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Abstract

Previous studies have highlighted the role of computational models in the diffusion of AT
research, suggesting that the impact of models extends beyond their mere existence. In
our analysis, which encompasses 64,059 papers and 98,105 models from 2000 to 2023,
we adopt a twofold approach, integrating Graph Neural Network (GNN) and traditional
network analysis to provide complementary insights. We discovered that a model’s
dependency network significantly influences paper citations and warrants further
attention. Notably, the placement of focal versus offspring models in relation to a paper
markedly affects its diffusion. Our findings enrich the literature on AI innovation
diffusion by underscoring the critical importance of models and their networks.
Additionally, our work enhances the GNN literature by advancing the capabilities of
existing explainers to accommodate the nuances of temporal network structures
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Introduction

Artificial Intelligence (AI) has become a hot topic, attracting widespread attention due to its rapid diffusion
and application across various domains (Davenport and Ronanki 2018; Makridakis 2017). This swift and
extensive adoption has sparked significant interest in understanding the factors that influence the diffusion
patterns of Al innovations (Baek et al. 2020; Fredstrom et al. 2021).

In their exploration of Al's proliferation, researchers have utilized various proxies to study its
dissemination. These include Al-related job postings (Acemoglu et al. 2022; Alekseeva et al. 2021), patent
filings (Baek et al. 2020; Fredstrom et al. 2021), and especially, scholarly publications (Frank et al. 2019;
Tang et al. 2020). Such publications, authored by both academics and industry professionals, are pivotal to
the propagation of Al innovations, representing a predominant channel for the exchange of research
insights (Tang et al. 2020). An analysis of the dissemination and traction of Al research is therefore
instrumental in discerning the overarching trends in the distribution of AT advancements.
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Previous research on the citation and diffusion of scholarly work has often centered on the influence of
authors' social networks and the intrinsic attributes of the publications on their subsequent popularity and
impact. For example, Uzzi et al. (2013) discovered a greater propensity for papers that strike a balance
between novelty and conventionality to achieve popularity and exert a significant impact. White (2001)
demonstrated a tendency for researchers to cite publications authored by individuals within their own social
networks, suggesting that the social dimension plays a crucial role in citation behavior within academic
communities.

Emerging studies have turned the spotlight on the contribution of executable models to the circulation of
academic papers, with a particular focus on the citation effects of models made public alongside the research
(Bhattarai et al. 2022; Kang et al. 2023). Yet, the relevance of these models extends beyond mere
availability. They embody a combinatorial evolutionary process, evolving and integrating upon existing
models to create a dynamic, interdependent ecosystem. This process is not confined to academia's citation
networks but also thrives within the open-source community, reflecting an intricate interplay that
influences academic trajectories and innovation waves alike (Boland Jr et al. 2007).

This study probes deeper into the effects of model dependency networks on the dissemination of Al
research. Through a composite dataset drawn from Papers with Code, Open Alex, Semantic Scholar, and
GitHub, featuring 64,059 papers and 98,105 models from 2000 to 2023, we pursue a twofold analysis.
Firstly, we employed a Heterogeneous Temporal Graph Neural Network to elucidate the overarching impact
of model dependency networks. Secondly, we analyzed the influence of a model’s position within the model
dependency network on the popularity of research.

Our findings reveal that models hold comparable—if not greater—significance than authors in swaying a
paper's scholarly impact, meriting more focused academic attention. Notably, papers whose focal models
at the nexus of these networks often see enhanced citation frequencies. In contrast, papers linked to a
multitude of centrally located yet offspring models might encounter a diffusion of focus. This research
enriches the diffusion of innovation discourse by shedding light on the understudied role of computational
models in determining the reach of Al research. It also advances the field of graph neural network analysis
by augmenting the capabilities of existing explainers to accommodate temporal network complexities.

Literature Review

Previous Study on Diffusion of Papers

In the realm of artificial intelligence (AI) research, the publication of academic papers is a primary vehicle
for the dissemination of new innovations. Articles introducing core Al developments serve as the conduit
for knowledge sharing within the scholarly community. For instance, the paper "Language Models are Few-
Shot Learners" by Brown et al. (2020) heralded the arrival of OpenAl's GPT-3 and established the
groundwork for subsequent iterations like ChatGPT. Such contributions encapsulate detailed explorations
of innovations, stimulating further analysis, development, and adoption by academics and practitioners,
thus propelling the spread of innovative ideas as outlined by Rogers (2010).

Continuing on this trajectory, the building blocks of AT advancements are often embedded within preceding
publications, with newer works frequently citing foundational studies, as conceptualized by Arthur (2009).
This interconnectivity not only advances the field but also offers a lens through which to observe the
momentum and direction of Al innovation.

