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Abstract

We prove an Q(n'~"*logk /2*) lower bound on the k-party number-in-hand communication com-
plexity of collision-finding. This implies a 97" 7" Jower bound on the size of tree-like cutting-planes
proofs of the bit pigeonhole principle, a compact and natural propositional encoding of the pigeonhole
principle, improving on the best previous lower bound of 20(vm),

1 Introduction

The pigeonhole principle asserting that there is no injective function f : [m] — [n] for m > n is a cornerstone
problem in the study of proof complexity. It is typically encoded as unsatisfiable conjunctive form formula
(CNF), henceforth denoted PHP}', on the variables y; ;, each of which is an indicator that “pigeon” ¢ is
mapped to “hole” j.

It is well known that any refutation of PHPZJrl using resolution proofs requires size 2" [[ak85] and
the same asymptotic bound holds for all m that are O(n) [BT88]. On the other hand, if we allow our proof
system to reason about linear inequalities (for example using cutting-planes proofs), then it is easy to see
that refuting PHPZ‘Irl becomes easy — indeed, there exist polynomial size refutations of PHPZ‘H.

Despite the pigeonhole principle having short cutting-planes refutations, the related clique-coloring for-
mulas, which state that a graph cannot have both k-cliques and k& — 1-colorings, requires exponential-size
cutting-planes refutation [Pud97].t The clique-coloring formula can be viewed as a kind of indirect pigeon-
hole principle: The k nodes of the clique correspond to the pigeons and k — 1 colors correspond to the holes,
but the representation of possible mappings is quite indirect.

It is natural to wonder about the extent to which indirection is required for the pigeonhole principle to
be hard for cutting-planes reasoning. As part of studying techniques for cutting-planes proofs, Hrubes and
Pudldk [HP17] considered a very natural compact and direct way of expressing the pigeonhole principle,
known as the bit or binary pigeonhole principle?. The bit pigeonhole principle analog of PHP]" (henceforth
denoted BPHP)") has mlogn variables z; ; for ¢ € [m],j € [logn| and the principle asserts that, when we
organize these variables as an m x [logn] matrix, the rows of the matrix all have distinct values. BPHP]"
is the following CNF formula: for each i # j € [m], include the clauses of a CNF encoding that z; # z;.
One can achieve this by including a clause for each a € {0, 1}1°8™ expressing that z; # oV 2; # . The end
result is a CNF with (gl)n clauses of size 2logn.

Using techniques related to those of [Pud97], Hrubes and Pudlak [HP17] showed that BPHP]' requires

cutting-planes refutations of size 22(n'®) for any m > n, proving that even a very direct representation of
the pigeonhole principle is hard for cutting-planes proofs. Their arguments, like those of Pudlak, also apply
to any proof system that has proof lines consisting of integer linear inequalities with two antecedents per
inference that are sound with respect to 01-valued variables; such proofs are known alternatively as semantic
cutting-planes proofs or Th(1) proofs [BPS07].

*Research supported by NSF grant CCF-2006359
ILower bounds for restricted cutting-planes refutations of these formulas were earlier shown in [[PU94; BPR95]
2This encoding of the pigeonhole principle was introduced in [AMO15].
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Recently, Dantchev, Galesi, Ghani, and Martin [Dan+24] exhibited a 28(n/logn) |gwer bound on the size
of any general resolution refutation of BPHP] for all m > n. In fact, they showed that BPHP]' requires
proofs of size 22n' %)
k-DNFs (known as Res(k) proofs) for k < log!/ 2=, (Note that any sound proof system operating on DNF's
requires size at least 27" to refute of PHP" ! [PBI93; KPW95; Has23].) In addition, [Dan+24] showed
that BPHP”" has no refutations in the Sherali-Adams proof system [SA90] of size smaller than 22/ log® n)_
Finally, just as PHP}" has polynomial-size Sum-of-Squares refutations [GHP01], Dantchev et al. showed that
BPHP]" has polynomial-sized Sum-of-Squares refutations.

Given the large lower bounds for resolution, Res(k), and Sherali-Adams refutations of BPHP}', it is
natural to ask the extent to which the sub-exponential lower bounds can be improved for cutting-planes
proofs; how close to a 2% lower bound is possible? While the general question is still open, there has
been progress towards this question for the restricted class of tree-like refutations. Tree-like proofs require
that any time an inequality is used, it must be re-derived (i.e., the underlying graph of deductions is a
tree); the polynomial-size cutting-planes refutations of PHPZ‘Irl can be made tree-like. In contrast, Itsykson
and Riazanov [IR20] showed that BPHP™" requires tree-like cutting-planes refutations of size 2°(V") when
m < n++/n.

Our main result pushes this bound almost to its limit. Specifically, we prove that any tree-like semantic

for a more powerful class of proof systems that extend resolution by operating on

cutting-planes refutation of BPHP)® requires size 27" Whenever m < n 4 22Vlgn-2,

In order to show this, we utilize a well-known connection between tree-like refutations and communication
complexity. While the results of [IR20] for cutting planes relies on two-party communication complexity
(and number-on-forehead multiparty communication for other results that we mention below), our stronger
results are based on multiparty number-in-hand communication. In particular it is based on a similar natural
collision-finding communication problem Collfnl, in which each player p € [k] in the number-in-hand model
receives an input in z(P) € [(]™, and their goal is to communicate and find a pair i # j € [m] such that

xgp ) = :vg-p ) for all players p € [k]. Such a communication problem is well-defined (in the sense that such a

pair 7, j exists) when m > /¥,

This collision-finding problem is intimately related to the unsatisfiable BPHP]" formula via the following
natural search problem associated with any unsatisfiable CNF formula: Given unsatisfiable CNF ¢, the
associated search problem Search,, takes as input a truth assignment « to the variables of ¢ and requires the
output of the index of a clause of ¢ that is falsified by «. In particular the connection follows by considering
a natural k-party number-in-hand communication game that we denote by Search’;J wherein the assignment
« to the variables of ¢ is evenly distributed among the k players. and the players must communicate to find
an an answer for Search,,(a).

