15 RENEWING THE BELIZE ARCHAIC PROJECT IN 2019

Robert M. Rosenswig

The Archaic period in the Maya region represents six millennia (7000-1000 BCE) when non-ceramic-using peoples began to experiment with domesticates and reduce their settlement ranges. The single longest epoch of the Mesoamerican chronology, these early millennia are often overshadowed by the investigation of more recent peoples who built cities and have left evidence of elaborate artistic traditions. The Belize Archaic Project (BAP) began work over 20 years ago after the fortuitous discovery of aceramic deposits containing heavily patinated lithic tools and debitage under Postclassic settlements in the Freshwater Creek drainage of northern Belize. The 2019 field season marks a renewed phase of this project and initiates a program of systematic settlement survey and test excavations. This paper presents initial results of a systematic program of auguring that documented 87 Archaic-period sites and excavations at four of these locales during the summer of 2019. The renewed BAP investigates local land use patterns and foraging adaptation as well as the dynamic manner in which they affect (and are impacted by) climate change and evolving local forest and lacustrine ecology.

Introduction

The Belize Archaic Project (BAP) renewed a program of documenting evidence of Archaic-period settlement in the Freshwater Creek drainage of northern Belize (Figure 1). After fortuitously encountering aceramic deposits under Postclassic island settlements at Laguna de On and Caye Coco (Masson 1999, 2000; Masson and Rosenswig 2005; Rosenswig and Masson 2020), initial excavation of Archaic period remains were undertaken between 1997 and 2001 (Rosenswig 2004; Rosenswig and Masson 2001). In the intervening years, new and exciting finds continue to increase our knowledge of the Archaic period occupation of Belize from what was known two decades ago (e.g., Lohse et al. 2006). Investigations in the Belize Valley have continuously generated new results (e.g., Awe et al. 2021: Brown et al 2011: Stemp et al. 2016). Work by Keith Prufer and colleagues at cave sites in southern Belize have recently expanded the geographic range from where Archaic and earlier evidence is known (e.g., Prufer et al. 2017; 2021). Further, new finds in the Crooked Tree region are expanding the geographic range of the Archaicperiod occupation in northern Belize (Stemp and Harrison-Buck 2019).

More than twenty years after first investigating the Archaic period, seven weeks of fieldwork were undertaken by the BAP on the west shore of Progresso Lagoon in the Corozal District (Figure 2) during the summer of 2019 (Rosenswig 2022). The project's overall objectives are to systematically document Archaic remains from a regional context through settlement survey, document and date regional

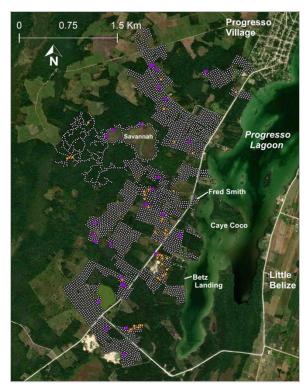


Figure 1. Freshwater Creek drainage with previously known Archaic-period sites.

adaptation through excavation as well as the reconstruction of forest ecology and climate change through sediment cores documenting pollen and charcoal. I present preliminary fieldwork results from the 2019 season in the pages that follow and explain our survey methodology. Before doing so, I contextualize the research by briefly reviewing what is known of the Archaic period in northern Belize.

Previous Evidence of the Archaic Period in Northern Belize

Following up on his work in the highlands, MacNeish started the Belize Archaic Archaeological Reconnaissance (BAAR) project in the early 1980s (Zeitlin 1984). BAAR undertook excavations at a number of sites in the northern half of the country, including Betz

Figure 2. Location of 96 augur holes with orange soil (orange circles) and location of 33 recorded Archaic surface finds (purple circles).

Landing on the west shore of Progresso Lagoon (Figure 1). No archaeological features were reported from the excavations but a "reddish-brown soil" located 20-40 cm below the surface was documented with dates between the 1600-1200 BCE (Zeitlin 1984:364-365).

