 75.5 92.6 82.6 84.6 70.0 84.2 80.7

highest average accuracy across the four datasets.

However, the proposed RoseLoRA performs com-

parably, retaining 97% of LoRA’s accuracy while

updating only 22 times less parameters compared

with LoRA. Additionally, compared to LoReFT,

RoseLoRA updates a similar number of parame-

ters while achieving approximately a 6.3% perfor-

mance improvement.

Instruction Following In this section, we com-

pare the proposed RoseLoRA with state-of-the-art

baselines on the instruction-following task. To en-

sure fair comparisons, we use the same prompt

templates from Taori et al. (2023). The model per-

formance is shown in Table 4. Based on the table, it

can be observed that the proposed RoseLoRA out-

performs all baseline methods while updating the

1001



Table 3: Accuracy comparison of LLaMA-7B against PEFT baselines on four arithmetic reasoning datasets. Results

marked with "♡" are taken from Hu et al. (2023). "AVG" means the average accuracy of all datasets.

PEFT Params (%)
Accuracy (↑)

AQuA GSM8K MAWPS SVAMP AVG

PrefT♡ 0.11% 14.2 24.4 63.4 38.1 35.0

AdapterS♡ 0.99% 15.0 33.3 77.7 52.3 44.6

AdapterP♡ 3.54% 18.1 35.3 82.4 49.6 46.4

LoRA♡ 0.83% 18.9 37.5 79.0 52.1 46.9

LoReFT♡ 0.03% 21.4 26.0 76.2 46.8 42.6

RoseLoRA 0.03% 26.0 33.0 79.8 44.7 45.9

fewest parameters. Additionally, for the instruction-

following task, we find that significantly fewer

parameters need to be updated compared to com-

monsense reasoning and arithmetic reasoning tasks.

This suggests that fewer parameters are related to

the instruction-following ability in the large lan-

guage model.

Table 4: Performance comparison of LLaMA-2 7B on

instruction tuning task on Alpaca-Eval v1.0. We com-

pute the win-rate against text-davinci-003 using GPT-4

as the annotator. Results marked with "♡" are taken

from Wu et al. (2024).

Model & PEFT Params (%) Win-rate (↑)

GPT-3.5 Turbo 1106♡ - 86.30

Llama-2 Chat 13B♡ - 81.10

Llama-2 Chat 7B♡ - 71.40

Llama-2 7B & FT♡ 100% 80.93

Llama-2 7B & LoRA♡ 0.1245% 81.48

Llama-2 7B & RED♡ 0.0039% 81.69

Llama-2 7B & LoReFT♡ 0.0039% 85.60

Llama-2 7B & RoseLoRA 0.0037% 85.77

Natural Language Understanding We conduct

experiments on the GLUE to answer RQ2. We

show the model performance in Table 5. According

to the table, the proposed RoseLoRA outperforms

the state-of-the-art baselines significantly. The best

baseline LoRA achieves 88.1 average accuracy but

the proposed RoseLoRA reaches about 89.0 ac-

curacy on the eight datasets averagely. On RTE

dataset, the proposed RoseLoRA even achieves

3.4% performance improvement. Compared to

fully fine-tuning, the proposed RoseLoRA also

achieves better performance. The potential reason

may be that RoseLoRA only updates very few

parameters and prevents overfitting on natural lan-

guage understanding tasks. It demonstrates that

the proposed RoseLoRA not only can be applied

to decoder-only models but also can be applied to

encoder-only language models.

5.3 Forgetting Test

In this section, we study if a fine-tuned model for-

gets knowledge learned from the pre-training stage

to answer RQ3. To make fair comparisons, we eval-

uate LoRA and RoseLoRA after fine-tuning on

Commonsense170K, Ultrafeedback, and Math10K

in a zero-shot setting and using the same prompt

templates. We report the experiment results in

Table 6. According to the table, we can find

that compared to LoRA, the RoseLoRA forgets

less knowledge after fine-tuning. For example, af-

ter fine-tuning on the Commonsense170K dataset,

LoRA leads to a significant performance drop on

TriviaQA and MMLU. However, the proposed

RoseLoRA still preserves over 90% performance

of LLaMA-2. Besides, we can also find that both

LoRA and RoseLoRA achieve good performance

on ARC-c dataset. It may indicate that fine-tuning

large language models on Commonsense170K, Ul-

trafeedback, or Math10K may not make them for-

get much general knowledge.