It is not hard to see that if we have a communication protocol solving Searchngpg () then such a

protocol also solves Collfn ni/k ON input o. Our main technical result is a lower bound on Collfn ni/k that
holds even when we allow randomized protocols.

Theorem 1.1. The randomized number-in-hand communication complexity of Collfn)nl/,C 18
Q(n'~Y*logk /2F) whenever n +1 < m < n + 2F-2pl/k,

We pause here to note that this bound is nearly tight. There is a deterministic protocol wherein the
first player sends a subset of coordinates of size [m/n'/*] in which their inputs are all equal. This requires
log (m/:?l/k) < (m/n'/*)log(m/n'/*) bits; when m ~ n, this is O(n'~Y/*log(n'/*¥)) = O(n'~'/*logn /k)
bits of communication. Player two then announces a subset of these coordinates on which they are equal of
size [m/n?/*]. The players can continue in this manner until they have found a collision (which is guaranteed
by the pigeonhole principle). Note that the amount of communication is handled by a geometric series, and
is dominated by the first term, which results in communication O(n'~'/*logn /k). This shows that up to
logarithmic factors and a factor of 2, Theorem 1.1 is tight.

We state here a simplified corollary? of Theorem 1.1 which formalizes our lower bounds for cutting-planes
refutations of BPHP]".

3When m is somewhat larger, we can obtain somewhat weaker lower bounds.



Theorem 1.2. Any tree-like semantic cutting-planes refutation of BPHP' requires size gn! 72/ VivEn et/ VioEn)

when m < n 4 22Viegn—2

We remark that Itsykson and Riazanov [IR20] utilized the same connection between communication and
proof complexity to achieve their results. They were also interested in a k-party number-on-forehead version
of Collﬁ%g (in particular, in their version, the matrices are added rather than concatenated), which leads to
weaker lower bounds in stronger proof systems Th(k—1) that manipulate degree k—1 polynomial inequalities.

Itsykson and Riazanov also left as an open problem whether their bounds for Searcthszy could be
extended to the regime of the“weak” pigeonhole principle when m = n + Q(n). Go66s and Jain [GJ22]
first answered this in the affirmative, giving an Q(n'/2) lower bound on the randomized communication
complexity of Collgmnl /2. Yang and Zhang [Y723] subsequently improved this to an Q(n!/*) bound, which is
tight for randomized computation. On the other hand, the results of Hrubes and Pudlédk [HP17] imply a size
lower bound for all m > n of 22"""*) for the two-party deterministic DAG-like communication complexity
of Search%Ppr, which is an incomparable model.

2 Preliminaries

2.1 Proof Complexity

Given an unsatisfiable formula ¢, the field of proof complexity studies how long refutations need to be as
a function of the size of ¢. The length of a refutation in general depends on the allowable structure (lines,
derivation rules, etc.) of a proof. In general, a proof system corresponds to a verifier that can check proofs
of a certain format.

For most proof systems, a sequence of deductions can be thought of as a directed graph, where two (or
possibly more) lines (whether given or derived) are combined soundly to create a new line. The underlying
graph then has edges pointing from the derived inequality to its antecedents.* We say that a proof is tree-like
if every inequality is used as an antecedent at most once in the proof — that is, if we want to use an inequality
twice, we must derive it twice.

For example, we could define the lines in a proof system to be formulas, and allow the basic and common
rule known as “resolution”, which allows derivations of the following form:

(AVz)AN(BV-x) = AAB,

where A and B are arbitrary formulas. As mentioned in the introduction, this is an extremely well-studied
proof system in which it is well known that PHPZ+1 requires exponentially long proofs.

A more powerful® proof system is the cutting planes proof system, denoted CP. For cutting planes
proofs, lines are linear inequalities. We pause here to note that formulas can be trivially converted into
linear inequalities; for example, z V y V z could be converted to the inequality x +y + z > 1.

More generally, suppose we have a system of inequalities Az < b where A is a matrix with integer entries.
We say that the system is unsatisfiable if it is unsatisfiable for any « € {0,1}". The most basic form of
the cutting planes proof system consists of three rules: allowing for addition of inequalities, allowing for
multiplication of inequalities by positive integers, and most crucially, the rounded division rule, also known
as the Gomory-Chvétal rule. The rounded division rule is the simple observation that if aq,...,a, are all
integers with a common factor ¢, and we have the inequality a”2 < b, then we can derive that %aTa: < LSJ
The floor here is crucial, and the only thing that allows for nontrivial deductions in this proof system.

In general, there are many more sound derivation rules for integer/linear inequalities than just rounded
division (such as saturation [GNY19], just to name one), and even more generally, one may allow any sound
derivation rule for linear inequalities which is known as semantic cutting planes or Th(1); we use the two
interchangeably.