The best-defined cultural sequence in the Maya area from the Late Archaic period still comes from the site of Colha (Hester 1994; Hester et al. 1980; 1996; Iceland 1997, 2005; Iceland and Hester 1996; Shafer and Hester 1983). Colha is located at the north end of an extremely high-quality chert-bearing zone that was extensively utilized from Archaic times up to Spanish contact to make stone tools. Colha is approximately 15 km from Honey Camp Lagoon and 25 km from the south end of Progresso Lagoon (see Figure 1). Two superimposed lithic production areas were defined at Colha and dated by ten radiocarbon assays—the lower surface with evidence of unifacial tool production was dated to the Archaic; the upper, prepared surface diagnostic Middle Formative production debris (Hester 1994:3; Hester et al. 1996:47). At nearby Cobweb swamp, Jones (1994) and Jacob (1995) document forest modification as well as maize and manioc pollen by 2400 BCE.

Pohl et al. (1996)undertook paleoecological program of coring excavation at Pulltrouser Swamp, west of the New River in northern Belize. They documented maize and manioc pollen at Cob swamp before 3000 BCE (possibly as early as 3400 BCE). Yet pollen of tree species indicates that these cultigens were grown in high tropical forest with minor disturbance (Pohl et al. 1996: 363). After 2500 BCE, significant forest disturbance is documented from the pollen and charcoal records at Cob Swamp (Pohl et al. 1996:Fig. 4). The lithic assemblage recovered from the Pulltrouser Swamp excavations is reported as being similar to that at Colha.

The of discovery Archaic-period occupation in the Freshwater Creek drainage (Rosenswig and Masson 2001) led us to undertake preliminary excavations at two sites on the western side of Progresso Lagoon (Rosenswig 2004, 2006, 2021; Rosenswig et al. 2014; Stemp and Rosenswig 2022). At Caye Coco, approximately 150 m² of distinctive orangecolored soils containing Archaic-period stone tools were documented near two pit features and a single posthole. Radiocarbon assays of carbon from the orange soils at Caye Coco date to the Middle and Late Archaic (5464 \pm 20 and 3885 \pm 20 BCE). Excavations from similarly distinct orange soils at the nearby Fred Smith site, also produced distinctive stone tools, including a variety of expedient and formal bifaces, and unifacial tools made from macroflakes. As we have seen, two dates reported by Zeitlin (1984) from a "reddish-brown" soil stratum at Betz Landing, 500 m south of the Fred Smith site, are dated to the second millennium BCE. The age of these deposits are definitively, but not precisely, dated to the Archaic period.

Seven Archaic-period sites were identified along the Freshwater Creek drainage in northern Belize by our investigations (Rosenswig and Masson 2001; Rosenswig 2004). Initial analysis produced evidence of early domesticates (including maize, squash, manioc and chili peppers), stone tool assemblages from different site locations BCE (Rosenswig et al. 2014). Northern Belize also has numerous closed-basin

ponds that preserve paleoecological records stretching back to these millennia (Pohl et al. 1996). Both hard-to-find datasets exist together in the project area - a rarity in Mesoamerica (Rosenswig 2015). We collected sediment cores from in and around Progresso Lagoon for environmental reconstruction during the 2022 season and analysis is in process. groundwork is thus set to make a significant contribution to understanding the interplay of climate change, tropical forest ecology and human food production by documenting the relationship between them. The 2019 field season was our first attempt to document Archaic period sites systematically at Progresso Lagoon.

Survey and Excavation of Progresso Lagoon's West Shore

Orange Soils

The basis of our survey methodology is the correspondence between orange soils and patinated lithic tools made from macro-flakes that are distinctive of the Archaic period. We have not yet determined the causal relationship for the empirical observation that orange soils on the west shore of Progresso Lagoon contain Archaic tools. My working hypothesis is that some geological process (possibly Sahara Desert sands blown over the Atlantic Ocean) is responsible for the orange soil formation and that then Archaicage peoples inhabited the area. This means that we do not necessarily expect all orange soils to always contain Archaic period remains. The alternate interpretation would be that some aspect of the Archaic occupation caused the orange soils and, if this were the case, Archaic tools and orange soils would necessarily co-occur. Rosenswig and others (Rosenswig and Masson 2001; Rosenswig et al. 2014) report that Archaic tools are documented in white clays at Laguna de On (aka Honey Camp Lagoon) and Doubloon Bank Lagoon - both upstream of Progresso Lagoo in the Freshwater Creek drainage (see Figure 1). Different depositional matrices could date to different time periods but we do not yet have enough dated contexts to evaluate this possibility. Further, north of Progresso the quantity of orange soils increases without any documented increase in Archaic period sites. In fact, during the early 2000s when highways

Figure 3. Heavily patinated lithic tools surface collected in 2019, ventral (A) and dorsal (B) sides.

