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Abstract 
Previous studies have highlighted the role of computational models in the diffusion of AI 
research, suggesting that the impact of models extends beyond their mere existence. In 
our analysis, which encompasses 64,059 papers and 98,105 models from 2000 to 2023, 
we adopt a twofold approach, integrating Graph Neural Network (GNN) and traditional 
network analysis to provide complementary insights. We discovered that a model’s 
dependency network significantly influences paper citations and warrants further 
attention. Notably, the placement of focal versus offspring models in relation to a paper 
markedly affects its diffusion. Our findings enrich the literature on AI innovation 
diffusion by underscoring the critical importance of models and their networks. 
Additionally, our work enhances the GNN literature by advancing the capabilities of 
existing explainers to accommodate the nuances of temporal network structures  

Keywords:  Network Analysis, Evolution of AI Innovation, Diffusion of AI Innovation 
 

Introduction 
Artificial Intelligence (AI) has become a hot topic, attracting widespread attention due to its rapid diffusion 
and application across various domains (Davenport and Ronanki 2018; Makridakis 2017). This swift and 
extensive adoption has sparked significant interest in understanding the factors that influence the diffusion 
patterns of AI innovations (Baek et al. 2020; Fredström et al. 2021).  

In their exploration of AI's proliferation, researchers have utilized various proxies to study its 
dissemination. These include AI-related job postings (Acemoglu et al. 2022; Alekseeva et al. 2021), patent 
filings (Baek et al. 2020; Fredström et al. 2021), and especially, scholarly publications (Frank et al. 2019; 
Tang et al. 2020). Such publications, authored by both academics and industry professionals, are pivotal to 
the propagation of AI innovations, representing a predominant channel for the exchange of research 
insights (Tang et al. 2020). An analysis of the dissemination and traction of AI research is therefore 
instrumental in discerning the overarching trends in the distribution of AI advancements. 
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Previous research on the citation and diffusion of scholarly work has often centered on the influence of 
authors' social networks and the intrinsic attributes of the publications on their subsequent popularity and 
impact. For example, Uzzi et al. (2013) discovered a greater propensity for papers that strike a balance 
between novelty and conventionality to achieve popularity and exert a significant impact. White (2001) 
demonstrated a tendency for researchers to cite publications authored by individuals within their own social 
networks, suggesting that the social dimension plays a crucial role in citation behavior within academic 
communities.  
Emerging studies have turned the spotlight on the contribution of executable models to the circulation of 
academic papers, with a particular focus on the citation effects of models made public alongside the research 
(Bhattarai et al. 2022; Kang et al. 2023). Yet, the relevance of these models extends beyond mere 
availability. They embody a combinatorial evolutionary process, evolving and integrating upon existing 
models to create a dynamic, interdependent ecosystem. This process is not confined to academia's citation 
networks but also thrives within the open-source community, reflecting an intricate interplay that 
influences academic trajectories and innovation waves alike (Boland Jr et al. 2007). 

This study probes deeper into the effects of model dependency networks on the dissemination of AI 
research. Through a composite dataset drawn from Papers with Code, Open Alex, Semantic Scholar, and 
GitHub, featuring 64,059 papers and 98,105 models from 2000 to 2023, we pursue a twofold analysis. 
Firstly, we employed a Heterogeneous Temporal Graph Neural Network to elucidate the overarching impact 
of model dependency networks. Secondly, we analyzed the influence of a model’s position within the model 
dependency network on the popularity of research. 
Our findings reveal that models hold comparable—if not greater—significance than authors in swaying a 
paper's scholarly impact, meriting more focused academic attention. Notably, papers whose focal models 
at the nexus of these networks often see enhanced citation frequencies. In contrast, papers linked to a 
multitude of centrally located yet offspring models might encounter a diffusion of focus. This research 
enriches the diffusion of innovation discourse by shedding light on the understudied role of computational 
models in determining the reach of AI research. It also advances the field of graph neural network analysis 
by augmenting the capabilities of existing explainers to accommodate temporal network complexities. 

Literature Review 

Previous Study on Diffusion of Papers 

In the realm of artificial intelligence (AI) research, the publication of academic papers is a primary vehicle 
for the dissemination of new innovations. Articles introducing core AI developments serve as the conduit 
for knowledge sharing within the scholarly community. For instance, the paper "Language Models are Few-
Shot Learners" by Brown et al. (2020) heralded the arrival of OpenAI's GPT-3 and established the 
groundwork for subsequent iterations like ChatGPT. Such contributions encapsulate detailed explorations 
of innovations, stimulating further analysis, development, and adoption by academics and practitioners, 
thus propelling the spread of innovative ideas as outlined by Rogers (2010). 
Continuing on this trajectory, the building blocks of AI advancements are often embedded within preceding 
publications, with newer works frequently citing foundational studies, as conceptualized by Arthur (2009). 
This interconnectivity not only advances the field but also offers a lens through which to observe the 
momentum and direction of AI innovation. 