5.4 Sensitivity w.r.t. Training Data Size

In this section, we study how the model perfor-

mance changes with different amounts of training

data. We show the experiment results in Fig. 3.

Based on the figure, we can find that with the de-

creasing amounts of training data, the performance

gap between LoRA and RoseLoRA is becoming

smaller. When using only 12.5% Math10K data

as the training data to fine-tune the LLaMA 7B,

RoseLoRA even outperforms LoRA on GSM8K.

In conclusion, the proposed RoseLoRA shows

more superiority on small data scenarios.

1002



Table 5: Accuracy comparison of RoBERTa-large against PEFT baselines on the GLUE benchmark. Results marked

with "♡" are taken from Wu et al. (2023). "AVG" means the average accuracy of all datasets.

PEFT Params (%) RTE MRPC QQP STS-b QNLI CoLA SST2 MNLI AVG

FT♡ 100% 85.8 91.7 91.5 92.6 93.8 68.2 96.0 88.8 88.6

Adapter♡ 0.254% 85.3 90.5 91.4 91.5 94.6 65.4 95.2 90.1 88.0

LoRA♡ 0.225% 86.3 89.8 90.7 91.7 94.7 65.5 96.0 90.2 88.1

AdapterFNN♡ 0.225% 84.8 90.5 91.3 90.2 94.3 64.4 96.1 90.3 87.7

RED♡ 0.014% 86.2 90.3 88.8 91.3 93.5 68.1 96.0 89.5 88.0

LoReFT♡ 0.014% 86.2 90.1 88.5 91.6 94.1 68.0 96.2 89.2 88.0

RoseLoRA 0.015% 89.2 90.2 91.1 92.0 94.7 69.2 95.2 90.5 89.0

Table 6: Accuracy of fine-tuned models on TriviaQA (knowledge reasoning), MMLU (general knowledge), and

ARC-c (commonsense reasoning) dataset. "AVG" is the average accuracy of Humanities, Social Sciences, STEM,

and Other fields on MMLU. The evaluation is conducted with Lm-Evaluation-Harness (Gao et al., 2023).

TriviaQA
MMLU

ARC-c
Humanities Social Sciences STEM Other AVG

LLaMA 7B 48.6 29.9 29.4 26.3 33.4 29.8 41.7

After Commonsense170K

LoRA 9.0 24.4 21.9 21.5 24.0 23.1 -

RoseLoRA 47.8 36.8 42.7 31.4 42.3 38.1 -

After Math10K

LoRA 30.5 31.1 34.4 30.5 35.7 32.7 42.2

RoseLoRA 51.3 37.9 43.0 32.1 43.9 39.0 41.9

LLaMA-2 7B 52.5 38.9 46.1 34.3 47.1 41.2 43.4

After Ultrafeedback

LoRA 23.5 41.3 49.4 43.0 49.3 43.0 41.2

RoseLoRA 30.1 42.1 51.5 44.9 52.0 44.9 44.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio of training data

25

30

35

40

45

50

55

A
c
c
u
ra

c
y

LoRA GSM8K

RoseLoRA GSM8K

LoRA SVAMP

RoseLoRA SVAMP

Figure 3: Accuracy of LoRA and RoseLoRA with

different amount of Math10K training data on GSM8K

and SVAMP.

6 Conclusion

In this paper, we address the limitations of existing

parameter-efficient fine-tuning (PEFT) methods,

particularly the LoRA family, in handling tasks

requiring selective knowledge updates while still

being effective for other general NLP tasks. We

introduced a novel method, row and column-wise

sparse low-rank adaptation (RoseLoRA), which

selectively updates the most important parameters

for specific tasks, maintaining efficiency while min-

imizing unnecessary changes to the pre-trained

model’s knowledge. RoseLoRA applies a row and

column-wise sparsity constraint to the product of

low-rank matrices, ensuring efficient updates with-

out modifying the model architecture. Our theoret-

ical analysis lower bounds the sparsity of product

matrices that affect model’s knowledge, and our

sensitivity-based importance scoring effectively

fulfilled the sparsity constraints. Through exten-

sive experiments on five benchmarks encompassing

over twenty datasets, RoseLoRA demonstrated su-

perior performance on both general-purposed fine-

tuning and knowledge editing tasks compared to

existing methods. This highlights its potential as a

robust and efficient fine-tuning solution for a wide

range of NLP applications.