Prior research has illuminated various elements that contribute to the reach and assimilation of academic
writings. On the one hand, paper-centric attributes—like intrinsic quality, initial recognition, domain
specificity, and structural characteristics such as length and the inclusion of visual aids—have a pronounced
impact on the paper's future citations and its prominence within the field (Bornmann and Daniel 2008).
Uzzi et al. (2013) provide evidence that a balance between novelty and traditionalism can enhance a paper's
impact and reception. On the other hand, author-centric factors, including an author's standing in the
academic community, the presence of funding, and the breadth of their social networks, also significantly
sway a paper's diffusion (Fleming et al. 2007; Uzzi and Spiro 2005). Notably, Fleming et al. (2007)
suggested that authors who exhibit generative creativity and engage in social network brokerage tend to
produce more influential research. The role of models related to a paper, while being ignored, is starting to
get scholars' attention.
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The Role of Models on the Propagation of AI Research

In the AT domain, models are seminal, functioning not merely as vessels for housing algorithms but also as
conduits that connect expansive datasets with practical applications. Models hold a multifaceted role: they
can be pioneering as standalone breakthroughs (Gao et al. 2021), integral as part of larger systems (Silver
et al. 2016), or foundational in the conceptualization of new technologies (Vaswani et al. 2017). Their
intrinsic value lies not only in their technical construction but also in their influence on the scientific
community's reception of Al research:

The presence of public models enhances research transparency and facilitates the replication and validation
of scientific work (Mueller-Langer et al. 2019). Innovation in AT occurs both in academic settings and within
the open-source community, the latter becoming a crucial platform for AI development. To integrate
resources from these domains effectively, scholars are making concerted efforts to establish connections
between them. For instance, Shao et al. (2020) introduced 'paper2repo’, a recommendation system that
identifies relevant GitHub repositories based on academic papers. Similarly, initiatives like Papers With
Code (Stojnic et al. 2022)) and platforms such as RedditSOTA demonstrate efforts to maintain traceability
between academic papers and corresponding models, promoting a well-organized open science
environment.

This flourishing open science ecosystem contributes to the proliferation of AI innovations. Scholars are
increasingly examining how public repositories influence the diffusion of AI papers. Previous research has
shown that papers with publicly available code are likely to receive higher citation counts (Bhattarai et al.
2022; Bonneel et al. 2020) or experience a significant increase in citation rates (Kang et al. 2023).

However, the significance of models extends beyond their mere existence. Within the open-source
community, models evolve based on dependencies from previously released packages, forming an
independent ecosystem that parallels the academic sphere. Conversely, academic progress in papers evolves
through building upon existing knowledge, often cited from earlier works. These two streams occasionally
intersect in a 'trading zone', which may lead to new patterns of Al innovation like wakes of innovation
(Boland Jr et al. 2007). Understanding these dynamics could highlight the theoretical importance of
network effects in scientific innovation and suggest a broader model of 'combinatorial evolution' in
technology and science. This interaction often leads to significant shifts in both fields, creating a symbiotic
relationship where academic insights and open-source developments inform and enhance each other,
contributing to the broader landscape of technological evolution. Therefore, it is essential not to focus solely
on the presence of models but to also consider the dependency relationships within model networks and
their impact on the diffusion of Al papers.

Network Perspective on Citation Analysis

Network analysis is a fundamental approach in citation analysis due to its natural alignment with the
inherent structure and dynamics of citation data. This methodology effectively captures the flow of
knowledge and influence between papers, allowing researchers to visualize and quantify these
relationships. It reveals key patterns such as central papers or authors, the spread of ideas, and the structure
of academic communities.

Researchers using network analysis for citation studies typically employ two main methodologies:
traditional statistical methods and network embedding. Traditional statistical methods involve extracting
network metrics such as centrality (Yan and Ding 2009; Zingg et al. 2020), clustering coefficients (Li et al.
2007; Ren et al. 2014), and community structures (Chen 2012; Takeda and Kajikawa 2010), then
integrating these metrics into regression models to analyze their effects on citation dynamics. For instance,
Yan and Ding (2009) utilized degree centrality, betweenness centrality, and PageRank from a coauthor
network to explore the impact of author influence on paper citation counts. Similarly, Chen (2012) analyzed
structural variations through metrics like modularity change rate and centrality divergence to predict their
effects on citation counts. This method is effective in quantifying the influence of various network
characteristics and provides robust explanations of mechanisms influencing citation behaviors.

Network Embedding represents a more recent methodology that transforms the citation network into a
lower-dimensional vector space (Tang et al. 2015). The resultant vectors capture the network's structural
nuances, which can then be utilized in various machine-learning algorithms to predict outcomes (Hou et
al. 2020). This approach has been widely adopted to generate node features that encapsulate both the direct
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and indirect structural information within the network. For example, Choi and Yoon (2022) utilized
network embedding to transform technical elements into vector representations, which enabled them to
measure distances within the vectors as a means of exploring patent knowledge in citation networks. While
the network embedding-based approach has been adopted to generate node features, it typically does not
incorporate company demographic information. Therefore, scholars have expanded their methodologies to
include advanced techniques such as Graph Neural Networks (GNNs), which integrate network embeddings
with deep learning to predict complex network behaviors directly from the graph's structure, thereby
maintaining and leveraging network topology throughout the learning process (Zhou et al. 2020). For
instance, Holm et al. (2020) utilized a temporal GNN framework to predict citation counts over years,
demonstrating superior performance over standard LSTM and graph convolutional neural networks.
Additionally, Cummings and Nassar (2020) employed a GNN-based architecture to predict papers' citation
counts at the time of publication, circumventing the need for initial citation trends. Besides delivering good
performance, GNNs also benefit from GNN explainers, which provide post-hoc explanations (Ying et al.
2019a). These explainers can demystify Blackbox operations of GNNs by identifying which subgraphs or
features are most influential in specific decisions made by the model (Ying et al. 2019b). GNN explainers
have been widely used in the fields of chemistry and biology to aid in molecular property prediction (Wu et
al. 2023) and drug discovery (Wang et al. 2023). However, they do have some limitations, and some
researchers have started to express concerns about their reliability and robustness (Agarwal et al. 2023;
Zhang et al. 2024a).