Prior research has illuminated various elements that contribute to the reach and assimilation of academic 
writings. On the one hand, paper-centric attributes—like intrinsic quality, initial recognition, domain 
specificity, and structural characteristics such as length and the inclusion of visual aids—have a pronounced 
impact on the paper's future citations and its prominence within the field (Bornmann and Daniel 2008). 
Uzzi et al. (2013) provide evidence that a balance between novelty and traditionalism can enhance a paper's 
impact and reception. On the other hand, author-centric factors, including an author's standing in the 
academic community, the presence of funding, and the breadth of their social networks, also significantly 
sway a paper's diffusion (Fleming et al. 2007; Uzzi and Spiro 2005). Notably, Fleming et al. (2007) 
suggested that authors who exhibit generative creativity and engage in social network brokerage tend to 
produce more influential research. The role of models related to a paper, while being ignored, is starting to 
get scholars' attention. 
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The Role of Models on the Propagation of AI Research 

In the AI domain, models are seminal, functioning not merely as vessels for housing algorithms but also as 
conduits that connect expansive datasets with practical applications. Models hold a multifaceted role: they 
can be pioneering as standalone breakthroughs (Gao et al. 2021), integral as part of larger systems (Silver 
et al. 2016), or foundational in the conceptualization of new technologies (Vaswani et al. 2017). Their 
intrinsic value lies not only in their technical construction but also in their influence on the scientific 
community's reception of AI research. 
The presence of public models enhances research transparency and facilitates the replication and validation 
of scientific work (Mueller-Langer et al. 2019). Innovation in AI occurs both in academic settings and within 
the open-source community, the latter becoming a crucial platform for AI development. To integrate 
resources from these domains effectively, scholars are making concerted efforts to establish connections 
between them. For instance, Shao et al. (2020) introduced 'paper2repo', a recommendation system that 
identifies relevant GitHub repositories based on academic papers. Similarly, initiatives like Papers With 
Code (Stojnic et al. 2022)) and platforms such as RedditSOTA demonstrate efforts to maintain traceability 
between academic papers and corresponding models, promoting a well-organized open science 
environment. 
This flourishing open science ecosystem contributes to the proliferation of AI innovations. Scholars are 
increasingly examining how public repositories influence the diffusion of AI papers. Previous research has 
shown that papers with publicly available code are likely to receive higher citation counts (Bhattarai et al. 
2022; Bonneel et al. 2020) or experience a significant increase in citation rates (Kang et al. 2023). 

However, the significance of models extends beyond their mere existence. Within the open-source 
community, models evolve based on dependencies from previously released packages, forming an 
independent ecosystem that parallels the academic sphere. Conversely, academic progress in papers evolves 
through building upon existing knowledge, often cited from earlier works. These two streams occasionally 
intersect in a 'trading zone', which may lead to new patterns of AI innovation like wakes of innovation 
(Boland Jr et al. 2007). Understanding these dynamics could highlight the theoretical importance of 
network effects in scientific innovation and suggest a broader model of 'combinatorial evolution' in 
technology and science. This interaction often leads to significant shifts in both fields, creating a symbiotic 
relationship where academic insights and open-source developments inform and enhance each other, 
contributing to the broader landscape of technological evolution. Therefore, it is essential not to focus solely 
on the presence of models but to also consider the dependency relationships within model networks and 
their impact on the diffusion of AI papers.  

Network Perspective on Citation Analysis 
Network analysis is a fundamental approach in citation analysis due to its natural alignment with the 
inherent structure and dynamics of citation data. This methodology effectively captures the flow of 
knowledge and influence between papers, allowing researchers to visualize and quantify these 
relationships. It reveals key patterns such as central papers or authors, the spread of ideas, and the structure 
of academic communities. 

Researchers using network analysis for citation studies typically employ two main methodologies: 
traditional statistical methods and network embedding. Traditional statistical methods involve extracting 
network metrics such as centrality (Yan and Ding 2009; Zingg et al. 2020), clustering coefficients (Li et al. 
2007; Ren et al. 2014), and community structures (Chen 2012; Takeda and Kajikawa 2010), then 
integrating these metrics into regression models to analyze their effects on citation dynamics. For instance, 
Yan and Ding (2009) utilized degree centrality, betweenness centrality, and PageRank from a coauthor 
network to explore the impact of author influence on paper citation counts. Similarly, Chen (2012) analyzed 
structural variations through metrics like modularity change rate and centrality divergence to predict their 
effects on citation counts. This method is effective in quantifying the influence of various network 
characteristics and provides robust explanations of mechanisms influencing citation behaviors. 
Network Embedding represents a more recent methodology that transforms the citation network into a 
lower-dimensional vector space (Tang et al. 2015). The resultant vectors capture the network's structural 
nuances, which can then be utilized in various machine-learning algorithms to predict outcomes (Hou et 
al. 2020). This approach has been widely adopted to generate node features that encapsulate both the direct 



  Model Network Impact on Diffusion of AI Innovation 
  

 Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
 4 

and indirect structural information within the network. For example, Choi and Yoon (2022) utilized 
network embedding to transform technical elements into vector representations, which enabled them to 
measure distances within the vectors as a means of exploring patent knowledge in citation networks. While 
the network embedding-based approach has been adopted to generate node features, it typically does not 
incorporate company demographic information. Therefore, scholars have expanded their methodologies to 
include advanced techniques such as Graph Neural Networks (GNNs), which integrate network embeddings 
with deep learning to predict complex network behaviors directly from the graph's structure, thereby 
maintaining and leveraging network topology throughout the learning process (Zhou et al. 2020). For 
instance, Holm et al. (2020) utilized a temporal GNN framework to predict citation counts over years, 
demonstrating superior performance over standard LSTM and graph convolutional neural networks. 
Additionally, Cummings and Nassar (2020) employed a GNN-based architecture to predict papers' citation 
counts at the time of publication, circumventing the need for initial citation trends. Besides delivering good 
performance, GNNs also benefit from GNN explainers, which provide post-hoc explanations (Ying et al. 
2019a). These explainers can demystify Blackbox operations of GNNs by identifying which subgraphs or 
features are most influential in specific decisions made by the model (Ying et al. 2019b). GNN explainers 
have been widely used in the fields of chemistry and biology to aid in molecular property prediction (Wu et 
al. 2023) and drug discovery (Wang et al. 2023). However, they do have some limitations, and some 
researchers have started to express concerns about their reliability and robustness (Agarwal et al. 2023; 
Zhang et al. 2024a). 