1003



Limitations

The proposed RoseLoRA framework introduces

a hyper-parameter β to smooth the sensitivity es-

timation, which might require additional effort to

tune. Fortunately, we observe that the model per-

formance is not sensitive to the hyper-parameter

and we set it to a fixed value to achieve good per-

formance in this paper.

Acknowledgement

This work is supported in part by the US National

Science Foundation under grant NSF IIS-1747614

and NSF IIS-2141037. Any opinions, findings, and

conclusions or recommendations expressed in this

material are those of the author(s) and do not nec-

essarily reflect the views of the National Science

Foundation.

References

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432±7439.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2024. Evaluating the ripple effects
of knowledge editing in language models. Transac-
tions of the Association for Computational Linguis-
tics, 12:283±298.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2023. Ultrafeedback: Boosting lan-
guage models with high-quality feedback. arXiv
preprint arXiv:2310.01377.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2021. Knowledge neu-
rons in pretrained transformers. arXiv preprint
arXiv:2104.08696.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. arXiv
preprint arXiv:2104.08164.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen,
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023a.
Sparse low-rank adaptation of pre-trained language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 4133±4145.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. 2023b.
Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nature Machine Intelli-
gence, 5(3):220±235.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,
Zhifang Sui, and Lei Li. 2022. Calibrating factual
knowledge in pretrained language models. arXiv
preprint arXiv:2210.03329.

Joshua Engels, Isaac Liao, Eric J Michaud, Wes Gurnee,
and Max Tegmark. 2024. Not all language model
features are linear. arXiv preprint arXiv:2405.14860.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. Advances in neural infor-
mation processing systems, 28.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang,
et al. 2024. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint
arXiv:2403.14608.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2024.
Aging with grace: Lifelong model editing with dis-
crete key-value adaptors. Advances in Neural Infor-
mation Processing Systems, 36.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2024. Does localization inform editing?
surprising differences in causality-based localization
vs. knowledge editing in language models. Advances
in Neural Information Processing Systems, 36.

1004



Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jia-Wei Low, Lidong Bing,
and Luo Si. 2021. On the effectiveness of adapter-
based tuning for pretrained language model adapta-
tion. arXiv preprint arXiv:2106.03164.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790±2799.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters:
An adapter family for parameter-efficient fine-
tuning of large language models. arXiv preprint
arXiv:2304.01933.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. arXiv
preprint arXiv:2301.09785.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171±4186.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of
the 2016 conference of the north american chapter of
the association for computational linguistics: human
language technologies, pages 1152±1157.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023a. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos
Karampatziakis, Weizhu Chen, and Tuo Zhao. 2023b.
Loftq: Lora-fine-tuning-aware quantization for large
language models. arXiv preprint arXiv:2310.08659.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang,
Pengcheng He, Weizhu Chen, and Tuo Zhao. 2023c.
Losparse: Structured compression of large language
models based on low-rank and sparse approximation.
In International Conference on Machine Learning,
pages 20336±20350. PMLR.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. arXiv preprint arXiv:1705.04146.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359±17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817±15831.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri
Frosio, and Jan Kautz. 2019. Importance estima-
tion for neural network pruning. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 11264±11272.

Balas Kausik Natarajan. 1995. Sparse approximate solu-
tions to linear systems. SIAM journal on computing,
24(2):227±234.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730±27744.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99±106.

1005



Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
Advances in neural information processing systems,
33:20378±20389.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiqa: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://

github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng,
Chen Chen, et al. 2023. Knowledge editing for
large language models: A survey. arXiv preprint
arXiv:2310.16218.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019.
Structured pruning of large language models. arXiv
preprint arXiv:1910.04732.