Therefore, in this research, we propose a two-part analysis to utilize both traditional statistical methods
and GNNs to complement each other, investigating the influence of models on the diffusion of Al papers.

Firstly, we apply the Graph Neural Network framework to broadly examine the impact of model dependency
networks on the citation counts of papers. The application of GNNs is particularly suitable for this analysis,
as they adeptly capture a wealth of information without diminishing data integrity (Xu et al. 2018). Unlike
traditional methods that may condense or overlook complex network structures, GNNs consider the full
topological data structure, which can potentially reveal insights about the collective influence of models
that traditional statistical analyses might miss, especially in cases where the network's topology plays a
critical role in the diffusion process. Through this study, we seek to affirm the hypothesis that not merely
the existence of open-source models but also the dependency relationships among these models
significantly influence the popularity of Al research.

Secondly, we implement statistical models to uncover the detailed relationships between models and
papers, thereby complementing the overarching insights provided by GNNs and ensuring the robustness of
previous findings. While GNNs yield importance scores for models and their features, they may not
effectively quantify the exact effects on citation counts. Our statistical model will probe these details,
enabling us to understand the nuanced mechanisms of the model network's effect on the dissemination and
recognition of Al research.

Data

Our analysis integrates data from four distinct sources: (1) Papers with Code
(http://paperswithcode.com/), (2) OpenAlex, (3) Semantic Scholar, and (4) GitHub. Figure 1 summarizes
the data process and analysis structure.

Papers with Code

Following Kang et al. (2023), we utilize Papers with Code (PwC) as our primary database. Designed by the
Meta Al team and officially partnered with arXiv since October 2020, PwC is the largest platform linking
ML research articles with their corresponding repositories. It has been widely used in research to build
knowledge graphs between papers and code (Kannan et al. 2020), analyze the impact of public code
availability on citation counts (Kang et al. 2023), and summarize code availability in top AI papers (Lin et
al. 2022).

Our research focuses on analyzing records from PwC, specifically those papers published between January
2000 and December 2022. During this time span, the PwC dataset comprises 335,354 papers, of which
168,497 are associated with open-source repositories containing models. Our study primarily targets papers
with associated models because Kang et al. (2023) demonstrated that papers with available open-source
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model experience a 20% increase in monthly citations compared to those without. Building on previous
study, this research aims to explore how the model dependency network influences paper citations beyond
models’ mere existence.

We restrict our analysis to papers categorized under the machine learning portal, excluding those related
to astronomy, physics, computer science, statistics, and mathematics. We also exclude 884 models not from
the GitHub community, focusing on the dependency relationship inside the GitHub community. Our final
data set from Papers with Code contains 76,524 papers and 98,703 models, along with 127,366 paper-model
relationships.

OpenAlex

We use OpenAlex (https://openalex.org/) to collect related paper information and author information. We
chose OpenAlex for two reasons: first, it is a fully open platform integrating multiple data sources, including
Microsoft Academic Graph (MAG), ORCID, Crossref, and Unpaywall, and it has been widely used in
academic research (Priem et al. 2022; Schares and Mierz 2023) ; second, Microsoft Academic Graph was
discontinued on December 31, 2021, which does not match our main data source time span from PwC and
researchers have found OpenAlex at least as suited for bibliometric analysis as MAG was (Scheidsteger and
Haunschild 2023).

However, we note that OpenAlex records the creation date for each paper, the date it started documenting
the paper's information. This can cause a problem: citation counts a paper gained before the documentation
date will not be captured. For example, the paper "YOLOv3: An Incremental Improvement" published in
2018 had its record created in 2022 by OpenAlex, causing citation records from 2019 to 2022 to be missing.
Therefore, we filtered out those documents whose publication date and the documentation date of
OpenAlex differ by more than one year, removing 2,544 papers. Additionally, 6,391 papers were excluded
due to mismatches between the Papers with Code and OpenAlex datasets. Moreover, due to significant
missing data regarding author institutions reported by OpenAlex (Zhang et al. 2024b), we chose not to
include this information in our analysis. However, we did include detailed author-related information such
as citation counts over years, number of works published over the years, research topics, h-index, and
second-year citedness in our study.