Therefore, in this research, we propose a two-part analysis to utilize both traditional statistical methods 
and GNNs to complement each other, investigating the influence of models on the diffusion of AI papers. 
Firstly, we apply the Graph Neural Network framework to broadly examine the impact of model dependency 
networks on the citation counts of papers. The application of GNNs is particularly suitable for this analysis, 
as they adeptly capture a wealth of information without diminishing data integrity (Xu et al. 2018). Unlike 
traditional methods that may condense or overlook complex network structures, GNNs consider the full 
topological data structure, which can potentially reveal insights about the collective influence of models 
that traditional statistical analyses might miss, especially in cases where the network's topology plays a 
critical role in the diffusion process. Through this study, we seek to affirm the hypothesis that not merely 
the existence of open-source models but also the dependency relationships among these models 
significantly influence the popularity of AI research. 
Secondly, we implement statistical models to uncover the detailed relationships between models and 
papers, thereby complementing the overarching insights provided by GNNs and ensuring the robustness of 
previous findings. While GNNs yield importance scores for models and their features, they may not 
effectively quantify the exact effects on citation counts. Our statistical model will probe these details, 
enabling us to understand the nuanced mechanisms of the model network's effect on the dissemination and 
recognition of AI research. 

Data 
Our analysis integrates data from four distinct sources: (1) Papers with Code 
(http://paperswithcode.com/), (2) OpenAlex, (3) Semantic Scholar, and (4) GitHub. Figure 1 summarizes 
the data process and analysis structure. 

Papers with Code  
Following Kang et al. (2023), we utilize Papers with Code (PwC) as our primary database. Designed by the 
Meta AI team and officially partnered with arXiv since October 2020, PwC is the largest platform linking 
ML research articles with their corresponding repositories. It has been widely used in research to build 
knowledge graphs between papers and code (Kannan et al. 2020), analyze the impact of public code 
availability on citation counts (Kang et al. 2023), and summarize code availability in top AI papers (Lin et 
al. 2022). 
Our research focuses on analyzing records from PwC, specifically those papers published between January 
2000 and December 2022. During this time span, the PwC dataset comprises 335,354 papers, of which 
168,497 are associated with open-source repositories containing models. Our study primarily targets papers 
with associated models because Kang et al. (2023) demonstrated that papers with available open-source 
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model experience a 20% increase in monthly citations compared to those without. Building on previous 
study, this research aims to explore how the model dependency network influences paper citations beyond 
models’ mere existence. 
We restrict our analysis to papers categorized under the machine learning portal, excluding those related 
to astronomy, physics, computer science, statistics, and mathematics. We also exclude 884 models not from 
the GitHub community, focusing on the dependency relationship inside the GitHub community. Our final 
data set from Papers with Code contains 76,524 papers and 98,703 models, along with 127,366 paper-model 
relationships. 

OpenAlex  
We use OpenAlex (https://openalex.org/) to collect related paper information and author information. We 
chose OpenAlex for two reasons: first, it is a fully open platform integrating multiple data sources, including 
Microsoft Academic Graph (MAG), ORCID, Crossref, and Unpaywall, and it has been widely used in 
academic research (Priem et al. 2022; Schares and Mierz 2023) ; second, Microsoft Academic Graph was 
discontinued on December 31, 2021, which does not match our main data source time span from PwC and 
researchers have found OpenAlex at least as suited for bibliometric analysis as MAG was (Scheidsteger and 
Haunschild 2023).  
However, we note that OpenAlex records the creation date for each paper, the date it started documenting 
the paper's information. This can cause a problem: citation counts a paper gained before the documentation 
date will not be captured. For example, the paper "YOLOv3: An Incremental Improvement" published in 
2018 had its record created in 2022 by OpenAlex, causing citation records from 2019 to 2022 to be missing. 
Therefore, we filtered out those documents whose publication date and the documentation date of 
OpenAlex differ by more than one year, removing 2,544 papers. Additionally, 6,391 papers were excluded 
due to mismatches between the Papers with Code and OpenAlex datasets. Moreover, due to significant 
missing data regarding author institutions reported by OpenAlex (Zhang et al. 2024b), we chose not to 
include this information in our analysis. However, we did include detailed author-related information such 
as citation counts over years, number of works published over the years, research topics, h-index, and 
second-year citedness in our study. 