Suhang Wu, Minlong Peng, Yue Chen, Jinsong Su, and
Mingming Sun. 2023. Eva-kellm: A new bench-
mark for evaluating knowledge editing of llms. arXiv
preprint arXiv:2308.09954.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atti-
cus Geiger, Dan Jurafsky, Christopher D Manning,
and Christopher Potts. 2024. Reft: Representa-
tion finetuning for language models. arXiv preprint
arXiv:2404.03592.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. arXiv preprint
arXiv:2305.13172.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, et al. 2024. A
comprehensive study of knowledge editing for large
language models. arXiv preprint arXiv:2401.01286.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023. Adaptive budget allocation for
parameter-efficient fine-tuning. In International Con-
ference on Learning Representations.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander
Bukharin, Pengcheng He, Weizhu Chen, and Tuo
Zhao. 2022. Platon: Pruning large transformer mod-
els with upper confidence bound of weight impor-
tance. In International conference on machine learn-
ing, pages 26809±26823. PMLR.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we
edit factual knowledge by in-context learning? arXiv
preprint arXiv:2305.12740.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020. Modifying memories in transformer models.
arXiv preprint arXiv:2012.00363.

Michael Zhu and Suyog Gupta. 2017. To prune, or not
to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878.

1006



A Proof of Proposition 1

Lemma 1. For a ∈ R
1×d2 and b ∈ R

d1×1, where

the sparsity of them is s(a) = sa and s(b) = sb
respectively, we have s(ba) = sa + sb − sasb.

Proof. Define the number of zero values in a vector

or matrix as z(·). Consider the i-th row of ba, i.e.

bia. If bi = 0, then bia = 0. If bi ̸= 0, then the

number of zeros depends on the number of zeros

of a. Therefore, we have

z(bia) =

{

d2, bi = 0,

sad2, bi ̸= 0.
(9)

Then we have

z(ba) =

d1
∑

i=1

z(bia)

=d2sbd1 + sad1d2(1− sb)

=d1d2(sa + sb − sasb). (10)

So the sparsity of ba is

s(ba) =
d1d2(sa + sb − sasb)

d1d2

= sa + sb − sasb. (11)

Proposition 1. The sparsity of BA is greater or

equal to max{0, 1 +
∑r

i=1(s(Ai∗) + s(B∗i) −
s(Ai∗)s(B∗i))− r}.

Proof. First, we have

(BA)ij =
r

∑

k=1

BikAkj

=
r

∑

k=1

(B∗kAk∗)ij . (12)

Consider the worst case: the positions of nonzero

value of {B∗kAk∗} does not have any overlap-

ping, we at least have max{0, d1d2 −
∑r

i=1(1 −
s(B∗iAi∗))d1d2} zero values.

Therefore, based on Lemma 1 the sparsity of

BA satisfies

s(BA)

≥
max{0, d1d2 −

∑r
i=1(1− s(B∗iAi∗))d1d2}

d1d2

=max{0, 1 +

r
∑

i=1

s(B∗iAi∗)− r}

=max

{

0, 1 +

r
∑

i=1

(

s(Ai∗) + s(B∗i)

− s(Ai∗)s(B∗i)
)

− r

}

. (13)

B Datasets, Metrics and

Hyper-parameters

We conduct experiments on five different bench-

marks:

• Knowledge editing consists of four datasets, in-

cluding WikiDatarecent, WikiDatacounterfact (Co-

hen et al., 2024), ZsRE (Yao et al., 2023), and

WikiBio (Hartvigsen et al., 2024). For the knowl-

edge editing tasks, the model should memo-

rize new knowledge while preserving knowledge

which does not need to update. Following Zhang

et al. (2024), we use four metrics to evaluate the

editing performance: 1) Edit Success, which

estimates the accuracy with respect to both the

knowledge needed to be updated and the simi-

lar expressions of the knowledge, 2) Locality,

which shows if the post-edited model keeps its

original answer on the locality set, 3) Porta-

bility, which is to measure if the post-edited

model can reason correctly about the updated

knowledge, and 4) Fluency, which measures the

model’s generation ability after editing via cal-

culating the weighted average of bi-gram and

tri-gram entropies.