There is a well known connection between communication complexity and tree-like proofs, which we will
now detail. Given any unsatisfiable formula ¢, an assignment « to the variables can be distributed among

4The direction of arrows in this digraph may seem counterintuitive, but it is convenient when thinking of the graph as a
search problem for a violated axiom. In this case, we can follow a path in the graph to find such a a violated axiom on one of
the leaves.

5Tt turns out that cutting planes proofs can simulate resolution proofs, see e.g. [Jukl4; RY20].



k players, who must then communicate in order to find a a violated clause in . This is a search problem,
is denoted Search,(cr). Short tree-like proofs of the unsatisfiability of ¢ can often be converted into short
protocols for Search,, using standard techniques.

For example, a short tree-like proof of unsatisfiability of ¢ using the resolution rule naturally corresponds
to a decision tree for finding a violated clause of ¢ in the following way. Every time the derivation of the
form (AVz)A(BV-z) = (AV B) is made, we query z in order see whether A or B is necessarily false.
We can continue in this manner, from the root of the tree-like refutation, until we hit an unsatisfied clause
in the original formula.

On the other hand, tree-like semantic cutting planes refutations naturally correspond to threshold decision
trees, which we now define.

Definition 2.1 (Threshold Decision Tree). A threshold decision tree is a tree whose vertices are labeled with
inequalities of the form
a1x1+ - -anty, <b

where ai,...,an,b are integers. Edges are labelled with 0 or 1, and leaves are azioms of a system of inequal-
ities Ax < b.

We traverse a threshold decision tree by computing the threshold function at the root, following the
corresponding edge, and continuing in this manner until we hit a leaf. We say that a threshold decision tree
computes the search problem for a formula ¢ if this process leads to a leaf corresponding to a violated clause
in .

First, we have the following well-known lemma, which states that one can derive a low-depth threshold
decision tree from a small Th(1) refutation.®

Proposition 2.2. Given a size S tree-like Th(1) refutation of an unsatisfiable system Ax < b, there is a
depth O(log S) threshold decision tree finding a violated aziom.

Proposition 2.2 goes back to the work of Impagliazzo, Pitassi, and Urquhart [[PU94], and can also be
found for instance in [Juk14]. We omit the proof, but the idea is a common one: find a node in the tree with
roughly half (between 1/3 and 2/3) of the leaves as its descendants, and make that the root of the threshold
decision tree, and recurse.

2.2 Communication Complexity

We mainly focus on k-party number-in-hand communication, wherein each player p receives an input z(®,
and the players’ goal is to communicate as little as possible in order to compute a known function or relation
involving their collective inputs. In general, players may have access to shared randomness, and we allow
incorrect answers with probability 1/3.

An important function for us is the number-in-hand disjointness problem with & players and input size n,
henceforth denoted DISJZ. This is the communication problem wherein each player and input in {0,1}", and
they must decide if there exists a coordinate ¢ for which they all have a 1 in that coordinate. Disjointness in
general is an extremely well-studied problem [CP10; RY20], and for the specific case of the NIH model, we
have the following lower bound due to Braverman and Oshman.

Theorem 2.3 ([BO15)). The randomized communication complexity of DISIE is Q(nlogk).

Our results rely on the following connection between threshold decision trees for finding violated clauses
and k-party NTH communication. It is closely related to previous work.

Lemma 2.4. For x € {0,1}", if an unsatisfiable system Ax < b on has a threshold decision tree of depth
d < n finding a violated axiom, then for any partition of the input variables into k parts there is a randomized
protocol for Search’; ;;(Ax < b) using O(dklog klogn) bits of communication.

6 As noted in [Juk14], there is no meaningful converse to this statement, since if there are m inequalities in our unsatisfiable
system, there exists a trivial depth m threshold decision tree finding one that is violated.



Lemma 2.4 is similar for example to Lemma 5 in [[PU94] or Lemma 19.11 in [Jukl14], but is slightly
stronger, so we include the proof.

The idea is that the players can use the given threshold decision tree to construct a protocol. Without
loss of generality, using a well-known theorem of Muroga [MTT61] without communication the players can
replace each of the inequalities in the decision tree with an equivalent one over the Boolean hypercube with
coeflicients that are not too large.

The players then start at the root and evaluate each associated inequality using an efficient randomized
protocol to evaluate each threshold function with high probability and moving to the appropriate child node
until it reaches a leaf. Such a protocol dates back to Nisan [Nis93] and was tightened by Viola [Viol5].

We first state the results of Muroga and Viola required to formalize this construction.

Proposition 2.5 ([Mur71; MTTG61)). Consider a threshold function f:{0,1}" — {0,1} of the form

1 i i dapz, <b
f(:c):{ if arzy + -t ane
0 o.w.

Then f is equivalent to another threshold function

() = {1 if dywy + -+ apa, <V
0 o.uw.
where each al,...a,, b is at most 2= (n 4+ 1) *TV/2 in magntiude.

In particular, Proposition 2.5 implies that we may assume in a Th(1) proof that, up to a factor of two in
the size, every derived inequality has coefficients of magnitude at most O(n™).

Proposition 2.6 ([Viol5]). Suppose that each player p € [k] receives an input xP) € [~2",2"]. Then there
15 a randomized number-in-hand protocol with error at most € that determines whether Ep z®) > s and
communicates O(klog klog(n/e)) bits.