Semantic Scholar  
While cleaning the reference information from OpenAlex, we found that it did not fully match with the 
original papers. After a manual random check, we determined that the reference lists provided by Semantic 
Scholar are basically accurate. Launched by the Allen Institute for Artificial Intelligence in 2015, Semantic 
Scholar has established a significant presence in the academic community and is recognized for its advanced 
AI and machine learning technologies applied to the scientific paper search and analysis (Fricke 2018). Its 
dataset has been widely used to build literature graphs (Ammar et al. 2018; Kinney et al. 2023). While it 
may not provide as extensive information as OpenAlex, we decided to use Semantic Scholar as a 
complement to OpenAlex on the reference list. We collected the reference list of each paper in our dataset 
and constructed internal citation relationships. Following other widely used citation datasets like Cora and 
CiteSeer (Cabanes et al. 2012; Giles et al. 1998), we extracted citations only among the papers within our 
predefined set and ignored any citations referencing papers outside of this set. 

GitHub 
Since 99.2% of the models connecting with papers from Papers with Code in our dataset are from the 
GitHub platform, and GitHub is the largest platform hosting open-source models (Cosentino et al. 2017), 
we collected model dependency graphs and related model meta-information, such as descriptions, topics, 
languages, and README files from GitHub to construct the model dependency network. After integrating 
the four datasets, we conducted a cleanup process to ensure the quality and relevance of our data. This 
involved removing approximately 2,000 papers that lacked corresponding records in Semantic Scholar and 
about 500 models from GitHub, which were no longer accessible (resulting in 404 errors). Following these 
adjustments, our final dataset comprises 64,059 papers and 98,105 models. 
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Figure 1. Data Processing and Analysis Overview 
 

Analysis 1: Overall impact of model dependency network via GNN 
In our first analysis, we aim to demonstrate that factors beyond the mere existence of models, such as 
models' dependency relationships, model-paper relationships, and models' characteristics, significantly 
influence the increase in paper citations. Therefore, we place particular emphasis on the network structure 
and the graph's demographic characteristics, employing a Graph Neural Network (GNN) framework that 
preserves the integrity of the network structure. 

Given the dynamic nature of the relationships among three distinct types of nodes—authors, papers, and 
models—over time, we constructed a heterogeneous temporal network to capture these evolving 
interactions. Due to the variability in paper keywords, author research topics, and model descriptions, we 
embedded these textual elements separately as node features for all node types. 
Our model stabilized, converging to a consistent Mean Absolute Error (MAE) of approximately 4.07. The 
variability in our dataset's citation counts ranges widely, from 0 to a maximum of 255,438 annually, with a 
variance of 13,163.25. Given this broad range, we consider this level of precision to be satisfactory for the 
purposes of our study. Furthermore, we have enhanced the existing heterogeneous graph neural network 
(HGNN) explainer (Ying et al. 2019b) to accommodate temporal networks. This advancement enables the 
explainer to consider multiple temporal graphs and provide both edge and feature importance for post-hoc 
analysis, thereby facilitating the identification of critically influential model-related edges and features 

Heterogeneous Temporal Network Construction 
A heterogeneous temporal network is a graph that encapsulates multiple types of entities (nodes) and 
relationships (edges) across various timestamps (Fan et al. 2022). In our research, which spans multiple 
temporal segments, a heterogeneous temporal network is essential for preserving the intricate details of 
relationships such as author-to-paper, paper-to-paper, and paper-to-model interactions. This structure is 
particularly advantageous for encapsulating the multifaceted dynamics and influences across the scholarly 
domain. Given that the impact of a paper accumulates over time and focusing solely on papers published in 
a specific year and their associated data would result in a very sparse network, our network aggregates data 
up to the current year, ‘t’, which results in a more robust and interconnected dataset. 
Previous studies have highlighted the significance of various attributes related to authors, publishers, and 
papers (Bornmann and Daniel 2008; Uzzi and Spiro 2005). In constructing our network, we have 
endeavored to incorporate a rich set of features proven to be influential in the diffusion of scholarly work. 
Our network comprises three primary types of nodes—papers, authors, and models—each embedded with 
features tailored to their respective roles: 
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• Author Nodes: Features such as h-index, i10-index, and 2-year mean citation count are used to 
represent an author’s influence and reputation. Additionally, research interests are captured using 
word2vec embeddings of relevant keywords. 

• Model Nodes: Features like the number of GitHub stars and forks, programming language, and 
textual descriptions are embedded using word2vec to reflect the technical and community 
engagement aspects. 

• Paper Nodes: Information such as publisher details, the number of countries from which authors 
originate, and the diversity of institutions are included alongside keyword-based features, again 
embedded using word2vec. 

Our network includes four types of edges: paper linking model, paper citing paper, model depending on 
model, and paper written by author. This deliberate inclusion of diverse attributes ensures that even when 
the analysis is controlled for various known influences, the significance of models in enhancing scholarly 
diffusion remains demonstrably evident. Figure 2 presents an example of our heterogeneous temporal 
graph. 

 
 

Figure 2. Example of Heterogeneous Temporal Network 
 

 

GNN framework and Result Explanation  
After constructing the heterogeneous temporal network, we proceed to embed both temporal features and 
edge attributes before inputting them into heterogeneous temporal graph neural network model (Fan et al. 
2022). The architecture of our model, referred to as HeterogeneousTemporalCitationGNN (HTCGNN), 
integrates these embeddings through multiple layers, culminating in a set of forward layers specifically 
designed to aggregate and interpret edge and feature importance scores. This design enables us to isolate 
and understand the factors most significantly impacting paper citation rates. We use Mean Absolute Error 
(MAE) as our loss function because our prediction is citation count, MAE can quantify the average 
magnitude of errors in a set of predictions, without considering their direction. Contrary to existing 
approaches like the heterogeneous temporal GNN explainer (Li et al. 2023), which focuses solely on edge 
importance within sample graphs and overlooks node features, our method incorporates a comprehensive 
view of both node and edge attributes across the full graph. This broader approach allows for a more 
detailed explanation of model predictions. 
 