Semantic Scholar

While cleaning the reference information from OpenAlex, we found that it did not fully match with the
original papers. After a manual random check, we determined that the reference lists provided by Semantic
Scholar are basically accurate. Launched by the Allen Institute for Artificial Intelligence in 2015, Semantic
Scholar has established a significant presence in the academic community and is recognized for its advanced
AT and machine learning technologies applied to the scientific paper search and analysis (Fricke 2018). Its
dataset has been widely used to build literature graphs (Ammar et al. 2018; Kinney et al. 2023). While it
may not provide as extensive information as OpenAlex, we decided to use Semantic Scholar as a
complement to OpenAlex on the reference list. We collected the reference list of each paper in our dataset
and constructed internal citation relationships. Following other widely used citation datasets like Cora and
CiteSeer (Cabanes et al. 2012; Giles et al. 1998), we extracted citations only among the papers within our
predefined set and ignored any citations referencing papers outside of this set.

GitHub

Since 99.2% of the models connecting with papers from Papers with Code in our dataset are from the
GitHub platform, and GitHub is the largest platform hosting open-source models (Cosentino et al. 2017),
we collected model dependency graphs and related model meta-information, such as descriptions, topics,
languages, and README files from GitHub to construct the model dependency network. After integrating
the four datasets, we conducted a cleanup process to ensure the quality and relevance of our data. This
involved removing approximately 2,000 papers that lacked corresponding records in Semantic Scholar and
about 500 models from GitHub, which were no longer accessible (resulting in 404 errors). Following these
adjustments, our final dataset comprises 64,059 papers and 98,105 models.
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Figure 1. Data Processing and Analysis Overview

Analysis 1: Overall impact of model dependency network via GNN

In our first analysis, we aim to demonstrate that factors beyond the mere existence of models, such as
models' dependency relationships, model-paper relationships, and models' characteristics, significantly
influence the increase in paper citations. Therefore, we place particular emphasis on the network structure
and the graph's demographic characteristics, employing a Graph Neural Network (GNN) framework that
preserves the integrity of the network structure.

Given the dynamic nature of the relationships among three distinct types of nodes—authors, papers, and
models—over time, we constructed a heterogeneous temporal network to capture these evolving
interactions. Due to the variability in paper keywords, author research topics, and model descriptions, we
embedded these textual elements separately as node features for all node types.

Our model stabilized, converging to a consistent Mean Absolute Error (MAE) of approximately 4.07. The
variability in our dataset's citation counts ranges widely, from 0 to a maximum of 255,438 annually, with a
variance of 13,163.25. Given this broad range, we consider this level of precision to be satisfactory for the
purposes of our study. Furthermore, we have enhanced the existing heterogeneous graph neural network
(HGNN) explainer (Ying et al. 2019b) to accommodate temporal networks. This advancement enables the
explainer to consider multiple temporal graphs and provide both edge and feature importance for post-hoc
analysis, thereby facilitating the identification of critically influential model-related edges and features

Heterogeneous Temporal Network Construction

A heterogeneous temporal network is a graph that encapsulates multiple types of entities (nodes) and
relationships (edges) across various timestamps (Fan et al. 2022). In our research, which spans multiple
temporal segments, a heterogeneous temporal network is essential for preserving the intricate details of
relationships such as author-to-paper, paper-to-paper, and paper-to-model interactions. This structure is
particularly advantageous for encapsulating the multifaceted dynamics and influences across the scholarly
domain. Given that the impact of a paper accumulates over time and focusing solely on papers published in
a specific year and their associated data would result in a very sparse network, our network aggregates data
up to the current year, ¢, which results in a more robust and interconnected dataset.

Previous studies have highlighted the significance of various attributes related to authors, publishers, and
papers (Bornmann and Daniel 2008; Uzzi and Spiro 2005). In constructing our network, we have
endeavored to incorporate a rich set of features proven to be influential in the diffusion of scholarly work.
Our network comprises three primary types of nodes—papers, authors, and models—each embedded with
features tailored to their respective roles:
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e Author Nodes: Features such as h-index, i10-index, and 2-year mean citation count are used to
represent an author’s influence and reputation. Additionally, research interests are captured using
word2avec embeddings of relevant keywords.

e Model Nodes: Features like the number of GitHub stars and forks, programming language, and
textual descriptions are embedded using word2vec to reflect the technical and community
engagement aspects.

e Paper Nodes: Information such as publisher details, the number of countries from which authors
originate, and the diversity of institutions are included alongside keyword-based features, again
embedded using word2vec.