Corollary 2.7. Suppose that each player p € [k] receives an input xP) € [2]. Then they can execute a
randomized number-in-hand protocol to determine whether > apa:(p) < b, where each |ap| < 2% with error
at most € using at most O(klogklog((w +t)/€)) bits of communication.

We are now ready to prove Lemma 2.4.

Proof of Lemma 2.4. Given a threshold decision tree of depth d, we simply traverse it from the root. For
each inequality, if the magnitudes of its weights are not bounded by 2°0("1°8™) then we replace it with an
equivalent threshold function whose weights are bounded using Proposition 2.5. Then, using Corollary 2.7,
the players communicate O(k log((nlogn)/e)logk) to compute the threshold function with error probability
e. Setting ¢ = O(1/d) and continuing in this manner, by a union bound the threshold functions are all
computed correctly with constant probability.

Using the assumption that d < n, this yields a protocol communicating O(dk log klogn) bits. O

Given a system of unsatisfiable inequalities Az < b, and a partition of an assignment o € {0, 1}" between
k players, there is a natural (number-in-hand) communication game wherein players must communicate to a
find an axiom violated by a. Lemma 2.4 implies the following result connecting communication complexity
and proof complexity.

Lemma 2.8. For any partition of n variables into k parts, if Searchlf\[IH(A:E <'b) requires t bits of commu-
nication, then any tree-like Th(1) refutation of Ax < b requires size 22(t/(Flogklogn)y

Proof. By Proposition 2.2, given a size S tree-like Th(1) proof, we get a depth d = O(logS) threshold
decision tree finding a violated axiom. By Lemma 2.4, there exists a communication protocol finding a
violated axiom using O(log S klog k logn) bits of communication. This implies that log(S)klog klogn > ct
for constant ¢, which in turn implies S is 292t/ (klogk logn) “aq desired. O



3 Communication Lower Bound

In this section we prove Theorem 1.1, which we now recall.

k

monl/e 45 at  least

Theorem. The randomized number-in-hand communication complexity of Coll
Q(n'~Y*2=Flog k) whenever n +1 < m < n+ 28=2pl/k,

The idea for the proof is to exhibit a random reduction from the decision problem DISankfl to the
collision problem. This is analogous to the approach of Itsykson and Riazonov [IR20] for number-on-forehead
communication complexity which used lower bounds for disjointness in that model and a randomized decision-
to-search reduction paradigm introduced by Raz and Wigderson [RW92] to prove lower bounds on the
monotone depth complexity of matching. The details and parameters of our reduction are necessarily quite
different.

In our setting, we embed k players’ inputs to a disjointness problem into k matrices such that, when
these matrices are concatenated, the resulting matrix has distinct rows if and only if the players’ inputs were
disjoint. We can then add a few “fake” rows to this matrix and run our algorithm for Collfmnl /x, and see
if the collisions it finds involve the fake rows or not. If so, we conclude that the inputs were disjoint and if
not, we know that they were not disjoint.

The following key combinatorial lemma allows us to carry out the first step of this process.

Lemma 3.1. For all integers k > 1 there exist matrices M} € {0, 132"k gnd M} € {o, 132"k such that
1. M,% has 21 unique pairs of identical rows.

2. For any string b € {0,1}F, define the matriz My, (by,...by) as the matriz formed by making its i-th
column equal to the i-th column of MY if b; =0, and equal to the i-th column of M} if b; = 1. Then
M;(b) has unique rows for all b # 1.

We defer the proof of Lemma 3.1 to Section 3.1.

Proof of Theorem 1.1 using Lemma 3.1. As alluded to, we will reduce the NIH disjointness problem to our
bit-pigeonhole problem. Namely, we will reduce D|SJ:1;C71 to a Collf71 7 communication game, where m =

mF2k + 2F=1m and {=2m.
The players get (D, ..., 2®) C [m*~1] (viewed as bit strings of length m*~1), and need to determine
whether z( N - Nz = Q.
First, we define
bin,,x (5)
B,.x(j) := € {0, 1}2k><klogm,

where we have repeated the same row 2* times.
k—l] (1)

, consider the matrix My(x; ", ... ,xgk)) from Lemma 3.1. Note that each player p

(€]

P

For each i € [m

knows the p-th column of My(x . ,:EZ(-k)) for all 4, but without communication the other players do not
know this column.

Then we can define



My (2", 2y Byi (0)
My (i, af) By (1)
M@V, 2%y BL(m—1)
Mk(x%), ey :vgz)) B, (m)
M= Mk(fL‘é ),...,Ié )) B,x(m+1) c {O,l}mk~2k><(klogm+k).

Mk(xél),...,:vék)) B,,»(2m —1)

_Mk(x(l) ™) ) Bpx(mF —1)]

mk*l ) ) mk*l
Observe that each player p can construct their “part” of this matrix without communicating by con-
structing the p-th column of every M ks * matrix (which only depends on z(?)), and then taking the the p-th
part of each of the B,,»(j) matrices.
Lemma 3.1 lets us connect the distinctness property of this matrix with the disjointness property of the
players’ inputs.

Claim 3.2. If (M, ..., 2®) are disjoint, then M has distinct rows.