Figure 3 illustrates the overall framework of this process, showcasing how the constructed network feeds 
into the HTGNN model, which then utilizes the explainer module to derive and aggregate importance scores 
for both edges and node features. 
To systematically assess the overall importance of the model network, we designed and compared four 
distinct models: 

1) Baseline: Comprises only papers and their citation networks, serving as the foundation for 
comparative analysis. 

2) Add Author: Extends the baseline by incorporating relationships between authors and papers, 
enabling an examination of the influence of scholarly collaboration. 

3) Add Model: Builds upon the baseline by adding model nodes and their dependencies, which 
allows us to evaluate the impact of model interactions on scholarly output. 

kaige gao
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4) Full: Integrates papers, authors, and models, along with all respective relationships, providing a 
comprehensive view of the academic landscape. 

 

 
 

Figure 3. Framework of HeterogeneousTemporalCitationGNN 
 

 
Similar to the R-squared metric, explained variance score (EVS) is commonly used to evaluate a model's 
performance by quantifying how well it accounts for the variability in the observed data (LaHuis et al. 2014). 
It is calculated using the formula 𝐸𝑉𝑆 = 1 − !"#(%&%')

!"#(%)
, where y represents the observed data and 𝑦( represent 

the predicted value. We compared the explained variance across these four models to gauge the incremental 
value added by including different network components.  

 

 
 

Figure 4. Explained Variance Comparison and Normalized Edge Importance Score 
 

 
As shown in the left graph of Figure 4, our analysis revealed that the inclusion of models and their 
dependencies enhanced the explained variance by over 3% compared to the baseline model. Conversely, 
excluding these elements from the full model led to a 2% decrease in explained variance, underscoring their 
significance in the network. Due to computational limitations associated with processing large-scale 
networks, we restricted our analysis to the past two-time spans. This approach addresses memory 
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constraints without significantly compromising the breadth of temporal insights, as the most recent 
interactions are often the most influential in dynamic academic networks. Figure 4 (right graph) illustrates 
the importance of various types of edges within our network for the time frames t-2 and t-1, predicting 
citation counts for papers in year t. This visualization highlights that the structure of the paper's citation 
network in recent years is the most critical factor influencing citation counts, followed by the model-paper 
connection. The model-model dependency relationships also play a significant role, albeit less than the 
direct model-paper interactions. The least impact is observed from the paper-author relationships. 
We also calculated the feature importance scores, which were normalized and exclude word embedding 
features due to their complex interpretability. Figure 5 presents these normalized feature importance 
scores. The comprehensive plot that includes word embedding features for the top 50 important features 
has been omitted due to space limitations. Figure 5 reveals that among the explainable features, the number 
of stars of models holds the highest importance, followed by the influence of authors and the reputation of 
publishers. These findings underscore the pivotal role of model features, such as the number of stars and 
forks, and highlight the significant impact of model performance and recognition from developers in the 
open-source community on the dissemination of papers within the academic field.  
 

 
 

Figure 5. Normalized Feature Importance Score 
 

 

The analysis demonstrates that the overall importance of models is on par with that of authors in papers 
related to the AI field. While the influence of authors on paper citations is well-established (Nanumyan et 
al. 2020), the impact of models remains less explored. Previous studies have shown that AI papers with 
publicly available code and models tend to receive higher citation counts compared to those without (Kang 
et al. 2023). Building on these findings, our study reveals that the mere presence or absence of a model is 
not the only factor of importance; the model networks and open-source community serve as a reflective 
environment that influences the academic sphere. The relationships among models and their performance 
within these networks also significantly affect the diffusion and popularity of papers in academic fields.  
In our second analysis, we will delve deeper into the specific relationships between models the popularity 
of related papers. Specifically, we aim to explore how the position of models within the model dependency 
network affects future citation counts of associated papers. 
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Analysis 2: Effect of Model Location on Paper Popularity 
In our second analysis, we aim to explore the distinct roles that models play in the diffusion of AI research 
papers. The AI model network consists of two types of models: focal model and offspring model1.   When 
papers are published, they may also release associated models on platforms like GitHub. This creates a 
direct and officially recognized link between the paper and the model. We refer to these models as focal 
models. Alternatively, other developers may be inspired by the ideas presented in the papers and create 
their own models based on these concepts. These models are not formally acknowledged within the paper's 
methodology section and might only be mentioned in supplementary materials or identified through data 
or code repositories. These implementations might be contributed by other researchers or enthusiasts who 
have read the paper and decided to code the described models or methods themselves. We refer to these as 
offspring models. 

Both types of models and the model they build on form what we call the 'model dependency network.' 
Typically, a research paper will have one "focal" code repository, which is the one provided or endorsed by 
the original authors of the paper, and it can have multiple offspring codes. This network illustrates how 
models can be both derivative of and foundational to other models within the open-source community. In 
this analysis, we focus on these dynamics within the model dependency network, seeking to answer the 
question: how do focal and offspring models’ locations influence its related paper’s diffusion? 