Our network includes four types of edges: paper linking model, paper citing paper, model depending on
model, and paper written by author. This deliberate inclusion of diverse attributes ensures that even when
the analysis is controlled for various known influences, the significance of models in enhancing scholarly
diffusion remains demonstrably evident. Figure 2 presents an example of our heterogeneous temporal

graph.
. Model
B Paper

Author

n

Figure 2. Example of Heterogeneous Temporal Network

GNN framework and Result Explanation

After constructing the heterogeneous temporal network, we proceed to embed both temporal features and
edge attributes before inputting them into heterogeneous temporal graph neural network model (Fan et al.
2022). The architecture of our model, referred to as HeterogeneousTemporalCitationGNN (HTCGNN),
integrates these embeddings through multiple layers, culminating in a set of forward layers specifically
designed to aggregate and interpret edge and feature importance scores. This design enables us to isolate
and understand the factors most significantly impacting paper citation rates. We use Mean Absolute Error
(MAE) as our loss function because our prediction is citation count, MAE can quantify the average
magnitude of errors in a set of predictions, without considering their direction. Contrary to existing
approaches like the heterogeneous temporal GNN explainer (Li et al. 2023), which focuses solely on edge
importance within sample graphs and overlooks node features, our method incorporates a comprehensive
view of both node and edge attributes across the full graph: This broader approach allows for a more
detailed explanation of model predictions.

Figure 3 illustrates the overall framework of this process, showcasing how the constructed network feeds
into the HTGNN model, which then utilizes the explainer module to derive and aggregate importance scores
for both edges and node features.

To systematically assess the overall importance of the model network, we designed and compared four
distinct models:

1) Baseline: Comprises only papers and their citation networks, serving as the foundation for
comparative analysis.

2) Add Author: Extends the baseline by incorporating relationships between authors and papers,
enabling an examination of the influence of scholarly collaboration.

3) Add Model: Builds upon the baseline by adding model nodes and their dependencies, which
allows us to evaluate the impact of model interactions on scholarly output.
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4) Full: Integrates papers, authors, and models, along with all respective relationships, providing a
comprehensive view of the academic landscape.

Original Graph Temporal Processing
Feature To
embedding
) "
HTGNN
Edge To
embedding
To T, Ta

Feature

importance Y
score T, - - n+l
Aggregation

Edge To
importance
score T,

Figure 3. Framework of HeterogeneousTemporalCitationGNN

Similar to the R-squared metric, explained variance score (EVS) is commonly used to evaluate a model's
performance by quantifying how well it accounts for the variability in the observed data (LaHuis et al. 2014).
It is calculated using the formula EVS = 1 — %, where y represents the observed data and § represent
the predicted value. We compared the explained variance across these four models to gauge the incremental
value added by including different network components.

Explained Variance Normalized Edge Importance Score
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Figure 4. Explained Variance Comparison and Normalized Edge Importance Score

As shown in the left graph of Figure 4, our analysis revealed that the inclusion of models and their
dependencies enhanced the explained variance by over 3% compared to the baseline model. Conversely,
excluding these elements from the full model led to a 2% decrease in explained variance, underscoring their
significance in the network. Due to computational limitations associated with processing large-scale
networks, we restricted our analysis to the past two-time spans. This approach addresses memory
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constraints without significantly compromising the breadth of temporal insights, as the most recent
interactions are often the most influential in dynamic academic networks. Figure 4 (right graph) illustrates
the importance of various types of edges within our network for the time frames t-2 and t-1, predicting
citation counts for papers in year t. This visualization highlights that the structure of the paper's citation
network in recent years is the most critical factor influencing citation counts, followed by the model-paper
connection. The model-model dependency relationships also play a significant role, albeit less than the
direct model-paper interactions. The least impact is observed from the paper-author relationships.

We also calculated the feature importance scores, which were normalized and exclude word embedding
features due to their complex interpretability. Figure 5 presents these normalized feature importance
scores. The comprehensive plot that includes word embedding features for the top 50 important features
has been omitted due to space limitations. Figure 5 reveals that among the explainable features, the number
of stars of models holds the highest importance, followed by the influence of authors and the reputation of
publishers. These findings underscore the pivotal role of model features, such as the number of stars and
forks, and highlight the significant impact of model performance and recognition from developers in the
open-source community on the dissemination of papers within the academic field.

Important Features Across All Node Types ( i Word beddi )

stars
h_index
proceeding

2yr_mean_citedness

forks

accumulated citation count

Features

i10_index
language
date

country_distinct_count

= Model Features
Author Features
Paper Features

0.0 0.1 0.2 0.3 04 05 0.6 0.7
Importance Score

institution_distinct_count

Figure 5. Normalized Feature Importance Score

The analysis demonstrates that the overall importance of models is on par with that of authors in papers
related to the Al field. While the influence of authors on paper citations is well-established (Nanumyan et
al. 2020), the impact of models remains less explored. Previous studies have shown that AI papers with
publicly available code and models tend to receive higher citation counts compared to those without (Kang
et al. 2023). Building on these findings, our study reveals that the mere presence or absence of a model is
not the only factor of importance; the model networks and open-source community serve as a reflective
environment that influences the academic sphere. The relationships among models and their performance
within these networks also significantly affect the diffusion and popularity of papers in academic fields.