Proof. The only possible collisions happen in every group of 2¥ rows, since B,,x(j) has every row different
from B, (i) for all ¢ # j. Within these groups, by Lemma 3.1, if the inputs are disjoint then there are no
collisions. o

Claim 3.3. If X is not disjoint, then there are at least 25~ 'm pairs of colliding rows in M.

Proof. Any coordinate i for which :vl(-p ) =1 for all p generates S; = (), which by Lemma 3.1 generates 28~ 'm

such pairs, since input ¢ was repeated m times. O

We cannot run any collision protocol for M yet, as there are not guaranteed collisions. To address this,
the players use shared randomness to put an additional 2¥~'m rows at the bottom of M. These rows will
be chosen randomly with the following two properties:

1. Each fake row will be distinct.

2. Each player’s “part” of the matrix (which consists of logm + 1 columns) when restricted to these rows
will repeat the 2m unique possible bit strings an addition 2¥~1m/(2m) = 2¥~2 times.”

Denote this new matrix M. M now has “fake” collisions which involve any of the last 2¥~'m rows.

Let A denote the randomized protocol solving the Colllém);c 49k~ 1p 2, Problem.

Observe that if the inputs are disjoint, then the only collisions in M involve fake rows. The players would
like to feed their parts of this matrix into A and conclude that their inputs are disjoint if the output involves
a fake row, and conclude that they were not disjoint if the output involves two non-fake rows. However, this
is problematic, as we have no guarantees over how A behaves, and it could always find a collision involving
one of the last 2m rows (which it knows are fake), regardless of if there are other collisions.

This necessitates the following random shuffling.

1. Each player applies (the same) random permutation 7 : [28mF + 2= 1m] — [2¥m* 4 28=1m] which
shuffles the rows of M.

2. Each player applies an individual random permutation 7(®) : [2m] — [2m] to each of their rows. Note
that this preserves collisions/distinctness in the concatenation.

"This is important because if we bias and have a certain fake row appear more often in the input for player p, then A could
potentially detect and use this to its advantage.



Denote 7 := (m, 7, ..., 7*)), and call this final matrix Mz.

Algorithm: The algorithm for disjointness is as follows: the players use their inputs and shared ran-
domness to compute (without communication) their respective parts of 5 independent copies of an Mz
constructed in the above manner, and run A using these as inputs. The players then examine the outputs
(i1,41), - .- (i5,j5) of the algorithm on these five inputs. They then exchange an additional O(klogm) bits
to determine if each claimed collision actually was a collision. Finally, if any of the claimed collisions were
actually collisions on rows that were not fake (under the appropriate permutation), then the players can
conclude with certainty that their inputs were not disjoint. Otherwise, if A only ever finds colliding pairs
that involve a row the players know is fake (or otherwise fail to find any collisions), then players guess that
(™ ..., ™)) were disjoint.

Analysis: We analyze one iteration of the algorithm. Suppose A has error probability at most 1/3 —
that is, with probability at least 2/3, it outputs two rows i, j that are equal.

Suppose (z1), ..., z(®)) are disjoint. Then by assumption, A finds a collision with probability at least
2/3, and we know this collision will always involve a fake row by Claim 3.2. Therefore the players will
correctly output that their inputs were distinct with probability at least 2/3, and this is only improved by
the five-fold repetition.

Otherwise, suppose that the players’ inputs were not disjoint. Suppose further that A successfully finds a
collision — this happens with probability at least 2/3. Recall that by Claim 3.3 Mz will have at least 2¥~1m
distinct pairs of real collisions. Adding the 2*~'m fake rows produced additional “fake” collisions. These
fake rows could have created up to 2¥~!'m additional unique pairs of fake collisions, or could have “joined”
the real collisions, creating up to 2¥~'m groups of 3 equal rows in Mz.

If A outputs a collision from one of the groups of three, then because we applied random permutations to
the rows, it is equally likely to have chosen any of the 3 possible pairs. Therefore, with probability at least
1/3, it outputs a real collision, and the players successfully discover that they are not disjoint. Otherwise,
if A outputs one of the unique collision pairs, then (again because we have applied random permutations
to the rows), any such unique collision is equally likely to be output. If ¢ of the fake rows formed a group
of three with real collisions, then that leaves at most 2¥~1m — ¢ fake rows to collide with a different unique
row. It also leaves 2"~1m — ¢ untouched real collisions, so A outputs a real collision with probability at least
1/2. Either way, the probability that A outputs a real collision is at least 2/3-1/3 = 2/9.

Therefore, after repeating this 5 times independently, the probability of seeing at least one real collision
is at least 1 — (7/9)5 > 2/3.

Let n := (2m)*. We have shown that if Collf71 ;7 with input size m = 2kmF 4 281y = 4 28=2p1/F can

¢

be solved with o(n'~'/*logk/2*) communication, then we can solve the decision disjointness problem with
o(n*~'/*log k/2*) + O(klogm) which is at most o(m*~!log k), contradicting the Q(m*~!log k) lower bound
from Theorem 2.3. O

3.1 Proof of Lemma 3.1
We first recall Lemma 3.1.

Lemma. For all integers k > 1 there exist matrices M} € {0, 132"k gnd M} e {o, 132"k such that
1. M} has 2k=1 unique pairs of identical rows.

2. For any string b € {0,1}*, define the matriz My, (by,...by) as the matriz formed by making its i-th
column equal to the i-th column of M} if b; =0, and equal to the i-th column of M} if b; = 1. Then
My (b) has unique rows for all b # 1.