Figure 4. Western edge of the "savannah" on west shore of Progresso Lagoon (see Figure 2 for location).

around Chetumal in Quintana Roo were being expanded, kilometers and kilometers of orange soils were exposed by construction machinery. On a number of occasions, inspections by Marilyn Masson and I never encountered a single Archaic tool or patinated flake. Therefore, the co-occurrence on which this methodology is based, works for the west shore of Progresso Lagoon but its applicability elsewhere would

need to be established. The "orange soils" documented through excavation in 2019 range from orange (7.5YR 5/6) to dark reddish brown (5YR 3/1; 3/2; 3/3 and 3/4) to reddish brown (5YR 4/4; 4/3; 3/3) to red (2.5YR 3/6; 4/6; 4/8) so could have been called red or red-brown (or "reddish-brown" as MacNeish originally did). However, as I have long referred to these soils as orange, the BAP continues to do so.

Survey Methodology

Based on the observation that orange soils and Archaic-period deposits co-occur our survey methodology documents the presence and absence of orange soil in a systematic manner. During the first weeks of fieldwork in July 2019, we fine-tuned the methodology that combined opportunistically investigating land that is open of secondary growth vegetation and auguring at a systematic interval of 30 m. Auguring was undertaken with a 2 cm bit forced into the ground by hand which produced soil plugs that allowed soil strata to be described and measured. Orange soils could thus be documented in terms of their depth below current ground surface and thickness of the deposits. Following previous survey methodologies developed in Chiapas, Mexico (Rosenswig 2008), the 30 m spacing interval over a region results in each collection point representing an area of approximately 0.1 ha. Therefore, the resolution of our survey sampling captures all sites lager than 0.1 ha but misses an undeterminable number of smaller sites. This "know unknown" was not significant when documenting sedentary villages in Chiapas. However, when documenting the remains of mobile foragers with more ephemeral and smaller sites, we accept that a more significant error is built into our recovery methodology.

Results

In all, we survey about half of the land on the west side of Progresso Lagoon that was not forested during the 2019 field season and dug a total of 4424 augur holes (Figure 2). Of these, 96 had orange soil in them and we identified 87 potential Archaic-period sites. An Archaic period site was defined as the total number of augur probes with orange soils that were adjacent (i.e., 30 m apart) to each other. The majority of sites were defined by a single augur hole.

A strength of our survey auguring methodology is that the identification of orange soils is not dependent the type of land cover. Secondary growth forest and abandoned sugar cane fields were harder to move through and to acquire GPS reading, and so, require more time to survey each hectare of land. In contrast, newly burned and harvested sugar cane fields with no tree cover were surveyed much more quickly and provided easy visibility of artifacts on the ground surface. Household yards of mowed grass were also surveyed quickly but provided limited visibility of surface artifacts. regardless of land cover, the documentation of soil profiles through equivalently spaced augur holes provides directly comparable results.

Archaic surface finds were also encountered during our program In all, 33 heavily systematically auguring. patinated tools were recovered during the 2019 season. We cannot claim that this recovery was systematic as different land-cover conditions greatly affected surface visibility. In addition, rain, excessive heat and the time of day also affected how many surface finds were noticed and collected. However, as is exemplified with Figure 3, large, complete lithic tools covered with white patina are evident when ground cover is not too thick. The six examples presented in Figure 3 give a sense of the range of patinated tools recovered, including unifaces, bifaces and large expedient utilized macro-flakes. When heavily patinated tools (many of which were unifacially worked macro-flakes) were noticed on the ground surface, a GPS point was recorded and they were entered onto a surface finds log. As is evident on Figure 2, surface finds (purple dots) and auguring holes with orange soil (orange dots) sometimes occur in the same area but sometimes they do not. Lithic tools making their way up to the surface depends on many things, most importantly of which is the disturbance that the area has experienced since the Archaic occupation. Therefore, surface finds reflect post-depositional processes more than a simple presence of Archaic deposits.