In our second analysis, we will delve deeper into the specific relationships between models the popularity
of related papers. Specifically, we aim to explore how the position of models within the model dependency
network affects future citation counts of associated papers.
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Analysis 2: Effect of Model Location on Paper Popularity

In our second analysis, we aim to explore the distinct roles that models play in the diffusion of Al research
papers. The AT model network consists of two types of models: focal model and offspring model:t. When
papers are published, they may also release associated models on platforms like GitHub. This creates a
direct and officially recognized link between the paper and the model. We refer to these models as focal
models. Alternatively, other developers may be inspired by the ideas presented in the papers and create
their own models based on these concepts. These models are not formally acknowledged within the paper's
methodology section and might only be mentioned in supplementary materials or identified through data
or code repositories. These implementations might be contributed by other researchers or enthusiasts who
have read the paper and decided to code the described models or methods themselves. We refer to these as
offspring models.

Both types of models and the model they build on form what we call the 'model dependency network.'
Typically, a research paper will have one "focal" code repository, which is the one provided or endorsed by
the original authors of the paper, and it can have multiple offspring codes. This network illustrates how
models can be both derivative of and foundational to other models within the open-source community. In
this analysis, we focus on these dynamics within the model dependency network, seeking to answer the
question: how do focal and offspring models’ locations influence its related paper’s diffusion?

Hypothesis and Theory Development

Models located in central positions within the model dependency network are likely to be more visible and
accessible to a larger portion of the network. This increased visibility can lead to higher citation counts as
more researchers encounter and utilize these models in their work. According to Pésfai and Barabasi (2016),
in a network, new entities usually tend to connect to well-established entities, reinforcing their prominence.
This dynamic can result in a model that occupies a central network position and possesses high 'prestige’
being more frequently adopted in new research, thereby attracting citations to related papers. This
phenomenon is supported by the concept of cumulative advantage and the Matthew effect, where early
recognition generates further recognition, creating a self-reinforcing cycle (Petersen et al. 2011).

Models in central positions are often stable, fundamental, and well-integrated with other tools and
frameworks, facilitating their adoption and application (Chung et al. 2012). This usability reduces the
barriers to entry for researchers using these models in new research, which can lead to increased citations
(Bonaccorsi and Rossi 2003; Brynjolfsson and Kemerer 1996). Focal models typically carry a stamp of
approval from either the original authors or from reputed organizations, enhancing their perceived
reliability and authority. When these models also occupy central positions in the model dependency
network, they become hubs of innovation and trusted sources, thereby attracting more citations. Thus, we
have the following hypothesis:

Hypothesis 1: Papers with focal models that have a more central position in the model dependency
network will experience a higher increase in citation count in the following year

offspring models, although not endorsed by the original authors, often emerge from the community and
can incorporate novel approaches and techniques absent in focal releases. Their central position in the
model dependency network suggests these innovations are recognized and utilized by other developers and
researchers, partially reflect the popularity of the ideas contained in related papers, boosting the citations
of the papers associated with them, as researchers may trace back to the original papers for deeper insights.

Central offspring models benefit from active community engagement; the feedback and improvements
made by a diverse group of developers can enhance the model's robustness and applicability. This active
community validation often leads to increased citations as the community vets and refines the model
(Bhattarai et al. 2022). Furthermore, offspring models, which can be considered as informal intellectual
collaboration with central topics, often fill gaps or specific needs that focal models do not address. Their
centrality indicates they play critical roles in the network, perhaps offering functionality that complements

! In the Papers with Code dataset, the focal model refers to the official model, while the offspring model refers to the
unofficial model.
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focal models, which can attract citations from researchers seeking specific solutions. The central role of
offspring models in a dependency network also facilitates the cross-pollination of ideas between various
fields and disciplines, leading to a broader impact and higher citation counts as the model influences a
diverse range of academic areas (Neville and Jensen 2007). Therefore, we have the following hypothesis:

Hypothesis 2: Papers with offspring models that have a more central position in the model dependency
network will experience a higher increase in citation count in the following year

Variables

We use the annual increase in citation counts of papers (denoted as Cite;: , which represents the citation
count increase for paper i in year t) as our dependent variable, which represents the popularity of Al
research over years.

Given that the model dependency network is a weighted directed network, we use in-degree eigenvector
centrality to estimate the influence or positioning of paper-related models within this network. In-degree
eigenvector centrality is particularly apt for this analysis as it not only measures the direct dependencies of
a model but also assesses the quality of these connections by considering the influence of the connecting
nodes (Bonacich 2007).

We calculate the in-degree eigenvector centrality for both focal and offspring models separately, allowing
us to explore potential differences in their impacts. Furthermore, considering the frequent occurrence of
multiple offspring models associated with a single paper, we evaluate both the average centrality of
offspring models and the centrality of the most influential offspring model. This dual approach helps us
determine whether it is the collective impact of all associated models or the influence of the most prominent
model that affects a paper’s popularity.

We account for the effect of last year's citation count to control for potential momentum, acknowledging
that a paper's previous citations can influence its future citations (Price 1976). We also control for the out-
degree eigenvector centrality of models, which reflects both the innovation potential and stability of a
model. A high number of dependent relationships (out-degree) might indicate less stability, as frequent
changes or updates may be needed to maintain relevance. Conversely, such dependency could also suggest
limited scope for groundbreaking innovations, as the model primarily influences existing developments.
This metric not only considers the quantity of these outward connections but also their quality, particularly
how influential or central the dependent models are within the network. We analyze this separately for focal
and offspring models.