Hypothesis and Theory Development 
Models located in central positions within the model dependency network are likely to be more visible and 
accessible to a larger portion of the network. This increased visibility can lead to higher citation counts as 
more researchers encounter and utilize these models in their work. According to Pósfai and Barabási (2016), 
in a network, new entities usually tend to connect to well-established entities, reinforcing their prominence. 
This dynamic can result in a model that occupies a central network position and possesses high 'prestige' 
being more frequently adopted in new research, thereby attracting citations to related papers. This 
phenomenon is supported by the concept of cumulative advantage and the Matthew effect, where early 
recognition generates further recognition, creating a self-reinforcing cycle (Petersen et al. 2011). 
Models in central positions are often stable, fundamental, and well-integrated with other tools and 
frameworks, facilitating their adoption and application (Chung et al. 2012). This usability reduces the 
barriers to entry for researchers using these models in new research, which can lead to increased citations 
(Bonaccorsi and Rossi 2003; Brynjolfsson and Kemerer 1996). Focal models typically carry a stamp of 
approval from either the original authors or from reputed organizations, enhancing their perceived 
reliability and authority. When these models also occupy central positions in the model dependency 
network, they become hubs of innovation and trusted sources, thereby attracting more citations. Thus, we 
have the following hypothesis: 
Hypothesis 1: Papers with focal models that have a more central position in the model dependency 
network will experience a higher increase in citation count in the following year 

offspring models, although not endorsed by the original authors, often emerge from the community and 
can incorporate novel approaches and techniques absent in focal releases. Their central position in the 
model dependency network suggests these innovations are recognized and utilized by other developers and 
researchers, partially reflect the popularity of the ideas contained in related papers, boosting the citations 
of the papers associated with them, as researchers may trace back to the original papers for deeper insights.  
Central offspring models benefit from active community engagement; the feedback and improvements 
made by a diverse group of developers can enhance the model's robustness and applicability. This active 
community validation often leads to increased citations as the community vets and refines the model 
(Bhattarai et al. 2022). Furthermore, offspring models, which can be considered as informal intellectual 
collaboration with central topics, often fill gaps or specific needs that focal models do not address. Their 
centrality indicates they play critical roles in the network, perhaps offering functionality that complements 

 
1 In the Papers with Code dataset, the focal model refers to the official model, while the offspring model refers to the 
unofficial model. 
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focal models, which can attract citations from researchers seeking specific solutions. The central role of 
offspring models in a dependency network also facilitates the cross-pollination of ideas between various 
fields and disciplines, leading to a broader impact and higher citation counts as the model influences a 
diverse range of academic areas (Neville and Jensen 2007). Therefore, we have the following hypothesis:  
Hypothesis 2: Papers with offspring models that have a more central position in the model dependency 
network will experience a higher increase in citation count in the following year 

Variables  
We use the annual increase in citation counts of papers (denoted as Citei,t , which represents the citation 
count increase for paper i in year t) as our dependent variable, which represents the popularity of AI 
research over years. 
Given that the model dependency network is a weighted directed network, we use in-degree eigenvector 
centrality to estimate the influence or positioning of paper-related models within this network. In-degree 
eigenvector centrality is particularly apt for this analysis as it not only measures the direct dependencies of 
a model but also assesses the quality of these connections by considering the influence of the connecting 
nodes (Bonacich 2007). 

We calculate the in-degree eigenvector centrality for both focal and offspring models separately, allowing 
us to explore potential differences in their impacts. Furthermore, considering the frequent occurrence of 
multiple offspring models associated with a single paper, we evaluate both the average centrality of 
offspring models and the centrality of the most influential offspring model. This dual approach helps us 
determine whether it is the collective impact of all associated models or the influence of the most prominent 
model that affects a paper’s popularity. 

We account for the effect of last year's citation count to control for potential momentum, acknowledging 
that a paper's previous citations can influence its future citations (Price 1976). We also control for the out-
degree eigenvector centrality of models, which reflects both the innovation potential and stability of a 
model. A high number of dependent relationships (out-degree) might indicate less stability, as frequent 
changes or updates may be needed to maintain relevance. Conversely, such dependency could also suggest 
limited scope for groundbreaking innovations, as the model primarily influences existing developments. 
This metric not only considers the quantity of these outward connections but also their quality, particularly 
how influential or central the dependent models are within the network. We analyze this separately for focal 
and offspring models. 

To control the influence of authors on paper citations, we include both the average and maximum outputs 
related to their scholarly activities. Specifically, we include the average and maximum number of works 
published per year by authors, as well as the average and maximum increase in citation counts their works 
receive annually. Including both average and maximum values help to account for varying levels of 
productivity and influence among authors. The average metrics provide insights into the typical 
performance and influence of the author group, which is particularly useful in settings with collaborative 
research such as labs with multiple contributors. In contrast, maximum values are included to capture the 
potential outsized impact of highly prolific or influential individual authors within a group, recognizing that 
a single high-performing author can significantly enhance a paper's visibility and citation potential. By 
using these combined metrics, we aim to balance the overall contribution of the author group against 
exceptional individual contributions, ensuring a more nuanced understanding of author impact on paper 
popularity. 
We also control for unobserved heterogeneity and time-related variability by incorporating fixed effects for 
papers and years. This approach accounts for factors that remain constant over time for each paper, such 
as the publisher, the number of authors, and keywords. These attributes are effectively captured in the paper 
fixed effects, justifying their omission from the variable set explicitly modeled.  
Given the skewed distribution of in-degree and out-degree eigenvector centrality measures, we 
implemented a logarithmic transformation on these variables to mitigate the skewness. Subsequently, we 
standardized the transformed data to achieve a normal distribution, enhancing the robustness of our 
statistical analyses. The table below details the distribution of all variables post-transformation that are 
included in our study. 
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Mean SD Min Max Median 