Proof. Let & C {0,...,k—1} be the set of integers with an even number of 1s in their binary representation.



Define

bing (y1)
bing (y1)
bing (y2)
Mli — bing (y2) € {0, 1}2k><k,

bing (ygk—l )
_bink (y2k— 1 )_

where y; is the i-th smallest number in &.

We pause here to note that each of the columns of M ,% are actually each the truth table of a linear
function. Let f; : {0,1}* — {0, 1} be the linear function fi(z) = (z,e1), where e; is the first standard basis
vector. Then we can describe the first column of M} as the truth table of f;. More generally, we have that
for i < k the i-th column of M} is the truth table of fi(z) = (z,e;), and the last column is the truth table
of fr(z) = {(x,e1 + -+ + ex—1).

If we define F; ,3 to be the matrix whose column ¢ is the vector whose inner product we are taking with z

in f;, and By € F%k *F whose rows are the binary strings written in order, then we have that

1 0 0 --- 1]
bing (0) 010 --- 1

M — ' 00 1 B
bing2* - 1)| g 0 o0 ... 1
000 - 0

where all operations are over Fo. M, ,i has repeated rows precisely because F; ,3 has linearly dependent columns.
With this perspective in mind, if we can find a k x k matrix F}} over Fy such that replacing any (nonzero)
number of columns of F}! with corresponding columns in F} produces a matrix with linearly independent
columns, then we are done, as we can let MY := By F}.
We define F) to be the following lower triangular matrix:

1 00 0
1 10 0
Fl=11 11 0|,
111 1

Clearly Fy is full rank.

We claim that replacing any set nonempty set S of columns of F}! with the corresponding columns in F
produces a matrix F| ks with linearly independent columns. Consider arbitrary k, and arbitrary nonempty
S C [k].

Case 1: Suppose k € S, that is, the last column of F; ,f is e. Then our matrix is lower triangular with
1s on the diagonal, and so has linearly independent columns.

Case 2: Suppose k € S, that is, the last column of st is ey 4+ -+ eg—1. In this case, the first £ — 1
columns are lower triangular with 1s on the diagonal, and therefore their span is equal to span{e,...,ex—_1}.
It suffices then to show that also ey is in the column span. Towards this goal, take the minimal 0 < i < k
such that i € S, and observe that summing the first i columns of F equals I, the all 1s vector. Adding this
to the last column produces ey, so we are done. O

4 Proof Complexity Lower Bounds

In this section, we prove the following more detailed version of Theorem 1.2.



Theorem 4.1. When m < n+ 2825 any tree-like semantic cuttings planes refutation of BPHP]" must

have size at least 22" ~"/"27"/(klogn))

Proof. The theorem follows quite readily from Lemma 2.8 and the fact that Searchfpypm reduces to

Collﬁ%nl/k. If we translate BPHP!" to a system of inequalities, then there are O(nm?) = O(n?) inequal-
ities on mlogn variables.

Lemma 2.8 then says that any tree-like semantic cutting planes proof of the unsatisfiability of BPHP}"
must have size at least 22(t/(klogk logn) By Theorem 1.1, t = Q(n'~/*2-Flogk). Plugging this in yields

that the tree-like size must be at least 22! ~'/*27"/(klogn) O

From Theorem 4.1 we achieve Theorem 1.2, which we restate now.

Corollary. Any tree-like semantic cutting planes refutation of BPHP)' requires size gn' ¥/ VivEn et/ Viosn)

when m < n 4 22Viegn—2

Proof. Let k = +/logn. Plugging this into the bound from Theorem 4.1, we get that m < n +
gVilogn—2p1/Vicgn — 92vlogn—2 Ty this regime, Theorem 4.1 gives the size lower bound

1—-1/+/Tog nnfl/\/log n/(logS/Q n)) C,n’172/\/10g n—1.5loglogn/logn

)

29(77, -9

for appropriate constant ¢. Using the fact that ¢ = n!°8¢/1°8 the bound becomes

gt~/ VITET—o(1/ VIoE )

5 Discussion and Future Work

We end by discussing some related problems and directions for future study. In particular, we highlight
three possible directions.

1. DAG-like communication lower bounds. The lower bounds we prove are in the randomized
communication model, and lead to lower bounds for tree-like cutting planes refutations.

On the other hand, Hrubes and Pudldk’s [HIP17] work, as noted in the introduction, actually implies
an Q(n'/®) DAG-like deterministic communication lower bound for Searchgpypm for arbitrary m > n
(i.e. even in the “weak” regime).

It would be interesting to see if one can prove DAG-like communication lower bounds for the k-player
analog SearchlfngPm. We have shown that generalizing to k players helps in the tree-like case, and
perhaps this holds “true in the DAG-like setting as well. It may also be useful to first consider the
strong setting when m =n + 1.

2. Weak Bit Pigeonhole Principle. Our focus in this work has been solely on the strong bit pigeonhole
principle, when m < n + /n or even smaller.

The results of Ttsykson and Riazanov [TR20] also fall in this regime of parameters, and it was left as an
open problem in their work whether any sort of lower bound on in the “weak” regime m = n + Q(n)
might hold.

In this regime, when k = 2, better upper bounds are possible for Searchyp pntom) — indeed, via the
birthday paradox, there is a randomized protocol solving Searchyp . ntam) using only O(nl/ 4logn)

bits, which is essentially tight by the recent lower bound of Yang and Zhang [Y723], who used ideas
inspired from the lifting literature to prove their lower bound.