To control the influence of authors on paper citations, we include both the average and maximum outputs
related to their scholarly activities. Specifically, we include the average and maximum number of works
published per year by authors, as well as the average and maximum increase in citation counts their works
receive annually. Including both average and maximum values help to account for varying levels of
productivity and influence among authors. The average metrics provide insights into the typical
performance and influence of the author group, which is particularly useful in settings with collaborative
research such as labs with multiple contributors. In contrast, maximum values are included to capture the
potential outsized impact of highly prolific or influential individual authors within a group, recognizing that
a single high-performing author can significantly enhance a paper's visibility and citation potential. By
using these combined metrics, we aim to balance the overall contribution of the author group against
exceptional individual contributions, ensuring a more nuanced understanding of author impact on paper

popularity.

We also control for unobserved heterogeneity and time-related variability by incorporating fixed effects for
papers and years. This approach accounts for factors that remain constant over time for each paper, such
as the publisher, the number of authors, and keywords. These attributes are effectively captured in the paper
fixed effects, justifying their omission from the variable set explicitly modeled.

Given the skewed distribution of in-degree and out-degree eigenvector centrality measures, we
implemented a logarithmic transformation on these variables to mitigate the skewness. Subsequently, we
standardized the transformed data to achieve a normal distribution, enhancing the robustness of our
statistical analyses. The table below details the distribution of all variables post-transformation that are
included in our study.
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Mean | SD Min Max Median

Citation Increase (1) 17.175 | 152.16 | 0.000 25438.00 | 2.000

Focal Model Location (2) 0.000 1.000 -0.515 2.069 -0.515

Focal Model Dependency (3) 0.000 | 1.000 | -0.061 | 23.127 -0.061
Offspring Model Max Dependency (4) 0.000 | 1.000 | -0.106 | 11.526 -0.106
Offspring Model Most Central Location (5) 0.000 | 1.000 | -0.610 | 3.313 -0.610
Offspring Model Average Dependency (6) 0.000 | 1.000 | -0.106 | 12.645 -0.106
Offspring Model Average Location (7) 0.000 | 1.000 | -0.606 | 3.516 -0.606
Last Year Citation (8) 0.000 | 1.000 | -0.082 | 251.045 -0.075
Average Number of Authors Published Work (8) | 0.000 | 1.000 | -0.399 | 37.336 -0.279
Average Citations of Authors (10) 0.000 | 1.000 | -0.450 | 29.713 -0.319
Max Number of Authors Published Work (11) 0.000 | 1.000 | -0.359 | 42.679 -0.297
Max Citations of Authors (12) 0.000 | 1.000 | -0.409 | 9.049 -0.328

Table 1. Description of Variables

Model and Result

To estimate the impact of a model's centrality on the subsequent year's citation count increase of related
papers, we employ a generalized Poisson fixed effect model. This approach allows us to handle count data
with overdispersion and to assess fixed effects accurately (Consul and Famoye 1992; Saputro et al. 2021),
The specification of our model is as follows:

Cite;, == o+ P, *FocalModelLocation;, , + B, * Of fspringModelMostCentralLocation;,_,
+ B3 * Of fspringModelAverageLocation;,_; + ControlVariable + u; + 4, + &;,

where y; represents paper fixed effect, 1, represents year fixed effect, and ¢; . is the error term.

We developed two models for our analysis. Model 1, the control model, incorporates only the control
variables, while Model 2, our full model, includes both control and main independent variables. The
performance of these models is detailed in Table 2, where we present the estimated coefficients and key
model fit indices.

To assess model performance, we utilized the log-likelihood and the Akaike Information Criterion (AIC) as
comparative metrics (Bozdogan 1987). A higher log-likelihood and a lower AIC are indicative of a better-
fitting model. Based on these criteria, Model 2 demonstrates a superior fit compared to the control model,
suggesting that the inclusion of main independent variables significantly enhances the model's explanatory
power.

According to Model 2 result, Models that occupy central positions and are utilized by other models
significantly boost the popularity of associated papers, as evidenced by a positive coefficient (f = 2.84, p <
0.001). This suggests that focal models that are integral to other developments within the field tend to
enhance the visibility and citation likelihood of the papers in which they are featured, supporting our first
hypothesis. Similarly, the location of most central offspring models also positively impacts paper popularity
(B = 1.090, p < 0.001), indicating that even models not officially recognized within the papers can
significantly influence their diffusion and recognition. Conversely, when considering the average in-degree
eigenvector centrality of all connected offspring models, a negative impact on paper citations is observed (3
=-1.151, p < 0.001). This could be due to an over-saturation effect where the prominence and distinctiveness
of any single model are diluted amid a crowd of centrally located models, diverting attention from the
original paper. Additionally, as more work builds on the initial findings, the field may become saturated,
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causing newer studies to reference more recent derivatives or even bypass the foundational paper if they
are deemed more relevant. This suggests that while standout offspring models significantly boost paper
citations, the cumulative average influence of many well-connected models might compete for attention,
thereby diminishing the overall boost to citation counts.