Citation Increase (1) 17.175 152.16
1 

0.000 25438.00
0 

2.000 

Focal Model Location (2) 0.000 1.000 -0.515 4.069 -0.515 
Focal Model Dependency (3) 0.000 1.000 -0.061 23.127 -0.061 
Offspring Model Max Dependency (4) 0.000 1.000 -0.106 11.526 -0.106 
Offspring Model Most Central Location (5) 0.000 1.000 -0.610 3.313 -0.610 
Offspring Model Average Dependency (6) 0.000 1.000 -0.106 12.645 -0.106 
Offspring Model Average Location (7) 0.000 1.000 -0.606 3.516 -0.606 
Last Year Citation (8) 0.000 1.000 -0.082 251.045 -0.075 
Average Number of Authors Published Work (8) 0.000 1.000 -0.399 37.336 -0.279 
Average Citations of Authors (10) 0.000 1.000 -0.450 29.713 -0.319 
Max Number of Authors Published Work (11) 0.000 1.000 -0.359 42.679 -0.297 
Max Citations of Authors (12) 0.000 1.000 -0.409 9.049 -0.328 

 
Table 1. Description of Variables 

 
 

Model and Result  
To estimate the impact of a model's centrality on the subsequent year's citation count increase of related 
papers, we employ a generalized Poisson fixed effect model. This approach allows us to handle count data 
with overdispersion and to assess fixed effects accurately (Consul and Famoye 1992; Saputro et al. 2021), 
The specification of our model is as follows: 

𝑪𝒊𝒕𝒆𝒊,𝒕 =	= 	𝜷𝟎 + 		𝜷𝟏 ∗ 𝑭𝒐𝒄𝒂𝒍𝑴𝒐𝒅𝒆𝒍𝑳𝒐𝒄𝒂𝒕𝒊𝒐𝒏𝒊,𝒕&𝟏 + 	𝜷𝟐 ∗ 𝑶𝒇𝒇𝒔𝒑𝒓𝒊𝒏𝒈𝑴𝒐𝒅𝒆𝒍𝑴𝒐𝒔𝒕𝑪𝒆𝒏𝒕𝒓𝒂𝒍𝑳𝒐𝒄𝒂𝒕𝒊𝒐𝒏𝒊,𝒕&𝟏	
+ 	𝜷𝟑 ∗ 𝑶𝒇𝒇𝒔𝒑𝒓𝒊𝒏𝒈𝑴𝒐𝒅𝒆𝒍𝑨𝒗𝒆𝒓𝒂𝒈𝒆𝑳𝒐𝒄𝒂𝒕𝒊𝒐𝒏𝒊,𝒕&𝟏	 + 𝑪𝒐𝒏𝒕𝒓𝒐𝒍	𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 +	𝝁𝒊 + 	𝝀𝒕 +	𝜺𝒊,𝒕 

where 𝜇1 represents paper fixed effect, 	𝜆2 represents year fixed effect, and 𝜀1,2 is the error term. 

We developed two models for our analysis. Model 1, the control model, incorporates only the control 
variables, while Model 2, our full model, includes both control and main independent variables. The 
performance of these models is detailed in Table 2, where we present the estimated coefficients and key 
model fit indices. 
To assess model performance, we utilized the log-likelihood and the Akaike Information Criterion (AIC) as 
comparative metrics (Bozdogan 1987). A higher log-likelihood and a lower AIC are indicative of a better-
fitting model. Based on these criteria, Model 2 demonstrates a superior fit compared to the control model, 
suggesting that the inclusion of main independent variables significantly enhances the model's explanatory 
power. 

According to Model 2 result, Models that occupy central positions and are utilized by other models 
significantly boost the popularity of associated papers, as evidenced by a positive coefficient (β = 2.84, p < 
0.001). This suggests that focal models that are integral to other developments within the field tend to 
enhance the visibility and citation likelihood of the papers in which they are featured, supporting our first 
hypothesis. Similarly, the location of most central offspring models also positively impacts paper popularity 
(β = 1.090, p < 0.001), indicating that even models not officially recognized within the papers can 
significantly influence their diffusion and recognition. Conversely, when considering the average in-degree 
eigenvector centrality of all connected offspring models, a negative impact on paper citations is observed (β 
= -1.151, p < 0.001). This could be due to an over-saturation effect where the prominence and distinctiveness 
of any single model are diluted amid a crowd of centrally located models, diverting attention from the 
original paper. Additionally, as more work builds on the initial findings, the field may become saturated, 
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causing newer studies to reference more recent derivatives or even bypass the foundational paper if they 
are deemed more relevant. This suggests that while standout offspring models significantly boost paper 
citations, the cumulative average influence of many well-connected models might compete for attention, 
thereby diminishing the overall boost to citation counts. 
 