We conjecture that by considering k-party number-in-hand communication model as we have done here
should also yield stronger lower bounds in the weak regime. Using similar birthday paradox ideas to

the £k = 2 case, one can solve Search]};PHan(n) using O(n1/2_1/2k logn) bits of communication; we

conjecture that this is optimal.

10



3. Finally, we highlight that the loss of 2¥ in the denominator of Theorem 1.1 could potentially be im-
proved. Indeed we do not suspect that it should be present at all, and we conjecture that Searchngpm
should remain hard for k all the way up to logn. However, it seems unlikely that any reduction from -
party disjointness would be able to achieve this since an additional input bit per player seems essential
in maintaining the conversion.

6 Acknowledgements

We thank Pavel Pudlak for discussions that led us to this research direction.

11



References

[AMO15]

[BO15]

[BPR95]

[BPS07]

[BTSS]

[CP10]

[Dan+24]

[GHPO1]

(GJ22]

[GNY19]

[Hak85]

[Has23|

[HP17]

[IPU94]

Albert Atserias, Moritz Miiller, and Sergi Oliva. “Lower Bounds for DNF-Refutations of a Rel-
ativized Weak Pigeonhole Principle”. In: J. Symb. Log. 80.2 (2015), pp. 450-476. DOI: 10.1017
/JSL.2014.56. URL: https://doi.org/10.1017/js1.2014.56.

Mark Braverman and Rotem Oshman. “The Communication Complexity of Number-In-Hand Set
Disjointness with No Promise”. In: Electron. Colloguium Comput. Complex. TR15-002 (2015).
ECCC: TR15-002. URL: https://eccc.weizmann.ac.il/report/2015/002.

Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. “Lower bounds for cutting planes proofs with
small coefficients”. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory
of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA. ACM, 1995, pp. 575-584. DOI:
10.1145/225058.225275. URL: https://doi.org/10.1145/225058.225275.

Paul Beame, Toniann Pitassi, and Nathan Segerlind. “Lower Bounds for Lov|a-acute]sz—Schrijver
Systems and Beyond Follow from Multiparty Communication Complexity”. In: STAM J. Comput.
37.3 (2007), pp. 845-869. DOI: 10.1137/060654645. URL: https://doi.org/10.1137/0606546
45.

Samuel R. Buss and Gyorgy Turan. “Resolution Proofs of Generalized Pigeonhole Principles”.
In: Theor. Comput. Sci. 62.3 (1988), pp. 311-317. DOI: 10.1016/0304-3975(88)90072-2. URL:
https://doi.org/10.1016/0304-3975(88)90072-2.

Arkadev Chattopadhyay and Toniann Pitassi. “The story of set disjointness”. In: SIGACT News
41.3 (2010), pp. 59-85. DOI: 10.1145/1855118.1855133. URL: https://doi.org/10.1145/185
5118.1855133.

Stefan S. Dantchev, Nicola Galesi, Abdul Ghani, and Barnaby Martin. “Proof Complexity and
the Binary Encoding of Combinatorial Principles”. In: SIAM J. Comput. 53.3 (2024), pp. 764—
802. DOI: 10.1137/20M134784X. URL: https://doi.org/10.1137/20m134784x.

Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. “Complexity of semi-algebraic
proofs”. In: FElectron. Colloguium Comput. Complex. TR01-103 (2001). ECCC: TRO1-103. URL:
https://eccc.weizmann.ac.il/eccc-reports/2001/TR01-103/index.html.

Mika Go66s and Siddhartha Jain. “Communication Complexity of Collision”. In: Electron. Col-
loguium Comput. Complex. TR22-096 (2022). ECCC: TR22-096. URL: https://eccc.weizmann
.ac.il/report/2022/096.

Stephan Gocht, Jakob Nordstrém, and Amir Yehudayoff. “On Division Versus Saturation in
Pseudo-Boolean Solving”. In: Proceedings of the Twenty-FEighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019. Ed. by Sarit Kraus.
ijcai.org, 2019, pp. 1711-1718. po1: 10.24963/IJCAT.2019/237. URL: https://doi.org/10.24
963/ijcai.2019/237

Armin Haken. “The Intractability of Resolution”. In: Theor. Comput. Sci. 39 (1985), pp. 297—
308. DOI: 10.1016/0304-3975(85)90144-6. URL: https://doi.org/10.1016/0304-3975(85
)90144-6

Johan Hastad. “On small-depth Frege proofs for PHP”. In: 6/th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023.
IEEE, 2023, pp. 37-49. por: 10.1109/F0CS57990.2023.00010. URL: https://doi.org/10.110
9/F0CS57990.2023.00010.

Pavel Hrubes and Pavel Pudldk. “Random formulas, monotone circuits, and interpolation”. In:
FElectron. Colloquium Comput. Complex. TR17-042 (2017). ECCC: TR17-042. URL: https://ec
cc.weizmann.ac.il/report/2017/042.

Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. “Upper and Lower Bounds for
Tree-Like Cutting Planes Proofs”. In: Proceedings of the Ninth Annual Symposium on Logic in
Computer Science (LICS ’94), Paris, France, July 4-7, 1994. IEEE Computer Society, 1994,
pp- 220-228. DOI: 10.1109/LICS.1994.316069. URL: https://doi.org/10.1109/LICS.1994.3
16069.