Variables | Model 1 | Model 2
Main Variable
Focal Model Location - 2.840 ***
- (0.075)
Offspring Model Most Central Location -- 1.090 ***
-- (0.020)
Offspring Model Average Location -- -1.151 ¥**
-- (0.021)
Control Variable
Focal Model Dependency 0.025 *** 0.019 **
(0.006) (0.006)
Offspring Model Max Dependency -0.514%%* -0.669 ***
(0.015) (0.016)
Offspring Model Average Dependency 0.448 *** 0.609 ***
(0.014) (0.015)
Last Year Citation 0.005 *** 0.008 ***
(0.001) (0.001)
Average Number of Authors Published Work 0.064 *** 0.105 **¥
(0.010) (0.010)
Average Citations of Authors 0.198 *** 0.156 ***
(0.005) (0.005)
Max Number of Authors Published Work -0.105%** -0.128 ***
(0.012) (0.012)
Max Citations of Authors -0.088 *** -0.083 ***
(0.008) (0.008)
Observations 227,955 227,055
Log-likelihood -126208.8 -124436.6
AIC 252433 248895.2
Note: *p<.05; **p<.01; ***p<.001. Papers fixed effect and year fixed effects are included
Table 2. Model Result

Robustness Checks

To ensure the robustness of our analysis, we have implemented a stratification based on papers' cumulative
citation counts as of the end of 2023. We categorize papers falling within the top 0.1%, 0.5%, and 1% of the
cumulative citation distribution as outliers (Kang et al. 2023). The citation counts corresponding to these
percentiles are 3,152.876, 998, and 612, respectively. These outliers comprise 65, 320, and 640 papers,
corresponding to 459, 2040, and 3920 observations, respectively. By applying these multiple thresholds for
excluding outliers, we aim to demonstrate the robustness and consistency of our analysis.

Our robustness checks, presented in Table 3, show a consistent positive influence on the location of focal
models, reinforcing our main results. However, the impact of the location of the most central offspring
models appears to change slightly when we exclude papers in the top 1% of citations. After removing these
top-star papers with numerous citations, the number of offspring models based on the focal models
decreases significantly. This shift is attributed to the high correlation—over 0.9—between the average and
maximum locations of the offspring models. When we retain only the average location of the offspring
models, the coefficient turns negative once again, lending further support to our hypothesis.
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Remove 0.1% Remove 0.5% Remove 1%

Main variable Coefficient | Std. Coefficien | Std. Coefficien | Std. Coefficien | Std.

error |t error |t error |t error
Focal Model 5.644 *** | 0.097 | 6.862 *** | 0.127 | 5.973 *** | 0.149 | 6.094*** | 0.148
Location
Offspring Model | 1.237 *** 0.02 | 0.504 *** | 0.03 | -0.337*** | 0.045 | -- -
Most Central 6 6
Location
Offspring Model | -1.316 *** | 0.02 | -0.577 *** | 0.037 | 0.268*** | 0.04 | -0.078*** | 0.04
Average Location 6 6 7
Observation 227496 225906 224026 224026
Log-Likelihood -112516.400 -88243.680 -74962.550 -74991.12
Note: *p<.05; **p<.01; ***p<.001. Papers fixed effect and year fixed effects are included, control
variables are omitted in the table due to space limit

Table 3. Robustness Check Result

Discussion and Future Direction

Our investigation, using Al research papers as a proxy, has underscored the significance of both the model
dependency network and the dichotomy between focal and offspring models in shaping the diffusion of AT
innovation. The position of a model—whether focal or offspring—appears to uniquely influence its
prominence within the AI community. This finding suggests that a model’s impact is not just a product of
its isolated achievements but also a reflection of its role within the broader tapestry of Al innovation. The
intricate ties between the popularity of academic papers and the attributes of the models they feature
indicate that the practical applications, originality, and theoretical advancements inherent in these models
are tightly woven into the fabric of AI evolution. Understanding this complex interplay is paramount to
grasping how Al innovation propagates throughout scholarly work.

Looking forward, we aim to delve into the dynamics between focal and offspring models. Particularly, we
are interested in how the central positioning of offspring models might influence or even augment the role
of focal models. This inquiry will extend to examining whether such positioning can catalyze the
advancement of Al innovation in new directions. We will also explore the interaction effects between
authors and models to obtain a more comprehensive understanding of the social and technical factors
driving innovation. Additionally, we plan to investigate the existence of cross-lagged relationships which
may illuminate the temporal sequencing of influence between model prominence and paper popularity.

Moreover, we propose to enrich our analytical framework by incorporating measures such as the Hyperlink-
Induced Topic Search (HITS) algorithm, which could reveal the "hubs' and 'authorities' within the model
network and provide a more nuanced understanding of influence within the domain (Kleinberg, 1999). We
will also improve our GNN model to increase its practical application. By advancing our methodological
approach, we hope to uncover deeper layers of interaction that shape the innovation diffusion process in Al
research.
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