• Commonsense reasoning contains of eight

datasets, including BoolQ (Clark et al., 2019),

PIQA (Bisk et al., 2020), SIQA (Sap et al.,

2019), HellaSwag (Zellers et al., 2019), Wino-

Grande (Sakaguchi et al., 2021), ARC-e, ARC-

c (Clark et al., 2018), and OBQA (Mihaylov

et al., 2018). These tasks are multiple choice

problems. Following Hu et al. (2023); Wu et al.

(2024), we fine-tune the LLM on a combined

training dataset named Commonsense170K of

these tasks and evaluate the Accuracy on indi-

vidual test sets.

1007



Table 7: Hyper-parameters used in knowledge editing, commonsense reasoning and arithmetic reasoning.

Dataset lr Rank Batch size Sparsity β α Target modules

WikiData recent 2e-4 4 1 0.95

0.8

3e-3 "up_proj", "down_proj", "gate_proj"

WikiData counterfact 2e-4 4 1 0.95 3e-3 "up_proj", "down_proj", "gate_proj"

ZsRE 2e-4 4 1 0.95 3e-3 "up_proj", "down_proj", "gate_proj"

WikiBio 2e-4 4 1 0.95 3e-3 "up_proj", "down_proj", "gate_proj"

Commonsense170K 2e-4 32 8 0.865 - "q_proj","v_proj"

Math10K 3e-4 32 32 0.865 - "q_proj","v_proj"

Instruction tuning 3e-4 32 32 0.85 - "q_proj","v_proj"

Table 8: Hyper-parameters and metrics used in GLUE benchmark.

Dataset Metric lr Rank Batch size Sparsity β Target modules

CoLA Matthews corr 2e-4

6

16

0.95 0.8

"query",

"key",

"value",

"output.dense",

"intermediate.dense"

SST-2 Accuracy 2e-4 32

MRPC Accuracy 2e-4 32

QQP Accuracy 1e-4 32

STS-B Pearson corr 2e-4 32

MNLI Accuracy 2e-4 32

QNLI Accuracy 2e-4 32

RTE Accuracy 6e-4 32

• Arithmetic reasoning consists of four math rea-

soning datasets: AQuA (Ling et al., 2017),

GSM8K (Cobbe et al., 2021), MAWPS (Koncel-

Kedziorski et al., 2016), and SVAMP (Patel et al.,

2021). Models need to generate correct answers

and we use Accuracy as the evaluation metric

following Hu et al. (2023) as well. Again, we

replicate the setup in Wu et al. (2024) and fine-

tune the models on the combined training data

named Math10K of the four tasks.

• Instruction-following measures if the model can

follow human instructions. Same as before, we

follow Hu et al. (2023); Wu et al. (2024) and use

Ultrafeedback (Cui et al., 2023) as the training

data, and evaluate the model performance by

Alpaca-Eval v1.0 (Li et al., 2023a).

• Natural language understanding consists of eight

datasets from the GLUE benchmark (Wang et al.,

2018). We adopt the evaluation metrics and se-

tups from Wu et al. (2023).

We show the hyper-parameters we use in Table 8

and Table 7. We conduct experiments based

on libraries LLM-Adapters1, EasyEdit2, and lm-

evaluation-harness3.
1https://github.com/AGI-Edgerunners/LLM-Adapters
2https://github.com/zjunlp/EasyEdit
3https://github.com/EleutherAI/lm-evaluation-harness

C Implementation of Knowledge Editing

To enable the minimal modification of the LLM,

following (Zhang et al., 2024), we add one ℓ2 norm

on the low-rank matrices:

min
A,B

L(D;W o +BA)

s.t.
∥Ai∗∥0

d2
≤ τ,

∥B∗i∥0
d1

≤ τ, i = 1, ..., r,

∥A∥2F ≤ α, ∥B∥2F ≤ α, (14)

where α is a hyper-parameter. In each step, after

pruning A and B, we clip them to make them

satisfy the ℓ2 norm constraint.

1008