12


https://doi.org/10.1017/JSL.2014.56
https://doi.org/10.1017/jsl.2014.56
TR15-002
https://eccc.weizmann.ac.il/report/2015/002
https://doi.org/10.1145/225058.225275
https://doi.org/10.1145/225058.225275
https://doi.org/10.1137/060654645
https://doi.org/10.1137/060654645
https://doi.org/10.1016/0304-3975(88)90072-2
https://doi.org/10.1016/0304-3975(88)90072-2
https://doi.org/10.1145/1855118.1855133
https://doi.org/10.1145/1855118.1855133
https://doi.org/10.1137/20M134784X
https://doi.org/10.1137/20m134784x
TR01-103
https://eccc.weizmann.ac.il/eccc-reports/2001/TR01-103/index.html
TR22-096
https://eccc.weizmann.ac.il/report/2022/096
https://doi.org/10.24963/IJCAI.2019/237
https://doi.org/10.24963/ijcai.2019/237
https://doi.org/10.1016/0304-3975(85)90144-6
https://doi.org/10.1016/0304-3975(85)90144-6
https://doi.org/10.1109/FOCS57990.2023.00010
https://doi.org/10.1109/FOCS57990.2023.00010
TR17-042
https://eccc.weizmann.ac.il/report/2017/042
https://doi.org/10.1109/LICS.1994.316069
https://doi.org/10.1109/LICS.1994.316069

[IR20]

[Juk14]

[KPW95)

[MTT61]

[Mur71]
[Nis93]

[PBI93]

[Pud97)

[RW92]

[RY?20]

[SA90]

[Viol5]

[YZ23]

Dmitry Itsykson and Artur Riazanov. “Proof complexity of natural formulas via communication
arguments”. In: FElectron. Colloquium Comput. Complex. TR20-184 (2020). ECCC: TR20-184.
URL: https://eccc.weizmann.ac.il/report/2020/184.

Stasys Jukna. “Boolean Function Complexity Advances and Frontiers”. In: Bull. EATCS 113
(2014). URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/275.

Jan Krajicek, Pavel Pudldk, and Alan R. Woods. “An Exponenetioal Lower Bound to the Size
of Bounded Depth Frege Proofs of the Pigeonhole Principle”. In: Random Struct. Algorithms 7.1
(1995)7 pp- 15-40. por: 10.1002/RSA.3240070103. URL: https://doi.org/10.1002/rsa.3240
070103.

Saburo Muroga, Iwao Toda, and Satoru Takasu. “Theory of majority decision elements”. In:
Journal of the Franklin Institute 271.5 (1961), pp. 376-418.

Saburo Muroga. Threshold logic and its applications. Wiley, 1971. 1SBN: 978-0-471-62530-8.

Noam Nisan. “The communication complexity of threshold gates”. In: Combinatorics, Paul Erdos
is Fighty 1.301-315 (1993), p. 6.

Toniann Pitassi, Paul Beame, and Russell Impagliazzo. “Exponential Lower Bounds for the
Pigeonhole Principle”. In: Comput. Complex. 3 (1993), pp. 97-140. po1: 10.1007/BF01200117.
URL: https://doi.org/10.1007/BF01200117.

Pavel Pudlak. “Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Compu-
tations”. In: J. Symb. Log. 62.3 (1997), pp. 981-998. DOI: 10.2307/2275583. URL: https://do
i.org/10.2307/2275583.

Ran Raz and Avi Wigderson. “Monotone Circuits for Matching Require Linear Depth”. In: J.
ACM 39.3 (1992), pp. 736-744. DOL: 10.1145/146637.146684. URL: https://doi.org/10.114
5/146637.146684.

Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge Uni-
versity Press, 2020.

Hanif D. Sherali and Warren P. Adams. “A Hierarchy of Relaxations Between the Continuous and
Convex Hull Representations for Zero-One Programming Problems”. In: STAM J. Discret. Math.
3.3 (1990)7 pp. 411-430. pOI: 10.1137/0403036. URL: https://doi.org/10.1137/0403036.

Emanuele Viola. “The communication complexity of addition”. In: Combinatorica 35 (2015),
pp. 703-747.

Guangxu Yang and Jiapeng Zhang. “Communication Lower Bounds for Collision Problems via
Density Increment Arguments”. In: Electron. Colloguium Comput. Complex. TR23-159 (2023).
ECCC: TR23-159. URL: https://eccc.weizmann.ac.il/report/2023/159.

13


TR20-184
https://eccc.weizmann.ac.il/report/2020/184
http://eatcs.org/beatcs/index.php/beatcs/article/view/275
https://doi.org/10.1002/RSA.3240070103
https://doi.org/10.1002/rsa.3240070103
https://doi.org/10.1007/BF01200117
https://doi.org/10.1007/BF01200117
https://doi.org/10.2307/2275583
https://doi.org/10.2307/2275583
https://doi.org/10.1145/146637.146684
https://doi.org/10.1145/146637.146684
https://doi.org/10.1137/0403036
https://doi.org/10.1137/0403036
TR23-159
https://eccc.weizmann.ac.il/report/2023/159

	Introduction
	Preliminaries
	Proof Complexity
	Communication Complexity

	Communication Lower Bound
	Proof of lem:generalize-to-k-key-lemma

	Proof Complexity Lower Bounds
	Discussion and Future Work
	Acknowledgements