The area labelled "savannah" in Figure 2 (and see Figure 4), and forested lands to the west, did not allow us to follow the standard BAP survey methodology as described above. Savannah is the term locales use for seasonally

inundated land where trees do not grow and so are commonly in high grass. The etymology of this term is likely from the colonial period when words used by British administrators from Africa and India were are (mis)applied, like the common Belizean practice of calling jaguars tigers and howler monkey baboons. The area of savannah and land to the west was part of a single large property measuring 500 acres with no agricultural activities. Instead, the owners were logging the land and this resulted in a network of access roads with smaller paths off the roads. To provide a sub-surface sample of this area, we augured along each of the roads and paths and this accounts for the meandering appearance of the augur hole locations. For the savannah itself, we augured only the higher ground around the edges of the grass. As can be seen in Figure 2, patinated tools were encountered on the ground surface around the edges of the savannah and orange soils documented below some roads within the area being logged.

As noted, 96 augur holes had evidence of orange soil and 33 heavily patinated lithics tools were recovered during the BAP survey season in 2019. These data spread across most of the survey area south of Progresso Village and north of the road to Little Belize that skirts the south of end of Progresso Lagoon (Figure 2). Therefore, our survey generated 129 indicators of Archaicperiod occupation rvey to guide our placement of excavations. These newly documented sites add to those already excavated on the island of Caye Coco and two sites on the shore: Fred Smith (Rosenswig et al. 2014) and Betz Landing (Zeitlin 1984). The new locales also expand the range of excavated contexts toward the ultimate goal of documenting regional land use practices of peoples who left scant traces on the local landscape compared to subsequent sedentary villagers.

Excavation Locales

Based on survey results we selected four areas for text excavations (Figure 5). Operations 1 and 3 were both less than 1 km from Progresso Lagoon and both were areas with the highest concentrations of augur holes that document orange soils (see Figure 2). Each of these sites was also located east of the San Estevan-Progresso Road. The presence of orange soil in

Figure 5. Location of four excavation Operations where excavations were undertaken in 2019.

Figure 6. Excavation unit of Operation 1, Suboperation 1 with to a limestone marl quarry in the background (see Figure 5 for location). Note the ploughed-up orange soils on the right (image faces south).

the augur holes at Operation 1 along with patinated lithics on the ground surface made this a very promising locale. Further, this area is 350 m from Progresso Lagoon shore and directly north of a large quarry pit where heavy machinery has been excavating limestone marl (see Figure 5). Five 2 x 1 m units were excavated adjacent to augur holes with orange soil. Figure 6 shows the Suboperation 1 excavation unit with the marl quarry in the background (visible as the white

Figure 7. Constricted uniface document in Operation 1, Suboperation 2, Level 4.

Figure 8. Orange soil and bedrock in excavation unit at Operation 4, with suboperation 2 in the foreground (image faces west).

Figure 9. Patinated lithic tools and debitage from Operation 4, Suboperation 2, Level 3.

area south of Operation 1 on Figure 5). Suboperation 1 at Operation 1 was 40 cm deep and contained a 20 cm thick layer of orange soil from which patinated flakes were recovered. At Suboperation 2, a complete constricted uniface was recovered from within the orange soil

horizon (Figure 7). Note that through the patination banding visible. Such banding is characteristic of the chert from the Northern Chert Bearing Zone that includes Colha. This tool was smaller (~9 cm long) than most constricted unifaces and so may have been used for woodworking rather than digging soil or felling trees as the larger versions of this tool type are interpreted as fulfilling (see Stemp and Rosenswig 2022).

Operation 3 was selected for excavations as many heavily patinated tools were encountered on the ground surface in the area. This location is over 1 km from the lagoon shore, directly west of Cave Coco and the Fred Smith site. Unfortunately, Maya period occupation of the area significantly impacted the integrity of the underlying Archaic-period deposits. The four 1 x 2 units excavated for Operation 3 were placed between a series of Maya mounds to the south and a bajo to the north. The area was covered in tall grass, with the site being identified by two separate loci each containing concentrations of patinated chert flakes. We encountered no intact orange soils or patinated lithics in these excavation units. The lesson learned was that later Maya villagers disturb Archaic deposits so that we should not rely on tools fond on the ground surface in the vicinity of mounds as an indicator of Archaic period occupation.

Our systematic auguring program did not find any orange soils on the property in which Operation 4 units were excavated. However, the landowner was in the process of putting up a fence along the north side of his land and post holes had been opened with a post-hole digger at 5-m intervals just prior to our arrival (see fence posts along the tree line on right side of Figure 8). All seven 1 x 2 m units excavated at Operation 4 encountered orange soil within 20 cm of the ground surface. The fact that none of our augur probes in this region documented orange soil emphasizes that the survey methodology underestimates the presence of these deposits. The site documented from Operation 4 excavations was on a bluff overlooking the lagoon 1 km away. All excavated units contained patinated lithic remains, the densest document at Suboperation 2 with over 200 flakes, shatter and broken tool fragments (Figure 9). This is a significant area of

occupation and we will likely return in a future season to expose more of this site.