Variables Model 1 Model 2 
Main Variable 
Focal Model Location  -- 

-- 
2.840 *** 
(0.075) 

Offspring Model Most Central Location -- 
-- 

1.090 *** 
(0.020) 

Offspring Model Average Location -- 
-- 

-1.151 *** 
(0.021) 

Control Variable 
Focal Model Dependency  0.025 *** 

(0.006) 
0.019 ** 
(0.006) 

Offspring Model Max Dependency  -0.514*** 
(0.015) 

-0.669 *** 
(0.016) 

Offspring Model Average Dependency 0.448 *** 
(0.014) 

0.609 *** 
(0.015) 

Last Year Citation 0.005 *** 
(0.001) 

0.008 *** 
(0.001) 

Average Number of Authors Published Work 0.064 *** 
(0.010) 

0.105 *** 
(0.010) 

Average Citations of Authors  0.198 *** 
(0.005) 

0.156 *** 
(0.005) 

Max Number of Authors Published Work  -0.105*** 
(0.012) 

-0.128 *** 
(0.012) 

Max Citations of Authors  -0.088 *** 
(0.008) 

-0.083 *** 
(0.008) 

Observations 227,955 227,955 
Log-likelihood -126208.8 -124436.6 
AIC 252433 248895.2 
Note: *p<.05; **p<.01; ***p<.001. Papers fixed effect and year fixed effects are included 

 
Table 2. Model Result 

 
 
Robustness Checks  
To ensure the robustness of our analysis, we have implemented a stratification based on papers' cumulative 
citation counts as of the end of 2023. We categorize papers falling within the top 0.1%, 0.5%, and 1% of the 
cumulative citation distribution as outliers (Kang et al. 2023). The citation counts corresponding to these 
percentiles are 3,152.876, 998, and 612, respectively. These outliers comprise 65, 320, and 640 papers, 
corresponding to 459, 2040, and 3920 observations, respectively. By applying these multiple thresholds for 
excluding outliers, we aim to demonstrate the robustness and consistency of our analysis. 
Our robustness checks, presented in Table 3, show a consistent positive influence on the location of focal 
models, reinforcing our main results. However, the impact of the location of the most central offspring 
models appears to change slightly when we exclude papers in the top 1% of citations. After removing these 
top-star papers with numerous citations, the number of offspring models based on the focal models 
decreases significantly. This shift is attributed to the high correlation—over 0.9—between the average and 
maximum locations of the offspring models. When we retain only the average location of the offspring 
models, the coefficient turns negative once again, lending further support to our hypothesis. 
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 Remove 0.1% Remove 0.5% Remove 1% 
Main variable Coefficient Std. 

error 
Coefficien
t 

Std. 
error 

Coefficien
t 

Std. 
error 

Coefficien
t 

Std. 
error 

Focal Model 
Location  

5.644 *** 0.097 6.862 *** 0.127 5.973 *** 0.149 6.094*** 0.148 

Offspring Model 
Most Central 
Location 

1.237 *** 0.02
6 

0.504 *** 0.03
6 

-0.337 *** 0.045 -- -- 

Offspring Model 
Average Location 

-1.316 *** 0.02
6 

-0.577 *** 0.037 0.268*** 0.04
6 

-0.078*** 0.04
7 

Observation 227496 225906 224026 224026 
Log-Likelihood -112516.400 -88243.680 -74962.550 -74991.12 
Note: *p<.05; **p<.01; ***p<.001. Papers fixed effect and year fixed effects are included, control 
variables are omitted in the table due to space limit 

 
Table 3. Robustness Check Result 

 
 

Discussion and Future Direction 
Our investigation, using AI research papers as a proxy, has underscored the significance of both the model 
dependency network and the dichotomy between focal and offspring models in shaping the diffusion of AI 
innovation. The position of a model—whether focal or offspring—appears to uniquely influence its 
prominence within the AI community. This finding suggests that a model’s impact is not just a product of 
its isolated achievements but also a reflection of its role within the broader tapestry of AI innovation. The 
intricate ties between the popularity of academic papers and the attributes of the models they feature 
indicate that the practical applications, originality, and theoretical advancements inherent in these models 
are tightly woven into the fabric of AI evolution. Understanding this complex interplay is paramount to 
grasping how AI innovation propagates throughout scholarly work. 

Looking forward, we aim to delve into the dynamics between focal and offspring models. Particularly, we 
are interested in how the central positioning of offspring models might influence or even augment the role 
of focal models. This inquiry will extend to examining whether such positioning can catalyze the 
advancement of AI innovation in new directions. We will also explore the interaction effects between 
authors and models to obtain a more comprehensive understanding of the social and technical factors 
driving innovation. Additionally, we plan to investigate the existence of cross-lagged relationships which 
may illuminate the temporal sequencing of influence between model prominence and paper popularity. 
Moreover, we propose to enrich our analytical framework by incorporating measures such as the Hyperlink-
Induced Topic Search (HITS) algorithm, which could reveal the 'hubs' and 'authorities' within the model 
network and provide a more nuanced understanding of influence within the domain (Kleinberg, 1999). We 
will also improve our GNN model to increase its practical application. By advancing our methodological 
approach, we hope to uncover deeper layers of interaction that shape the innovation diffusion process in AI 
research. 
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