Path Forward

The 2019 BAP field season began a new phase of research on the Archaic period occupation of the Freshwater Creek drainage. With funds now secured for five seasons of fieldwork, the 2019 season began the research effort by systematically documenting Archaic period forager occupation at Progresso Lagoon in order to reconstruct land use patterns and economic organization with data from excavated The 2022 season saw the survey completed, excavations at another six locales undertaken as well as the collection of five sediment cores from Progresso Lagoon and two closed-basin ponds to the east. With three more field seasons of work, we are well on the way to achieve the BAP research goals of documenting forager adaptation and how it was impacted by climate change.

Acknowledgements The 2019 field season was made possible with a grant from the Archaeology Division, National Science Foundation (BCS-1827291) and undertaken with permission from the Belize Institute of Archaeology, permit# 1A/H/2/1/19(18). We thank the dozens of landowners at Progresso that gave us permission to survey their land as well as Julian Patt (Op 1), Fred Smith (Op 2), Alberto Heredia (Op 3) and Alvaro Vanquas (Op 4) for allowing us to excavate. In San Estevan village, we are indebted to Nestor Hernandez, Cosme (Eb) Hernandez and Yvette Hernandez for their friendship and for helping in countless social and logistical ways.

References Cited

Awe, Jaime J., Claire E. Ebert, W. James Stemp, M. Kathryn Brown, Lauren A. Sullivan, and James F. Garber

2021 Lowland Maya Genesis: The Late Archaic to Late Early Middle Formative Transition in the Upper Belize River Valley. *Ancient Mesoamerica* 32:519–544.

Brown, M. Kathryn, Jennifer Cochran, Leah McCurdy, and David Mixter

2011 Preceramic to Postclassic: A Brief Synthesis of the Occupation History of Group E, Xunantunich. Research Reports in Belizean Archaeology 8:209–219.

Hester, Thomas R.

1994 The archaeological investigations of the Colha Project, 1983 and 1984. In *Continuing Archaeology at Colha, Belize*, Edited by T. R. Hester, H. J. Shafer, and J. D. Eaton), pp. 1–9. Texas Archaeological Research Laboratory, University of Texas, Austin.

Hester, Thomas R., Iceland, Harry B., Hudler, Dale B., Shafer, Harry J.

1996 The Colha Preceramic Project: Preliminary results from the 1993–1995 field seasons. *Mexicon* 18:45–50.

Hester, Thomas, Harry Shafer, and Thomas Kelly 1980 Lithics from a preceramic site in Belize. Lithic Technology 9:9–10.

Iceland, Harry B.

1997 The Preceramic Origins of the Maya: Results of the Colha Preceramic Project in Northern Belize, Unpublished Ph.D. dissertation, Department of Anthropology, University of Texas, Austin.

2005 The preceramic to early Middle Formative transition in northern Belize: Evidence for the ethnic identity of the preceramic inhabitants. In *New Perspectives on Formative Mesoamerican Cultures*, edited by T. Powis, pp. 15–26. BAR International Series 1377, Archaeopress, Oxford.

Iceland, Harry B. and Thomas R. Hester

1996 The earliest Maya? Origins of sedentism and agriculture in the Maya lowlands. In *The Prehistory of the Americas, XIII International Congress of the Prehistoric and Protohistoric Sciences*, Vol. 17, pp. 11–17. Forli, Italy.

Jacob, John S.

1995 Ancient Maya wetland agricultural fields in Cobweb Swamp, Belize: Construction, chronology and function. *Journal of Field Archaeology* 22:175–190.

Jones, John G.

1994 Pollen evidence for early settlement and agriculture in northern Belize. *Palynology* 18: 205–211.

Lohse, Jon, Jaime Awe, Cameron Griffith Robert M. Rosenswig, and Fred Valdez Jr.

2006 Preceramic occupations in Belize: Updating the Paleoindian and Archaic record. *Latin American Antiquity* 17:209–226.

MacNeish, Richard S. and Antoinette Nelken-Terner

1983 Final Annual Report of the Belize Archaic Archaeological Reconnaissance. Center for Archaeological Studies, Boston University, Boston.

Masson, Marilyn A.

- 1999 Postclassic Maya communities at progresso lagoon and laguna seca, Northern Belize. *Journal of Field Archaeology* 26:285–306.
- 2000 In the Realm of Nachan Kan: Postclassic Maya Archaeology at Laguna de On, Belize. University Press of Colorado, Boulder.
- Masson, Marilyn A. and Robert M Rosenswig
 - 2005 Production characteristics of postclassic Maya pottery from Caye Coco, Northern Belize. *Latin American Antiquity* 16:355–384.
- Pohl, M. D., Pope, K. O., Jones, J. G., Jacob, J. S., Piperno, D. R., deFrance, S. D., Lentz, D. L., Gifford, J. A., Danforth, M. E., and Josserand, J. K.
 - 1996 Early agriculture in the Maya lowlands. *Latin American Antiquity* 7:355–372.
- Prufer, Keith, Clayton Meredith, Asia Alsgaard, Timothy Dennehy, and Douglas Kennett
 - 2017 The Paleoindian Chronology of Tzib Te Yux Rockshelter in the Rio Blanco Valley of Southern Belize. Research Reports in Belizean Archaeology 14:321–326.
- Prufer, Keith M., Mark Robinson, and Douglas J. Kennett 2021 Terminal Pleistocene through Middle Holocene Occupations in Southeastern Mesoamerica: Linking Ecology and Culture in the Context of Neotropical Foragers and Early Farmers. *Ancient Mesoamerica* 32:439–460.

Rosenswig, Robert M.

- 2004 New archaeological excavation data from the Late Archaic occupation of northern Belize. Research Reports in Belizean Archaeology 1:267– 277.
- 2006 Northern Belize and the Soconusco: A Comparison of the Late Archaic to Formative Transition. Research Reports in Belizean Archaeology 3:59–71.
- 2008 Prehispanic Settlement in the Cuauhtémoc Region of the Soconusco, Chiapas, Mexico. *Journal of Field Archaeology* 33:389-411.
- 2015 A Mosaic of Adaptation: The Archaeological Record for Mesoamerica's Archaic Period. *Journal* of Archaeological Research 23:115–162
- 2021 Opinions on the Lowland Maya Late Archaic Period with Some Evidence from Northern Belize. *Ancient Mesoamerica* 32:461–474.

Rosenswig, Robert M. (editor)

2022 Belize Archaic Project 2019: Survey and Initial Excavation. Report to the Institute of Archeology, Belmopan Belize. Institute of

- Mesoamerican Studies, Occasional Publication No. 18. University at Albany, Albany.
- Rosenswig, R. M., and Masson, M. A.
 - 2001 Seven new preceramic sites documented in northern Belize. *Mexicon* 23:138–140.
- Rosenswig, R. M., Pearsall, D. M., Masson, M. A., Culleton, B. J., and Kennett, D. J.
 - 2014 Archaic period settlement and subsistence in the Maya lowlands: New starch grain and lithic data from Freshwater Creek, Belize. *Journal of Archaeological Science* 41:308–321.
- Rosenswig, Robert M., Margaret L. Briggs, and Marilyn A. Masson
 - 2020 Burying the Dead during the Maya Postclassic: Saxe, Binford and Goldstein's Continued Relevance to Mortuary Analysis. Journal of Anthropological Archaeology 58:101147.
- Shafer, H. J., and Hester, T. R.
 - 1983 Ancient Maya chert workshops in northern Belize, Central America. *American Antiquity* 48:519–545.
- Stemp, W. James, Jaime J. Awe, Keith M. Prufer, and Christophe G. B. Helmke
 - 2016 Design and Function of Lowe and Sawmill Points from the Preceramic Period of Belize. *Latin American Antiquity* 27:279–299.
- Stemp, W. James, and Eleanor Harrison-Buck
 - 2019 Pre-Maya Lithic Technology in the Wetlands of Belize: The Chipped Stone from Crawford Bank. *Lithic Technology* 44:183–198.
- Stemp, W. James and Robert M. Rosenswig
 - 2022 Archaic Period Debitage and Expedient Tool Use at Caye Coco and the Fred Smith Site, Northern Belize. *Latin American Antiquity* 33(3):520–539.
- Zeitlin, Robert N.
 - 1984 A summary report on three seasons of field investigations into the Archaic period prehistory of lowland Belize. *American Anthropologist* 86: 358–368.